

About this document

Scope and purpose

This application note describes the method for creating an *nvram.txt* file, which is then used to test a new board design, optimize NVRAM values, and program the one-time programmable (OTP) nonvolatile memory in the AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip device using the PCIe or SDIO host interface for WLAN.

Intended audience

This document is intended for design and applications engineers, and includes information on:

- NVRAM content development and OTP memory programming flow
- Customizing the nvram.txt file
- OTP memory programming procedure

Table of contents

Abou	ut this document	1
Table	e of contents	
1	Introduction	2
1.1	IoT resources	2
2	OTP memory programming considerations	
3	NVRAM content development and memory programming flow	4
4	Customizing the nvram.txt file	6
4.1	Using the nvram.txt file template	
4.2	Editing the nvram.txt file	16
4.3	Finalizing the nvram.txt file	
5	Programming the OTP memory	18
5.1	Programming the basic parameters into the OTP memory	18
5.2	Creating and editing the OTP binary map	26
6	Programming the CYW5459x OTP memory using Gigabyte Brix	
6.1	Programming the OTP memory	33
7	Programming the CYW5459x OTP BD address	
Revis	sion history	

Introduction

1 Introduction

The AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip is a single-chip IEEE 802.11 ac 2x2 MIMO/RSDB WLAN + Bluetooth[®] 5.0 device for embedded applications. One-time programmable (OTP) nonvolatile memory is included in the WLAN section of the device to store board-specific information such as PCIe header, product ID, manufacturer ID, and MAC address. Excluding the internal header information, up to 1150 bytes of useraccessible OTP memory is available on the CYW5459x for WLAN information. The application note provides OTP programming information for both PCIe and SDIO host interfaces.

The OTP memory content, along with an editable NVRAM file (*nvram.txt* file), provides all configuration information used by the WLAN device driver to initialize and configure the CYW5459x device.

1.1 IoT resources

The wealth of data available **here** will help you to select the right IoT device for your design, and quickly and effectively integrate the device into your design. You can access a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates. You can acquire technical documentation and software from the **Support Community website**.

OTP memory programming considerations

2 OTP memory programming considerations

In embedded designs where the host and device are permanently connected, which is typically done using a hardwired PCIe or SDIO interface is the only mandatory entry to be programmed into OTP memory is the PCIe or SDIO header. This is because there are certain PCIe or SDIO function settings (such as L1 sub-state for low power) which are read before the firmware and NVRAM are downloaded. To properly set these settings, the PCIe or SDIO header must be programmed into their OTP memory.

Other than the PCIe or SDIO header, all other NVRAM parameters can be stored in the host's nonvolatile memory rather than in OTP memory. For non-embedded devices that may be installed on different hosts, the OTP memory can be programmed to protect the unique MAC address and prevent end-users from altering the power control parameters such as maximum output power.

The initial state of all OTP bits in an unprogrammed device is 0. Individual bits can be set to 1, but once set, the bits can never be reset to 0. The entire OTP array can be programmed in a single-write cycle using the w1 commands provided with the PCIe or SDIO driver. As an alternative, multiple write cycles can be used to selectively program specific fields. However, only the bits that are still in the 0 state can be set to the 1 state during each programming cycle.

The OTP programming process is irreversible, so it is recommended that you finalize all NVRAM parameters before programming any of the parameter into the OTP memory. Test the boards and modules using only the editable *nvram.txt* file.

The driver loads the parameters stored in the *nvram.txt* file onto on-chip RAM, allowing the chip to be tested even if the OTP memory has only been programmed with the PCIe or SDIO header. This method allows you to tune the RF components and alter critical parameters using different versions of the *nvram.txt file* while testing boards. Optionally, a few basic parameters, such as the board type and MAC address, can be programmed into the OTP memory prior to board testing during development.

- *Note:* If a parameter is present in both the on-chip OTP memory and the nvram.txt file, the value in the OTP memory takes priority over the value in the nvram.txt file.
- Note: The programming process of an OTP memory is irreversible. Infineon strongly recommends conducting development on boards using the parameters provided in the editable nvram.txt file. Do not program the OTP memory until the contents of the nvram.txt file have been verified and the file has been finalized for production use. The one exception to this is the PCIe or SDIO header, which must be programmed into OTP memory for full PCIe or SDIO functionality.

NVRAM content development and memory programming flow

3 NVRAM content development and memory programming flow

Figure 1 shows the *nvram.txt* file content development and the OTP memory programming flow. Parameters in the *nvram.txt* file can be divided into basic and advanced categories.

Note: Conduct the NVRAM development and OTP programming flow shown in **Figure 1** on fewer boards/modules during the product development stage. Once this process is complete and the production version of the nvram.txt file and OTP memory file is approved for production use, programming can begin for high volume mass production as defined by each manufacturer.

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

NVRAM content development and memory programming flow

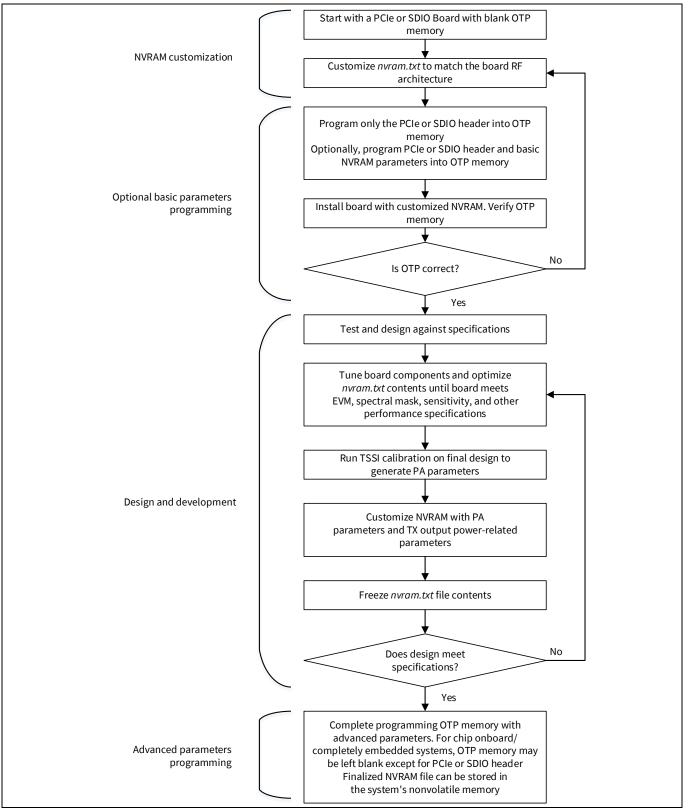


Figure 1 NVRAM development and programming flow of OTP memory

Customizing the nvram.txt file

4 Customizing the nvram.txt file

This section describes customizing, editing, and finalizing the *nvram.txt* file for OTP memory programming.

4.1 Using the nvram.txt file template

For each reference board design, Infineon provides an *nvram.txt* file for the specific board design. Typically, the file is named in accordance with the board it supports (for example, *cyw5459xwliparef.txt*).

