

www.cypress.com Document Number: 002-23400 Rev. ** 1

AN223400

Getting Started with EZ-BT WICED Modules

Author: David Solda

Associated Project: Yes

Associated Part Family: CYBT-XXXXXX-0X

Software Version: WICED® Studio™ SDK v6.2

Related Application Notes: For a complete list of the application notes, click here.

AN23400 introduces you to Cypress’ EZ-BT™ WICED® family of Bluetooth modules. EZ-BT modules are fully qualified

and certified Bluetooth solutions, supporting Bluetooth Basic Rate, Enhanced Data Rate, and Bluetooth Low Energy (BLE)

standards. These modules provide a complete Bluetooth solution, integrating a Bluetooth radio system, crystal, antenna,

and passive components required for Bluetooth operation. This application note helps you explore the EZ-BT Module

architecture and development tools and shows you how to create your first project from existing sample application projects

within WICED Studio SDK. This application note also guides you to more resources to accelerate in-depth learning about

EZ-BT WICED solutions.

Contents
1 Introduction .. 2
2 More Information ... 3

2.1 EZ-BT WICED Module Datasheets 3
2.2 EZ-BT WICED Evaluation Boards 3
2.3 Silicon Device Datasheet 3
2.4 Cypress WICED Bluetooth Community 3
2.5 Application Notes .. 3
2.6 Technical Support ... 3

3 EZ-BT WICED Module Overview 4
3.1 EZ-BT WICED Module Family Features 5
3.2 EZ-BT WICED Module Low-Power Modes 6
3.3 EZ-BT WICED Part Number Overview 7

4 Development Tools .. 8
4.1 WICED Studio SDK and IDE 8
4.2 CySmart PC Application 13
4.3 CySmart Mobile App ... 15

5 Development Kits and Evaluation Boards 16
5.1 EZ-BT WICED Module Evaluation Boards 16

6 EZ-BT WICED Module Development Setup 17
7 My First EZ-BT WICED Module Design 18

7.1 About the Design .. 18
7.2 Prerequisites ... 18
7.3 Part 1: Merge SPP and Hello Sensor

Application Samples ... 19
7.4 Part 2: Understanding the Flow of the

WICED Project .. 25
7.5 Part 3: Program the Module 43
7.6 Part 4: Test Your Design 44
7.7 UART Debug Trace .. 48
7.8 Design Source .. 48

8 Module Placement and Enclosure Considerations 49
8.1 Antenna Ground Clearance 49
8.2 Module Placement in a Host System 50
8.3 Enclosure Effects on Antenna Performance 51
8.4 Guidelines for Enclosures and Ground Plane ... 53

9 Manufacturing with EZ-BT WICED Modules 54
9.1 SMT Manufacturing Pick-and-Place 54
9.2 Manufacturing Solder Reflow 54

10 Summary ... 55
11 Related Application Notes ... 55
Appendix A. Cypress Terms of Art 56
Appendix B. EZ-BT WICED Module

Product Details .. 57
B.1 CYBT-343026-01 .. 58
B.2 CYBT-353027-02 .. 65
B.3 CYBT-423028-02 .. 71
B.4 CYBT-413034-02 .. 79
B.5 CYBT-483039-02 .. 86

Appendix C. EZ-BT WICED Evaluation Boards 93
C.1 CYBT-343026-EVAL ... 94
C.2 CYBT-353027-EVAL ... 97
C.3 CYBT-423028-EVAL 100
C.4 CYBT-413034-EVAL 103
C.5 CYBT-483039-EVAL 106

Appendix D. Code Examples 109
Appendix E. Example Project spp.c 110
Appendix F. Makefile Customization 117
Appendix G. Bluetooth Qualification and

Regulatory Certification References 118

http://www.cypress.com/
javascript:getDocDetailsonconfirm('002-23400','')
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
https://community.cypress.com/community/wiced-smart

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 2

1 Introduction

Bluetooth is a wireless standard that operates in the 2.4-GHz ISM band, originally created as an RS-232 cable
replacement technology. Bluetooth technology and applications have evolved significantly since the initial Bluetooth
v1.0 specification release in 1999.

▪ 1999~2004: Bluetooth applications were focused on short-range wireless cable replacement (e.g., printers, PC
mice, and keyboards).

▪ 2004~2011: Bluetooth Special Interest Group (SIG) adopts Bluetooth Core Specification 2.0, introducing Enhanced
Data Rate, capable of transmitting up to 3 Mbits/s, opening up one of the most dominant applications for Bluetooth
technologies: audio streaming. The first Bluetooth-enabled stereo headset was released in the same year. From
2004 to 2011, the number of Bluetooth-enabled products and mobile/ smartphones continued to expand within
these application segments.

▪ 2011~2017: Bluetooth SIG adopts Core Specification v4.0, which introduced Bluetooth Low Energy (BLE), also
known as Bluetooth Smart. The introduction of Bluetooth Smart provided a lower-power alternative to the prior
Bluetooth Classic (BR and EDR) technologies, opening a wide array of applications in what is now known as the
IoT (Internet of Things). Bluetooth Low Energy has continued to evolve since its introduction, adding increased
security, data rates, and improved privacy for users.

▪ 2017: Mesh networking capability is added to Bluetooth, enabling products to increase the scale and range for
Bluetooth applications.

Cypress' Bluetooth portfolio consists of Bluetooth Low Energy (BLE)-only and dual-mode Bluetooth solutions that
support Bluetooth Classic (i.e., Basic Rate (BR) and Enhanced Data Rate (EDR)) as well as BLE. This application note
will focus on the Cypress dual-mode Bluetooth module portfolio, which includes Bluetooth 5.0 qualified, BR + EDR +
BLE devices that integrate Bluetooth standard profiles and protocols for embedded applications.

WICED (pronounced “wik-id”) is Cypress’ IoT platform that enables rapid development and deployment of connected
IoT products. Wireless Internet Connectivity for Embedded Devices (WICED) in conjunction with EZ-BT modules
provides a great feature set to simplify development and release of Bluetooth-enabled products by eliminating the
complexity of wireless RF hardware design, allowing customers to focus on their IoT product development.

The WICED Studio™ SDK is pre-integrated, pre-tested, and continuously updated, containing:

▪ WICED APIs and drivers to make wireless connectivity easy and flexible

▪ Proven production-ready stacks (e.g., networking, security)

Cypress’ EZ-BT modules accelerate your time-to-market, by providing:

▪ Proven RF solutions, reducing hardware development and debugging

▪ Fully qualified and certified solutions, decreasing costs and cycle times associated with RF standards

▪ Multiple module options to maximize your system design flexibility

EZ-BT WICED Modules enable quick time-to-market by eliminating time-consuming and costly RF hardware
development, certification, and qualification processes, offering an effective alternative to completing a Bluetooth
system design from the ground up.

The EZ-BT WICED Module family provides fully integrated, qualified, and certified Bluetooth systems that integrate a
24-MHz crystal oscillator, passive components, on-board or on-chip memory, on-board chip or trace antennas, and the
WICED Bluetooth silicon device, which includes the Bluetooth radio, analog-to-digital converter inputs, PWM control,
serial communication protocols (I2C, SPI, UART), audio interfaces (I2S, PCM, PDM), and an Arm® Cortex®-M3 or M4
microcontroller.

EZ-BT WICED Modules provide a cost-effective solution for sensor-based IoT solutions, while still achieving world-
class RF performance by utilizing the latest WICED Bluetooth silicon devices.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 3

2 More Information
This section provides a list of learning resources for the EZ-BT Module family that can help you to get started and
develop complete applications with your EZ-BT Module. All documentation can be accessed at the Cypress Bluetooth
Module website.

2.1 EZ-BT WICED Module Datasheets

EZ-BT WICED Module datasheets list the features, pinouts, device-level specifications, and fixed-function peripheral
electrical specifications of EZ-BT WICED Modules. Click on the Documentation tab of the Cypress Bluetooth Module
website to access all datasheets for EZ-BT WICED Modules.

2.2 EZ-BT WICED Evaluation Boards

Each EZ-BT WICED Module offers a low-cost Arduino-compatible evaluation board, providing an easy-to-use vehicle
to develop and evaluate EZ-BT WICED Modules without requiring custom hardware design. Each evaluation board is
capable of interfacing to Arduino-compatible shields. Click on the Kits tab on the Cypress Bluetooth Module website to
view and purchase Cypress EZ-BT evaluation boards.

2.3 Silicon Device Datasheet

Cypress WICED Bluetooth datasheets lists the features, pinouts, device-level specifications, and fixed-function
peripheral electrical specifications of all Cypress WICED Bluetooth devices. Datasheets for applicable WICED
Bluetooth devices discussed in this application note can be found at the following links:

▪ CYW20706 Bluetooth SoC for Embedded Wireless Devices

▪ CYW20707 Bluetooth SoC for Embedded Wireless Devices

▪ CYW20719 Enhanced Low Power, BR/EDR/BLE Bluetooth 5.0 SOC

2.4 Cypress WICED Bluetooth Community

Whether you’re a customer, partner, or a developer interested in the latest Cypress innovations, the Cypress WICED
Bluetooth Community offers you a place to learn, share and engage with both Cypress experts and other embedded
engineers around the world.

2.5 Application Notes

Application notes assist you with understanding specific features of your device for designing your Bluetooth
application.

2.6 Technical Support

If you have any questions, our technical support team is happy to assist you. You can create a support request by
visiting Cypress Technical Support.

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-
4736. You can also use the following support resources if you need quick assistance.

▪ Self-help

▪ Local sales office locations

http://www.cypress.com/
http://www.cypress.com/cypress_bluetooth_modules
http://www.cypress.com/cypress_bluetooth_modules
http://www.cypress.com/products/ez-ble-and-ez-bt-bluetooth-modules
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=field_related_products%3A37896&f%5b2%5d=software_tools_meta_type%3A577
http://www.cypress.com/cypress_bluetooth_modules
http://www.cypress.com/documentation/datasheets/cyw20706-bluetooth-soc-embedded-wireless-devices-0
http://www.cypress.com/documentation/datasheets/cyw20707-bluetooth-soc-embedded-wireless-devices
http://www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc
https://community.cypress.com/community/wiced-studio-blueooth
https://community.cypress.com/community/wiced-studio-blueooth
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/support
http://www.cypress.com/?id=1062

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 4

3 EZ-BT WICED Module Overview

This application note introduces the reader specifically to EZ-BT WICED Module solutions and how to get started.

EZ-BT WICED Modules offer fully integrated and fully certified Bluetooth solutions allowing rapid development and
deployment of your Bluetooth-enabled product. This section provides an overview of EZ-BT WICED Modules available
today. For detailed information on each module referenced in this section, see Appendix B: EZ-BT Module Product
Details.

All EZ-BT WICED Modules ship with all required components to achieve full Bluetooth functionality, including:

▪ PCB substrate

▪ Cypress WICED Bluetooth IC

Refer to the Module datasheet for references and links to the datasheet of the silicon used in each module.

▪ Crystal oscillators: 24-MHz external crystal oscillator

▪ EZ-BT WICED Modules utilize an integrated low-power oscillator on the silicon device and do not contain a physical
32-kHz external crystal oscillator. Each module provides a connection option for an external 32-kHz input if
required.

▪ On-module or on-chip flash memory

▪ Chip or Trace antenna

▪ Passive components (resistor, capacitor, inductor)

▪ RF Shield, unless otherwise noted

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 5

3.1 EZ-BT WICED Module Family Features

Table 1 summarizes the features and capabilities that EZ-BT WICED Modules offer.

Table 1. EZ-BT WICED Module Features and Capabilities

Features Details

Bluetooth Subsystem Bluetooth BR/EDR + BLE radio and link-layer hardware

CPU Arm Cortex-M3 or Arm Cortex-M4 32-bit processor

Flash Memory 512 KB or 1 MB (module-dependent)

SRAM Up to 512 KB (module-dependent)

ROM Up to 2 MB ROM, containing Bluetooth stack and specific Bluetooth profiles

GPIOs Up to 17 (module-dependent)

CapSense® None (See Getting Started with EZ-BLE Creator Modules for modules that include
this functionality) CapSense® Gestures

ADC
10-bit ENoB for DC measurement

12-bit ENoB for Audio measurement

Opamps
None (See Getting Started with EZ-BLE Creator Modules for modules that include
this functionality)

Comparators

Current DACs

Power Supply Range 1.62 V to 3.6 V (module-dependent)

Low-Power Modes
HIDOFF mode as low as 400 nA typical (CYW20719-based modules)

Deep Sleep mode as low as 61µA with RAM retention (CYW20719-based modules)

Serial Communication I2C, SPI, Peripheral-UART (application interface), HCI-UART (programming)

Audio Interface I2S, PCM, PDM (module-dependent)

Pulse-Width Modulator (PWM) Up to 6

Universal Digital Blocks (UDBs)
None (See Getting Started with EZ-BLE Creator Modules for modules that include
this functionality)

Clocks 32-kHz LPCLK (Low-power clock)

Power Supply Monitoring Power-on reset (POR)

Integrated Crystal Oscillators
24-MHz integrated on module

32-kHz connection available (optional)

Antenna Type Trace or Chip Antenna (module dependent)

Certifications

FCC, ISED, MIC, CE, unless otherwise noted in the datasheet

Each EZ-BT WICED Module has a Cypress Knowledge Base Article, which contains
the regulatory testing reports and certificates for all countries the module is certified
against. See the More Information section of the module datasheet for links to this
information or refer to the Certifications tab available online at
www.cypress.com/cypress_bluetooth_modules.

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/cypress_bluetooth_modules

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 6

3.2 EZ-BT WICED Module Low-Power Modes

EZ-BT WICED Modules support a variety of low-power modes, depending on the specific module selected. For details
on the current consumption and supported power modes for each module solution, see the module datasheet. The
power modes shown below are supported on the CYBT-423028-02 module:

▪ Active mode: Normal operating mode in which all peripherals are available, and the CPU is active.

▪ Pause mode: In this mode, the CPU is in “Wait for Interrupt” (WFI) and the HCLK, which is the high-frequency
clock derived from the main crystal oscillator, is running at a lower clock speed. Other clocks are active and the
state of the entire chip is retained. Pause mode is chosen when other low-power modes are not possible.

▪ PMU Sleep mode: In this mode, the CPU is in WFI and the HCLK is not running. The Power Management Unit
(PMU) determines whether other clocks can be turned OFF and does so accordingly. The state of the entire chip
is retained, the internal LDOs run at a lower voltage (voltage is managed by the PMU), and SRAM is retained.

▪ Power Down Sleep (PDS) mode: This mode is an extension of the PMU Sleep wherein most of the peripherals
such as UART and SPI are turned OFF. The entire memory is retained, and on wakeup the execution resumes
from where it paused.

▪ Shut Down Sleep (SDS): Everything is turned OFF except the I/O Power Domain, Real Time Clock (RTC), and
LPO (Low-Power Oscillator). The device can come out of this mode either due to BT activity or by an external
interrupt. Before going into this mode, the application can store up to 256 bytes of data into “Always On RAM”
(AON). When the device comes out of this mode, the data from AON is retained. After waking from SDS, the
application will start from the beginning (warm boot) and will restore its state based on information stored in AON.
In the SDS mode, a single BT task with no data activity, such as an ACL connection, BLE connection, or BLE
advertisement can be performed. The following guidelines and restrictions in usage apply to SDS mode.

• The device address type should only be public.

• The connection interval should be greater than 100 ms.

• If the device is doing connectable advertisement in SDS mode, two connection requests need to be sent to
the device to connect to it: the first one to wake the device and the second one to make an actual connection.
If the device is already connected, there is no need to send any second connection request.

• The pairing process cannot be done in SDS mode.

• High-duty-cycle advertisement with a low interval will not allow the device to enter SDS. The device enters
SDS mode immediately when the device is configured for low-duty-cycle advertisements without any
advertisement time out (time out is set for infinity). If the low-duty-cycle advertisement is configured for a finite
time, the device will enter SDS only after this time expires (i.e., when the advertisement stops).

• SDS is allowed only if the next activity is more than 100 ms away; otherwise PDS mode is used as frequent
wakeup from SDS will consume more power than staying in PDS mode.

• To get a GPIO interrupt callback upon wake up, the interrupt callback needs to be registered in the application.

▪ HIDOFF (Timed-Wake) mode: The device can enter this mode asynchronously, that is, the application can force
the device into this mode at any time. I/O Power Domain, RTC, and LPO are the only active blocks. A timer that
runs off the LPO is used to wake the device up after a predetermined fixed time. The mode can also be woken up
via an external interrupt.

▪ HIDOFF (External Interrupt-Waked) mode: This mode is similar to Timed-Wake, but in HID-off mode, even the
LPO and RTC are turned OFF. So, the only wakeup source is an external interrupt.

Table 2. EZ-BT Module MPN Features and Capabilities

Marketing Part Number Silicon Device Active Pause PMU Sleep PDS SDS Timed Wake and HID-OFF

CYBT-343026-01 CYW20706 ✓ ✓ ✓ ✓

CYBT-353027-02 CYW20707 ✓ ✓ ✓ ✓

CYBT-423028-02 CYW20719 ✓ ✓ ✓ ✓ ✓

CYBT-413034-02 CYW20719 ✓ ✓ ✓ ✓ ✓

CYBT-483039-02 CYW20719 ✓ ✓ ✓ ✓ ✓

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyw20706-bluetooth-soc-embedded-wireless-devices-0
http://www.cypress.com/documentation/datasheets/cyw20707-bluetooth-soc-embedded-wireless-devices
file:///C:/Users/skuv/SKUV-T450/SKUV-T450/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc
file:///C:/Users/dso/Documents/P4_DSO/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc
file:///C:/Users/dso/Documents/P4_DSO/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 7

3.3 EZ-BT WICED Part Number Overview

Each device within the EZ-BT WICED Module family has a unique Marketing Part Number (MPN) used for ordering.
The MPN format is shown in Figure 1.

Figure 1. EZ-BT Module Marketing Part Numbering Format

Table 3 summarizes the features and capabilities of each specific EZ-BT WICED Module MPN available from Cypress.
Click on the specific part number for more detailed information on the device or refer to Appendix B: EZ-BT Module
Product Details. Table 3 details all modules that are sampling or in production. For the latest list of modules available,
see the Cypress Bluetooth Module website.

