

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 002-25270 Rev. *D

www.infineon.com 2023-08-03

AN225270

CYW20819, CYW20820 low-power design

guidelines

About this document

Scope and purpose

AN225270 describes how to use the power modes in AIROC™ CYW20819 and AIROC™ CYW20820 Bluetooth® &
Bluetooth® LE system on chip devices to optimize power consumption. Major topics include the low-power

modes in these devices, and power management techniques using those modes. It will provide tips and tricks
to minimize the current consumption to increase battery life.

Intended audience

This application note is intended for users who want to optimize their applications for low power on CYW20819

or CYW20820 devices.

http://www.infineon.com/

Application note 2 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 3

2 Infineon resources.. 4
2.1 ModusToolbox™ .. 4
2.2 Development kits .. 4

3 CYW20819 power management resources ... 5

3.1 System power modes .. 5
3.2 Device power domains .. 7

3.3 Power Management Unit (PMU) ... 7
3.3.1 Low-power oscillator (hardware) .. 7
3.3.2 PMU tasks with respect to LPO (software) .. 8

3.3.3 PMU operation ... 8

3.4 Implementing low power in ModusToolbox™ .. 8
3.4.1 Sleep header files ... 10
3.4.2 Sleep configuration .. 10

3.4.3 Sleep callback function .. 12
3.4.4 Post-sleep callback function ... 12

3.4.5 Wakeup events ... 12
3.4.6 Entering HID-Off/Timed-Wake ... 13
3.4.7 Wakeup reason ... 13

3.5 Recommendations for low power .. 13

3.5.1 Use CYW20819 to gate current paths .. 13
3.5.2 Disable unused blocks ... 13
3.5.3 Periodic wakeup timers ... 14

3.5.4 Clocks ... 14
3.5.5 GPIOs .. 14

3.5.6 RTOS ... 14

4 Low-power code example .. 15

4.1 CE236664 – CYW20819/CYW20820 - BTSDK low power.. 15

References .. 16

Revision history... 17

Disclaimer... 18

Application note 3 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

Introduction

1 Introduction

Bluetooth® Low Energy devices such as heart-rate monitors are typically battery-operated. A long battery life is
a key requirement for such devices. CYW20819 and CYW20820 give the flexibility of high performance and low

power consumption using various low-power modes. This application note shows how to implement a low-
power solution using the CYW20819 and CYW20820 devices. Later sections of the document will reference only

the CYW20819 device but it is applicable for CYW20820 device as well.

CYW20819 is a Bluetooth® 5.2-compliant, stand-alone baseband processor with an integrated 2.4-GHz
transceiver with support for both Bluetooth® LE and Classic Bluetooth®. The device is intended for use in audio,
IoT, sensors (medical, home, security, and so on) and human interface device (HID) applications. Manufactured

using an advanced 40-nm CMOS low-power fabrication process, CYW20819 employs a high level of integration

to reduce external components, thereby minimizing system footprint and costs. Visit the product pages for

datasheets, application notes, and development resources:

• AIROC™ CYW20819 Bluetooth® & Bluetooth® LE system on chip

• AIROC™ CYW20820 Bluetooth® & Bluetooth® LE system on chip

This application note requires a basic understanding of the CYW20819 device architecture and ability to
develop an application using ModusToolbox™. If you are new to ModusToolbox™, see the ModusToolbox™ user

guide.

https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/airoc-bluetooth-le-bluetooth/cyw20819/
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/airoc-bluetooth-le-bluetooth/cyw20820/?redirId=204693
https://www.infineon.com/dgdl/Infineon-ModusToolbox_2.4_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017ed97e72563632
https://www.infineon.com/dgdl/Infineon-ModusToolbox_2.4_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017ed97e72563632

Application note 4 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

Infineon resources

2 Infineon resources

Infineon provides a wealth of data at the www.infineon.com page to help you to select the right IoT device for
your design, and quickly and effectively integrate the device into your design. Infineon provides customer
access to a wide range of information, including technical documentation, schematic diagrams, product bill of

materials, PCB layout information, and software updates. Customers can acquire technical documentation and
software from the Infineon Support Community.

2.1 ModusToolbox™

Infineon provides ModusToolbox™ as the software development platform for CYW208xx applications.
ModusToolbox™ software is a set of tools that enable you to integrate Infineon devices into your existing

development methodology. One of the tools is a multi-platform, Eclipse IDE that supports application
configuration and development.