The *nvram.txt* file might be included with the reference board design package or the driver release. The latest version of the file can be downloaded from the **Developer Community**.

Table 1 provides a list of parameters in a typical *nvram.txt* file that are common to dual-band 802.11ac 2x2MIMO PCIe or SDIO reference design boards.

Parameters in the *nvram.txt* file need not be entered in any specific order.

The parameters listed in **Table 1** are used and specified by Infineon and should only be changed by Infineon. It is important that a customer's design is reviewed by Infineon early in the development process. Some of the parameters in **Table 1** may need to be changed by Infineon to accommodate differences in the RF front end between the customer's design and the Infineon reference design from which it was derived.

NVRAM parameter	Example data	Description
sromrev	11	SROM revision for 802.11ac chips
boardtype	0x084e	This is a critical parameter that should be copied from a similar Infineon reference board design.
tssipos2g	1	This represents if TSSI has positive slope for 2.4 GHz. For CYW5459x, set the value to 1.
tssipos5g	1	This represents if TSSI has positive slope for 5 GHz. For CYW5459x, set the value to 1.
rxchain	3	This specifies the number of rx paths (bit mask). For CYW5459x, set the value to 3.
txchain	3	This specifies the number of tx paths (bit mask). For CYW5459x, set the value to 3.
antswitch	0	This enables switch-based diversity:0: disable1: enable
vendid	0x14e4	PCIe vendor ID
	0x4416	PCIe device ID, CYW54590
devid	0x4417	PCIe device ID, CYW54591
	0x441a	PCIe device ID, CYW54594
manfid	0x02d0	Manufacturer ID
vendid	0x04b4	SDIO vendor ID
	0xbd3a	SDIO device ID, CYW54590
devid	0xbd3b	SDIO device ID, CYW54591
	0xbd3c	SDIO device ID, CYW54594
nocrc	1	Check for CRC errors when loading firmware

 Table 1
 Infineon-specific NVRAM parameters

Customizing the nvram.txt file

NVRAM parameter	Example data	Description
boardflags boardflags2 boardflags3	0x00480201 0x00800000 0x48700186	Board configuration flag that defines the power topology, external components (iPA, eLNA), and so on
tworangetssi2g tworangetssi5g	0 0	2.4-GHz and 5-GHz TSSI dual power range flag, which iPA chips support
xtalfreq	37400	Describes the reference oscillator frequency in kHz. '37400' stands for 37.4 MHz.
extpagain2g	2	Supports 5-GHz external PA. Use '2' for iPA boards, and use '0' for ePA boards.
extpagain5g	2	Supports 5-GHz external PA. Use '2' for iPA boards, and use '0' for ePA boards.
aa2g, aa5g	3	 Number of antennas available for the 2.4-GHz and 5-GHz bands, respectively, in bit-mapped binary format: 1 = 01b for one antenna 3 = 11b for two antennas (applies to CYW5459x)
subband5gver	0x4	Defines 5-GHz sub-band allocation
tempthresh	255	Infineon internal use only
tempoffset	255	Infineon internal use only
rawtempsense	0x1ff	Infineon internal use only <i>Note: Do not modify.</i>
phycal_tempdelta	15	Infineon internal use only
temps_period	15	Infineon internal use only
temps_hysteresis	15	Infineon internal use only
AvVmid_c0, AvVmid_c1	2, 140, 2, 145, 2, 145, 2, 145, 2, 145	Infineon internal use only <i>Note: Do not modify.</i>
swctrlmap_2g, swctrlmap_5g, swctrlmapext_2g/5g	0x02020202, 0x05050404, 0x04040000, 0x000000	Describes how to control the external 2.4-GHz and 5-GHz FEM (front-end module) or TR-SW.

Review the design variables listed in **Table 2** prior to beginning board or module testing. During the development phase, start with the default power amplifier (PA) parameters contained in the provided *nvram.txt* file. The PA parameters are eventually optimized using Infineon transmit signal strength indicator (TSSI) calibration tools.

The parameters in **Table 2** typically require tuning for each specific-board or module design. This is not an exhaustive list. Additional parameters may be added by Infineon at any time to control the RF performance-related attributes of the driver. Always check with Infineon for the latest version of the *nvram.txt* file for the reference design before starting for any board customization efforts.

Customizing the nvram.txt file

Note:

To avoid unexpected operating results, contact a technical support representative before attempting to add NVRAM parameters.

NVRAM parameter	Example data	Description
		Board revision used by the WLAN driver.
		Examples:
boardrev	0x1102	0x1102 converts to P102
		0x1210 converts to P210
		Country code for regulatory. Specifies which regulatory tables are to be loaded.
Ccode	0	Note: Together, the ccode and regrev parameters set the power and other limitations necessary to meet the country-specific regulatory requirements.
Regrev	0	The regulatory revision code for regulatory use, and specifies which regulatory tables are to be loaded. Note: Together, the ccode and regrev parameters set the power and other limitations necessary to meet the country-specific regulatory requirements.
rxgains2gtrelnabypa0, rxgains2gtrelnabypa1	1	This variable defines the isolation that 5 GHz eLNA provides when put in bypass mode. 'a0' and 'a1' apply for Core 0 and Core 1, respectively, and to low sub-band.
rxgains5gmtrelnabypa0, rxgains5gmtrelnabypa1	1	This variable defines the isolation that 5 GHz eLNA provides when put in bypass mode. 'a0' and 'a1' apply for Core 0 and Core 1, respectively, and to mid sub-band.
rxgains5ghtrelnabypa0, rxgains5ghtrelnabypa1	1	This variable defines the isolation that 5 GHz eLNA provides when put in bypass mode. 'a0' and 'a1' apply for Core 0 and Core 1, respectively, and to high/X1 sub-band.
rxgains2gelnagaina0, rxgains2gelnagaina1	1	This variable defines the 2.4-GHz eLNA gain in dB. 'a0' and 'a1' apply to Core 0 and Core 1, respectively.
rxgains2gtrisoa0, rxgains2gtrisoa1	7	This variable defines the 2.4-GHz isolation that TR switch provides when in "T" mode. 'a0' and 'a1' apply to Core 0 and Core 1, respectively.
rxgains5gelnagaina0, rxgains5gelnagaina1	3	This variable defines the 5-GHz eLNA gain in dB. 'a0' and 'a1' apply to Core 0 and Core 1, respectively. Applies to low sub-band.
rxgains5gtrisoa0, rxgains5gtrisoa1	6	This variable defines the 5-GHz isolation that TR switch provides when in "T" mode. 'a0' and 'a1' apply to Core 0 and Core 1, respectively.