Table 3. EZ-BT Module MPN Features and Capabilities

Marketing Part Number
Silicon
Device Module Size (mm) R

a
n

g
e

1

R
e

g
u

la
to

ry

C
e

rt
if

ic
a

ti
o

n

B
L

E
 S

ta
n

d
a

rd

S
IG

 M
e

s
h

 Q
u

a
li

fi
e
d

H
o

m
e
K

it
 C

a
p

a
b

le

A
n

te
n

n
a

 T
y

p
e

P
a

c
k

a
g

e

G
P

IO
s
 (

M
a

x
im

u
m

)

S
e

ri
a

l
F

la
s

h
 (

K
B

)

S
R

A
M

 (
K

B
)

I2
S

/P
C

M

P
D

M

P
W

M
s

A
D

C

C
a

p
S

e
n

s
e

CYBT-343026-01 CYW20706 14.52 x 19.2 x 1.95 225 Yes 5.0 Yes Yes Trace 24-SMT 14 512 352 Yes No 4 Yes No

CYBT-353027-02 CYW20707 9.00 x 9.00 x 1.75 150 Yes 5.0 Yes Yes Chip 19-SMT 8 512 352 Yes No 0 Yes No

CYBT-423028-02 CYW20719 11.00 x 11.00 x 1.70 75 Yes 5.0 Yes Yes Chip 28-SMT 17 1024 512 Yes Yes 6 Yes No

CYBT-413034-02 CYW20719 12.00 x 16.30 x 1.70 75 Yes 5.0 Yes Yes Trace 30-SMT 17 1024 512 Yes Yes 6 Yes No

CYBT-483039-02 CYW20719 12.75 x 18.59 x 1.80 10002 Yes 5.0 Yes Yes Chip 34-SMT 15 1024 512 Yes Yes 6 Yes No

1 Measured in meters and is specified as Full Line-of-Sight (LoS) in a Noise-Free environment.

2 1 km range is certified for US/FCC use only. European and Japan certifications are limited to 10 dBm (600 meters maximum).

http://www.cypress.com/
http://www.cypress.com/cypress_bluetooth_modules
http://www.cypress.com/documentation/datasheets/cyw20706-bluetooth-soc-embedded-wireless-devices-0
http://www.cypress.com/documentation/datasheets/cyw20707-bluetooth-soc-embedded-wireless-devices
file:///C:/Users/skuv/SKUV-T450/SKUV-T450/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc
file:///C:/Users/dso/Documents/P4_DSO/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc
file:///C:/Users/dso/Documents/P4_DSO/apps/psoc/Trackpad/projects/BLE/WICED%20Getting%20Started/Wiced%20Getting%20Started%20CYBT-343026/Application%20Note%20doc/002-23400.docxhttp:/www.cypress.com/documentation/datasheets/cyw20719-enhanced-low-power-bredrble-bluetooth-50-soc

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 8

4 Development Tools

Cypress supports EZ-BT WICED Modules with high-quality, integrated software tools. These include the following
software:

1. WICED Studio SDK and IDE

2. CySmart™ PC application

3. CySmart Android app

4. CySmart iOS app

4.1 WICED Studio SDK and IDE

The WICED Studio SDK provides an Eclipse-based IDE and complete software library for developing on EZ-BT
modules. This tool enables a simple build and download process as well as debugging capabilities on supported
development kits. It also includes the graphical WICED Bluetooth Designer tool for quickly defining new BT/BLE designs
and custom GATT database structures.

For Cypress module solutions, the WICED Studio SDK is only applicable to EZ-BT WICED Modules and not for EZ-
BLE WICED modules or EZ-BLE Creator modules.

The WICED Studio SDK includes the following:

▪ Bluetooth 5.0-compliant software stack supporting both Bluetooth BR/EDR, Bluetooth Low Energy, and SIG Mesh

▪ Generic profile-level API

▪ Drivers to access onboard peripherals including UART, SPI, I2C, ADC, PWM, etc.

▪ Reference applications for devices with profiles defined by the Bluetooth SIG

▪ WICED Studio API documentation and related documents

▪ Utilities to support development in Windows, Mac OS X, and Linux environments

The WICED Studio SDK runs on 32- and 64-bit versions of Microsoft Windows, Mac OS X, and Linux. The SDK is
distributed as both a standalone 7-zip file suitable for all operating systems, and a bundle with the WICED Integrated
Development Environment as an executable installer for Windows and Mac operating systems. The development
computer requires a single USB port to connect to the Cypress EZ-BT evaluation boards.

Note that a 32-bit version of Java is required to run the Eclipse-based IDE.

4.1.1 WICED Studio IDE Overview

The WICED Studio SDK comes with an Eclipse-based IDE that provides a comprehensive environment for creating,
building, programming, and debugging WICED Bluetooth applications. Figure 2 below shows the default layout with
various sections of the IDE.

Building and downloading WICED Studio projects requires a slightly different procedure from that some IDEs and
toolchains use, so it is a good idea to familiarize yourself with the application early.

http://www.cypress.com/
http://www.cypress.com/products/wiced-software
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 9

Figure 2. WICED Studio IDE Layout

4.1.2 Project Explorer

This pane in the IDE provides access to all the source files for the projects active in the current workspace. The WICED
Studio SDK comes with a significant set of example projects inside the /apps subfolder where the SDK is installed.
These projects are visible in the Project Explorer view by default. New projects can be created under /apps subfolder.

The standard workspace root folder is the SDK installation root folder, containing the following items:

▪ /apps folder with all example projects and any created projects

▪ /build folder with build output files (created when using “Make” targets as intended)

▪ /doc folder with various SDK-related HTML and PDF reference materials

▪ /drivers folder with FTDI USB-to-UART bridge device drivers for Microsoft Windows

▪ /libraries folder with source and header files for specific functionalities

▪ /include folder with header files supporting various chipset hardware features

▪ /platforms folder with board-specific toolchain and build definition files

▪ /wiced_tools with easy-to-use tools for various functionalities including collecting traces, build and download
firmware etc.

▪ /Wiced-BT folder with header and source files for many application-visible APIs

▪ Top-level Makefile template and make scripts for building all WICED Studio projects

▪ Changelog, license, version, and general README text files

▪ Once you get started, the /apps folder containing your projects will be the most relevant location. However, the
documentation and header/source files provide a lot of helpful reference information during development.

4.1.3 Code Editor

This pane allows editing all source code present in any project in the workspace. Open-source files are arranged by
tabs for easy navigation. The Eclipse IDE foundation provides comprehensive syntax highlighting features, code
completion, and other helpful functionality.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 10

4.1.3.1 Eliminating False Code Analysis Errors

The Arm-GCC toolchain that WICED Studio uses to compile source files is not directly accessible to the Eclipse editor’s
built-in code analysis tools. Instead, the IDE uses a different compiler for live analysis, and this may result in identified
errors that are not actually errors. For example, you may encounter this error while following the example project
instructions contained in this guide:

Figure 3. Incorrect Code Analysis Error Identification

The best test for syntax errors in your code is the compile process, as any real warnings or errors will be included in
the build output. However, you can selectively disable the code analysis features that trigger these errors by following
these simple steps:

1. Click the Window menu, then “Preferences” item.

2. Expand C/C++ and select the Code Analysis entry.

3. Uncheck the Syntax and Semantic Errors box (may need to scroll down in the “Problems” section to see this).

4. Click OK to save changes.

Figure 4 shows what the final Preferences subsection looks like after disabling Code Analysis syntax errors as
described above.

Figure 4. Disabling Syntax and Semantic Analysis

4.1.3.2 Improving Search Results

Because the workspace includes multiple example projects and many SDK resources, global code searches often
return more information than you need. To mitigate this, you can configure narrower search parameters to allow
searching a single project at a time by defining working sets:

1. Click the Search menu, then “Search…” item (or press Ctrl + H).

2. Click the Customize... button and disable all items except “File Search”, and then click OK.

3. Click the Choose… button next to the “Working set” selection field.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 11

4. Click the New… button to define a new working set, and then choose “C/C++” and click Next.

5. Expand 20706-A2_Bluetooth > Apps and select your project folder.

6. Enter a working set name (e.g., the same name as your project).

7. Click Finish to complete the working set definition.

8. Click the Selected Working Sets option and enable only the new set, then click OK.

9. Change the Scope setting to “Working set” if it does not change automatically.

10. Search as required with these settings to obtain results only within your project.

You can still perform global searches simply by changing the scope back to “Workspace” at any time, or by highlighting
any text in the code editor and pressing Ctrl + Alt + G.

4.1.3.3 Taking Advantage of Code Completion

The WICED Studio SDK provides numerous APIs to use the features available on supported target chipsets; it can be
challenging to keep the names and parameters straight. To help with this, use the Ctrl + Space shortcut key after typing
the first few letters or prefix of a function name; Eclipse will pop up a quick list of potential completed names, as shown
in the Figure 5.

Figure 5. Code Completion Example

Try code completion with any of the following API method prefixes (not a comprehensive list):

▪ wiced_bt – Core Bluetooth application functions, callbacks, and some connection management

▪ wiced_bt_app – For timer-related functions and others

▪ wiced_hal_gpio– General-purpose I/O (GPIO) features

▪ wiced_hal – ADC, GPIO, PUART, SFLASH, Watchdog, NVRAM, etc.

4.1.4 Make Target L ist

This pane contains individual build targets for example projects that come pre-installed with the WICED Studio SDK,
as well as new make targets that you create for new projects. Each build target provides a unique combination of the
following items:

▪ Path excluding root Apps folder (e.g., “snip.bt.”)

▪ Project name (e.g., “spp_custom”)

▪ Target platform (e.g., “CYBT_434026_EVAL”)

▪ Operational arguments (e.g., “download”, “UART=COM5”, and others)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 12

Double-clicking on a make target will trigger the build process for that target. You can also use the F9 keyboard shortcut
in the Eclipse IDE to rebuild the last selected make target.

The path and project name are separated by a dot (“.”). The project name and target platform are separated by a dash
(“–”), while the name/target and all subsequent operational arguments are separated by spaces. Possible arguments
are described in the output from the “help” target, which you can build at any time to see details. The output from this
target is reproduced here for quick reference:

Any single project may have one or more defined make targets. For instance, one target might perform only the compile
step, while another performs both compile and download, and another may explicitly provide the programming COM
port to avoid the serial port detection step if the port is known.

Here are some examples of make targets that come with the SDK:

▪ snip.bt.spp_custom-CYBT_343026_EVAL download

▪ snip.hal.pwm-CYBT_343026_EVAL download

▪ demo.hello_sensor-CYBT_343026_EVAL download

Usage: make <target> [TRANSPORT=SPI] [FREQ=24Mhz|40Mhz] [download] [recover] [DEBUG=1|0] [VERBOSE=1] [UART=yyyy] [JOBS=x]
[PLATFORM_NV=EEPROM|SFLASH] [BT_DEVICE_ADDRESS=zzzzzzzzzzzz|random] [OTA_FW_UPGRADE=1] [B49=1] [LEGACY_BOARD=1]

 <target>
 One each of the following mandatory [and optional] components separated by '-'
 * Application (Apps in sub-directories are referenced by subdir.appname)
 * Hardware Platform (CYBT_343026_EVAL CYW920706WCDEVAL)
 * [BASE location] (BASErom BASEram BASEflash)
 * [SPAR location] (SPARrom SPARram SPARflash)
 * [Toolchain] (RealView Wiced CodeSourcery)

 [TRANSPORT]
 HCI transport interface (default is UART)

 [FREQ]
 Crystal frequency on the reference board (24Mhz/40Mhz)

 [download]
 Download firmware image to target platform

 [build]
 Builds the firmware and OTA images.

 [recover]
 Recover a corrupted target platform

 [library]
 Make a library of the app objects instead of fully linking it.

 [DEBUG=1|0]
 Enable or disable debug code in application. When DEBUG=1, watchdog will be disabled,
 sleep will be disabled and the app may optionally wait in a while(1) for the debugger
 to connect

 [VERBOSE=1]
 Shows the commands as they are being executed

 [JOBS=x]
 Sets the maximum number of parallel build threads (default=4)

 [UART=yyyy]
 Use the uart specified here instead of trying to detect the Wiced-BT device.
 This is useful when you are working on multiple BT devices simultaneously.

 [PLATFORM_NV=EEPROM|SFLASH]
 The default non-volatile storage. Default is EEPROM.

 [BT_DEVICE_ADDRESS=zzzzzzzzzzzz|random]
 Use the 48-bit Bluetooth address specified here instead of the default setting from
 platform/*/*.btp file. The special string 'random' (without the quotes) will generate
 a random Bluetooth device address on every download.

 [OTA_FW_UPGRADE]
 Applications which want to upgrade firmware via OTA, have to be downloaded through installer using this option.

 [B49=1]
 Set B49=1 if using the B49 platform board

 [LEGACY_BOARD=1]
 Set LEGACY_BOARD=1 if using boards other than CYW920706WCDEVAL(i.e., if using older boards such as
BCM920706V2_EVAL/CYW92070xV3)

 Notes
 * Component names are case sensitive
 * 'Wiced', 'SPI', 'UART' and 'debug' are reserved component names
 * Component names MUST NOT include space or '-' characters
 * Building for release is assumed unless '-debug' is appended to the target
 * Application/target names must begin with an alphabetic character

 Example Usage
 Build for Release
 make demo.hello_sensor-CYW920706WCDEVAL build

 Build, Download and Run using the default programming interface
 make demo.hello_sensor-CYW920706WCDEVAL download

 Build, Download and Run using specific UART port
 make demo.hello_sensor-CYW920706WCDEVAL download UART=COMx

 Build, Download to Serial Flash and Run using default programming interface
 make demo.hello_sensor-CYW920706WCDEVAL download PLATFORM_NV=SFLASH

 Clean output directory

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 13

The platforms shipped with the SDK are used with the CYW920706WCDEVAL evaluation products that are built around
the CYW20706 chipsets. However, for EZ-BT WICED Module evaluation, we will be working with the CYBT-343026-
EVAL board instead, which requires a different platform definition. Section 7.3 (My First EZ-BT WICED Module Design)
provides instructions on where to obtain and how to install this platform, or you can refer to the Cypress Knowledge
Base Article (KBA) that is referenced in each EZ-BT module datasheet. The CYBT-343026-01 module platform file can
be found in KBA221025 on the Cypress Community.

4.1.5 Console

This pane provides access to compiler output, which is helpful for status updates and critical for error analysis. The
same area of the IDE window also allows a quick look at search results after performing a search, and enabled code
analysis warnings or errors, and tasks identified by “TODO” comments in source files.

4.2 CySmart PC Application

CySmart Host Emulation Tool is a Windows application that emulates a BLE Central device using the CY5670 or
CY5677 USB dongle. It provides a platform for you to test your EZ-BT WICED Module BLE Peripheral implementation
over GATT or L2CAP connection-oriented channels by allowing you to discover and configure BLE services,
characteristics, and attributes on your Peripheral.

The CySmart PC application provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules.

Operations that you can perform with CySmart Host Emulation Tool include, but are not limited to:

▪ Scan BLE Peripherals to discover available devices to which you can connect

▪ Discover available BLE attributes including services and characteristics on the connected Peripheral device

▪ Perform read and write operations on characteristic values and descriptors

▪ Receive characteristic notifications and indications from the connected Peripheral device

▪ Establish a bond with the connected Peripheral device using BLE Security Manager procedures

▪ Establish a BLE L2CAP connection-oriented session with the Peripheral device and exchange data per the
Bluetooth 4.2 specification

Figure 6 and Figure 7 show the user interface of CySmart Host Emulation Tool. For more information on how to set up
and use this tool, see the CySmart user guide from the Help menu.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-13750

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 14

Figure 6. CySmart Host Emulation Tool Master Device Tab

Advertisement and

Scan Response Data

Discovered Device List

Log Window

Trusted Device List

Figure 7. CySmart Host Emulation Tool Peripheral Device Attributes Tab

Attribute Display

and

Configuration

List of Discovered

Attributes

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 15

4.3 CySmart Mobile App

In addition to the PC tool, you can download the CySmart mobile app for iOS or Android from the respective app stores.
This app uses the iOS Core Bluetooth framework and the Android built-in platform framework for BLE respectively to
configure your BLE-enabled smartphone as a Central device that can scan and connect to Peripheral devices.

The CySmart mobile app provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules.

The mobile app supports SIG-adopted BLE standard profiles through an intuitive GUI and abstracts the underlying BLE
service and characteristic details. Figure 8 and Figure 9 show an example of CySmart app screenshots for a Heart
Rate Profile user interface.

Figure 8. CySmart iOS App Heart Rate Profile Example

Figure 9. CySmart Android App Heart Rate Profile Example

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 16

5 Development Kits and Evaluation Boards

Cypress provides easy-to-use evaluation boards to help you develop your EZ-BT WICED Module design.

5.1 EZ-BT WICED Module Evaluation Boards

Each EZ-BT WICED Module provides an evaluation board that can be used to develop and test the performance of the
Cypress EZ-BT WICED Module. EZ-BT WICED evaluation boards are Arduino-compatible baseboards, designed to
work as stand-alone evaluation vehicles, or in conjunction with Arduino-compatible shields.

EZ-BT WICED evaluation boards allow you to evaluate Cypress EZ-BT Modules without having to design custom
hardware to mount the Cypress EZ-BT Module.

Table 4 lists available EZ-BT WICED Modules and their corresponding evaluation board part numbers. Click on your
evaluation board for additional information.

Table 4. EZ-BT Modules and Corresponding Evaluation Board Part Numbers

EZ-BT WICED Module Part Number EZ-BT WICED Evaluation Board Part Number

CYBT-343026-01 CYBT-343026-EVAL

CYBT-353027-02 CYBT-353027-EVAL

CYBT-423028-02 CYBT-423028-EVAL

CYBT-413034-02 CYBT-413034-EVAL

CYBT-483039-02 CYBT-483039-EVAL

Each EZ-BT WICED evaluation board contains the following components:

▪ Cypress EZ-BT Module – soldered directly to the evaluation board

▪ PCB substrate

▪ Arduino-compatible baseboard headers

▪ USB-to-UART Bridge

▪ USB connection (for WICED Studio SDK PC interface and programming)

▪ Two-pin header connector for current consumption measurement

▪ Configuration headers for setting the required power supply level

▪ Power supply jumper for current consumption measurement

▪ Reset and switch

▪ User-defined switch element

▪ User-defined LED

▪ Inductors (for power supply noise reduction) – refer to your EZ-BT WICED Module datasheet for recommended
external components)

EZ-BT WICED evaluation boards are designed to simulate the placement and connection of the EZ-BT Modules in a
final application. All host-side layout pattern recommendations (as shown in each specific module’s datasheet) are
followed for each evaluation board.