2.2 Development kits

The CYW920819M2EVB-01 Development Kit enables you to evaluate single-chip Bluetooth® application using

CYW20819. For more information on the kit including the user guide and schematics, see the
CYW920819M2EVB-01 webpage.

Figure 1 CYW920819M2EVB-01 Evaluation Kit

https://www.infineon.com/
https://community.infineon.com/
http://www.infineon.com/cyw920819m2evb-01
http://www.infineon.com/cyw920820m2evb-01

Application note 5 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

3 CYW20819 power management resources

3.1 System power modes

CYW20819 devices support various system power modes as shown in Figure 2—note that the power states are
shown in the descending order of power consumption.

Active

Idle

Sleep

PDS

ePDS

Timed Wake

HID-OFF

Figure 2 CYW920819 power modes

• Active: Active mode is the normal operating mode in which all peripherals are available and the CPU is

active.

• Idle: In this mode, the CPU is in Wait for Interrupt (WFI) mode, and the HCLK, which is the high-frequency
clock derived from the main crystal oscillator, is running at a lower clock speed. Other clocks are active and

the state of the entire chip is retained. Idle mode is chosen when other lower-power modes are not possible.

• PMU Sleep: In this mode, the CPU is in WFI mode and the HCLK is not running. The PMU determines
whether other clocks can be turned OFF, and does so accordingly. The state of the entire chip is retained
including SRAM; internal LDO regulators run at a lower voltage (voltage is managed by the PMU), and SRAM

is retained

• Power Down Sleep (PDS): Bluetooth® radio is powered down and digital core is mostly powered down
except for RAM, registers, and some core logic. CYW20819 can wake up either after a programmed period of
time has expired or if an external event such has switch interrupt is received via one of the GPIOs.

• ePDS (extended PDS) mode: This is an extension of the PDS Mode. In this mode, only the main RAM and

ePDS control circuitry retain power. As in other modes, CYW20819 can wake up either after a programmed
period or upon receiving an external event.

• Timed wake: Lean High Land IOs (LHL GPIOs), Real time clock (RTC), and Low power oscillator (LPO) are the
only active blocks in this mode; the SRAM is not retained. The RTC that runs off the LPO is used to wake the
device up after a predetermined time. The device starts executing from reset; therefore, the wakeup time is

similar to that of POR.

• HID-OFF (Deep Sleep) mode: The core, radio, and regulators are powered down. Only the LHL I/O domain
is powered. In this mode, CYW20819 can be woken up either by an event on one of the GPIOs or after a
certain amount of time has expired. After wakeup, the device will go through full firmware initialization

although it will retain enough information to determine that it came out of HID-OFF and the event that
caused the wakeup. The LPO and RTC are turned off in this mode.

Application note 6 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

Table 1 Low-power modes summary

Property /

mode

Active Idle PDS ePDS Timed Wake/ HID-

OFF

Clocks All clocks

active

HCLK at 48 MHz.
Other clocks

active

HCLK OFF, Other
clocks depend

on PMU

Only LPO active Only LPO active

SRAM

retained?

NA Yes Yes Yes No

Wake

sources

NA Any configured

interrupt

GPIO, timer,
Bluetooth®

activity

LHL GPIO, timer,
Bluetooth®

activity

LHL GPIO, timer

Bluetooth®

activities

All allowed All allowed Everything

allowed

Everything
allowed.
Minimum sleep
time should be

~10 ms

None

Table 2 shows the state of the peripherals in various power states. “WFI” means Wake From Interrupt and
“Retained” means that the SRAM contents are retained.

Table 2 Peripherals in low-power modes

Peripheral /

mode

Active Idle Sleep PDS ePDS Timed Wake/

HID-OFF

CPU On WFI WFI WFI WFI WFI

SPI On On On Off Off Off

I2C On On On Off Off Off

HCI UART On On On Off Off Off

PUART On On On Off Off Off

ADC On On On Off Off Off

PWM On On On Off Off Off

TRNG On On On Off Off Off

Key scan On On On On On Off

Timer On On On On On Off

GPIO On On On On On On

SRAM On On On Retained Retained Off

WDT On On On On Off Off

RTC On On On On On On

LPO On On On On On On

Application note 7 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

3.2 Device power domains

The power domains on the chip (and the peripherals they supply) are managed by the PMU as listed in Table 3:

Table 3 Device power domains

Power

domain

Peripherals Operational power modes

VDDC SRAM, Patch RAM VDDC power domain is used to supply power to SRAMs in

ePDS mode so that the contents are retained.