Table 2 NVRAM parameters that require customization

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

NVRAM parameter	Example data	Description
		Applies to low sub-band.
······		This variable defines the 5-GHz eLNA gain in dB.
rxgains5gmelnagaina0,	3	'a0' and 'a1' apply to Core 0 and Core 1, respectively.
rxgains5gmelnagaina1		Applies to mid sub-band.
rxgains5gmtrisoa0, rxgains5gmtrisoa1	6	This variable defines the 5-GHz isolation that TR switch provides when in "T" mode. 'a0' and 'a1' apply to Core 0 and Core 1, respectively. Applies to mid sub-band.
		This variable defines the 5-GHz eLNA gain in dB.
rxgains5ghelnagaina0,	3	'a0' and 'a1' apply to Core 0 and Core 1, respectively.
rxgains5ghelnagaina1		Applies to high/X1 sub-band.
rxgains5ghtrisoa0,	C	This variable defines the 5-GHz isolation that TR switch provides when in "T" mode.
rxgains5ghtrisoa1	6	'a0' and 'a1' apply for Core 0 and Core 1, respectively.
		Applies to high/X1 sub-band.
		Antenna gain (in dBi) defined by converting hexadecimal to 8-bit binary: (agba0: 2.4-GHz antenna gain, aga0: 5-GHz antenna gain)
		• Lower 0–5 bits = signed 2s complement in units of dB.
agbg0, aga0, agbg1, aga1	0x7f	 Higher 6–7 bits = unsigned number in units of quarter dB.
		Suffices '0' and '1' apply for Core 0 and Core 1,
		respectively.
		Examples:
		$0x82 = 2.5 \text{ dB} (2 + 2 \times 0.25)$
		$0x7f = -0.75 \text{ dB} (-1 + 1 \times 0.25)$
		PA parameters for the 2.4-GHz band based on TSSI
pa2ga0, pa2ga1,	-148, 5828, -679	calibration.
pa2gccka0, pa2gccka1		pa2ga0/a1 – OFDM / pa2gccka0/a1- CCK.
		'a0' and 'a1' apply for Core 0 and Core 1, respectively.
		PA parameters for the 5-GHz band based on TSSI calibration
	83, 6045, -553, 57,	(Low / Mid / High / X1). Sub-band frequency range. Channel Range:
pa5ga0, pa5ga1	5940, -566, 12,	 Low 5180 to 5240 36-48
μασβάν, μασβάτ	5919, -605, -17,	 Mid 5260 to 5320 52-64
	5899, -640	 High 5500 to 5700 100-140, X1 5745 to 5825 149-165 (pa5ga0/a1)
		'a0' and 'a1' apply for Core 0 and Core 1, respectively.
	-152, 8169, -994,	Core 0 PA parameters for 5G (Low / Mid / High / X1).
	-150, 8190, -999,	(subband5gver=4), for 40 MHz/80 MHz BW
pa5gbw4080a0	-138, 8514, -	Sub-band frequency range.
	1034,	Channel Range:

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

NVRAM parameter	Example data	Description
	-130, 8806, -1058	• Low 5180 to 5240 36-48
		• Mid 5260 to 5320 52-64
		• High 5500 to 5700 100-140
		X1 5745 to 5825 149-165.
		Core 1 PA parameters for 5G (Low / Mid / High / X1).
		(subband5gver=4), for 40 MHz/80 MHz BW
	-169, 7695, -945,	Sub-band frequency range.
	-156, 8053, -980,	Channel Range:
pa5gbw4080a1	-160, 8075, -984,	• Low 5180 to 5240 36-48
	-158, 8219, -997	• Mid 5260 to 5320 52-64
		• High 5500 to 5700 100-1-40
		X1 5745 to 5825 149-165.
		5 GHz, 40 MHz BW PD offset (1/4 dB steps) in 2's
pdoffset40ma0,	0x0000	complement format 4 bits for each sub-band.
pdoffset40ma1		'a0' and 'a1' apply for Core 0 and Core 1, respectively.
pdoffset80ma0,		5 GHz, 80 MHz BW PD offset (1/4 dB steps) in 2's
pdoffset80ma1	0x0000	complement format 4 bits for each sub-band.
puolisetoolilai		'a0' and 'a1' apply for Core 0 and Core 1, respectively.
		Maximum output power for the 2.4 GHz band in
	0x46	hexadecimal format. Units of 0.25 dB. This applies to all
		complementary code keying (CCK) rates as measured at
		antenna port. The nominal target power in dBm for CCK packets is (0.25 × maxp2ga0 in decimal) – 1.5 dB.
ກວນກິສວ0, ກວນກິສວ 1		The value can be entered in either hexadecimal or decimal
maxp2ga0, maxp2ga1	0840	formats.
		In the example shown for 0 x 46, the maximum output
		power is $(16 \times 4 + 6)/4 = 17.5$ dBm, and the nominal power
		is 17.5 – 1.5 = 16.0 dBm.
		'a0' and 'a1' apply for Core 0 and Core 1, respectively.
cckbw202gpo	0x0000	CCK power offsets for 20 MHz rates (11, 5.5, 2, 1 Mbps)
cckbw20ul2gpo	0x0000	CCK power offsets for 20 U/L rates (11, 5.5, 2, 1 Mbps)
		Core 0 2g CCK PD offset (1/4 dB steps) in 2's complement
cckpwroffset0	0x4	format - For example, if 1dB reduction is required then the
cckpwionseto	0,4	value is 0x4, but if 1dB higher offset is required then it is
		0xc.
		Core 1 2g CCK PD offset (1/4 dB steps) in 2's complement
cckpwroffset1	0x4	format – For example, if 1dB reduction is required then the
cenpwronset		value is 0x4, but if 1dB higher offset is required then it is
		0xc.
dot11agofdmhrbw202gpo	0x6666	OFDM power offset. Specified in half dBm units – 54, 48, 36,
		and 24 Mbps.
ofdmlrbw202gpo	0x0033	OFDM 2.4 GHz power offset. Specified in half dBm units:
οιαιπιτοννΖυΖεμυ		MCS1 and MCS2: 11n and 11ac 40 MHz BW