See Appendix C: EZ-BT WICED Evaluation Board Details for details on the connections available for each EZ-BT
WICED evaluation board.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 17

6 EZ-BT WICED Module Development Setup

Figure 10 shows the hardware and software required for evaluating Bluetooth accessory design. The EZ-BT WICED
evaluation board is a self-contained Bluetooth device that can communicate with either a CySmart iOS/Android app or
the CySmart Host Emulation Tool that acts as a Central device for BLE; and with a standard Bluetooth BR/EDR host
as a master or slave. CySmart Host Emulation Tool requires a BLE dongle (black board in Figure 10) for operation.
The dongle is included in the CY5677 kit.

Figure 10. BT/BLE Functional Setup with EZ-BT WICED Evaluation Board

The My First EZ-BT WICED Module Design section will walk you through a step-by-step configuration and programming
of the EZ-BT WICED Module by creating a simple Bluetooth BR/EDR + BLE application.

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/cy5677-cysmart-bluetooth-low-energy-ble-42-usb-dongle

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 18

7 My First EZ-BT WICED Module Design

This section gives you a step-by-step process for building a simple design with the CYBT-343026-EVAL kit using
existing sample applications which are part of the WICED Studio installation. Although this example project focuses on
CYBT-343026-EVAL, methods and process described here can be used for any CYBT WICED modules.

7.1 About the Design

This design implements the Serial Port Profile (SPP) profile for Bluetooth BR/EDR in slave mode, and a custom profile
for BLE in Peripheral mode.

Bluetooth SPP data is transferred from the CYBT-343026-EVAL board to a host that supports the Bluetooth BR/EDR
SPP profile. In this example project, we explain how to view the data that is transferred over SPP on a PC COM port
using Tera Term (or equivalent). This implementation demonstrates bulk data transfer using the Bluetooth SPP profile.

The BLE Peripheral with custom profile can communicate with any standard BLE host. Write requests received on a
custom characteristic (characteristic handle: 0x2D) from the BLE host will command the CYBT-343026-EVAL board to
blink an onboard LED. The number of LED blinks depends on the byte value received for this custom characteristic.

Figure 11. My First EZ-BT WICED Module Design

7.2 Prerequisites

Before you get started with the implementation, ensure that you have the following software and hardware available:

▪ WICED Studio SDK v6.2.1 or later

▪ CySmart Host Emulation Tool or CySmart iOS/Android app

▪ PC which supports SPP profile for Bluetooth BR/EDR

▪ Tera Term application (or equivalent) running on the PC

▪ CYBT-343026-EVAL EZ-BT WICED Evaluation Board

▪ CYBT-343026-EVAL Platform files (KBA221025)

You can create your first EZ-BT WICED Module design in four steps:

1. Create a project which includes the SPP profile of Bluetooth BR/EDR and a custom profile of Bluetooth Low Energy.
Merge SPP and Hello Sensor sample application projects. These example projects are contained in the WICED
Studio SDK. Jump to Section 7.3.

2. Understand the flow of the WICED Studio application project and make necessary modifications based on the
application requirements. Jump to Section 7.4.

3. Program the EZ-BT WICED Module on the Evaluation Kit. Jump to Section 7.5.

4. Test your design using the CySmart Host Emulation Tool or mobile application and PC, which supports Bluetooth
BR/EDR and has Tera Term (or equivalent) application. Jump to Section 7.6.

http://www.cypress.com/
http://www.cypress.com/products/wiced-software
http://www.cypress.com/go/cysmart
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en
http://www.cypress.com/documentation/development-kitsboards/cybt-343026-eval-ez-bt-module-arduino-evaluation-board
https://community.cypress.com/docs/DOC-13750

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 19

7.3 Part 1: Merge SPP and Hello Sensor Application Samples

This section takes you step-by-step through the process of merging the Bluetooth BR/EDR and BLE sample application
projects. In this example project, we will use the SPP (Bluetooth BR/EDR) and hello_sensor (BLE) sample application
projects.

The merging process includes the following steps: 1) creating a new project, 2) copying appropriate files in to the new
project folder, and 3) making necessary modifications. You can skip this section if you simply wish to try the example
project provided with this application note without going through the code development process. Detailed steps to
complete the merging process are shown below.

7.3.1 Creat ing a New Project

1. Create a new folder, and name it as “spp_custom” under the apps/snip/bt folder in Project Explorer (see Figure
12). In this example, the project folder is created at the following location:

...\WICED-Studio-6.1\20706-A2_Bluetooth\apps\snip\bt\spp_custom

Figure 12. Creating a New Project Folder

The next two steps involve copying files from the existing sample application projects, spp and hello_sensor, which
are available as part of the WICED SDK installation.

2. Copy all files (spp.c, makefile.mk, wiced_bt_cfg.c) from the spp sample application project folder located at
…\WICED-Studio-6.1\20706-A2_Bluetooth\apps\snip\bt\spp and paste them in the spp_custom folder created in
Step 1.

3. Copy two files, hello_sensor.c and hello_sensor.h from the location …\WICED-Studio-6.1\20706-
A2_Bluetooth\apps\demo\hello_sensor and paste them into the spp_custom folder created in Step 1.

7.3.2 Add ‘hel lo_sensor ’ Project Fi les to the make f i le

1. Open makefile.mk and make the following changes:

▪ Add hello_sensor.c application source file:

Code 1. makefile.mk: Add Application Source Files

APP_SRC += hello_sensor.c

2. Open spp.c and make the following changes:

▪ Include the hello_sensor.h header file.

Code 2. spp.c: Add Header File

#include "hello_sensor.h"

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 20

7.3.3 Add BLE-related In i t ial izat ion and Other Cal lback Funct ions in the spp.c Fi le

3. As we are merging two projects, initialization of both SPP and Hello Sensor projects should occur in one call back
function, app_management_callback(), of spp.c. Add the hello_sensor_application_init() function in the

app_management_callback() function.

Code 3. spp.c: Add hello_sensor_appplication_init Funtion

 case BTM_ENABLED_EVT:

 application_init();

 hello_sensor_application_init();

 WICED_BT_TRACE("Free mem:%d", wiced_memory_get_free_bytes());

 break;

4. Add the following BLE stack events in the app_management_callback() function for BLE operation:

Because both BLE and Bluetooth BR/EDR events are consolidated in one callback function, it is
required to define additional events for BLE that are missing in spp Bluetooth BR/EDR project file.

Note: Declare wiced_bt_ble_advert_mode_t *p_mode at the beginning of app_management_callback().

▪ BTM_SECURITY_REQUEST_EVT: To grant access to BLE device pairing.

▪ BTM_BLE_ADVERT_STATE_CHANGED_EVT: To start BLE advertisement if advertisement is stopped after a

timeout.

▪ BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT: To configure I/O capabilities of the BLE device which

are exchanged during the pairing process with the remote Central device.

Code 4. spp.c: Add wiced_bt_ble_security_grant API

case BTM_SECURITY_REQUEST_EVT:

 wiced_bt_ble_security_grant(p_event_data->security_request.bd_addr, WICED_BT_SUCCESS);

 break;

case BTM_BLE_ADVERT_STATE_CHANGED_EVT:

 p_mode = &p_event_data->ble_advert_state_changed;

 WICED_BT_TRACE("Advertisement State Change: %d\n", *p_mode);

 if (*p_mode == BTM_BLE_ADVERT_OFF)

 {

 hello_sensor_advertisement_stopped();

 }

 break;

case BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT:

 p_event_data->pairing_io_capabilities_ble_request.local_io_cap =

 BTM_IO_CAPABILITIES_NONE;

 p_event_data->pairing_io_capabilities_ble_request.oob_data = BTM_OOB_NONE;

 p_event_data->pairing_io_capabilities_ble_request.auth_req = BTM_LE_AUTH_REQ_SC_BOND;

 p_event_data->pairing_io_capabilities_ble_request.max_key_size = 0x10;

 p_event_data->pairing_io_capabilities_ble_request.init_keys =

 BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

 p_event_data->pairing_io_capabilities_ble_request.resp_keys =

 BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

 break;

5. Add the hello_sensor_encryption_changed function in BTM_ENCRYPTION_STATUS_EVT.

Code 5. spp.c: Add hello_sensor_encryption_changed API

case BTM_ENCRYPTION_STATUS_EVT:

 p_encryption_status = &p_event_data->encryption_status;

 WICED_BT_TRACE("Encryption Status Event: bd (%B) res %d\n", p_encryption_status->bd_addr,

 p_encryption_status->result);

 hello_sensor_encryption_changed(p_encryption_status->result, p_encryption_status->bd_addr);

 break;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 21

7.3.4 Modify ‘hel lo_sensor ’ F i les to Remove Dupl icat ion and Al low Access from spp.c

1. Open hello_sensor.h and add the function shown in Code 6:

Code 6. hello_sensor.h: Add hello_sensor Function Declarations

void hello_sensor_application_init(void);

void hello_sensor_encryption_changed(wiced_result_t result, uint8_t* bd_addr);

2. Open hello_sensor.c and make the following changes:

The merged project should have a single APPLICATION_START() function, and should register only one common
Bluetooth event callback function for all BT BR/EDR and BLE events from the stack. To accomplish this
requirement, make the following changes:

▪ Comment out the hello_sensor_management_cback function definition:

Code 7. hello_sensor.c: Comment hello_sensor_management_cback Function Definition

//static wiced_result_t hello_sensor_management_cback(wiced_bt_management_evt_t event,

 wiced_bt_management_evt_data_t *p_event_data);

▪ Comment out the hello_sensor_encryption_changed function definition. This function was added into the

hello_sensor.h file in Code 6. This function is commented out here because it is declared as a static function,
which would not be accessible in spp.c.

Code 8. hello_sensor.c: Comment hello_sensor_encryption_changed Function Definition

//static void hello_sensor_encryption_changed(wiced_result_t result, uint8_t* bd_addr);

▪ Comment out the hello_sensor_application_init function definition. This function was added into the

hello_sensor.h file in Code 6. This function is commented here because it is declared as a static function,
which would not be accessible in spp.c.

Code 9. hello_sensor.c: Comment hello_sensor_application_init Function Definition

//static void hello_sensor_application_init(void);

▪ Comment out the complete APPLICATION_START() function.

Code 10: hello_sensor.c: Comment application_start() Function

//APPLICATION_START()

//{

// wiced_transport_init(&transport_cfg);

//

//#ifdef WICED_BT_TRACE_ENABLE

// // Set the debug uart as WICED_ROUTE_DEBUG_NONE to get rid of prints

// // wiced_set_debug_uart(WICED_ROUTE_DEBUG_NONE);

//

// // Set to PUART to see traces on peripheral uart(puart)

// wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_PUART);

// wiced_hal_puart_select_uart_pads(WICED_PUART_RXD, WICED_PUART_TXD, 0, 0);

//

// // Set to HCI to see traces on HCI uart - default if no call to wiced_set_debug_uart()

// // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_HCI_UART);

//

// // Use WICED_ROUTE_DEBUG_TO_WICED_UART to send formatted debug strings over the WICED

// // HCI debug interface to be parsed by ClientControl/BtSpy.

// // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_WICED_UART);

//#endif

//

// WICED_BT_TRACE("Hello Sensor Start\n");

//

// // Register call back and configuration with stack

// wiced_bt_stack_init(hello_sensor_management_cback ,

// &wiced_bt_cfg_settings, wiced_bt_cfg_buf_pools);

//}

▪ Go to hello_sensor_application_init() and make the following changes:

▪ Comment out wiced_bt_app_init();

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 22

Code 11. hello_sensor.c: Comment wiced_bt_app_init Function

// wiced_bt_app_init();

▪ Comment the GPIO configuration shown in Code 12. CYBT-343026-EVAL has one user button,
and it is configured in spp.c for a specific functionality. If there is a need for an additional button
to execute other functionality, you should configure another available GPIO and verify the
functionality by manually toggling the state of the GPIO using a blue wire.

Code 12. hello_sensor.c: Comment GPIO Functions Related to Button Activation

// wiced_hal_gpio_configure_pin(WICED_GPIO_BUTTON, WICED_GPIO_BUTTON_SETTINGS(

 GPIO_EN_INT_RISING_EDGE), WICED_GPIO_BUTTON_DEFAULT_STATE);

// wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_BUTTON, hello_sensor_interrupt_handler,

 NULL);

▪ Comment out the complete hello_sensor_management_cback() function. spp.c has an

app_manangement_callback() registered during the initialization for all BT BR/EDR and BLE events;

therefore, there is no need for hello_sensor_management_cback(). Code 13 shows the commented out

hello_sensor_management_cback function.

Code 13. hello_sensor.c: Comment hello_sensor_management_cback Function

//wiced_result_t hello_sensor_management_cback(wiced_bt_management_evt_t event, wiced_bt_management_evt_data_t *p_event_data

)

//{

// wiced_result_t result = WICED_BT_SUCCESS;

// wiced_bt_dev_encryption_status_t *p_status;

// wiced_bt_dev_ble_pairing_info_t *p_info;

// wiced_bt_ble_advert_mode_t *p_mode;

// uint8_t *p_keys;

//

// WICED_BT_TRACE("hello_sensor_management_cback: %x\n", event);

//

// switch(event)

// {

// /* Bluetooth stack enabled */

// case BTM_ENABLED_EVT:

// hello_sensor_application_init();

// break;

//

// case BTM_DISABLED_EVT:

// break;

//

// case BTM_USER_CONFIRMATION_REQUEST_EVT:

// WICED_BT_TRACE("numeric_value: %d \n", p_event_data->user_confirmation_request.numeric_value);

// wiced_bt_dev_confirm_req_reply(WICED_BT_SUCCESS , p_event_data->user_confirmation_request.bd_addr);

// break;

//

// case BTM_PASSKEY_NOTIFICATION_EVT:

// WICED_BT_TRACE("PassKey Notification. BDA %B, Key %d \n", p_event_data->user_passkey_notification.bd_addr,

// p_event_data->user_passkey_notification.passkey);

// wiced_bt_dev_confirm_req_reply(WICED_BT_SUCCESS, p_event_data->user_passkey_notification.bd_addr);

// break;

//

// case BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT:

// p_event_data->pairing_io_capabilities_ble_request.local_io_cap = BTM_IO_CAPABILITIES_NONE;

// p_event_data->pairing_io_capabilities_ble_request.oob_data = BTM_OOB_NONE;

// p_event_data->pairing_io_capabilities_ble_request.auth_req = BTM_LE_AUTH_REQ_SC_BOND;

// p_event_data->pairing_io_capabilities_ble_request.max_key_size = 0x10;

// p_event_data->pairing_io_capabilities_ble_request.init_keys =

// BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

// p_event_data->pairing_io_capabilities_ble_request.resp_keys =

// BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

// break;

//

// case BTM_PAIRING_COMPLETE_EVT:

// p_info = &p_event_data->pairing_complete.pairing_complete_info.ble;

// WICED_BT_TRACE("Pairing Complete: %d",p_info->reason);

// hello_sensor_smp_bond_result(p_info->reason);

// break;

//

// case BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT:

// /* save keys to NVRAM */

// p_keys = (uint8_t*)&p_event_data->paired_device_link_keys_update;

// wiced_hal_write_nvram (HELLO_SENSOR_PAIRED_KEYS_VS_ID, sizeof(wiced_bt_device_link_keys_t), p_keys ,&result

);

// WICED_BT_TRACE("keys save to NVRAM %B result: %d \n", p_keys, result);

// break;

//

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 23

// case BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT:

// /* read keys from NVRAM */

// p_keys = (uint8_t *)&p_event_data->paired_device_link_keys_request;

// wiced_hal_read_nvram(HELLO_SENSOR_PAIRED_KEYS_VS_ID, sizeof(wiced_bt_device_link_keys_t), p_keys, &result);

// WICED_BT_TRACE("keys read from NVRAM %B result: %d \n", p_keys, result);

// break;

//

// case BTM_LOCAL_IDENTITY_KEYS_UPDATE_EVT:

// /* save keys to NVRAM */

// p_keys = (uint8_t*)&p_event_data->local_identity_keys_update;

// wiced_hal_write_nvram (HELLO_SENSOR_LOCAL_KEYS_VS_ID, sizeof(wiced_bt_local_identity_keys_t), p_keys ,&result);

// WICED_BT_TRACE("local keys save to NVRAM result: %d \n", result);

// break;

//

//

// case BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT:

// /* read keys from NVRAM */

// p_keys = (uint8_t *)&p_event_data->local_identity_keys_request;

// wiced_hal_read_nvram(HELLO_SENSOR_LOCAL_KEYS_VS_ID, sizeof(wiced_bt_local_identity_keys_t), p_keys, &result);

// WICED_BT_TRACE("local keys read from NVRAM result: %d \n", result);

// break;

//

// case BTM_ENCRYPTION_STATUS_EVT:

// p_status = &p_event_data->encryption_status;

// WICED_BT_TRACE("Encryption Status Event: bd (%B) res %d", p_status->bd_addr, p_status->result);

// hello_sensor_encryption_changed(p_status->result, p_status->bd_addr);

// break;

//

// case BTM_SECURITY_REQUEST_EVT:

// wiced_bt_ble_security_grant(p_event_data->security_request.bd_addr, WICED_BT_SUCCESS);

// break;

//

// case BTM_BLE_ADVERT_STATE_CHANGED_EVT:

// p_mode = &p_event_data->ble_advert_state_changed;

// WICED_BT_TRACE("Advertisement State Change: %d\n", *p_mode);

// if (*p_mode == BTM_BLE_ADVERT_OFF)

// {

// hello_sensor_advertisement_stopped();

// }

// break;

//

// default:

// break;

// }

//

// return result;

//}

7.3.5 Create Platform Fi les, Bui ld , and Download

1. If you have not installed the WICED SDK platform files for the CYBT-343026-EVAL board at this point, you should
do so now. The platform files define the functional GPIO assignments, NVRAM type, and other low-level
characteristics that control the firmware image download process for a specific target device. This custom platform
file definition is required to properly use the CYBT-343026-EVAL board. You can find the reference and link to the
EZ-BT platform file in the respective EZ-BT module datasheet. After you download the platform file, install it and
do the following:

CYBT-343026-01 Platform File Location: Visit community.cypress.com/docs/DOC-13750 and download the
CYBLE_343026_EVAL Platform files.zip file. Follow the instructions described in the KBA; they are presented
below for quick reference:

▪ Download CYBT_343026_EVAL.zip attached with this KBA.

▪ Save and extract the downloaded file.