VDDCP PWM PWM is switched OFF in ePDS mode but can work in higher-

power modes.

VDDCG SWD, I2C, SPI, PUART, HCI
UART, WDT, Dual Input 32-bit

Timer, flash, ROM

These hardware blocks can operate until the PMU enters

ePDS.

VBAT/LHL GPIO, Analog PMU, RTC, LPO These hardware blocks can operate until the PMU enters

HID-Off.

VBAT/LHL Aux ADC Aux ADC can operate until the PMU enters ePDS.

3.3 Power Management Unit (PMU)

The PMU is a software implementation with the necessary hardware support to lower the average power
consumption of the device. The PMU module is executed from the context of the lowest-priority thread, which
is the Idle thread. Whenever the PMU gets CPU time, it tries to put the device in one of the low-power modes

available in the device. The primary tasks of the PMU include the following:

• Implementing low-power modes, transitions, and timing

• Communicating with different blocks and modules to register callbacks for pre-sleep and post-sleep states

• Implementing the wake ISR, which wakes up the device at the required time

• Switching and calibrating of low-power oscillators (LPO)

3.3.1 Low-power oscillator (hardware)

The LPO is a clock that runs in low-power modes to source some blocks. This clock is used to time the wakeup
at desired intervals. The Bluetooth® specification requires an accuracy of ±250 ppm for Basic Rate/Enhanced

Data Rate (BR/EDR) and ±500 ppm for Bluetooth® Low Energy. Therefore, the LPO accuracy must lie within this
range if there is an active Bluetooth® operation.

The LPO uses one of the following possible sources:

• Low-power xtal (LPX): This clock is derived from the external main crystal oscillator but runs in low-power
mode during sleep. LPX typically has a frequency of 1 MHz, which is derived from the 24-MHz crystal and

provides a clock accuracy of ±20 ppm or better but consumes relatively more current compared to other
LPO sources. LPX is useful when maintaining a BR/EDR connection in a master role where high accuracy is

required. It can sometimes also serve as a substitute for the external 32-kHz crystal.

• External LPO clock: CYW20819 has pins to which an external digital clock or a 32.768-kHz crystal can be
connected; the accuracy should be within ±250 ppm as required by the Bluetooth® specification. If an
external LPO is used, the PMU will use it under all conditions when a 20-ppm accuracy clock is not required.

If a 20-ppm clock is required at any time, the LPX will be used instead of the external LPO clock.

Application note 8 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

• Internal LPOs: The internal LPOs belong to the Lean High Land (LHL) domain, which is always powered ON.
There are two internal LPOs: one which has lower accuracy and consumes less current, and another with

higher accuracy but consumes more current. These LPOs are calibrated by the PMU and used based on the
accuracy required by the Bluetooth® subsystem.

3.3.2 PMU tasks with respect to LPO (software)

• Switching: The PMU switches between different LPOs. Active peripherals can request a clock with a
particular ppm value so that the PMU can select an appropriate LPO source based on the required ppm. The

PMU might also turn OFF unused LPO sources to save power. The usual preference for the LPO source is in

the following order: External LPO clock > Internal LPO > LPX. Although it is possible for AIROC™ Bluetooth®
devices to enter low-power modes using internal LPOs, it is recommended to use an external LPO.

• Calibration: The PMU calibrates internal LPOs at regular intervals to improve accuracy. Calibration is

performed against the 24-MHz external crystal. The PMU calibrates internal LPOs every 500 ms when active.
If in low-power mode, the calibration is done when the chip wakes up. The calibration takes place only if the
internal LPOs are selected as the source.

3.3.3 PMU operation

The PMU module executes from the context of the lowest-priority thread (Idle thread). It interacts with other
modules to determine whether it can put the system to sleep. The PMU collects the necessary information to

determine whether to go to sleep and the duration of sleep. The PMU manages the states of the clocks and the
LDO voltages in low-power modes.

Power modes differ in the following aspects:

• Blocks that are turned OFF

• Duration for which the system goes to sleep

• Accuracy of the internal clock while sleeping

• Wakeup sequences

3.4 Implementing low power in ModusToolbox™

The PMU determines all power mode transitions. The firmware can control whether PDS or ePDS are allowed,
but it cannot prevent Idle or Sleep. It is up to the PMU to determine which sleep mode to enter depending on

scheduled events. For example, even if the user firmware allows ePDS, the PMU may decide not to go into ePDS
because of an event scheduled for a short time in the future. In that case, going to ePDS would not be beneficial

because there is time (and power) required to shut down and reinitialize the system. The PMU can transition to

Idle or Sleep at any time. Figure 4 shows the flow for entering low-power modes.