NVRAM parameter	Example data	Description
		MCS1 and MCS2: 11n and 11ac 20 MHz BW
		• 12 and 18 Mbps: 11g
		• 6 and 9 Mbps: 11g
		11n/ac MCS0/1/2, 3-7, C8, C9 2.4 MHz power offset. Specified
mcsbw202gpo	0xAA886664	in half dBm units – C9/C8/M7/M6/M5/M4/M3/M0-2.
1163511202600		(If separate control of MCS1 and MCS2 is required, then use
		ofdmlrbw202gpo).
maxp5ga0, maxp5ga1	0x4A, 0x4A, 0x4A, 0x4A	Maximum output power for the 5 GHz band in hexadecimal format. Units of 0.25 dB. This applies to all legacy orthogonal frequency division multiplexing (OFDM) rates as measured at antenna port. The nominal target power in dBm is (0.25 × maxp5ga0 in decimal) – 1.5 dB. The value can be entered in either hexadecimal or decimal format. 'a0' and 'a1' apply for Core 0 and Core 1, respectively.
		5 GHz band low sub-band 12/18 & M1/M2:
		 (0) 20 MHz
mcslr5glpo	0x0000	• (1) 40 MHz
incsitogipo	0x0000	• (2) 80 MHz
		• (3) 160 MHz
mcsbw205glpo	0xAA886662	5 GHz low band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset
	0744000002	for 20 MHz BW – C9/C8/M7/M6/M5/M4/M3/M0-2.
mcsbw405glpo	0xAA886664	5 GHz low band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset
		for 40 MHz BW – C9/C8/M7/M6/M5/M4/M3/M0-2.
mcsbw805glpo	0xAA886664	5 GHz low band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset
		for 80 MHz BW – C9/C8/M7/M6/M5/M4/M3/M0-2.
		5 GHz band mid sub-band 11ag/11n/11ac QPSK power offset with respect to BPSK - mcs 1/2 with respect to mcs 0/ 1/2 and 12/18 Mbps with respect to 6/9 Mbps. LSB to MSB nibble:
mcslr5gmpo	0x0000	• (0) 20 MHz
		• (1) 40 MHz
		• (2) 80 MHz
		• (3) 160 MHz
mcsbw20Eampa	0xAA886664	5 GHz mid band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset
mcsbw205gmpo	0XAA886664	for 20 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2.
mcsbw405gmpo	0xAA886664	5 GHz mid band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset for 40 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2.
	0	5 GHz mid band 11n/ac MCS0/ 1/2, 3-7, C8, C9 power offset
mcsbw805gmpo	0xAA886664	for 80 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2.
mcslr5ghpo	0x0000	5 GHz band high/X1 sub-band 11ag/11n/11ac QPSK power

NVRAM parameter	Example data	Description
		offset with respect to BPSK - mcs 1/2 with respect to mcs 0/1/2 and 12/18 Mbps with respect to 6/9 Mbps. LSB to MSB nibble:
		• (0) 20 MHz
		• (1) 40 MHz
		• (2) 80 MHz
		• (3) 160 MHz
mcsbw205ghpo	0xAA886664	5 GHz high/X1 band 11n/ac MCS0/1/2,3-7, C8, C9 power offset for 20 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2
mcsbw405ghpo	0xAA886664	5 GHz high/X1 band 11n/ac MCS0/1/2,3-7, C8, C9 power offset for 40 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2
mcsbw805ghpo	0xAA886664	5 GHz high/X1 band 11n/ac MCS0/1/2,3-7, C8, C9 power offset for 80 MHz – C9/C8/M7/M6/M5/M4/M3/M0-2
		20in40 OFDM signed power offsets with respect to 20in20 for 64 QAM and above. LSB nibble to MSB nibble:
		• (0) 2.4 GHz band
sb20in40hrpo	0	• (1) 5 GHz low sub-band
		• (2) 5 GHz mid sub-band
		• (3) 5 GHz high/X1 sub-band
		 20in40 OFDM signed power offsets with respect to 20in20 for 64 QAM and above. LSB nibble to MSB nibble: (0) 2.4 GHz band
sb20in80and160hr5glpo	0	 (1) 5 GHz low sub-band
		 (2) 5 GHz mid sub-band
		 (3) 5 GHz high/X1 sub-band
		 5 GHz low sub-band 20in80, 20in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20
ab 20: n 00 and 1 C 0 by E al na		 (0) 20in160 with respect to 20in20 (1) 20in160 with respect to 20in20
sb20in80and160hr5glpo	0	 (1) 201100 with respect to 201120 (2) 20in80 - 20LL/UU with respect to 20LU/UL
		 (2) 201100 - 20LL/00 with respect to 20L0/0L (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands
		5 GHz low sub-band 40in80, 40in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble:
		• (0) 40in80 with respect to 40in40
sb40and80hr5glpo	0	• (1) 40in160 with respect to 40in40
		• (2) 80in160 with respect to 80in80
		• (3) 40in160 -40LL/UU with respect to 40LU/UL
sb20in80and160hr5gmpo	0	5 GHz mid sub-band 20in80, 20in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble:
σστοιπουαπατουπισεμιμο	U	• (0) 20in80 with respect to 20in20
		• (1) 20in160 with respect to 20in20

NVRAM parameter	Example data	Description
		• (2) 20in80 - 20LL/UU with respect to 20LU/UL
		 (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands
sb40and80hr5gmpo	0	 5 GHz mid sub-band 40in80, 40in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 40in80 with respect to 40in40 (1) 40in160 with respect to 40in40 (2) 80in160 with respect to 80in80 (3) 40in160 -40LL/UU with respect to 40LU/UL
sb20in80and160hr5ghpo	0	 5 GHz high/X1 sub-band 20in80, 20in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20 (1) 20in160 with respect to 20in20 (2) 20in80 - 20LL/UU with respect to 20LU/UL (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands
sb40and80hr5ghpo	0	 5 GHz high/X1 sub-band 40in80, 40in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 40in80 with respect to 40in40 (1) 40in160 with respect to 40in40 (2) 80in160 with respect to 80in80 (3) 40in160 -40LL/UU with respect to 40LU/UL
sb20in40lrpo	0	 20in40 OFDM signed power offsets with respect to 20in20 for 16 QAM and below. LSB nibble to MSB nibble: (0) 2.4 GHz band (1) 5 GHz low sub-band (2) 5 GHz mid sub-band (3) 5 GHz high/X1 sub-band
sb20in80and160lr5glpo	0	 5 GHz low sub-band 20in80, 20in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20 (1) 20in160 with respect to 20in20 (2) 20in80 - 20LL/UU with respect to 20LU/UL (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands
sb40and80lr5glpo	0	 5 GHz mid sub-band 20in80, 20in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20 (1) 20in160 with respect to 20in20 (2) 20in80 - 20LL/UU with respect to 20LU/UL

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

NVRAM parameter	Example data	Description	
		 (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands 	
sb40and80hr5gmpo	0	 5 GHz mid sub-band 40in80, 40in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 40in80 with respect to 40in40 (1) 40in160 with respect to 40in40 (2) 80in160 with respect to 80in80 (3) 40in160 -40LL/UU with respect to 40LU/UL 	
sb20in80and160hr5ghpo	0	 5 GHz high/X1 sub-band 20in80, 20in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20 (1) 20in160 with respect to 20in20 (2) 20in80 - 20LL/UU with respect to 20LU/UL (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands 	
sb40and80hr5ghpo	0	 5 GHz high/X1 sub-band 40in80, 40in160 OFDM signed power offsets for 64 QAM and above. LSB nibble to MSB nibble: (0) 40in80 with respect to 40in40 (1) 40in160 with respect to 40in40 (2) 80in160 with respect to 80in80 (3) 40in160 -40LL/UU with respect to 40LU/UL 	
sb20in40lrpo	0	 20in40 OFDM signed power offsets with respect to 20in20 for 16 QAM and below. LSB nibble to MSB nibble: (0) 2.4 GHz band (1) 5 GHz low sub-band (2) 5 GHz mid sub-band (3) 5 GHz high/X1 sub-band 	
sb20in80and160lr5glpo	0	 5 GHz low sub-band 20in80, 20in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble: (0) 20in80 with respect to 20in20 (1) 20in160 with respect to 20in20 (2) 20in80 - 20LL/UU with respect to 20LU/UL (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands 	
sb40and80lr5glpo	0	 5 GHz low sub-band 40in80, 40in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble: (0) 40in80 with respect to 40in40 (1) 40in160 with respect to 40in40 (2) 80in160 with respect to 80in80 (3) 40in160 -40LL/UU with respect to 40LU/UL 	