▪ Navigate to the folder CYBT-343026-EVAL > 002-21025 and extract
CYBT_343026_EVAL_PLATFORM_FILES.zip.

▪ Navigate to the folder CYBT-343026-EVAL > 002- 21025 > CYBT_343026_EVAL_PLATFORM_FILES >
CYBT_343026_EVAL_PLATFORM_FILES.

▪ Select and copy the folder CYBT_343026_EVAL under CYBT_343026_EVAL_PLATFORM_FILES. This
folder contains the necessary platform files.

▪ Paste the folder in WICED Studio 6.2.1 or later at the following path: …\ WICED-Studio-6.2.1\20706-
A2_Bluetooth\Platforms\. Figure 13 shows the location of the folder in WICED Studio 6.2.1.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-13750
https://community.cypress.com/docs/DOC-13750

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 24

Figure 13. Location of CYBT-343026-EVAL Platform Folder

2. The Make Target list is located at the top-right location of the WICED Studio IDE. Right-click on any of the existing
make targets and click “new” to create a new make target for your project. If you used the “spp_custom” name for
the project as described in this guide, the make target should be named as snip.bt.spp_custom-
CYBT_343026_EVAL download, as shown in Figure 14. The Make Target list provides the mechanism for compiling

and downloading firmware to the target device. The build system supports some custom arguments to assist with
troubleshooting or special cases. These arguments are discussed in Section 4.1.4 (Make Target List).

Figure 14. Download Make Target for spp_custom Project

3. To confirm that the modified code compiles successfully, double-click the snip.bt.spp_custom-
CYBT_343026_EVAL download make target and observe the output from the compile process. If everything is

working normally, the project will build successfully and show a memory usage summary, as shown in Figure 15.
However, it will not download because no suitable target device is connected and ready to flash, as shown in Figure
16.

Figure 15. Successful Build and Memory Footprint

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 25

Figure 16. Expected Download Failure After Compiling

The WICED Studio IDE may show some symbol resolution errors in the main code window. Often, these symbols
would have been resolved correctly, but the IDE is misidentifying issues in the code due to differences between
the code analysis toolchain and the one used for the final build process. For instructions on how to disable these
errors, see Section 4.1.3.1 (Eliminating False Code Analysis Errors).

7.4 Part 2: Understanding the Flow of the WICED Project

EZ-BT WICED Module contains ROM (Read Only Memory), RAM (Random Access Memory), and Flash memory. The
ROM area of the module contains the full Bluetooth stack. The RAM area is used for applying patches to the ROM-
stored stack as well as for running applications. Flash memory in the device is a nonvolatile memory, which stores the
application. For devices without internal flash, a host device is required to load the application program into RAM.

The application focuses on application-specific functionality while the stack deals with the low-level details. For
example, the stack transparently handles a GATT Client read request or discovery. Also, the application provides
various configuration details for the stack such as advertisement content and interval or output power during
transmission.

The following main steps are required to develop an application for an EZ-BT WICED Module:

▪ Define the data to be exchanged between the Client/Master and Server/Slave and prepare a database for BLE
and Bluetooth BR/EDR. (In this example, this is already accomplished during the merging process described in
Section 7.2 Part 1)

▪ Determine whether additional devices such as a UART-connected MCU or an SPI-connected peripheral sensor
will be included in the solution. The UART, SPI or GPIO configurations of the application depend on the connected
Peripheral devices. In this example project, a button and a LED are configured as part of the application.

▪ Adjust the application configuration to provide the parameters required by the application. Common changes
include advertisement parameters, and device name. In this example project, BLE peripheral advertises with the
name “Hello” and Bluetooth BR/EDR slave shows up as “spp_test” during inquiry process.

▪ Define and code the functions for the Bluetooth Stack callbacks required by the application. The application
typically requires notifications from the stack when certain Bluetooth events occur such as connection
establishment, disconnection, GATT write operations, or bonding.

Three main firmware blocks are required for designing Bluetooth applications using the WICED Studio SDK:

1. System initialization

2. Bluetooth stack event handlers

3. Bluetooth service-specific event handlers

The following sections discuss these blocks with respect to the design that was configured as part of the merging
process in Section 7.2 Part 1. Most of the functions involved achieve the required functionality. However, some of the
functions need to have additional code added to achieve the specific behavior that your application requires.

Unlike other platforms, the WICED Studio SDK Bluetooth stack does not require or provide an application-level “main
loop” function that repeats forever. Instead, the main loop is handled internally along with low-power transitions, and all
application behavior must be fully event-driven based on interrupts triggered by timers, wireless (Bluetooth) activity, or
wired (GPIO, UART, etc.) activity.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 26

7.4.1 System Ini t ia l izat ion

When the EZ-BT WICED Module starts up, it enters the APPLICATION_START() function. The BTM_ENABLED_EVT is

the first stack-generated event after power ON or reset; it indicates that Bluetooth stack initialization is complete. The
initialization functions application_init and hello_sensor_applicaiton_init functions are executed in the

BTM_ENABLED_EVT event. These initialization functions call appropriate APIs to initialize the Service Discovery Protocol

(SDP) database for Bluetooth BR/EDR, initialize the GATT database for BLE, set the advertisement data, set the inquiry
response data and register appropriate callbacks, initialize the timers, and configure the button and LED based on the
application requirements. Figure 17 shows the flowchart for system initialization.

Figure 17. System Initialization Flowchart

Reset

ROM Stack Init

Register Event and
Interrupt Handlers

Start Advertising

S
y
s

te
m

 I
n

it
ia

li
za

ti
o

n

Internal Stack
Processing Loop

Before looking at the application initialization routines, look at wiced_bt_cfg.c. The configuration structure in this file
allows simple control over advertisement and scan parameters for BLE and inquiry/page scan interval for Bluetooth
BR/EDR, and some of the profile-specific behavior. In many cases, the SDK provides APIs that allow you to trigger
behavior with custom settings rather than the values that are set here. However, you can often use these configuration
values as-is and avoid further complexity in your code.

The following Bluetooth configuration parameters can be modified based on application requirements by modifying
values in wiced_bt_cfg.c shown in Code 14.

▪ Advertisement and scan settings for BLE

▪ Choice of advertisement channels to be used for BLE

▪ Scan and page interval settings for Bluetooth BR/EDR

▪ Bluetooth Device name

▪ MTU size, etc.

The “spp_custom” example described in this guide does not require any modifications to this structure except
BT_LOCAL_NAME. You can choose to retain the default name as well; for the spp sample application, it is “spp”.

 Code 14. wiced_bt_cfg: Project Configuration Structure

/* Null-Terminated Local Device Name */

uint8_t BT_LOCAL_NAME[] = { 's','p','p',' ','t','e','s','t','\0' };

const uint16_t BT_LOCAL_NAME_CAPACITY = sizeof(BT_LOCAL_NAME);

const wiced_bt_cfg_settings_t wiced_bt_cfg_settings =

{

 (uint8_t*)BT_LOCAL_NAME, /**< Local device name (NULL terminated) */

 {0x00, 0x00, 0x00}, /**< Local device class */

 BTM_SEC_IN_AUTHENTICATE | BTM_SEC_OUT_AUTHENTICATE | BTM_SEC_ENCRYPT, /**< Security requirements mask

(BTM_SEC_NONE, or combination of BTM_SEC_IN_AUTHENTICATE, BTM_SEC_OUT_AUTHENTICATE, BTM_SEC_ENCRYPT */

 3,

 /* BR/EDR Scan Configuration */

 {

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 27

 BTM_SCAN_TYPE_STANDARD, /**< Inquiry Scan Type (BTM_SCAN_TYPE_STANDARD or

 BTM_SCAN_TYPE_INTERLACED) */

 WICED_BT_CFG_DEFAULT_INQUIRY_SCAN_INTERVAL, /**< Inquiry Scan Interval (0 to

 use default) */

 WICED_BT_CFG_DEFAULT_INQUIRY_SCAN_WINDOW, /**< Inquiry Scan Window (0 to

 use default) */

 BTM_SCAN_TYPE_STANDARD, /**< Page Scan Type (BTM_SCAN_TYPE_STANDARD or BTM_SCAN_TYPE_INTERLACED) */

 WICED_BT_CFG_DEFAULT_PAGE_SCAN_INTERVAL, /**< Page Scan Interval (0 to use default) */

 WICED_BT_CFG_DEFAULT_PAGE_SCAN_WINDOW, /**< Page Scan Window (0 to use default) */

 },

 /* BLE scan settings */

 {

 BTM_BLE_SCAN_MODE_ACTIVE, /**< BLE scan mode (

 BTM_BLE_SCAN_MODE_PASSIVE, BTM_BLE_SCAN_MODE_ACTIVE, or BTM_BLE_SCAN_MODE_NONE) */

 /* Advertisement scan configuration */

 96, /**< High duty scan interval */

 48, /**< High duty scan window */

 30, /**< High duty scan duration in seconds (0 for infinite) */

 2048, /**< Low duty scan interval */

 48, /**< Low duty scan window */

 30, /**< Low duty scan duration in seconds (0 for infinite) */

 /* Connection scan configuration */

 96, /**< High duty cycle connection scan interval */

 48, /**< High duty cycle connection scan window */

 30, /**< High duty cycle connection duration in seconds (0 for infinite) */

 2048, /**< Low duty cycle connection scan interval */

 48, /**< Low duty cycle connection scan window */

 30, /**< Low duty cycle connection duration in seconds (0 for infinite) */

 /* Connection configuration */

 WICED_BT_CFG_DEFAULT_CONN_MIN_INTERVAL, /**< Minimum connection interval */

 WICED_BT_CFG_DEFAULT_CONN_MAX_INTERVAL, /**< Maximum connection interval */

 WICED_BT_CFG_DEFAULT_CONN_LATENCY, /**< Connection latency */

 WICED_BT_CFG_DEFAULT_CONN_SUPERVISION_TIMEOUT, /**< Connection link supervision timeout */

 },

 /* BLE advertisement settings */

 {

 BTM_BLE_ADVERT_CHNL_37 | /**< Advertising channel map (mask of

 BTM_BLE_ADVERT_CHNL_37, BTM_BLE_ADVERT_CHNL_38, BTM_BLE_ADVERT_CHNL_39) */

 BTM_BLE_ADVERT_CHNL_38 |

 BTM_BLE_ADVERT_CHNL_39,

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_ADV_MIN_INTERVAL, /**< High duty undirected connectable

 minimum advertising interval */

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_ADV_MAX_INTERVAL, /**< High duty undirected connectable

 maximum advertising interval */

 30, /**< High duty undirected connectable advertising duration in seconds (0 for

 infinite) */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_ADV_MIN_INTERVAL, /**< Low duty undirected connectable

 minimum advertising interval */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_ADV_MAX_INTERVAL, /**< Low duty undirected connectable

 maximum advertising interval */

 60, /**< Low duty undirected connectable advertising duration in seconds (0 for

 infinite) */

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_DIRECTED_ADV_MIN_INTERVAL, /**< High duty directed connectable

 minimum advertising interval */

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_DIRECTED_ADV_MAX_INTERVAL, /**< High duty directed connectable

 maximum advertising interval */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_DIRECTED_ADV_MIN_INTERVAL, /**< Low duty directed connectable

 minimum advertising interval */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_DIRECTED_ADV_MAX_INTERVAL, /**< Low duty directed connectable

 maximum advertising interval */

 30, /**< Low duty directed connectable advertising duration in seconds (0 for

 infinite) */

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_NONCONN_ADV_MIN_INTERVAL, /**< High duty non-connectable minimum

 advertising interval */

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 28

 WICED_BT_CFG_DEFAULT_HIGH_DUTY_NONCONN_ADV_MAX_INTERVAL, /**< High duty non-connectable maximum

 advertising interval */

 30, /**< High duty non-connectable advertising duration in seconds (0 for infinite

) */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_NONCONN_ADV_MIN_INTERVAL, /**< Low duty non-connectable minimum

 advertising interval */

 WICED_BT_CFG_DEFAULT_LOW_DUTY_NONCONN_ADV_MAX_INTERVAL, /**< Low duty non-connectable maximum

 advertising interval */

 0 /**< Low duty non-connectable advertising duration in seconds (0 for infinite) */

 },

 /* GATT Configuration */

 {

 APPEARANCE_GENERIC_COMPUTER, /**< GATT appearance (see gatt_appearance_e) */

 3, /**< Client config: maximum number of servers that local client can connect to */

 1, /**< Server config: maximum number of remote clients connections allowed by the local */

 512 /**< Client config: maximum number of bytes that local client can receive over LE link */

 },

 /* RFCOMM Configuration */

 {

 2, /**< Maximum Number of simultaneous RFCOMM ports */

 2, /**< Maximum Number of simultaneous RFCOMM connections */

 },

 /* Application managed l2cap protocol configuration */

 {

 0, /**< Maximum number of application-managed l2cap links (BR/EDR and LE) */

 /* BR EDR l2cap configuration */

 0, /**< Maximum number of application-managed BR/EDR PSMs */

 0, /**< Maximum number of application-managed BR/EDR channels */

 /* LE L2cap connection-oriented channels configuration */

 0, /**< Maximum number of application-managed LE PSMs */

 0, /**< Maximum number of application-managed LE channels */

 },

 /* Audio/Video Distribution configuration */

 {

 0, /**< Maximum simultaneous audio/video links */

 },

 /* Audio/Video Remote Control configuration */

 {

 0, /**< Mask of local roles supported (AVRC_CONN_INITIATOR|AVRC_CONN_ACCEPTOR) */

 0, /**< Maximum simultaneous remote control links */

 },

 5, /**< LE Address Resolution DB settings - effective only for pre 4.2 controller*/

 517, /**< Maximum MTU size for GATT connections, should be between 23 and (max_attr_len + 5)*/

 12

};

The first visible entry point in the “spp_custom” example application you have created here is the
APPLICATION_START() function, as shown in Code 15:

Code 15. APPLICATION_START: Stack initialization is ROM-Driven Initialization

APPLICATION_START()

{

 wiced_result_t result;

#if defined WICED_BT_TRACE_ENABLE || defined HCI_TRACE_OVER_TRANSPORT

 wiced_transport_init(&transport_cfg);

 // create special pool for sending data to the MCU

 host_trans_pool = wiced_transport_create_buffer_pool(TRANS_UART_BUFFER_SIZE, TRANS_MAX_BUFFERS);

 // Set the debug uart as WICED_ROUTE_DEBUG_NONE to get rid of prints

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_NONE);

 // Set to PUART to see traces on peripheral uart(puart)

 wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_PUART);

 wiced_hal_puart_select_uart_pads(WICED_PUART_RXD, WICED_PUART_TXD, 0, 0);

 // Set to HCI to see traces on HCI uart - default if no call to wiced_set_debug_uart()

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_HCI_UART);

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 29

 // Use WICED_ROUTE_DEBUG_TO_WICED_UART to send formatted debug strings over the WICED

 // HCI debug interface to be parsed by ClientControl/BtSpy.

 // Note: WICED HCI must be configured to use this - see wiced_trasnport_init(), must

 // be called with wiced_transport_cfg_t.wiced_tranport_data_handler_t callback present

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_WICED_UART);

#endif

 WICED_BT_TRACE("APP Start\n");

 /* Initialize Stack and Register Management Callback */

 // Register call back and configuration with stack

 wiced_bt_stack_init(app_management_callback, &wiced_bt_cfg_settings, wiced_bt_cfg_buf_pools);

}

The APPLICATION_START() function does the following

▪ Transport method is initialized by calling wiced_transport_init(); in this case UART

▪ Bluetooth stack is initialized by calling wiced_bt_stack_init.

▪ As part of the wiced_bt_stack_init function, Bluetooth configuration settings wiced_bt_cfg_settings are passed

to the stack and app_management_callback function is registered to receive both BLE and Bluetooth BR/EDR

stack events.

Note that this function already exists and does not need to be added to your project source file. The
wiced_bt_stack_init function is declared in the wiced_bt_stack.h standard SDK library include file, actual

implementation of this function is in ROM.

Either PUART (WICED_ROUTE_DEBUG_TO_PUART) or HCI UART (WICED_ROUTE_DEBUG_TO_HCI_UART)
can be configured to receive debug traces based on the application requirement. PUART is enabled by default in this
example application.

The spp.c, hello_sensor.c/h, and wiced_bt_cfg.c source files contain the following key functions for BR/EDR and BLE:

Table 5. Key BR/EDR and BLE Functions Used in My First EZ-BT WICED Module Design

Common functions for Bluetooth BR/EDR and BLE (spp_custom.c)

application_init

app_management_callback

Bluetooth BR/EDR functions (spp_custom.c) BLE functions

app_write_eir hello_sensor_application_init

app_timeout hello_sensor_set_advertisement_data

spp_connection_up_callback hello_sensor_advertisement_stopped

spp_connection_down_callback hello_sensor_timeout

spp_rx_data_callback hello_sensor_fine_timeout

bt_write_nvram hello_sensor_smp_bond_result

bt_read_nvram hello_sensor_encryption_changed

app_send_data hello_sensor_conn_idle_timeout

app_interrupt_handler hello_sensor_send_message

app_tx_ack_timeout hello_sensor_gatts_conn_status_cb

app_trace_callback hello_sensor_gatts_req_cb

 hello_sensor_gatts_callback

In addition to the API shown in Table 5, the spp.c, hello_sensor.c/h, and wiced_bt_cfg.c source files contain the
following databases:

▪ app_sdp_db[] defines SDP data base for SPP profile of Bluetooth BR/EDR

▪ hello_sensor_gatt_database[] defines GATT database for a custom profile of BLE

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 30

The next function to look at is application_init; it runs after the ROM-driven Bluetooth stack initialization is

succesful. (the BTM_ENABLED_EVT event is generated by the stack). This function sets up the application-specific

behavior, initializes the SPP library, initializes the SDP database for Bluetooth BR/EDR, initializes the GATT database,
registers application callbacks to occur when various link layer, GAP, or GATT events occur within the stack, initializes
timers, and configures the button and LED based on the application requirements as shown in Code 16.