Application note 9 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

User Application AIROC Bluetooth® Stack PMU

Configure sleep
wiced_sleep_configure()

Initialize AIROC
Bluetooth® stack

wiced_bt_stack_init()

AIROC Bluetooth® stack
enabled

Sleep permission
low_power_sleep_handler()1

Permission reply
Return from

low_power_sleep_handler()1

Sleep permission
(other blocks)

Permission reply
(other blocks)

Sleep if permission
granted

Figure 3 Low-power mode transitions

low_power_sleep_handler is a custom function implemented in the example referenced in the application note.
You should implement your own function per your requirements. See Section 3.4.3 for more details.

In firmware, you configure sleep by providing wake sources and by providing a callback function that the PMU
will call whenever it wants to go to low-power mode. In the callback function, you can disallow sleep, allow

sleep without shutdown (ePDS), or allow sleep with shutdown (timed wake/HID-Off) depending on your
firmware requirements. You can also provide a post-sleep callback that the PMU calls after it wakes up from

ePDS or PDS. This call can be used to initialize peripherals that lose their context when the device enters ePDS.

Do the following to enable low power in your application:

1. Add sleep header files.

2. Set up the sleep configuration.

3. Create a sleep callback function.

4. Create a post-sleep callback function.

5. Create wakeup events (timers and threads).

6. Check for the reset reason (for ePDS wakeup).

Application note 10 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

3.4.1 Sleep header files

The header file wiced_sleep.h contains the API functions related to low-power operation of CYW20819. This

header file must be included in the source code to call sleep API functions.

3.4.2 Sleep configuration

The wiced_sleep_configure function is used to enable low-power operation of the device. The parameter
passed to this function is a pointer to a structure of type wiced_sleep_config_t that contains the sleep
configuration information. The structure is defined as follows:

/** This structure defines the sleep configuration parameters to be passed to

 * wiced_sleep_configure API

*/

typedef struct

{

 wiced_sleep_mode_type_t sleep_mode; /**< Defines whether to

sleep with or

without transport */

 wiced_sleep_wake_type_t host_wake_mode; /**< Defines the active

level for host wake

signal */

 wiced_sleep_wake_type_t device_wake_mode; /**< Defines the active

level for device

wake signal. If device wake signal is not

present on the device then GPIO defined in

device_wake_gpio_num is used */

 uint8_t device_wake_source; /**< Device wake

source(s). See 'wake

sources' defines for more details. GPIO is

mandatory if WICED_SLEEP_MODE_TRANSPORT is

used as sleep_mode*/

 uint32_t device_wake_gpio_num; /**< GPIO# for

device wake, mandatory for

WICED_SLEEP_MODE_TRANSPORT */

 wiced_sleep_allow_check_callback sleep_permit_handler; /**< Call

back to be called by sleep

framework to poll for sleep permission */

 wiced_sleep_post_sleep_callback post_sleep_cback_handler; /**< Callback to

application on wake

 from sleep */

}wiced_sleep_config_t;

Application note 11 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

In the firmware, you need to do the following to configure sleep:

1. Declare a global variable of type wiced_sleep_config_t.

2. Initialize the elements of the structure just after stack initialization.

3. Call wiced_sleep_configure().

The elements in the structure are:

• sleep_mode: WICED_SLEEP_MODE_NO_TRANSPORT or WICED_SLEEP_MODE_TRANSPORT.

If you select WICED_SLEEP_MODE_NO_TRANSPORT, the device will enter sleep only if no host is connected

(i.e., HCI UART CTS line not asserted). If you select WICED_SLEEP_MODE_TRANSPORT, the device will enter

sleep only when an external HCI host is connected i.e., the HCI UART CTS line is asserted and deasserted at

least once. If the device is being used stand-alone without an external HCI host, you should choose

WICED_SLEEP_NO_TRANSPORT.

• host_wake_mode: WICED_SLEEP_WAKE_ACTIVE_LOW or WICED_SLEEP_WAKE_ACTIVE_HIGH depending

on the polarity of the interrupt to wake the host (if a host is connected). This only applies if sleep_mode is
WICED_SLEEP_MODE_TRANSPORT. The Host Wake function is on a dedicated device pin, but it can be

multiplexed into other I/Os (this multiplexing feature is not currently supported in the API).