NVRAM parameter Example data		Description	
		5 GHz mid sub-band 20in80, 20in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble:	
		• (0) 20in80 with respect to 20in20	
sb20in80and160lr5gmpo	0	• (1) 20in160 with respect to 20in20	
		• (2) 20in80 - 20LL/UU with respect to 20LU/UL	
		 (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands 	
		5 GHz mid sub-band 40in80, 40in160 OFDM signed power	
		offsets for 16 QAM and below. LSB nibble to MSB nibble:	
		• (0) 40in80 with respect to 40in40	
sb40and80lr5gmpo	0	• (1) 40in160 with respect to 40in40	
		• (2) 80in160 with respect to 80in80	
		• (3) 40in160 -40LL/UU with respect to 40LU/UL	
		5 GHz high/X1 sub-band 20in80, 20in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble:	
		• (0) 20in80 with respect to 20in20	
sb20in80and160lr5ghpo	0	• (1) 20in160 with respect to 20in20	
		• (2) 20in80 - 20LL/UU with respect to 20LU/UL	
		 (3) 20in160 - 20LLL/UUU with respect to other 20in160 sub-bands 	
		5 GHz high/X1 sub-band 40in80, 40in160 OFDM signed power offsets for 16 QAM and below. LSB nibble to MSB nibble:	
sb40and80lr5ghpo	0	• (0) 40in80 with respect to 40in40	
on roundoorrogripo	0	• (1) 40in160 with respect to 40in40	
		• (2) 80in160 with respect to 80in80	
		• (3) 40in160 - 40LL/UU with respect to 40LU/UL	
dot11agduphrpo	0	11a/g duplicate mode signed power offsets for 64 QAM. Common power offset for Dup40, Dup40in80, and Dup40in160 with respect to 40in40 11n/11ac, Quad80 and Quad80in160 with respect to 11ac 80in80, Oct160 with respect to 11ac 160in160. LSB to MSB nibble:	
astrra Parkinko	ľ	• (0) 2.4 GHz band	
		• (1) 5 GHz low sub-band	
		• (2) 5 GHz mid sub-band	
		• (3) 5 GHz high/X1 sub-band	
dot11agduplrpo	0	Bits 11a/g duplicate mode signed power offsets for 16 QAM and below. Common power offset for Dup40, Dup40in80, and Dup40in160 with respect to 40in40 11n/11ac, Quad80 and Quad80in160 with respect to 11ac 80in80, Oct160 with respect to 11ac 160in160. LSB to MSB nibble:	

Customizing the nvram.txt file

NVRAM parameter	Example data	Description
		• (0) 2.4 GHz band
		• (1) 5 GHz low sub-band
		• (2) 5 GHz mid sub-band
		• (3) 5 GHz high/X1 sub-band
mux_enab	0x11	Specifies GPIO pin for OOB interrupts.
btc_mode	1	Specifies Bluetooth [®] -COEX mode. Needed only for sLNA
btc_mode	L .	configuration.
ltecxmux	0x534201	Specifies LTE Coex settings.
cckdigfilttype	4	Specifies filter type for 11b mode.
fdss_level_2g	4,4	Specifies FDSS setting for 2 GHz, shaping OFDM spectrum appropriately.
fdss_level_5g	4,4	Specifies FDSS setting for 5 GHz, shaping OFDM spectrum appropriately.
fdss_interp_en=1	1	Enables interpolator in FDSS mode for avoiding EVM degradation.
powoffs2gtna0,	-3, -2, 0, 0, 0, 0, 0, 0,	Specifies power offset per channel in 2.4 GHz (Channel 1 to
powoffs2gtna1	0, 0, 0, 0, -5, -5	13).
powoffs5g20mtna0,	-2, -2, -2, -2, -3, -	Specifies power offset for band-edge channels, 5 GHz, 20
powoffs5g20mtna1	3	MHz BW [36, 64, 100, 140, 149, 165].
powoffs5g40mtna0,		Specifies power offset for band-edge channels, 5 GHz, 40
powoffs5g40mtna1	-2, -2, -3, -3	MHz BW [38, 62, 102, 151].
powoffs5g80mtna0,		Specifies power offset for band-edge channels, 5 GHz, 80
powoffs5g80mtna1	-2, -2, -3, -3	MHz BW [42, 58, 106, 155].

4.2 Editing the nvram.txt file

Edit the *nvram.txt* file using a properly formatted text editor such as Notepad++ or WordPad++ to preserve the original format of the file. Using a non-formatted text editor such as Notepad could corrupt the format of the NVRAM map, causing the driver to incorrectly read the *nvram.txt* file.

4.3 Finalizing the nvram.txt file

After the final PA parameters have been generated, edit the *nvram.txt* file to update the PA parameters derived using the Infineon TSSI tool, and then adjust the Tx output power-related parameters in the file. Using the updated *nvram.txt* file, run output power tests to verify that the parameters are providing the correct output power. Also, verify that RF performance (EVM, spectral mask, and PER) meets design specifications.

Infineon recommends running a regulatory pre-scan to verify that the required output power can be delivered without violating the band-edge limits. If the band-edge limits cannot be met, it may be necessary to reduce the output power at the band-edge channels.

After all prototype tests have passed and all *nvram.txt* file parameters have been optimized and finalized, the needed parameters can be selected and the OTP memory programmed for production.

Customizing the nvram.txt file

Note:

The CYW5459x device has 1150 bytes of space in the OTP memory available for user data. Given the limited space in the OTP memory, it is impossible to program the entire nvram.txt file to the OTP memory. Make sure that you select only the necessary parameters that go into the OTP memory.

Parameters that typically go into the OTP memory are those that are unique to the board (such as MAC address) and those that are required to satisfy local regulatory requirements, which are usually output power-related parameters such as maximum output power, power offset per-rate, PA parameters, and country code. Alternately, with many embedded systems, various NVRAM variables are stored in the system's nonvolatile memory as opposed to OTP memory.

Programming the OTP memory

5 Programming the OTP memory

One item that is required in the OTP memory is the PCIe or SDIO header. When using the PCIe or SDIO interface with the CYW5459x, there are certain PCIe or SDIO function settings (such as L1 sub-state for low power) which are read before the firmware and NVRAM are downloaded. To properly set these settings, the PCIe or SDIO header must be programmed into their OTP (one-time programmable, nonvolatile memory).

Note that the PCIe or SDIO header should be created as a collaboration between Infineon and the customer. A majority of the PCIe or SDIO header fields are either generic (and do not need to be changed) or are Cypress-specific. There are a few fields that are customer-specific. Coordinate with the Infineon Hardware Applications team supporting the design to confirm the appropriate PCIe or SDIO header. Note that the PCIe or SDIO header is a set block of data with a predetermined order. It does not use tuples.