Code 16. application_init: Application-Driven Initialization

 void application_init(void)

{

 wiced_bt_gatt_status_t gatt_status;

 wiced_result_t result;

 /* Initialize wiced app */

 wiced_bt_app_init();

#if SEND_DATA_ON_INTERRUPT

 /* Configure the button available on the platform */

 wiced_hal_gpio_configure_pin(WICED_GPIO_BUTTON, WICED_GPIO_BUTTON_SETTINGS(GPIO_EN_INT_RISING_EDGE),

WICED_GPIO_BUTTON_DEFAULT_STATE);

 wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_BUTTON, app_interrupt_handler, NULL);

 // init timer that we will use for the rx data flow control.

 wiced_init_timer(&app_tx_timer, app_tx_ack_timeout, 0, WICED_MILLI_SECONDS_TIMER);

#endif

 app_write_eir();

 // Initialize RFCOMM. We will not be using application buffer pool and will rely on the

 // stack pools configured in the wiced_bt_cfg.c

 wiced_bt_rfcomm_init(MAX_TX_BUFFER, 1);

 // Initialize SPP library

 wiced_bt_spp_startup(&spp_reg);

#ifdef HCI_TRACE_OVER_TRANSPORT

 // There is a virtual HCI interface between upper layers of the stack and

 // the controller portion of the chip with lower layers of the BT stack.

 // Register with the stack to receive all HCI commands, events and data.

 wiced_bt_dev_register_hci_trace(app_trace_callback);

#endif

 /* create SDP records */

 wiced_bt_sdp_db_init((uint8_t *)app_sdp_db, sizeof(app_sdp_db));

 // This application will always configure device connectable and discoverable

 wiced_bt_dev_set_discoverability(BTM_GENERAL_DISCOVERABLE, 0x0012, 0x0800);

 wiced_bt_dev_set_connectability(BTM_CONNECTABLE, 0x0012, 0x0800);

#if SEND_DATA_ON_TIMEOUT

 /* Starting the app timers, seconds timer and the ms timer */

 wiced_bt_app_start_timer(1, 0, app_timeout, NULL);

#endif

 hello_sensor_application_init();

}

void hello_sensor_application_init(void)

{

 wiced_bt_gatt_status_t gatt_status;

 wiced_result_t result;

 /* Initialize wiced app */

// wiced_bt_app_init();

 wiced_bt_app_led_init();

 /* Configure buttons available on the platform (pin should be configured before registering interrupt

 handler) */

// wiced_hal_gpio_configure_pin(WICED_GPIO_BUTTON, WICED_GPIO_BUTTON_SETTINGS(GPIO_EN_INT_RISING_EDGE

//), WICED_GPIO_BUTTON_DEFAULT_STATE);

// wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_BUTTON, hello_sensor_interrupt_handler, NULL);

 /* Register with stack to receive GATT callback */

 gatt_status = wiced_bt_gatt_register(hello_sensor_gatts_callback);

 WICED_BT_TRACE("wiced_bt_gatt_register: %d\n", gatt_status);

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 31

 /* Tell stack to use our GATT databse */

 gatt_status = wiced_bt_gatt_db_init(hello_sensor_gatt_database, sizeof(hello_sensor_gatt_database));

 WICED_BT_TRACE("wiced_bt_gatt_db_init %d\n", gatt_status);

 /* Allow peer to pair */

 wiced_bt_set_pairable_mode(WICED_TRUE, 0);

#ifdef ENABLE_HCI_TRACE

 /* Register callback for receiving hci traces */

 wiced_bt_dev_register_hci_trace(hello_sensor_hci_trace_cback);

#endif

 /* Starting the app timers , seconds timer and the ms timer */

 wiced_bt_app_start_timer(HELLO_SENSOR_APP_TIMEOUT_IN_SECONDS, HELLO_SENSOR_APP_FINE_TIMEOUT_IN_MS,

 hello_sensor_timeout, hello_sensor_fine_timeout);

 /* Enable privacy to advertise with RPA */

 // wiced_bt_ble_enable_privacy (WICED_TRUE);

 /* Load the address resolution DB with the keys stored in the NVRAM */

 // hello_sensor_load_keys_for_address_resolution();

 /* Set the advertising params and make the device discoverable */

 hello_sensor_set_advertisement_data();

 result = wiced_bt_start_advertisements(BTM_BLE_ADVERT_UNDIRECTED_HIGH, 0, NULL);

 WICED_BT_TRACE("wiced_bt_start_advertisements %d\n", result);

 /*

 * Set flag_stay_connected to remain connected after all messages are sent

 * Reset flag to 0, to disconnect

 */

 hello_sensor_state.flag_stay_connected = 1;

}

Take note of how the application_init() initialization function ends, which occurs right before the stack gets

execution control again.

For BLE operation, Code 16 sets the advertisement data and begins fast undirected and connectable advertisements.
A remote device is able to scan the peripheral device and issue a connect request, which will trigger the callback
hello_sensor_gatts_callback (the hello_sensor_gatts_callback event handler registered in Code 16) and

allow further application-specific behavior for BLE operation.

For Bluetooth BR/EDR operation, the code sets the inquiry response data and makes the device discoverable. A remote
host device performs inquiry and paging process, and issues a connect request to the Bluetooth device which triggers
spp_connection_up_callback, and allows further application-specific behavior for Bluetooth BR/EDR operation.

7.4.2 Bluetooth Stack Event Handlers

A single Bluetooth event handler function app_management_callback is registered to receive stack callback events

for both Bluetooth BR/EDR and BLE connections. The Bluetooth stack initialization complete event is triggered by the
BTM_ENABLED_EVT event. Application features are initialized, and necessary callbacks are registered in

BTM_ENABLED_EVT. Security/ pairing capabilities are exchanged and link keys are stored after appropriate events are

triggered by the stack in app_management_callback.

Code 17. App_manangement_callback: Bluetooth Stack Event Handler

wiced_result_t app_management_callback(wiced_bt_management_evt_t event, wiced_bt_management_evt_data_t

*p_event_data)

{

 wiced_result_t result = WICED_BT_SUCCESS;

 wiced_bt_dev_status_t dev_status;

 wiced_bt_dev_pairing_info_t* p_pairing_info;

 wiced_bt_dev_encryption_status_t* p_encryption_status;

 int bytes_written, bytes_read;

 wiced_bt_power_mgmt_notification_t* p_power_mgmt_notification;

 wiced_bt_ble_advert_mode_t *p_mode;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 32

 WICED_BT_TRACE("bt_management_callback 0x%02x\n", event);

 switch(event)

 {

 /* Bluetooth stack enabled */

 case BTM_ENABLED_EVT:

 application_init();

 hello_sensor_application_init();

 WICED_BT_TRACE("Free mem:%d", wiced_memory_get_free_bytes());

 break;

 case BTM_DISABLED_EVT:

 break;

 case BTM_PIN_REQUEST_EVT:

 WICED_BT_TRACE("remote address= %B\n", p_event_data->pin_request.bd_addr);

 wiced_bt_dev_pin_code_reply(*p_event_data->pin_request.bd_addr,result/*WICED_BT_SUCCESS*/,4,

 &pincode[0]);

 break;

 case BTM_USER_CONFIRMATION_REQUEST_EVT:

 /* This application always confirms peer's attempt to pair */

 wiced_bt_dev_confirm_req_reply (WICED_BT_SUCCESS, p_event_data->user_confirmation_request.bd_addr);

 break;

 case BTM_PAIRING_IO_CAPABILITIES_BR_EDR_REQUEST_EVT:

 /* This application supports only Just Works pairing */

 WICED_BT_TRACE("BTM_PAIRING_IO_CAPABILITIES_REQUEST_EVT bda %B\n", p_event_data-

 >pairing_io_capabilities_br_edr_request.bd_addr);

 p_event_data->pairing_io_capabilities_br_edr_request.local_io_cap = BTM_IO_CAPABILITIES_NONE;

 p_event_data->pairing_io_capabilities_br_edr_request.auth_req =

 BTM_AUTH_SINGLE_PROFILE_GENERAL_BONDING_NO;

 break;

 case BTM_PAIRING_COMPLETE_EVT:

 p_pairing_info = &p_event_data->pairing_complete.pairing_complete_info;

 WICED_BT_TRACE("Pairing Complete: %d\n", p_pairing_info->br_edr.status);

 result = WICED_BT_USE_DEFAULT_SECURITY;

 break;

 case BTM_ENCRYPTION_STATUS_EVT:

 p_encryption_status = &p_event_data->encryption_status;

 WICED_BT_TRACE("Encryption Status Event: bd (%B) res %d\n", p_encryption_status->bd_addr,

 p_encryption_status->result);

 hello_sensor_encryption_changed(p_encryption_status->result, p_encryption_status->bd_addr);

 break;

 case BTM_SECURITY_REQUEST_EVT:

 wiced_bt_ble_security_grant(p_event_data->security_request.bd_addr, WICED_BT_SUCCESS);

 WICED_BT_TRACE("BTM_SECURITY_REQUEST_EVT: bd (%B) ", p_event_data->security_request.bd_addr);

 break;

 case BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT:

 /* This application supports a single paired host, we can save keys under the same NVRAM ID

 overwriting previous pairing if any */

 bt_write_nvram(SPP_NVRAM_ID, sizeof(wiced_bt_device_link_keys_t), &p_event_data-

 >paired_device_link_keys_update);

 break;

 case BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT:

 /* read existing key from the NVRAM */

 if (bt_read_nvram(SPP_NVRAM_ID, &p_event_data->paired_device_link_keys_request,

 sizeof(wiced_bt_device_link_keys_t)) != 0)

 {

 result = WICED_BT_SUCCESS;

 }

 else

 {

 result = WICED_BT_ERROR;

 WICED_BT_TRACE("Key retrieval failure\n");

 }

 break;

 case BTM_POWER_MANAGEMENT_STATUS_EVT:

 p_power_mgmt_notification = &p_event_data->power_mgmt_notification;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 33

 WICED_BT_TRACE("Power mgmt status event: bd (%B) status:%d hci_status:%d\n",

 p_power_mgmt_notification->bd_addr, \

 p_power_mgmt_notification->status, p_power_mgmt_notification->hci_status);

 break;

 case BTM_BLE_ADVERT_STATE_CHANGED_EVT:

 p_mode = &p_event_data->ble_advert_state_changed;

 WICED_BT_TRACE("Advertisement State Change: %d\n", *p_mode);

 if (*p_mode == BTM_BLE_ADVERT_OFF)

 {

 hello_sensor_advertisement_stopped();

 }

 break;

 case BTM_SECURITY_REQUEST_EVT:

 wiced_bt_ble_security_grant(p_event_data->security_request.bd_addr, WICED_BT_SUCCESS);

 break;

 case BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT:

 p_event_data->pairing_io_capabilities_ble_request.local_io_cap = BTM_IO_CAPABILITIES_NONE;

 p_event_data->pairing_io_capabilities_ble_request.oob_data = BTM_OOB_NONE;

 p_event_data->pairing_io_capabilities_ble_request.auth_req = BTM_LE_AUTH_REQ_SC_BOND;

 p_event_data->pairing_io_capabilities_ble_request.max_key_size = 0x10;

 p_event_data->pairing_io_capabilities_ble_request.init_keys =

 BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

 p_event_data->pairing_io_capabilities_ble_request.resp_keys =

 BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY_PCSRK|BTM_LE_KEY_LENC;

 break;

 default:

 result = WICED_BT_USE_DEFAULT_SECURITY;

 break;

 }

 return result;

}

7.4.3 BLE Functions

Advertisement data can be modified based on application requirements by adding/removing necessary elements in the
wiced_bt_ble_advert_elem_t structure as shown in Code 18. In this example, BLE device advertisement name is

set to “Hello”.

Code 18. hello_sensor_set_advertisement_data: BLE Advertisement Data

void hello_sensor_set_advertisement_data(void)

{

 wiced_bt_ble_advert_elem_t adv_elem[4];

 uint8_t num_elem = 0;

 uint8_t flag = BTM_BLE_GENERAL_DISCOVERABLE_FLAG | BTM_BLE_BREDR_NOT_SUPPORTED;

 /*

 * hci_control_le_local_name - Advertising Complete Name

 * Note : Max Length is 8 bytes for the Advertisement Name, rest of 21 bytes are used for

 * BTM_BLE_ADVERT_TYPE_FLAG,BTM_BLE_ADVERT_TYPE_128SRV_COMPLETE

 */

 uint8_t hci_control_le_local_name[] = "Hello" ; //Alternate way to declare {'h', 'e', 'l', 'l',

 'o', 0x00, 0x00};

 uint8_t hello_service_uuid[LEN_UUID_128] = { UUID_HELLO_SERVICE };

 adv_elem[num_elem].advert_type = BTM_BLE_ADVERT_TYPE_FLAG;

 adv_elem[num_elem].len = sizeof(uint8_t);

 adv_elem[num_elem].p_data = &flag;

 num_elem++;

 adv_elem[num_elem].advert_type = BTM_BLE_ADVERT_TYPE_128SRV_COMPLETE;

 adv_elem[num_elem].len = sizeof(hello_service_uuid);

 adv_elem[num_elem].p_data = (uint8_t*)hello_service_uuid;

 num_elem++;

 adv_elem[num_elem].advert_type = BTM_BLE_ADVERT_TYPE_NAME_COMPLETE;

 adv_elem[num_elem].len = strlen(hci_control_le_local_name);

 adv_elem[num_elem].p_data = (uint8_t*)hci_control_le_local_name;

 num_elem++;

 wiced_bt_ble_set_raw_advertisement_data(num_elem, adv_elem);

}

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 34

Next, check the hello_sensor_advertisement_stopped funtion, which is called in the Bluetooth stack event

BTM_BLE_ADVERT_STATE_CHANGED_EVT. The Bluetooth stack triggers this event automatically after the BLE advertising

period timeout elapses. The default advertisement timeouts for fast ('high') and slow ('low') rates are defined in the
wiced_bt_cfg_settings structure near the top of wiced_bt_cfg.c file, and are 30 and 300 seconds respectively. The

code in this event handler ensures that advertisements always resume automatically whenever either mode times out.

Code 19. hello_sensor_advertisement_stopped: Advertisement Timeout Event Handler

void hello_sensor_advertisement_stopped(void)

{

 wiced_result_t result;

 if (hello_sensor_state.flag_stay_connected && !hello_sensor_state.conn_id)

 {

 result = wiced_bt_start_advertisements(BTM_BLE_ADVERT_UNDIRECTED_LOW, 0, NULL);

 WICED_BT_TRACE("wiced_bt_start_advertisements: %d\n", result);

 }

 else

 {

 WICED_BT_TRACE("ADV stop\n");

 }

}

After this funtion, there are two functions which concern bonding and encryption. First is the
hello_sensor_smp_bond_result funtion shown in Code 20, which occurs after the remote peer successfully bonds

with the local device. This function stores the bonded BD (Bluetooth Device) address of remote device in the
hello_sensor_hostinfo structure, then writes that structure into the non-volatile memory for later retrieval.

Code 20. hello_sensor_smp_bond_result: Bonding Event Handler

void hello_sensor_smp_bond_result(uint8_t result)

{

 wiced_result_t status;

 uint8_t written_byte = 0;

 WICED_BT_TRACE("hello_sensor, bond result: %d\n", result);

 /* Bonding success */

 if (result == WICED_BT_SUCCESS)

 {

 /* Pack the data to be stored into the hostinfo structure */

 memcpy(hello_sensor_hostinfo.bdaddr, hello_sensor_state.remote_addr, sizeof(BD_ADDR));

 /* Write to NVRAM */

 written_byte = wiced_hal_write_nvram(HELLO_SENSOR_VS_ID, sizeof(hello_sensor_hostinfo),

(uint8_t*)&hello_sensor_hostinfo, &status);

 WICED_BT_TRACE("NVRAM write: %d\n", written_byte);

 }

}

Another security-related function is the hello_sensor_encryption_changed funtion, which is called when the stack

encryption state change event, BTM_ENCRYPTION_STATUS_EVT, is triggered. This typically occurs during the bonding

process after the link is successfully encrypted. While it is not strictly necessary to catch this event, the existing
hello_sensor sample application has a function to handle encryption change actions. In this case, outstanding
messages are pushed to the stack. An idle timer is started in this funtion to disconnect the link after the specified
timeout.

Code 21. hello_sensor_encryption_changed: Encryption State Change

void hello_sensor_encryption_changed(wiced_result_t result, uint8_t* bd_addr)

{

 WICED_BT_TRACE("encryp change bd (%B) res: %d ", hello_sensor_hostinfo.bdaddr, result);

 /* Connection has been encrypted meaning that we have correct/paired device

 * restore values in the database

 */

 wiced_hal_read_nvram(HELLO_SENSOR_VS_ID, sizeof(hello_sensor_hostinfo),

(uint8_t*)&hello_sensor_hostinfo, &result);

 // If there are outstanding messages that we could not send out because

 // connection was not up and/or encrypted, send them now. If we are sending

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 35

 // indications, we can send only one and need to wait for ack.

 while ((hello_sensor_state.num_to_write != 0) && !hello_sensor_state.flag_indication_sent)

 {

 hello_sensor_state.num_to_write--;

 hello_sensor_send_message();

 }

 // If configured to disconnect after delivering data, start idle timeout

 // to do disconnection

 if ((!hello_sensor_state.flag_stay_connected) && !hello_sensor_state.flag_indication_sent)

 {

 wiced_bt_app_start_conn_idle_timer(HELLO_SENSOR_CONN_IDLE_TIMEOUT_IN_SECONDS,

hello_sensor_conn_idle_timeout);

 }

}

After security-related events, the hello_sensor_gatts_req_cb function shown in Code 22 is called on receiving

GATT_ATTRIBUTE_REQUEST_EVT event from the connected remote client. hello_sensor_gatts_req_cb processes

GATT read, GATT write, GATT write execute, MTU request, and indication confirmation actions.

Code 22. hello_sensor_gatts_req_cb: Top-Level GATT Function

wiced_bt_gatt_status_t hello_sensor_gatts_req_cb(wiced_bt_gatt_attribute_request_t *p_data)

{

 wiced_result_t result = WICED_BT_GATT_INVALID_PDU;

 WICED_BT_TRACE("hello_sensor_gatts_req_cb. conn %d, type %d\n", p_data->conn_id, p_data->request_type);

 switch (p_data->request_type)

 {

 case GATTS_REQ_TYPE_READ:

 result = hello_sensor_gatts_req_read_handler(p_data->conn_id, &(p_data->data.read_req));

 break;

 case GATTS_REQ_TYPE_WRITE:

 result = hello_sensor_gatts_req_write_handler(p_data->conn_id, &(p_data->data.write_req));

 break;

 case GATTS_REQ_TYPE_WRITE_EXEC:

 result = hello_sensor_gatts_req_write_exec_handler(p_data->conn_id, p_data->data.exec_write);

 break;

 case GATTS_REQ_TYPE_MTU:

 result = hello_sensor_gatts_req_mtu_handler(p_data->conn_id, p_data->data.mtu);

 break;

 case GATTS_REQ_TYPE_CONF:

 result = hello_sensor_gatts_req_conf_handler(p_data->conn_id, p_data->data.handle);

 break;

 default:

 break;

 }

}

For this application, hello_sensor_gatts_req_read_handler, hello_sensor_gatts_req_write_handler, and

hello_sensor_gatts_req_conf_handler are used to process read, write, and indication confirmation requests.