• device_wake_mode: WICED_SLEEP_WAKE_ACTIVE_LOW or WICED_SLEEP_WAKE_ACTIVE_HIGH

depending on the polarity of the interrupt for the host to wake the device (if a host is connected). This only
applies if sleep_mode is WICED_SLEEP_MODE_TRANSPORT. The Device Wake function is on a dedicated

device pin, but it can be multiplexed into other I/Os (this multiplexing feature is not currently supported in
the API).

• device_wake_source: The wake source can be key scan, quadrature sensor, GPIO, or a combination of

those. For example, you may want to use an interrupt from a sensor as a GPIO wake source so that the

device wakes whenever new sensor data is available.

/** Wake sources.*/
#define WICED_SLEEP_WAKE_SOURCE_KEYSCAN (1<<0) /**< Enable wake from keyscan */
#define WICED_SLEEP_WAKE_SOURCE_QUAD (1<<1) /**< Enable wake from quadrature sensor */
#define WICED_SLEEP_WAKE_SOURCE_GPIO (1<<2) /**< Enable wake from GPIO */
#define WICED_SLEEP_WAKE_SOURCE_MASK (WICED_SLEEP_WAKE_SOURCE_GPIO | \
 WICED_SLEEP_WAKE_SOURCE_KEYSCAN | \

 WICED_SLEEP_WAKE_SOURCE_QUAD) /**< All
wake sources */

• device_wake_gpio_num: This entry specifies the GPIO that is used to wake the device from sleep. This
applies only if device_wake_source includes GPIO. Another way to configure the GPIO for wakeup is to

register the GPIO for interrupt in the user application.

• sleep_permit_handler: This element requires you to provide a function pointer for the callback function
that will be called by the PMU to request sleep permission and when sleep is entered. This function will be

described next.

• Post_sleep_cback_handler: This element requires you to provide a function pointer for the callback
function that will be called by the PMU after the device wakes up from ePDS and PDS as described below.

Application note 12 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

3.4.3 Sleep callback function

The sleep permission callback function takes one argument of type wiced_sleep_poll_type_t, which

specifies the reason for the callback (WICED_SLEEP_POLL_SLEEP_PERMISSION or
WICED_SLEEP_POLL_TIME_TO_SLEEP); it returns a uint32_t.

For a WICED_SLEEP_POLL_SLEEP_PERMISSION callback, the return value must be one of the following based

on firmware requirements:

• WICED_SLEEP_NOT_ALLOWED – The application can return this value if it does not want the device to enter

PDS or ePDS mode.

• WICED_SLEEP_ALLOWED_WITHOUT_SHUTDOWN – When this value is returned, the device can enter any low-

power mode, including ePDS.

• WICED_SLEEP_ALLOWED_WITH_SHUTDOWN – When this value is returned, the device will enter timed wake

or HID-Off mode.

For a WICED_SLEEP_POLL_TIME_TO_SLEEP callback, you must return the maximum time that the system

should be allowed to sleep for ePDS mode. This is typically set to WICED_SLEEP_MAX_TIME_TO_SLEEP, but
may also be returned as ‘0’ if you don't want the system to go to sleep at that time. If you want to wake at a

specific time, it is better to use a timer.

If you want to enter timed wake mode (i.e., HID-Off with wakeup at a predetermined time), this parameter can
be used to specify the time the device should remain HID-Off mode. For example, if you pass 10000000, the

device will enter HID-Off mode for 10 seconds. If you specify WICED_SLEEP_MAX_TIME_TO_SLEEP, the device

to enter HID-OFF mode and will not wake until a GPIO interrupt occurs.

Remember that the PMU makes the final decision – it polls the firmware and each peripheral to see which type
of sleep is allowed and how long sleep will be possible, and then decides which mode is possible.

3.4.4 Post-sleep callback function

The post–sleep callback function takes one argument of type wiced_bool_t, which specifies whether the
application needs to reinitialize any peripherals. If the parameter value is TRUE, the peripherals need to be
reinitialized and configured; otherwise not. Only the PUART is initialized by the stack by default, so you don’t

need to reinitialize it. The return type is void.

3.4.5 Wakeup events

The firmware may need events that cause it to wake periodically or on specific events. For example, you may
need to read a sensor value every few seconds or respond to a user input such as a button press.