5.1 Programming the basic parameters into the OTP memory

Parameters in the *nvram.txt* file that are to be programmed into the OTP memory must be entered in the OTP binary map after the PCIe or SDIO header. A CIS tuple is required for each parameter in the CIS structure. Most parameters in the *nvram.txt* file have a unique identifier called the CIS tuple tag. The driver recognizes and parses each CIS tuple by its tag number.

Note: The PCIe or SDIO header does not use tuples, but is a set block of data with a specific ordering.

Table 3 lists the basic NVRAM parameters, the associated tag number, and the number of bytes each parameter occupies in the OTP memory. Basic parameters typically have fixed values specific to a particular device or board. The value of these parameters is often retained throughout the life of the device/board. For this reason, it is generally acceptable to program these basic parameters into the OTP memory early in the development, before the design is finalized.

NVRAM parameter	CIS tuple tag	Length of value (in bytes)
sromrev	0x00	1
boardrev	0x02	2
broadtype	0x1b	2
macaddr	0x19	6
ccode ¹	0x0a	2
pa2ccka0	0x86	6
pa5gbw4080a0, pa5gbw4080a1	0x89	48
subband5gver	0x8A	2
pa2ccka1	0xA1	6
subband5gver, maxp2ga0, pa2ga0, maxp5ga0, pa5ga0	0x59	38
maxp2ga1, pa2ga1, maxp5ga1, pa5ga1	0x5A	36

Table 3Basic NVRAM parameters and CIS tuple tags

In the OTP binary map, each tuple is formed by the four fragments described in **Table 4**.

¹ The value for ccode in the nvram.txt file is in ASCII format. It must be converted to hexadecimal format before entering it into the OTP binary map (for example, "US" = "0x55 0x53").

Programming the OTP memory

CIS tuple format

Table 4

Fragment	Description
80	Indicates the beginning of a new tuple. 0x80 is specific to Infineon tuple subtags.
Length	Defines the total size (in bytes) of the tag plus the value of the tuple that occupies the OTP memory space.
Тад	Identifies a parameter in the <i>nvram.txt</i> file. A tag usually takes one byte in memory.
Value	Specifies the value of the parameter in little-endian format (first byte is the least significant byte (LSB)).

For example, the tuple is defined by the fragments that follow:

80 03 02 00 11

- 80 Beginning of a new tuple.
- 03 The tag (1 byte) and the value (2 bytes) occupy 3 bytes (total) in the OTP memory.
- 02 Tag of 0x02 is the identifier for broadrev in the *nvram.txt* file.
- 00 11 The value of boardrev in reverse hexadecimal byte or 0x1100.

Table 5 and **Table 6** provide an example OTP binary map for a CYW5459x that contains the PCIe or SDIO header and some of the *nvram.txt* file parameters listed in **Table 3**.

- Note: CIS tuples do not have to be listed in any order because each tuple begins with a unique identifier.
- *Note:* OTP bytes can be written to only once. Only blank and zero-programmed bytes can be programmed during subsequent write cycles.
- Note: The PCIe or SDIO header is a set block of data with a predetermined order. In PCIe or SDIO header order, do not use tuples. The tuples must be programmed into OTP memory for all PCIe or SDIO functions (such as L1SS) to operate properly.

Table 5 CYW5459x OTP map for PCIe (required in OTP)

						0vE			0.40	00	0.40	Ove	0.40	Over	0.40	0.4]
Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf	
00000000	Of	38	00	38 (1)	51	07 (2)	e4	14 (3)	1c	02	7e	1b	00	8a	00	00	
00000010	00	00	00	00	00	00	00	00	54	00	3c	21	64	21	03	32	
00000020	5f	18	05	96	28	9f	b6	79	80	80	03	0c	00	40	40	32	
00000030	00	5f	f4	75	90	80	00	ee	00	84	08	F0	0b	00 (4)	00	00	
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	PCIe Header (Required in OTP)
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	(Required in OTT)
00000060	17	44 (5)	00	80	02	00	00	00	f5	3f	00	18	00	00	00	00	
00000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0800000	80	02	00	0 b	80	03	02	01	11	80	03	1b	51	07	80	07	
00000090	19	66	55	44	33	22	11	00	00	00	00	00	00	00	00	00	Other NVRAM Variables (Optional in OTP)
000000a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	(0)000000000000000000000000000000000000
000000b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	macaddr=66:55:44:33:22
000000d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	macadui=00.55.44.55.22
000000e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	09	00	00	00	00	00	00	00	00	00	00	boardtype = 0x074c
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00		00	00	00	00	08	00	00	00	00	
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	boardrev = 0x1101
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	sromrev = 11
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

CYW5459x Wi-Fi & Bluetooth® combo chip Programming the OTP memory

OTP memory programming and NVRAM development - AIROC™

Infineon

20 of 40

Application Note

002-32510 Rev. ** 2021-09-23

App	
lication	
Note	

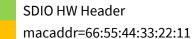
Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
00000200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000210	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000220	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000230	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000240	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000250	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000260	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000270	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000280	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000290	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000300	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000310	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000320	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000330	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000340	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000350	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000360	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000370	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000380	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000390	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000410	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
00000420	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000430	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000440	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000450	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000460	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000470	00	00	00	00	00	00	00	00	00	00	00	00	FF	FF		
CYW5459x Header	ОТР												ОТР Е	nd		
00	<mark>38</mark> (1)		XTAL	freque	ncy. 0x3	3800 fo	r 37.4 M	IHz.								
51	07 (2)		PCI Si	ubsyste	em ID, v	endor	specific	. Use 0	x0000 i	funkno	wn.					
e4	14 (3)		PCI Su	ubsyste	em veno	dor ID										
0 b	00 (4)		Time	for pov	ver on.	Use 0x0	000b fo	r 50 µs	for defa	ault, un	less sp	ecified				
17	44 (5)		Devic	e ID. 0x	4417 is	device	ID for (CYW545	591.							

Max WLAN SW/HW Region size = 9200 bits = 1150 bytes

Ð

ble 6	CYW54	59x OT	P map f	or SDI	0												
Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf	
0000000	4b	00	ff	ff	00	00	20	04	b4	04	3b	bd	80	07	19	66	
0000010	55	44	33	22	11	80	03	02	01	11	80	02	00	0B	80	03	
0000020	1b	63	08	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	SDIO devid for 54591 = 0x
0000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000080	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	


Infineon

App
licat
ion N
lote

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xt
00000210	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000220	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000230	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000240	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000250	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000260	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000270	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000280	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000290	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00002d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000300	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0000310	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0000320	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0000330	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000340	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0000350	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0000360	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000370	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000380	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000390	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00003a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00003b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00003d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000410	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000410	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
00000430	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000440	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000450	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000460	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000470	00	00	00	00	00	00	00	00	00	00	00	00	FF	FF		

sromrev=11

boardrev=0x1101

boardtype=0x0863

OTP end

Max WLAN SW/HW region size = 9200 bits = 1150 bytes

Programming the OTP memory

5.2 Creating and editing the OTP binary map

Use a hexadecimal text editor to create and edit an OTP binary map. A hexadecimal text editor preserves formatting of the *nvram.txt* file. Writing to the OTP memory requires a bin file that fits in the OTP memory space.