7.4.3.1 GATT Read Request

The Client can issue a read request to retreive data from any charactersitic which has read property enabled in the
GATT database. The hello_sensor_gatts_req_read_handler function processes the read request command from

the connected remote Client device. In this example, this funtion sends dummy battery level data when the remote
Client issues a read request to the battery level charactersitc handle(0x62),
HANDLE_HSENS_BATTERY_SERVICE_CHAR_LEVEL_VAL. Valid characteritic handler verification is done at the beginning

of the funtion; a negative response is sent for read requests wtih invalid characteristic handles. Reqeusted data is
packaged into an appropriate form and passed for further processing to the stack.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 36

Code 23. BLE GATT Read Request

wiced_bt_gatt_status_t hello_sensor_gatts_req_read_handler(uint16_t conn_id, wiced_bt_gatt_read_t *

p_read_data)

{

 attribute_t *puAttribute;

 int attr_len_to_copy;

 if ((puAttribute = hello_sensor_get_attribute(p_read_data->handle)) == NULL)

 {

 WICED_BT_TRACE("read_hndlr attr not found hdl:%x\n", p_read_data->handle);

 return WICED_BT_GATT_INVALID_HANDLE;

 }

 /* Dummy battery value read increment */

 if(p_read_data->handle == HANDLE_HSENS_BATTERY_SERVICE_CHAR_LEVEL_VAL)

 {

 if (hello_sensor_state.battery_level++ > 5)

 {

 hello_sensor_state.battery_level = 0;

 }

 }

 attr_len_to_copy = puAttribute->attr_len;

 WICED_BT_TRACE("read_hndlr conn_id:%d hdl:%x offset:%d len:%d\n", conn_id, p_read_data->handle,

p_read_data->offset, attr_len_to_copy);

 if (p_read_data->offset >= puAttribute->attr_len)

 {

 attr_len_to_copy = 0;

 }

 if (attr_len_to_copy != 0)

 {

 uint8_t *from;

 int to_copy = attr_len_to_copy - p_read_data->offset;

 if (to_copy > *p_read_data->p_val_len)

 {

 to_copy = *p_read_data->p_val_len;

 }

 from = ((uint8_t *)puAttribute->p_attr) + p_read_data->offset;

 *p_read_data->p_val_len = to_copy;

 memcpy(p_read_data->p_val, from, to_copy);

 }

 return WICED_BT_GATT_SUCCESS;

}

7.4.3.2 GATT Write Request

The Client can issue a write request to update the value on any characteristic which has the write property enabled in
the GATT database. The hello_sensor_gatts_req_write_handler function processes the GATT write request sent

by the connected remote Client device.

• This funtion receives the Client Characterstic Configuration information on the characteristic handle (0x2B)
HANDLE_HSENS_SERVICE_CHAR_CFG_DESC, and stores it in the nonvoltatile memory. The Client configuration

data determines the usage of notifications or indications for data transfer from a Peripheral to Central in this
example project.

• This function also receives data on a custom characteristic handle
HANDLE_HSENS_SERVICE_CHAR_BLINK_VAL from the connected remote Client. A byte value received on this

handle determines number of LED blinks on the evaluation board.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 37

Code 24. BLE GATT Write Request
wiced_bt_gatt_status_t hello_sensor_gatts_req_write_handler(uint16_t conn_id, wiced_bt_gatt_write_t *

p_data)

{

 wiced_bt_gatt_status_t result = WICED_BT_GATT_SUCCESS;

 uint8_t *p_attr = p_data->p_val;

 uint8_t nv_update = WICED_FALSE;

 WICED_BT_TRACE("write_handler: conn_id:%d hdl:0x%x prep:%d offset:%d len:%d\n ", conn_id, p_data-

>handle, p_data->is_prep, p_data->offset, p_data->val_len);

 switch (p_data->handle)

 {

 /* By writing into Characteristic Client Configuration descriptor

 * peer can enable or disable notification or indication */

 case HANDLE_HSENS_SERVICE_CHAR_CFG_DESC:

 if (p_data->val_len != 2)

 {

 return WICED_BT_GATT_INVALID_ATTR_LEN;

 }

 hello_sensor_hostinfo.characteristic_client_configuration = p_attr[0] | (p_attr[1] << 8);

 nv_update = WICED_TRUE;

 break;

 case HANDLE_HSENS_SERVICE_CHAR_BLINK_VAL:

 if (p_data->val_len != 1)

 {

 return WICED_BT_GATT_INVALID_ATTR_LEN;

 }

 hello_sensor_hostinfo.number_of_blinks = p_attr[0];

 if (hello_sensor_hostinfo.number_of_blinks != 0)

 {

 WICED_BT_TRACE("hello_sensor_write_handler:num blinks: %d\n",

hello_sensor_hostinfo.number_of_blinks);

 wiced_bt_app_hal_led_blink(WICED_PLATFORM_LED_1, 250, 250,

hello_sensor_hostinfo.number_of_blinks);

 nv_update = WICED_TRUE;

 }

 break;

 default:

 result = WICED_BT_GATT_INVALID_HANDLE;

 break;

 }

 if (nv_update)

 {

 wiced_result_t rc;

 int bytes_written = wiced_hal_write_nvram(HELLO_SENSOR_VS_ID, sizeof(hello_sensor_hostinfo),

(uint8_t*)&hello_sensor_hostinfo, &rc);

 WICED_BT_TRACE("NVRAM write:%d rc:%d", bytes_written, rc);

 }

 return result;

}

7.4.3.3 Indication Confirmation

If the Client chooses indications instead of notifications, which is determined by the Client configuration data received
as part of the GATT write request from the Client shown in Code 24, the Peripheral should wait for confirmation before
sending the next indication.

Code 25. BLE Indication Confirmation

wiced_bt_gatt_status_t hello_sensor_gatts_req_conf_handler(uint16_t conn_id, uint16_t handle)

{

 WICED_BT_TRACE("hello_sensor_indication_cfm, conn %d hdl %d\n", conn_id, handle);

 if (!hello_sensor_state.flag_indication_sent)

 {

 WICED_BT_TRACE("Hello: Wrong Confirmation!");

 return WICED_BT_GATT_SUCCESS;

 }

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 38

 hello_sensor_state.flag_indication_sent = 0;

 /* We might need to send more indications */

 if (hello_sensor_state.num_to_write)

 {

 hello_sensor_state.num_to_write--;

 hello_sensor_send_message();

 }

 /* if we sent all messages, start connection idle timer to disconnect */

 if (!hello_sensor_state.flag_stay_connected && !hello_sensor_state.flag_indication_sent)

 {

 wiced_bt_app_start_conn_idle_timer(HELLO_SENSOR_CONN_IDLE_TIMEOUT_IN_SECONDS,

 hello_sensor_conn_idle_timeout);

 }

 return WICED_BT_GATT_SUCCESS;

}

Two other callbacks remain in hello_sensor_gatts_req_cb, which are not absolutely necessary for this example.

Place holders for the rest of two funtions are provided in this file, hello_sensor_gatts_req_write_exec_handler
and hello_sensor_gatts_req_mtu_handler.

The next funtion to look at is hello_sensor_gatts_conn_status_cb. This callback funtion is registered in the

hello_sensor_application_init during the intialization phase. The Bluetooth stack triggers this callback funtion

on BLE connection or disconnection.

Code 26. hello_sensor_gatts_callback

wiced_bt_gatt_status_t hello_sensor_gatts_callback(wiced_bt_gatt_evt_t event, wiced_bt_gatt_event_data_t

*p_data)

{

 wiced_bt_gatt_status_t result = WICED_BT_GATT_INVALID_PDU;

 switch(event)

 {

 case GATT_CONNECTION_STATUS_EVT:

 result = hello_sensor_gatts_conn_status_cb(&p_data->connection_status);

 break;

 case GATT_ATTRIBUTE_REQUEST_EVT:

 result = hello_sensor_gatts_req_cb(&p_data->attribute_request);

 break;

 default:

 break;

 }

 return result;

}

7.4.3.4 Connection Up

In the connection up funtion hello_sensor_gatts_connection_up, the BD Address of the remote Client and

connection ID are copied into the local RAM and also saved in NVRAM. Advertisement is stopped as the Peripheral
device is now connected with the remote Central device.

Code 27. hello_sensor_gatts_connection_up

wiced_bt_gatt_status_t hello_sensor_gatts_connection_up(wiced_bt_gatt_connection_status_t *p_status)

{

 wiced_result_t result;

 uint8_t bytes_written = 0;

 WICED_BT_TRACE("hello_sensor_conn_up %B id:%d\n:", p_status->bd_addr, p_status->conn_id);

 /* Update the connection handler. Save address of the connected device. */

 hello_sensor_state.conn_id = p_status->conn_id;

 memcpy(hello_sensor_state.remote_addr, p_status->bd_addr, sizeof(BD_ADDR));

 /* Stop advertising */

 result = wiced_bt_start_advertisements(BTM_BLE_ADVERT_OFF, 0, NULL);

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 39

 WICED_BT_TRACE("Stopping Advertisements%d\n", result);

 /* Stop idle timer */

 wiced_bt_app_stop_conn_idle_timer();

 /* Updating the bd address in the host info in NVRAM */

 memcpy(hello_sensor_hostinfo.bdaddr, p_status->bd_addr, sizeof(BD_ADDR));

 hello_sensor_hostinfo.characteristic_client_configuration = 0;

 hello_sensor_hostinfo.number_of_blinks = 0;

 /* Save the host info in NVRAM */

 bytes_written = wiced_hal_write_nvram(HELLO_SENSOR_VS_ID, sizeof(hello_sensor_hostinfo),

(uint8_t*)&hello_sensor_hostinfo, &result);

 WICED_BT_TRACE("NVRAM write %d\n", bytes_written);

 return WICED_BT_GATT_SUCCESS;

}

7.4.3.5 Connection Down

In the connection down funtion, hello_sensor_gatts_connection_down, the BD Address of the remote client is

erased from NVRAM, the connection ID is reset to ‘0’, and a low-duty advertisement is started.

Code 28. hello_sensor_gatts_connection_down

wiced_bt_gatt_status_t hello_sensor_gatts_connection_down(wiced_bt_gatt_connection_status_t *p_status)

{

 wiced_result_t result;

 WICED_BT_TRACE("connection_down %B conn_id:%d reason:%d\n", hello_sensor_state.remote_addr, p_status-

>conn_id, p_status->reason);

 /* Resetting the device info */

 memset(hello_sensor_state.remote_addr, 0, 6);

 hello_sensor_state.conn_id = 0;

 /*

 * If we are configured to stay connected, disconnection was

 * caused by the peer, start low advertisements, so that peer

 * can connect when it wakes up

 */

 if (hello_sensor_state.flag_stay_connected)

 {

 result = wiced_bt_start_advertisements(BTM_BLE_ADVERT_UNDIRECTED_LOW, 0, NULL);

 WICED_BT_TRACE("wiced_bt_start_advertisements %d\n", result);

 }

 return WICED_BT_SUCCESS;

}

Custom application-specific features can be implemented in timeout funtions according to requirements,

▪ hello_sensor_timeout – seconds timer

▪ hello_sensor_fine_timeout – millisecond timer

In this example project, button interrupt is not enabled for sending BLE notifications/indications and the privacy
feature is disabled; therefore, the following funtions are not used:

▪ hello_sensor_send_message

▪ hello_sensor_interrupt_handler

▪ hello_sensor_load_keys_for_address_resolution

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 40

7.4.4 Bluetooth Funct ions

Callback functions for specific Bluetooth BR/EDR events, connection up, connection down, and received data are
registered during the SPP library initialization inside the application_init() function (see Code 16). The

wiced_bt_spp_reg_t structure with appropriate callbacks and wiced_bt_spp_startup() are shown in Code 29.

Code 29. spp.c: Structure with Details of Callbacks Needed for SPP Application and Function to Initialize SPP Library

wiced_bt_spp_reg_t spp_reg =

{

 SPP_RFCOMM_SCN, /* RFCOMM service channel number for SPP connection */

 MAX_TX_BUFFER, /* RFCOMM MTU for SPP connection */

 spp_connection_up_callback, /* SPP connection established */

 NULL, /* SPP connection establishment failed, not used because this app

 never initiates connection */

 NULL, /* SPP service not found, not used because this app never initiates

 connection */

 spp_connection_down_callback, /* SPP connection disconnected */

 spp_rx_data_callback, /* Data packet received */

};

 // Initialize SPP library

 wiced_bt_spp_startup(&spp_reg);

The Inquiry response data for Bluetooth BR/EDR can be set in the app_write_eir function. In this example, the

device name and UUID of the SPP service are published as part of the inquiry response.

Code 30. App_write_eir: Inquiry Response Data

void app_write_eir(void)

{

 uint8_t *pBuf;

 uint8_t *p;

 uint8_t length;

 uint16_t eir_length;

 pBuf = (uint8_t *)wiced_bt_get_buffer(WICED_EIR_BUF_MAX_SIZE);

 WICED_BT_TRACE("hci_control_write_eir %x\n", pBuf);

 if (!pBuf)

 {

 WICED_BT_TRACE("app_write_eir %x\n", pBuf);

 return;

 }

 p = pBuf;

 length = strlen((char *)wiced_bt_cfg_settings.device_name);

 *p++ = length + 1;

 *p++ = BT_EIR_COMPLETE_LOCAL_NAME_TYPE; // EIR type full name

 memcpy(p, wiced_bt_cfg_settings.device_name, length);

 p += length;

 *p++ = 2 + 1; // Length of 16 bit services

 *p++ = BT_EIR_COMPLETE_16BITS_UUID_TYPE; // 0x03 EIR type full list of 16 bit service UUIDs

 *p++ = UUID_SERVCLASS_SERIAL_PORT & 0xff;

 *p++ = (UUID_SERVCLASS_SERIAL_PORT >> 8) & 0xff;

 *p++ = 0; // end of EIR Data is 0

 eir_length = (uint16_t) (p - pBuf);

 // print EIR data

 wiced_bt_trace_array("EIR :", pBuf, MIN(p-pBuf, 100));

 wiced_bt_dev_write_eir(pBuf, eir_length);

 return;

}

The next function to look for are connection up and connection down callback functions triggered by the Bluetooth stack
on successful connection or disconnection from the remote Bluetooth BR/EDR master. The Bluetooth connection
handle is saved by the connection up callback; it is reset to ‘0’ by the connection down callback as shown in Code 30.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 41

Code 31. Connection Up and Connection Down Call Back Functions

/*

 * SPP connection up callback

 */

void spp_connection_up_callback(uint16_t handle, uint8_t* bda)

{

 WICED_BT_TRACE("%s handle:%d address:%B\n", __FUNCTION__, handle, bda);

 spp_handle = handle;

}

/*

 * SPP connection down callback

 */

void spp_connection_down_callback(uint16_t handle)

{

 WICED_BT_TRACE("%s handle:%d\n", __FUNCTION__, handle);

 spp_handle = 0;

}

The next function to look at is spp_rx_data_callback. The Bluetooth stack triggers this callback function when data

is received from the master Bluetooth BR/EDR device over the SPP profile. The received data is sent back to the host
if the LOOPBACK_DATA macro is set to ‘1’. This macro is disabled in this example; so uncomment LOOPBACK_DATA
based on application requirement.

Code 32. spp_rx_data_callback: Callback for Received Data over SPP Profile

wiced_bool_t spp_rx_data_callback(uint16_t handle, uint8_t* p_data, uint32_t data_len)

{

 int i;

// wiced_bt_buffer_statistics_t buffer_stats[4];

// wiced_bt_get_buffer_usage (buffer_stats, sizeof(buffer_stats));

// WICED_BT_TRACE("0:%d/%d 1:%d/%d 2:%d/%d 3:%d/%d\n", buffer_stats[0].current_allocated_count,

buffer_stats[0].max_allocated_count,

// buffer_stats[1].current_allocated_count, buffer_stats[1].max_allocated_count,

// buffer_stats[2].current_allocated_count, buffer_stats[2].max_allocated_count,

// buffer_stats[3].current_allocated_count, buffer_stats[3].max_allocated_count);

// wiced_result_t wiced_bt_get_buffer_usage (&buffer_stats, sizeof(buffer_stats));

 WICED_BT_TRACE("%s handle:%d len:%d %02x-%02x\n", __FUNCTION__, handle, data_len, p_data[0],

p_data[data_len - 1]);

#if LOOPBACK_DATA

 wiced_bt_spp_send_session_data(handle, p_data, data_len);

#endif

 return WICED_TRUE;

}

The next functions to look at are read and write NVRAM. Pairing keys are stored in the NVRAM of the Peripheral/slave
Bluetooth device after successful pairing. NVRAM write and read operations are performed to store pairing keys and
to retrieve them when the Bluetooth stack triggers the BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT and
BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT events respectively.

Code 33. NVRAM Access Function

int bt_write_nvram(int nvram_id, int data_len, void *p_data)

{

 wiced_result_t result;

 int bytes_written = wiced_hal_write_nvram(nvram_id, data_len, (uint8_t*)p_data, &result);

 WICED_BT_TRACE("NVRAM ID:%d written :%d bytes result:%d\n", nvram_id, bytes_written, result);

 return (bytes_written);

}

int bt_read_nvram(int nvram_id, void *p_data, int data_len)

{

 uint16_t read_bytes = 0;

 wiced_result_t result;

 if (data_len >= sizeof(wiced_bt_device_link_keys_t))

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 42

 {

 read_bytes = wiced_hal_read_nvram(nvram_id, sizeof(wiced_bt_device_link_keys_t), p_data, &result);

 WICED_BT_TRACE("NVRAM ID:%d read out of %d bytes:%d result:%d\n", nvram_id,

sizeof(wiced_bt_device_link_keys_t), read_bytes, result);

 }

 return (read_bytes);

}

In this example, data is transferred to the host over the SPP profile on a button interrupt or timeout. The
SEND_DATA_ON_INTERRUPT macro is enabled in this example. The app_interrupt_handler function is the registered

callback function for Button interrupt; the data transmit process is initiated in this callback function. Every button press
triggers a 1 MB of known data transmission to the remote Host when the slave device is in connected state. In case if
1 MB data transfer was interrupted due to interference or any other reason, a timer callback is registered with a timeout
to begin the transfer of the remaining data over the SPP profile.