For periodic wakeup, you can either use a timer or threads with delays that allow the thread to sleep (i.e.,
ALLOW_THREAD_TO_SLEEP). The device will not enter ePDS/PDS unless all threads and timers are in a sleep

state.

As previously discussed, during sleep configuration, the device wake source may be configured. If that source is
set to GPIO, the specified GPIO will wake the system. However, you will not get a GPIO interrupt handler
callback unless you register the callback function using wiced_hal_gpio_register_pin_for_interrupt.

You can also use multiple GPIOs to wake up the device by registering multiple pins for interrupt.

Application note 13 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

You can also use timers to wake up from PDS and ePDS. It is sufficient to use functions present in the
wiced_timer.h to set up timers for waking up from PDS. However, if you want to use timers in ePDS mode, you

need to use the functions from clock_timer.h. This is because after waking up from ePDS the device loses the
timer context. Therefore, even though the timer will wake up the timer from ePDS, it will not be able to call the

callback. Also, there is no function to determine whether the wakeup from ePDS was due to a timer or GPIO;
therefore, you need to compare the system time to determine whether the timeout has happened after

wakeup. This can be done by noting the system time when going to sleep into a variable stored in Always-On
(AON) RAM and after wakeup comparing the current time with the value in this variable and see whether the
timeout has passed.

3.4.6 Entering HID-Off/Timed-Wake

HID-Off and timed wake modes can be entered by returning WICED_SLEEP_ALLOWED_WITH_SHUTDOWN from
the sleep permission callback function for the WICED_SLEEP_POLL_SLEEP_PERMISSION case. You need to
specify the time to sleep (for timed wake) by returning the time to sleep value from the sleep permission

callback function for the WICED_SLEEP_POLL_TIME_TO_SLEEP case. See Sleep Callback Function for more

details.

Note the following:

• If you are using internal LPOs, the PMU will switch to a higher-accuracy LPO when in a connection, which
will consume a higher current.

• If the device gets disconnected, the PMU needs some time to switch to a low-accuracy LPO.

3.4.7 Wakeup reason

After waking up from HID-Off or timed wake mode, the device starts from the reset vector. The wakeup reason

can be determined by using the following API function call:

wiced_sleep_wake_reason_t wiced_sleep_hid_off_wake_reason(void);

This function will return the wakeup reason to the application as POR, wakeup from Timed-Wake mode, or
GPIO wakeup.

3.5 Recommendations for low power

3.5.1 Use CYW20819 to gate current paths

GPIOs P26, P27, P28, and P29 can source and sink higher currents (16 mA at 3.3 V and 8 mA at 1.8 V) than the

rest of the GPIOs. These GPIOs can be used to directly power some external peripherals (like a temperature
sensor that falls within the current limit). The power to the external peripherals can then directly be controlled
through the CYW208xx device; when not required, the peripherals can be turned OFF, thus saving power at the
system level.

3.5.2 Disable unused blocks

You can save current by disabling unused blocks like PWM and UARTs using the driver APIs.

Application note 14 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

CYW20819 power management resources

3.5.3 Periodic wakeup timers

The average power consumption is determined by the power consumption in the CPU active and CPU sleep

periods. To achieve the lowest power consumption, the CPU sleep period should be maximized, and the CPU
active period should be minimized. All the low-power modes except HID-Off can maintain advertising (with the

same data) or a connection (by sending empty packets), so the application does not have to wake the device
just to advertise or maintain a connection. If you want to periodically read and send data, you can use
application timers to wake the device.

3.5.4 Clocks

In some designs which require extensive data processing by the CPU, running the CPU at faster clock speeds

can reduce average power consumption. The aim is to reduce the time spent by the CPU in active mode and

race to lower power modes.