For CYW5459x, the maximum size of the OTP memory is 1150 bytes.

- Note: Do not use Notepad to edit the nvram.txt file. Edit the nvram.txt file using a properly formatted text editor such as Notepad++ or WordPad++ to preserve the original format of the file. Using a non-formatted text editor such as Notepad could corrupt the format of the NVRAM map, causing the driver to incorrectly read the nvram.txt file.
- 1. Add or edit each byte in the OTP binary map to populate the PCIe hardware header and the CIS tuple, as described in the OTP binary map instructions provided in Programming the basic parameters into the OTP memory.

Note: The OTP binary map file (see **Table 7** and **Table 8**) has been edited to match the example CYW5459x OTP binary map described in **Table 5** and **Table 6**.

- 2. Save the OTP binary map as a binary image file (.bin extension) to the directory containing the *wl.exe* file.
- Note: The file name must be save with a .bin file extension so that the data it contains can be programmed into the OTP memory. In this application note, this file is referred 5459x_OTP.bin.
- *Note:* **Table 7** and **Table 8** show the hexadecimal OTP binary map template for the CYW5459x PCIe revision and SDIO revision, respectively.

Т	able 7	CYW	5459x	PCIe he	exadec	imal O	TP bin	ary ma	ap tem	plate							
	Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
	0000000	0f	38	00	38	51	7	e4	14	1c	02	7e	1b	00	8a	00	00
	0000010	00	00	00	00	00	00	00	00	54	00	3c	21	64	21	03	32
	0000020	5f	18	05	96	28	9f	b6	79	80	80	03	0c	00	40	40	32
	0000030	00	5f	f4	75	90	80	00	ee	00	84	08	F0	0b	00	00	00
	00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	0000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000060	ef	43	00	80	02	00	00	00	f5	3f	00	18	00	00	00	00
	0000070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000080	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000000a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000000b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000000d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000000e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000000f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	000001f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	00000200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Infineon

27 of 40

≻
σ
σ
0
بم
Ξ.
0
z
0
te

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xt
00000210	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000220	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000230	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000240	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000250	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000260	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000270	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000280	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000290	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000002f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000300	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000310	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000320	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000330	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000340	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000350	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000360	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000370	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000380	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000390	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003c0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
000003f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000410	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000420	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
00000430	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000440	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000450	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000460	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000470	00	00	00	00	00	00	00	00	00	00	00	00	FF	FF		

Table 8 CYW5459x SDIO hexadecimal OTP binary map template

10	anie o	CIW	54598		exaue	cimat		iai y ili	ap tem	μιατε							
	Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
	0000000	4b	0	ff	ff	0	0	20	4	d0	2	59	43	80	7	19	66
	0000010	55	44	33	22	11	80	3	2	1	11	80	2	0	0B	80	3
	0000020	1B	51	7	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000050	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000060	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000070	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000080	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0000090	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	000000a0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000b0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	000000c0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	000000d0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	000000e0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	000000f0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00000180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Application Note

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
00000190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001a0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001b0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001c0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001d0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001e0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001f0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000210	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000220	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000230	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000260	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000280	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000290	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002a0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002b0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002c0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002d0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002e0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000002f0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000310	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000320	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000330	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000340	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000350	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000370	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000380	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000390	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000003a0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

30 of 40

Offset	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
000003b0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000003c0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000003d0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000003e0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000003f0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000420	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000430	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000440	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000450	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000460	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000470	0	0	0	0	0	0	0	0	0	0	0	0	ff	ff		

Programming the OTP memory CYW5459x Wi-Fi & Bluetooth® combo chip OTP memory programming and NVRAM development - AIROC™

Programming the CYW5459x OTP memory using Gigabyte Brix

6 Programming the CYW5459x OTP memory using Gigabyte Brix

This section outlines the procedure to program the PCIe header to the OTP of a CYW5459x device using a Gigabyte Brix Linux box.

Figure 2 Brix system example

The required hardware includes:

- 1x CYW5459x PCIe board with 60-pin Samtec connector this is the "DUT"
- 1x Brix box with Infineon image that has FC19 Kernel installed in USB memory
- 1x USB mouse
- 1x USB keyboard
- 1x external monitor with HDMI or DVI connection
- 1x HDMI-to-HDMI cable or HDMI-to-DVI cable
- 1x Ethernet cable
- 1x CYW9MC2EMB60AD interposer card (inserted into the MC slot on Brix)

The required software includes:

- Infineon PCIe MFG driver package containing driver files for CYW5459x in Linux FC19 (3.11.1) 64-bit platform (typically provided by Infineon).
- *OTP.bin* file containing the CYW5459x PCIe or SDIO header information. Follow the procedure in Programming the OTP memory to program OTP memory using the *OTP_bin* file.

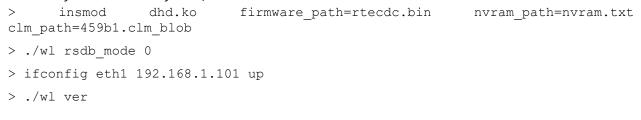
Programming the CYW5459x OTP memory using Gigabyte Brix

6.1 Programming the OTP memory

Use MFG firmware and follow these steps to program the OTP memory:

- 1. While powered OFF, connect the Brix to Ethernet, USB mouse and keyboard, and monitor (a HDMI-to-DVI cable is required to connect to a DVI monitor).
- 2. Connect DUT to the 60-pin connector located in the Brix.
- 3. Plug in the power to the Brix and the Brix system should be turned ON automatically. On the monitor, you should see the screen booting up to Linux FC19.
- 4. At prompt, log in as "root". When logged in, type the following to go to the Linux GUI:

> startx


- 5. Go to Activities > Terminal to open a command prompt. At the terminal:
 - a. Type > ifconfig -a.
 - b. Copy the mac address for eth0 (for example, 74:d4:35:47:84:d9).
 - c. Open another terminal using a text editor of your choice.
 - d. If using vi, type:

> vi /etc/sysconfig/network-scripts/ifcfg-eth0p

- e. In this file, modify the MAC address to match it with the copied MAC address (for example, HWADDR=74:d4:35:47:84:d9). Then, save the file.
- 6. On the terminal, type > reboot to reboot the Brix. The Ethernet should work after reboot, and the Brix should be able to connect to network.
- 7. Once in Linux, copy the CYW5459x driver files and the *OTP.bin* file to a desired directory.

Note: Check that the results returned by *lspci* includes the slot number of the DUT (03:00.0). The command can be used to check the revision ID after programming and a power cycle.

8. Go to the directory where you copied the CYW5459x driver files. Issue the driver load command as you would normally do on a Linux system, or:

Note: If driver loads successfully, the command *wl ver* will return the WL version and the driver version.