Code 34. app_interrupt_handler: Send Data on Button Interrupt

#if SEND_DATA_ON_INTERRUPT

void app_send_data(void)

{

 int i;

 while ((spp_handle != 0) && wiced_bt_spp_can_send_more_data() && (app_send_offset !=

APP_TOTAL_DATA_TO_SEND))

 {

 int bytes_to_send = app_send_offset + SPP_MAX_PAYLOAD < APP_TOTAL_DATA_TO_SEND ? SPP_MAX_PAYLOAD :

APP_TOTAL_DATA_TO_SEND - app_send_offset;

 for (i = 0; i < bytes_to_send; i++)

 {

 app_send_buffer[i] = app_send_offset + i;

 }

 wiced_bt_spp_send_session_data(spp_handle, app_send_buffer, bytes_to_send);

 app_send_offset += bytes_to_send;

 }

 // Check if we were able to send everything

 if (app_send_offset < APP_TOTAL_DATA_TO_SEND)

 {

 wiced_start_timer(&app_tx_timer, 100);

 }

 else

 {

 app_send_offset = 0;

 }

}

void app_interrupt_handler(void *data, uint8_t port_pin)

{

 int i;

 WICED_BT_TRACE("gpio_interrupt_handler pin:%d send_offset:%d\n", port_pin, app_send_offset);

 /* Get the status of interrupt on P# */

 if (wiced_hal_gpio_get_pin_interrupt_status(BUTTON_GPIO))

 {

 /* Clear the GPIO interrupt */

 wiced_hal_gpio_clear_pin_interrupt_status(BUTTON_GPIO);

 }

 // If we are already sending data, do nothing

 if (app_send_offset != 0)

 return;

 app_send_data();

}

void app_tx_ack_timeout(uint32_t param)

{

 app_send_data();

}

#endif

7.4.5 Low-Power Implementat ion and El iminat ing Leakage Current

▪ To configure sleep mode, a call to wiced_sleep_config should be made after receiving the Bluetooth stack event

BTM_ENABLED_EVT as shown in Code 35.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 43

Code 35. spp.c: Configure Sleep Mode

▪ Disable either or both seconds timer and fine timer based on application requirements in
wiced_bt_app_start_timer. This will ensure that the module is not waking up from sleep at regular intervals.

▪ Disable traces in makefile.mk if the application does not require UART prints over a COM port.

Code 36. makefile.mk: Disable Trace

#C_FLAGS += -DWICED_BT_TRACE_ENABLE

▪ It is recommended to do one of the following if the application does not require UART communication:

o Comment out wiced_transport_init(&transport_cfg); or

o Configure switch elements of HCI_UART (SW4) and PUART(SW5) to OFF position. Modify the state of
HCI_UART(SW4) switches to ON position when programming CYBT-343026 EVAL.

7.5 Part 3: Program the Module

This section details the steps required to program the EZ-BT WICED Evaluation Board. The CYBT-343026-01 module
on the CYBT-343026-EVAL evaluation board includes a UART-based bootloader in the onboard chipset ROM, and
therefore does not require an external programmer of any kind.

Note: The source project for this design is available on this application note’s webpage.

7.5.1 Host UART Interface Select ion and Preparat ion

Host access to the HCI UART interface required for programming is available using either the built-in USB-to-UART
Bridge or the 6-pin J1 header on the evaluation board. The HCI UART switch (four-position DIP switch) controls whether
the USB-to-UART Bridge is connected to the HCI UART or pins are isolated from making connections with the USB-
UART IC on the board. The PUART switch (four-position DIP switch) controls whether the USB-to-UART Bridge is
connected to Peripheral UART or pins are isolated from making connections with USB-UART IC on the board.

7.5.2 Compil ing and Downloading into the Module

Now that you have completed the code updates and prepared the programming interface, all that remains is to compile
and flash the firmware image into the target device. To do this, simply double-click on the make target that you defined
previously (snip.bt.spp_custom-CYBT_343026_EVAL download).

After a brief compile process, the console output in WICED Studio should indicate success, as shown in Figure 18.

Figure 18. Programming the Firmware

If you do not see this success message, ensure that you have correctly connected and configured the programming
interface from the host as described in the previous sections, and try downloading again. If it continues to fail, refer to
the following recovery steps.

 case BTM_ENABLED_EVT:

 application_init();

 wiced_sleep_config(TRUE, null, null);

 WICED_BT_TRACE("Free mem:%d", wiced_memory_get_free_bytes());

 break;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 44

7.5.3 Performing a Recovery Procedure and (Re-)Programming Your Module

In some cases, the normal firmware download procedure does not succeed even though all connections and switches
are correct. This may happen as a result of SFLASH corruption due to incorrect application design or power loss during
a normal firmware download process. If this happens, you may need to recover the device. Do the following to reset
CYBT-343026-EVAL board to the factory default state.

Note: This will erase any user application in the memory and reset the board to the default state.

1. Ensure that HCI UART is connected to the module (via direct connection) or evaluation board (via configuration
switches). This step is required only if you want to reprogram your module after the following recovery procedure
has completed.

2. Press and hold the RECOVER button (RECOVER switch is defined in each EZ-BT evaluation board).

3. Press and hold the RESET button (RESET switch is defined in each EZ-BT evaluation board) for 1 second.

4. Release the RESET button.

5. Release the RECOVER button.

6. Re-program the board using the WICED SDK and your make target.

7.6 Part 4: Test Your Design

This section describes how to test your BLE design using the CySmart mobile apps and PC tool. The setup for testing
your design using the EZ-BT WICED evaluation board is shown in Figure 19.

1. Turn ON Bluetooth on your Windows PC.

2. Launch the CySmart application.

3. Connect the BLE dongle to your Windows machine. Wait for the driver installation to complete.

4. Launch the CySmart Host Emulation Tool; it automatically detects the BLE Dongle. Click Refresh if the BLE Dongle
does not appear in the Select BLE Dongle Target pop-up window. Click Connect, as shown in Figure 19.

Figure 19. CySmart BLE Dongle Selection

5. Select Configure Master Settings and restore the values to the default settings, as shown in Figure 20.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 45

Figure 20. CySmart Master Settings Configuration

6. Press the reset switch on the EZ-BT WICED Evaluation board to start BLE advertisements from your design.

7. On the CySmart Host Emulation Tool, click Start Scan. Your device name should appear in the Discovered devices
list, as shown in Figure 21.

Figure 21. CySmart Device Discovery

8. Select your device and click Connect to establish a BLE connection between the CySmart Host Emulation Tool
and your device, as shown in Figure 22.

Figure 22. CySmart Device Connection

9. Once connected, click Discover All Attributes on your design from the CySmart Host Emulation Tool, as shown
in Figure 23.

Figure 23. CySmart Attribute Discovery

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 46

10. Write a value between 1 to 255 to the Characteristic handle 0x2D which is part of the custom service, as shown in
Figure 24. Observe that the number of LED blinks on CYBT-343026 EVAL is equal to the byte value sent over this
characteristic.

Figure 24. Testing with CySmart Host Emulation Tool

11. Now, let’s establish a Bluetooth BR/EDR connection with the PC. Go to Windows Control Panel and open Devices
and Printers.

12. Right-click in white space and select Add Device. Locate your device in the list of scanned devices. Select
spp_test for this example and click Next as shown in Figure 25. Observe that Bluetooth tries to configure the
device and successfully add the device to the PC.

Figure 25. Add Device Series of Events

13. Driver software installation starts automatically; observe that COM port installation is in progress and gets

successfully completed as shown in Figure 26.

Figure 26. COM Port Enumeration Successful

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 47

14. Choose Tera Term or equivalent and select COM 44 or equivalent COM port as per your device enumeration in
the step above.

Figure 27. COM Port Selection

15. Set baud rate to 115200 as shown in Figure 28.

Figure 28. Set Baud Rate

16. Press the user button on CYBT-343026 EVAL and observe that a continuous stream of 1 MB of data is sent to
the COM port over the SPP profile of Bluetooth BR/EDR link as shown in Figure 29.

Figure 29. ASCII Data Over Bluetooth BR/EDR Link

17. Both Bluetooth BR/EDR and BLE connections can be maintained simultaneously. BLE write requests can be
sent while data transfer is in progress for Bluetooth BR/EDR. During Step 16, try to perform Step 10 and observe
simultaneous Bluetooth BR/EDR data transfer and LED blink operation.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 48

7.7 UART Debug Trace

Debug traces in the application project can be transmitted over HCI UART or PUART. The following configuration
details help to enable or disable and route the trace data to the UART port of your choice.

▪ Every sample application has a local makefile.mk file. The following declaration enables traces for the sample
application.

Code 37. makefile.mk: Enable Trace

C_FLAGS += -DWICED_BT_TRACE_ENABLE

▪ Next step is to populate the wiced_transport_cfg_t data structure, whose definition can be found in the

wiced_transport.h file, which is part of the WICED SDK installation.

Code 38. wiced_transport.h: wiced_transport_cfg_t Structure

typedef PACKED struct

{

 wiced_transport_type_t type; /**< Wiced transport type. */

 wiced_transport_interface_cfg_t cfg; /**< Wiced transport interface config. */

 wiced_transport_rx_buff_pool_cfg_t rx_buff_pool_cfg; /**< Wiced rx buffer pool config. */

 wiced_transport_status_handler_t p_status_handler; /**< Wiced transport status

 handler.*/

 wiced_tranport_data_handler_t p_data_handler; /**< Wiced transport receive data

 handler. */

 wiced_transport_tx_complete_t p_tx_complete_cback; /**< Wiced transport tx complete

 callback. */

}wiced_transport_cfg_t;

An example of the transport configuration is shown below; here, UART is chosen as the transport type with a baud rate
of 115200.

Code 39. spp.c: wiced_transport_cfg_t Structure Initialization

const wiced_transport_cfg_t transport_cfg =

{

 WICED_TRANSPORT_UART,

 { WICED_TRANSPORT_UART_HCI_MODE, 115200 },

 { TRANS_UART_BUFFER_SIZE, 1},

 NULL,

 NULL,

 NULL

};

▪ Initialize the transport and select the UART communication pins to be used as shown in the following code. In this
example, debug traces are configured to be sent over PUART at a baud rate of 115200 bps.

Code 40. spp.c: Configuring UART and Baud Rate

wiced_transport_init(&transport_cfg);

 // Set to PUART to see traces on peripheral PUART

 wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_PUART);

 wiced_hal_puart_select_uart_pads(WICED_P33, WICED_P31, 0, 0);

 // Set to HCI to see traces on HCI uart - default if no call to wiced_set_debug_uart()

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_HCI_UART);

7.8 Design Source

The functional WICED Studio SDK project for the BLE example design described in this application note is distributed
on this application note’s web page.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 49

8 Module Placement and Enclosure Considerations

EZ-BT WICED Modules are designed to be soldered to a host PCB to provide seamless Bluetooth connectivity. To
maximize the RF performance of the final product, care needs to be taken on the placement of the module and antenna.
This section describes in detail the recommended placement of the module on a host board to ensure optimal RF
performance. This section also details the effect of metallic or nonmetallic enclosure and metal obstructions near the
module.

8.1 Antenna Ground Clearance

A monopole antenna requires that no ground plane is present below the antenna. The ground plane below it will not
allow the field to propagate. This is defined as the Ground Clearance requirement. However, after some distance, a
ground must be present for a monopole antenna. Defining this region is a very significant step for any antenna design.
The Ground Clearance region defines the bandwidth and efficiency of the antenna.

Each specific EZ-BT WICED Module marketing part number specifies the Ground Clearance used for the design of the
module, and offers recommended additional ground keep-out area to maximize the RF performance. The following
examples reference the CYBT-343026-00 module specifically. For details on other modules, see the specific module
datasheet.

The following example references a PCB trace antenna implementation (shown in the green hatched area), but the
same rules and properties apply for chip antennas used on other Cypress EZ-BT Modules. The specific PCB trace
antenna shown in Figure 30 requires a Ground Clearance area of 4.62 mm × 14.52 mm. To maximize the RF
performance, an additional 4 mm of ground clearance is recommended. This is denoted in the blue hatched area. This
additional ground clearance is not required but may improve the RF performance if implemented.

Figure 30. Antenna Clearance

In Figure 30, the PCB trace antenna is placed at the edge of the module. The green area in Figure 30 does not have
any ground on any layer. The module placement in a host board needs to ensure that no traces or ground layers of the
host board comes within this region. Any ground plane below a monopole antenna degrades the radiation and adversely
affects the RF efficiency.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 50

8.2 Module Placement in a Host System

The EZ-BT Module is soldered to a host board and a clearance must be provided for the antenna where no routing or
ground is allowed on any layer. Placing the module at the edge of the host board is recommended because it provides
the best RF performance and simplifies the requirement of not routing signal or ground traces under the antenna
Ground Clearance region. Figure 31 shows four placement options on a host board, with option 1 being the most
efficient.

Figure 31. Module Placement in a Host Board

Figure 31 shows an example of four positions of the module in a host board, ‘1’, ‘2’, ‘3’, and ‘4’. The white area shown
around the module is the additional clearance area. For the antenna in question, it is recommended to provide a
clearance area of 4 mm in each direction. For details on the recommended clearance area for your EZ-BT Module, see
the specific module datasheet.

As can be seen in Figure 31, when placing the module at the edge (placement options ‘1’ or ‘3’) of the host board, the
additional clearance area is only required facing inwards towards the center of the main board. In all cases, there must
be no possibility of signal or ground traces to be beneath the antenna Ground Clearance region. Conversely, if the
module is placed in the middle (placement option ‘2’) of the host board, the clearance area must be provided in order
to achieve an optimal RF performance.

Placement option ‘1’ or ‘3’ are the best options shown in Figure 31, because it removes the need to reroute signal or
ground traces away from the Ground Clearance region of the module (because no GPIO are located at the top left or
right corner of the module). Furthermore, it minimizes additional clearance area if optimal RF performance is required,
because the antenna faces outward with the antenna exposed to open space.

In placement option ‘4’, although the module is placed at the edge of the host board, the antenna is not exposed to the
maximum amount of free space.

Placement option ‘2’ not only wastes PCB real estate, but also provides diminished RF performance compared to
position ‘1’ and ‘3’.

Shield

4 mm 4 mm

4 mm

Clearance Region
outside of module

4 mm

4 mm

4 mm

Ground Clearance
Region

4 mm

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 51

8.3 Enclosure Effects on Antenna Performance

Antennas used in consumer products are sensitive to the PCB RF ground size, the product’s plastic casing, and metallic
enclosures. This section describes the effect of each of these environmental factors on RF performance.

8.3.1 Antenna Near -Field and Far -Field

Every antenna contains two regions surrounding it: the near-field and the far-field.

The near-field is the region where the radiated field has not yet formed. In this region, the electric and magnetic fields
are not orthogonal to each other. This region is very close to the antenna. The near-field region has two regions: the
reactive near-field region and the radiating near-field region. The transition to a far-field region happens in the radiating
near-field region.

The radiation field is formed after the transition to the far-field region. In this region, the relative angular variation of the
field does not depend on the distance. This means that if you plot the angular radiation field at a distance from the
antenna in the far-field region, their shapes remain the same. Only with distance, the field strength decreases. However,
the shape of the radiation pattern remains the same with respect to the angular variation. This region is called the far-
field region. An object in the far field does not affect the radiation pattern much. However, any obstruction in the near-
field can completely change the radiation pattern. If the obstruction is metal, the effect on the radiation pattern is much
more pronounced. Figure 32 shows the regions for a dipole antenna.

Figure 32. Near and Far Field

For a module based on a 2.4-GHz chip antenna, the near-field extends up to 4 mm.

8.3.2 Effect of Nonmetal l ic Enclosure

Any plastic enclosure changes the resonating frequency of the antenna. The antenna can be modeled as an LC
resonator whose resonant frequency decreases when either L (inductance) or C (capacitance) increases. A larger RF
ground plane and plastic casing increase the effective capacitance and thus reduce the resonant frequency. See the
application note AN91445 for more details on the effect of an enclosure.

Figure 33 details a module antenna in a plastic enclosure. The clearance from the antenna to the plastic enclosure can
be as little as 2 mm. However, clearance of this amount can affect the tuning of the antenna. This can be resolved by
retuning the antenna; however, for a module solution, it is not recommended to attempt retuning of the antenna. To
minimize effects on the module antenna, it is recommended to have a minimum clearance of 5 mm.

Dipole Antenna
With length D

http://www.cypress.com/
http://www.cypress.com/?rid=102512

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 52

Figure 33. EZ-BT WICED Module Inside of a Plastic Mouse Enclosure

8.3.3 Effect of Metal l ic Objects

An antenna is sensitive to the presence of metallic objects in its vicinity. A metallic object shorts the electric field and
thus changes the radiation field. Depending on the size of the obstruction, electromagnetic waves go through different
diffraction patterns or may be completely shielded by the metallic object.

Metallic objects in the near-field can have a drastic impact on the radiation pattern. The thickness of the
CYBT-343026-00 module is 2.25 mm (including the shield) and the near field of this module extends up to 4 mm from
the antenna. Therefore, it is recommended that any metallic obstruction be at least 6.2 mm away from the PCB plane
to avoid negative effects to the RF performance. Cypress recommends an 8-mm gap from the module PCB plane to
any metallic enclosure. Figure 34 details the required clearance from the EZ-BT WICED Module to small metal
obstructions.

Figure 34. Clearance from Small Metal Obstructions

8.3.4 Recommendations for Placement over a Large Metal Plane

The other effect of metal is the formation of an image antenna. The best practice in this case is to orient the metal
orthogonal to the antenna to ensure minimum effects. If the length or width of the plane approaches the size of the
module, it is considered a large metal object near the antenna. Figure 35 details two placement options for this scenario.
Of these two placement options, option “1” should be avoided.

It is recommended to not have any large metallic objects parallel to the antenna. This has a drastic effect because the
image antenna is of opposite polarity. The interference caused by such an antenna is destructive to RF radiation.

If it is not possible to avoid a large metallic object running parallel to the module plane, you should maintain a distance
(h) of at least 30 mm. This will ensure that the interference caused by the image antenna will not be completely
destructive. The radiation will be strongly directional below the 30-mm distance; the efficiency will dramatically drop at
a distance (h) below 8 mm. At a distance (h) of around 2 mm, the radiation efficiency can go below 20%.