3.5.5 GPIOs

GPIOs can hold their logic states in low-power modes (ePDS and timed wake/HID-Off). This is helpful when you
need to hold external logic at a fixed level, but it can lead to wasted power if the pins needlessly source or sink

current. Also, upon wakeup from ePDS and timed wake/HID-Off mode, GPIOs will go to High-Z. You can use the
following function if you want a specific GPIO to maintain its state upon wakeup from low-power modes:

wiced_hal_gpio_slimboot_reenforce_cfg ((uint8_t pin, uint16_t config)

You should analyze your system design and determine the best state for your GPIOs during low-power

operation. If holding a digital output pin at logic 1 or 0 is best, match the same digital level using the following

function:

void wiced_hal_gpio_set_pin_output (UINT32 pin, UINT32 val);

Configure all unused GPIOs to High-Z unless there is a specific reason to use a different drive mode. This can be

either done in the platform config file or using the following API function:

wiced_hal_gpio_configure_pin (WICED_P00, (GPIO_OUTPUT_DISABLE |

GPIO_INPUT_DISABLE), GPIO_PIN_OUTPUT_LOW);

3.5.6 RTOS

The CYW20819 device supports ThreadX by Express Logic which is built into the device ROM; a license is

included for anyone using AIROC™ chips. AIROC™ devices provide wrapper APIs for using RTOS features. The
RTOS can be used to reduce the CPU active time by using threads for running various tasks and using
mechanisms such as mutexes and semaphores to communicate between the threads. If properly done, this can
eliminate the use of timers and polling in your application.

For example, consider an application running two tasks: Task1 and Task2. Task2 is dependent on completion of
Task1. Instead of polling a flag to allow Task2 to run, you can set a semaphore in Task1 which will immediately

allow Task2 to run once Task1 completes. This will avoid polling for a flag and thus will eliminate wasted CPU
power.

Application note 15 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

Low-power code example

4 Low-power code example

4.1 CE236664 – CYW20819/CYW20820 - BTSDK low power

This code example shows how to enter and exit ePDS and HID-Off/timed wake modes. This example will be
used to show how to calculate average current consumption. The project uses a switch to transition between
various power modes. For more details, see the README file in the CYW20819/CYW20820 – BTSDK low power
code example.

https://github.com/Infineon/mtb-example-btsdk-low-power-20819

Application note 16 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

References

References

[1] Application notes

− ModusToolbox™ 2.4 user guide

[2] Code examples

− Code examples for ModusToolbox™ software – Visit this code example for a comprehensive collection of
code examples using ModusToolbox™ IDE.

[3] Device documentation

− CYW20819 device datasheet

− CYW20820 device datasheet

[4] Development kits

− CYW920820M2EVB-01 Evaluation Kit

− CYW920819M2EVB-01 Evaluation Kit

[5] Tool documentation

− Eclipse IDE for ModusToolbox™ - The Infineon IDE for IoT designers

https://www.infineon.com/dgdl/Infineon-ModusToolbox_2.4_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017ed97e72563632
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/cyw20819/#!documents
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/cyw20820/#!documents
http://www.infineon.com/cyw920820m2evb-01
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/cyw20819/
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-bluetooth-le-bluetooth-multiprotocol/cyw20819/
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

Application note 17 002-25270 Rev. *D

 2023-08-03

CYW20819, CYW20820 low-power design guidelines

Revision history

Revision history

Document

revision

Date Description of changes

** 2019-03-01 Initial document

*A 2019-07-10 Updated document title

Updated document to include all CYW208xx devices

Added details about PDS mode

Added details about post-sleep callback

Added details about delay requirement before HID-Off

Added details about GPIO reinforce API

Added details about wakeup reason API

*B 2019-12-20 Changes related to timed wake/HID-Off mode

*C 2022-11-02 Updated to the Infineon template

Updated low power recommendations

*D 2023-08-03 Updated CE Number and CE name

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-03

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-25270 Rev. *D

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Infineon resources
	2.1 ModusToolbox™
	2.2 Development kits

	3 CYW20819 power management resources
	3.1 System power modes
	3.2 Device power domains
	3.3 Power Management Unit (PMU)
	3.3.1 Low-power oscillator (hardware)
	3.3.2 PMU tasks with respect to LPO (software)
	3.3.3 PMU operation

	3.4 Implementing low power in ModusToolbox™
	3.4.1 Sleep header files
	3.4.2 Sleep configuration
	3.4.3 Sleep callback function
	3.4.4 Post-sleep callback function
	3.4.5 Wakeup events
	3.4.6 Entering HID-Off/Timed-Wake
	3.4.7 Wakeup reason

	3.5 Recommendations for low power
	3.5.1 Use CYW20819 to gate current paths
	3.5.2 Disable unused blocks
	3.5.3 Periodic wakeup timers
	3.5.4 Clocks
	3.5.5 GPIOs
	3.5.6 RTOS

	4 Low-power code example
	4.1 CE236664 – CYW20819/CYW20820 - BTSDK low power

	References
	Revision history
	Disclaimer