- 9. Once the driver is loaded successfully, you are ready to program OTP.
 - a. Run the following command to check the CIS dump in the OTP:

> wl cisdump

Programming the CYW5459x OTP memory using Gigabyte Brix

b.	-				as never ne follow	•	orogram	nmed w	ith the	PCle or S	SDIO header	in the OTP,	check if
	Sourc	ce: 2	2 (In	terna	L OTP)								
	Maxin	num 1	lengt	h: 484	l byte	S							
	Byte	0:0	00xC	0x00 ()x00 0	x00 C)x00 C)x00 ()x00 (00x0			
	Byte	8: (00xC	0x00 ()x00 0	x00 C)x00 C)x00 ()x00 (00x0			
	Byte	16:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	24:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	32 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	40:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	48:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	56 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	64 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	72 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	80:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	88:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	96:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00			
	Byte	104	: 0x0	0 0x00) 0x00	0x0C	0x00	0x00) 0x0(00x00			
	Byte	112	: 0x0	0 0x00) 0x00	0x0C	0x00	0x00) 0x00	00x00			
	Byte	120	: 0x0	0 0x00) 0x00	0x0C	0x00	0x00) 0x00	00x00			
	Byte	128	: 0x0	0 0x00) 0x00	0x0C	0x00	0x00) 0x00	00x00			
	Byte	136	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x00	00x00			
	Byte	144	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x0(00x00			
	Byte	152	: 0x0	0 0x00) 0x00	0x0C	0x00) 0x00) 0x0(00x00			
	Byte	160	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x0(00x00			
	Byte	168	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x0(00x00			
	-									00x00			
	-									00x00			
	-									00x00			
	Byte	200	: 0x0	0 0x00) 0x00	0x00) 0x00) 0x00) 0x0(00x00			
	-									0 0 x 0 0			
	-									00x00			
	Byte	224	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x0(00x00			
	-									00x00			
	Byte	240	: 0x0	0 0x00) 0x00	0x00	0x00	0x00) 0x0(00x00			
	Byte	248	: 0x0	0 0x00) 0x00	0x0C) 0x0C	0x00) 0x0(0 0 x 0 0			
	-									00x00			
	-									00x00			
	-									00x00			
	-									00x00			
	Byte	288	: 0x0	0 0x00	0 0x00	0x0C	0x0C	0x00) 0x0(00x00			

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

Programming the CYW5459x OTP memory using Gigabyte Brix

d	mming	g the Ci	W5459	XOIPI	memor	y using	g Gigab	yte Brix	K	
	Byte	296:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	304:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	312:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	320:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	328:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	336:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	344:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	352:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	360:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	368:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	376:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	384:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	392:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	400:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	408:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	416:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	424:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	432:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	440:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	448:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	456 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	464:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	472:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	480:	0x00	0x00	0x00	0x00				

c. If you can confirm that CYW5459x device has never been programmed, then your device has blank CIS and is ready to be programmed. Go to the directory where you copied the OTP.bin file.
 For PCIe, run the following command:

>wl ciswrite -p OTP.bin

For SDIO, run the following command: >wl ciswrite OTP.bin

d. After programming is completed, confirm the OTP by dumping CIS again:

> wl cisdump

If programming is successful, you should see the dump that looks similar to the following:

Note: Depending on the contents of your .bin file, the CIS dump might vary.

Source: 2 (Internal OTP) Maximum length: 484 bytes Byte 0: 0x0f 0x38 0x00 0x38 0x37 0x07 0xe4 0x14 Byte 8: 0x1c 0x02 0x7e 0x1b 0x00 0x0a 0x00 0x00 Byte 16: 0x00 0x00 0x00 0x00 0x00 0x00 0x00

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

Programming the CYW5459x OTP memory using Gigabyte Brix

gra	mming	theC	100343	9X 01P	memo	ry usin	g Gigab	yte Br	IX	
	Byte	24:	0xd4	0x00	0x3c	0x25	0x64	0x21	0x03	0x32
	Byte	32:	0x5f	0x3e	0x05	0x96	0x2f	0x9f	0xb6	0x79
	Byte	40:	0x80	0x80	0x03	0x0c	0x00	0x40	0x40	0x32
	Byte	48:	0x00	0x5f	0xf4	0x4d	0x90	0x80	0x00	0xee
	Byte	56:	0x30	0x86	0x80	0x01	0x2b	0x00	0x00	0x00
	Byte	64:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	72:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	80:	0x00	0x00	0x00	0x00	0x00	0x88	0x0a	0x03
	Byte	88:	0x60	0x01	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	96:	0xec	0x43	0x00	0x80	0x02	0x00	0x00	0x00
	Byte	104:	0xf5	0x3f	0x00	0x18	0x00	0x00	0x00	0x00
	Byte	112:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	120:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	128:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	136:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	144:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	152 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	160:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	168:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	176 :	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	184:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	192:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	200:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	208:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	216:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	224:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	232:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	240:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	248:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	256:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	264:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	272:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	280:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	288:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	296:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	304:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	312:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	320:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	328:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	336:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	Byte	344:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00

OTP memory programming and NVRAM development - AIROC[™] CYW5459x Wi-Fi & Bluetooth[®] combo chip

Programming the CYW5459x OTP memory using Gigabyte Brix

a	, the er				, asing	, eigus		•	
Byte	352:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	360:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	368:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	376:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	384:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	392:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	400:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	408:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	416:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	424:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	432:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	440:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	448:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	456:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	464:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	472:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
Byte	480:	0x00	0x00	0x00	Oxff				

If the CIS dump matches your OTP.bin file, the OTP programming is successful, and the PCIe or SDIO header is correctly programmed to your CYW5459x device.

Note: Make sure that you remove the device from the PCIe or SDIO slot before power cycling.

Programming the CYW5459x OTP BD address

7 Programming the CYW5459x OTP BD address

Command:

#wl.exe otpraw <bitoffset> <length> <value>

Bit offset:

"9744" in case of CYW5459x

Length:

"80"

Value:

- 50 // Signature. OTP bit offset 9744 is the start of the Bluetooth[®] OTP signature.
- 4F // Signature. Only 2 bytes of signature are for this chip.
- 10 // Header. Use fixed value of 0x10.
- 06 // Size of OTP after this byte itself. If only need to program the BD ADDR, use the size value of 0x06.
- Ff // BDADDR, 6 bytes; Assuming BDADDR Aa Bb Cc Dd Ee Ff
- Ee // BDADDR, 6 bytes
- Dd // BDADDR, 6 bytes
- Cc // BDADDR, 6 bytes
- Bb // BDADDR, 6 bytes
- Aa // BDADDR, 6 bytes

9744	9752	9760	9768	9776	9784	9792	9800	9808	9816
50	4F	10	6	Ff	Ee	Dd	Cc	Bb	Aa

Command example:

#./wl otpraw 9744 80 0xAaBbCcDdEeFf06104F50

Revision history

Revision history

Document version	Date of release	Description of changes
**	2021-09-23	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-09-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Go to www.cypress.com/support

Document reference 002-32510 Rev. **

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.