5 mm

Module

8 mm

6.2 mm

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 53

Figure 35. Clearance from a Large Metal Plane

8.4 Guidelines for Enclosures and Ground Plane

Use the following best practices with respect to enclosure design and ground planes:

▪ Ensure that there is no component, mounting screw, or ground plane near the tip or the length of the antenna
located on the EZ-BT WICED Module.

▪ Ensure that no battery cable, microphone cable, or trace crosses the antenna trace on the PCB.

▪ Ensure that the antenna is not completely covered by a metallic enclosure. If the product has a metallic casing or
shield, the casing should not cover the antenna. No metal is allowed in the antenna near the field.

▪ Ensure that paint on plastic enclosures is nonmetallic near the antenna.

▪ Ensure that the orientation of the antenna is in-line with the final product orientation (if possible) so that radiation
is maximized in the required direction. The polarization and position of the receive antenna should be taken into
account so that the module can be oriented to maximize the radiation.

▪ Ensure that there is no ground directly below the antenna Ground Clearance region of the module.

Module

Conducting plate

(1) ()

h

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 54

9 Manufacturing with EZ-BT WICED Modules

EZ-BT WICED Modules are intended to be used with traditional Surface Mount Technology (SMT) manufacturing lines
and are compatible with industry-standard reflow profiles for Pb-free solders.

9.1 SMT Manufacturing Pick-and-Place

The modules should be picked up from the topside of the module using industry-standard pick-and-place machinery
and nozzles. The ideal location for picking up the module is on the shield area of the module. For the optimal location
for your EZ-BT WICED Module, see the module’s datasheet.

Each module MPN has a unique center-of-mass detailed in each product’s datasheet. This center-of-mass is the area
that represents the optimal location to pick up the unit with the nozzle. Using the center-of-mass guidelines for the pick-
and-place location minimizes SMT line disturbances caused by units releasing prematurely from the nozzle.

Figure 36 shows an image of a nozzle used by Cypress for manufacturing the CYBT-343026-EVAL Evaluation Board
product. See the center-of-mass dimensions in each module’s datasheet to select an appropriate nozzle for your
manufacturing line equipment.

Figure 36. Nozzle Used by Cypress for Evaluation Board Production

Figure 37 shows an image of a Cypress EZ-BT Module being picked up at the center-of-mass by the nozzle referenced
above.

Figure 37. Image of Nozzle Used by Cypress for Evaluation Board Production

9.2 Manufacturing Solder Reflow

EZ-BT WICED Modules are compatible with industry-standard reflow profiles for Pb-free solder. Table 6 details the
solder reflow specifications for all modules.

Table 6. EZ-BT WICED Module Solder Reflow Specification

Module Package Maximum Peak Temperature Time at Maximum Temperature

All Packages 260 oC 30 seconds

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 55

10 Summary

This application note explores the EZ-BT WICED Module solutions, architectures, development tools, host board
placement and orientation, and production manufacturing. EZ-BT WICED Modules are fully integrated BLE solutions
that allow rapid development and production release for customer applications. The core of the EZ-BT WICED Modules
is the Cypress WICED Bluetooth Smart Ready silicon devices, integrating the Bluetooth radio, digital peripheral
functions, memory, and an Arm Cortex-M3 or M4 microcontroller. The Cypress EZ-BT Module family provides multiple
module options to service the needs of any customer application.

11 Related Application Notes

▪ AN91445 – Antenna Design Guide

▪ AN96841 – Getting Started With EZ-BT Creator Modules

About the Authors
Name: David Solda, Santhosh Vojjala

Title: Senior Business Unit Director, Principle Applications Engineer

Background: David Solda has a BS in Computer/Electrical Engineering, a BS in Mathematics, and an MBA from
Santa Clara University, California.

http://www.cypress.com/
http://www.cypress.com/go/AN91445
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 56

Appendix A. Cypress Terms of Art

This section lists the most commonly used terms that you might hear while working with Cypress’s WICED family of
devices.

EZ-BT™ WICED Module (EZ-BT WICED) - EZ-BT WICED Modules are fully integrated, fully certified, Bluetooth Smart
or Bluetooth Low Energy (BLE) module designed for ease-of-use and reducing time-to-market. It contains Cypress’s
WICED BLE chip, one crystal, PCB trace antenna, shield and passive components. EZ-BT WICED Module provides a
simple and low-cost way to add a microcontroller and Bluetooth Smart connectivity to any system.

EZ-BT™ WICED Modules (EZ-BT WICED) - EZ-BT WICED Modules are fully integrated, fully certified, Bluetooth
Smart Ready (Bluetooth Basic Rate, Enhanced Data Rate, and Bluetooth Low-Energy) modules designed for ease-of-
use and reducing time-to-market. They contain Cypress’ WICED dual-mode chip, one crystal, PCB trace antenna,
shield and passive components. EZ-BT WICED Modules provide a simple and low-cost way to add a microcontroller
and Bluetooth Smart Ready connectivity to any system.

WICED Studio SDK – Cypress' WICED (Wireless Connectivity for Embedded Devices) is a full-featured platform with
proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable Wi-Fi and
Bluetooth connectivity in system design.

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
http://www.cypress.com/products/wiced-software

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 57

Appendix B. EZ-BT WICED Module Product Details

The information contained for each module part number includes the following:

▪ Physical image for each EZ-BT WICED Module marketing part number

▪ Pinout and functionality for each EZ-BT WICED Module marketing part number

▪ Recommended host PCB layout footprint for each EZ-BT WICED Module marketing part number

▪ Recommended additional clearance area for each EZ-BT WICED Module marketing part number

To jump to your specific EZ-BT WICED Module, click the marketing part number in the below list:

▪ CYBT-343026-01

▪ CYBT-353027-02

▪ CYBT-423028-02

▪ CYBT-413034-02

▪ CYBT-483039-02

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 58

B.1 CYBT-343026-01

CYBT-343026-01 is a Bluetooth 5.0-qualified dual-mode (BR/EDR + BLE) module containing 512 KB of on-module
serial flash. Figure 38 shows a physical picture of the CYBT-343026-01 EZ-BT WICED Module.

Figure 38. CYBT-343026-01 Module Top View

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBT-343026-01 datasheet.

B.1.1 Pinout and Functional i ty

The CYBLE-343026-01 module is designed to mount as a component on an end-product PCB. Only a portion of the
available connections of the CYW20706 WICED Bluetooth silicon device are exposed on the CYBT-343026-01 module
in order to minimize the module footprint size. The CYBT-343026-01 module contains 24 connections on the bottom
side of the module. Figure 39 details the bottom side connections available on the CYBT-343026-01 module.

12.0 mm

Shield

PCB Trace Antenna

15.5 mm

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cybt-343026-01-ez-bt-wiced-module

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 59

Figure 39. CYBT-343026-01 Module Bottom View (Seen from Bottom)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 60

A list of the available I/Os and supported functionality for each I/O of CYBT-343026-01 is shown in Table 7.

Table 7. CYBT-343026-01 Module Available Connections and Functionality

Pad Pad Name
Silicon Port Pin

Name

Functionality

UART
3
 SPI

4,
5
 I2C ADC Coex

CLK/

XTAL
GPIO OTHER

1 P0/P34
PCM_Sync/I2S_
WS/P0/P34

PUART_TX/P0
PUART_RX/P34

SPI1_MOSI/P0
(master/slave)

 IN29/P0
IN5/P34

 Yes
PCM_Sync
I2S_WS

2 I2C_SCL
I2S_DO/
PCM_Out/P3/P2
9/P35

PUART_CTS/
P3 or P35

SPI1_CLK/P3
(master/slave)

SCL
SDA/P35

IN4/P35
IN10/P29

 Yes (P3/P29/

P35)

I2S_DO
PCM_Out
PWM3 (P29)

3 XRES RESET_N External Reset (Active LOW)

4 I2C_SDA
PCM_IN/

I2S_DI/P12
 SDA IN23/P12 Yes (P12)

PCN_IN
I2S_DI

5 P2/P37/P28
PCM_CLK/I2S_
CLK/P2/P28/P37

PUART_RX/P2

SPI1_CS/P2
(slave)
SPI1_MOSI/P2
(master)
SPI1_MISO/P37
(slave)

SCL/P37
IN11/P28
IN2/P37

 ACLK1
/P37

Yes
PWM2 (P28)
I2S_CLK
PCM_CLK

6 SPI2_CS_N N/A No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

7 GND GND Ground

8 SPI2_MISO N/A No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

9 SPI2_MOSI N/A No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

10 SPI2_CLK N/A No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

11 GPIO_0
BT_GPIO_0/

P36/P38

SPI1_CLK/P36
SPI1_MOSI/P38
(master/slave)

 IN3/P36
IN1/P38

 ACLK0
/P36

Yes
(DevWake)

12 GPIO_1
BT_GPIO_1/

P25/P32

PUART_RX/P25
PUART_TX/P32

SPI1_MISO/P25
(master/slave)
SPI1_CS/P32
(slave)

 IN7/P32
ACLK0
/P32

Yes
(HostWake)

13 GND GND No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

14 GPIO_4
BT_GPIO_4/P6/
P31/LPO_IN

PUART_RTS/P6
PUART_TX/P31

SPI1_CS/P6
(slave)

 IN8/P31 Yes Ext LPO In

15 P4/P24 BT_CLK_REQ6/

P4/P24

PUART_RX/P4
PUART_TX/P24

SPI1_MOSI/P4
(master/slave)
SPI1_CLK/P24
(master/slave)

Yes
(CLK_REQ)

3 Peripheral UART operates as a default 2-wire UART interface (PUART_TX and PUART_RX). Flow control connections (RTS and
CTS) are provided, but UART flow control is not supported in hardware. Flow control operation requires logic to be completed in the
application code in order for flow control on PUART to be functional. HCI UART supports flow control in Hardware; no additional logic
is required.

4 CYBT-343026-01 contains a single SPI (SPI1) peripheral supporting both master or slave configurations. SPI2 is used for on-module
serial memory interface.

5 In Master mode, any available GPIO can be configured as SPI1_CS. This function is not explicitly shown in the table above.

6 Pad 15 of the CYBT-343026-01 module is configured to have BT_CLK_REQ set as the default. To use P4 or P24 as GPIO or other
functions, this pad must be explicitly configured to operate as a GPIO (and not BT_CLK_REQ). To do this, enter the following
declaration in the applications code to configure the port pin (recommended towards the end of the Bluetooth Application Initialization
routine): *((volatile uint32_t*)(0x003201b8)) = 0x7000;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 61

Pad Pad Name
Silicon Port Pin

Name

Functionality

UART
3
 SPI

4,
5
 I2C ADC Coex

CLK/

XTAL
GPIO OTHER

16 UART_TXD BT_UART_TXD HCI UART Transmit Data

17 UART_CTS BT_UART_CTS HCI UART Clear to Send Input

18 UART_RTS BT_UART_RTS HCI UART Request to Send Output

19 GPIO_7
BT_GPIO_7/
P30

PUART_RTS/P30 IN9/P30
Yes
(GCI_SE
CI_OUT)

 Yes

20 UART_RXD BT_UART_RXD HCI UART Receive Data

21 VDDIN VDDIN VDDIN (2.3 V ~ 3.6 V)

22 GPIO_3
BT_GPIO_3/P27
/P33

PUART_RX/P33

SPI1_MOSI/P27
(master/slave)
SPI1_MOSI/P33
(slave)

 IN6/P33
ACLK1
/P33

Yes PWM1 (P27)

23 GPIO_6
BT_GPIO_6/P11
/P26

SPI1_CS/P26
(slave)

 IN24/P11
Yes
(GCI_SE
CI_IN)

 Yes PWM0 (P26)

24 GND GND No Connect (Used for on-module memory SPI interface for CYBT-343026-01)

B.1.2 Host Recommended PCB Layout

To assist in the host PCB layout design for CYBT-343026-01, Cypress provides three host PCB landing pattern
reference drawings in Figure 40, Figure 41, and in Figure 42, and Table 8. Figure 40 provides a dimensioned view of
the host PCB layout. Figure 41 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 42 and Table 8 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 62

Figure 40. Host Board Required PCB Layout Pattern (Dimensioned View)

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum
recommended pad length on the host PCB is 1.27 mm.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 63

Figure 41. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 64

Figure 42. Host Board Required PCB Layout Pattern
 To Pad Center Relative to Origin

Table 8. Location to Pad Center from Origin
(dimensions in mm and mils)

Solder Pad
(Center of Pad)

Location (X,Y) from
Origin (mm)

Location (X,Y) from
Origin (mils)

1 (0.38, 5.04) (14.96, 198.42)

2 (0.38, 6.26) (14.96, 246.46)

3 (0.38, 7.48) (14.96, 294.49)

4 (0.38, 8.70) (14.96, 342.52)

5 (0.38, 9.92) (14.96, 390.55)

6 (0.38, 11.14) (14.96, 438.58)

7 (0.38, 12.35) (14.96, 486.22)

8 (0.38, 13.57) (14.96, 534.25)

9 (1.73, 15.11) (68.11, 594.88)

10 (2.95, 15.11) (116.14, 594.88)

11 (4.17, 15.11) (164.17, 594.88)

12 (5.39, 15.11) (212.20, 594.88)

13 (6.61, 15.11) (260.24, 594.88)

14 (7.83, 15.11) (308.27, 594.88)

15 (9.05, 15.11) (356.30, 594.88)

16 (10.27, 15.11) (404.33, 594.88)

17 (11.62, 13.57) (457.48, 534.25)

18 (11.62, 12.35) (457.48, 486.22)

19 (11.62, 11.14) (457.48, 438.58)

20 (11.62, 9.92) (457.48, 390.55)

21 (11.62, 8.70) (457.48, 342.52)

22 (11.62, 7.48) (457.48, 294.49)

23 (11.62, 6.26) (457.48, 246.46)

24 (11.62, 5.04) (457.48, 198.42)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 65

Figure 43 below details additional host board keep out area to achieve optimal RF performance with the CYBT-
343026-01 module (denoted in blue hatched area).

Figure 43. Host Board Additional Keep Out Area for Optimal RF Performance

B.2 CYBT-353027-02

CYBT-353027-02 is an ultra-small form factor, Bluetooth 5.0-qualified dual-mode (BR/EDR + BLE) module containing
512 KB of on-module serial flash. Figure 38 shows a physical picture of the CYBT-353027-02 EZ-BT WICED Module.

Figure 44. CYBT-353027-02 Module Top View

Because of its small form-factor, CYBT-353027-02 is ideal for space-constrained applications that require a BR/EDR
or BLE wireless connection. CYBT-353027-02 supports several serial communication interfaces (I2C, SPI, 2-wire
UART, I2S, PCM) and provides up to eight GPIOs. CYBT-353027-02 does not contain support for PWM resources.

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBT-353027-02 datasheet.

9.0 mm

Shield

Chip Antenna

9.0 mm

http://www.cypress.com/
http://www.cypress.com/cybt-353027-02

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 66

B.2.1 Pinout and Functional i ty

The CYBLE-353027-02 module is designed to mount as a component on an end-product PCB. Only a portion of the
available connections of the CYW20707 WICED Bluetooth silicon device are exposed on the CYBT-353027-02 module
in order to minimize the module footprint size. The CYBT-353027-02 module contains 19 connections on the bottom
side of the module. Figure 39 details the bottom side connections available on the CYBT-353027-02 module.

Figure 45. CYBT-353027-02 Module Bottom View (Seen from Bottom)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 67

A list of the available I/Os and supported functionality for each I/O of CYBT-353027-02 is shown in Table 9.

Table 9. CYBT-353027-02 Module Available Connections and Functionality

Pad Pad Name
Silicon Port Pin

Name

Functionality

UART SPI I2C ADC Coex
CLK/XT

AL
GPIO OTHER

1 GND GND Ground

2 GPIO_4

GPIO_4/P1/

I2S_CLK/

PCM_CLK

SPI1_MISO/P1
(master)

 IN28/P1 Yes (P1)
PCM_CLK
I2S_CLK

3 P11
P11/I2S_WS/

PCM_SYNC
 IN24/P11 Yes (P11)

PCM_Sync
I2S_WS

4 P3
P3/I2S_DI/

PCM_IN

SPI1_CLK
(master)

SDA Yes (P3)
PCM_DI
I2S_DI

5 XRES RST_N External Reset (Active LOW)

6 GPIO_5
BT_GPIO_5/

P8/P33

PUART_RX/P3
3

IN27/P8
IN6/P33

GCI_SE
CI_OUT

ACK1/P
33

Yes
(P8/P33)

7 SPI2_CS_N SPI2_CSN SPI2_CS_N

8 GPIO_0 BT_GPIO_0
Yes
(DevWake)

9 GPIO_1 BT_GPIO_1
Yes
(HostWake)

10 UART_TXD BT_UART_TXD HCI UART Transmit Data

11 CLK_REQ BT_CLK_REQ Used for shared-clock applications

12 UART_RXD BT_UART_RXD HCI UART Receive Data

13 VDDIN VDDO VDDIN (2.3 V ~ 3.6 V)

14 GND GND Ground

15 UART_RTS BT_UART_RTS_N HCI UART Request to Send Output

16 GPIO_3 BT_GPIO_3/P0 PUART_TX/P0
SPI1_MOSI/P0
(master)

 IN29/P0 Yes (P0)

17 UART_CTS BT_UART_CTS HCI UART Clear to Send Input

18 GPIO_6
BT_GPIO_6/P9/
I2S_DO/
PCM_OUT

 IN26/P9 Yes (P9)
I2S_DO
PCM_OUT

19 GND GND Ground

B.2.2 Host Recommended PCB Layout

To assist in the host PCB layout design for CYBT-353027-02, Cypress provides three host PCB landing pattern
reference drawings in Figure 40, Figure 41, and in Figure 42, and Table 8. Figure 40 provides a dimensioned view of
the host PCB layout. Figure 41 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 42 and Table 8 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 68

Figure 46. Host Board Required PCB Layout Pattern (Dimensioned View)

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum
recommended pad length on the host PCB is 0.96 mm.

Figure 47. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 69

Figure 48. Host Board Required PCB Layout Pattern
 To Pad Center Relative to Origin

Table 10. Location to Pad Center from Origin
(dimensions in mm and mils)

Solder Pad
(Center of Pad)

Location (X,Y) from
Origin (mm)

Location (X,Y) from
Origin (mils)

1 (0.23, 2.31) (9.06, 90.94)

2 (0.23, 3.36) (9.06, 132.28)

3 (0.23, 4.41) (9.06, 173.62)

4 (0.23, 5.46) (9.06, 214.96)

5 (0.23, 6.51) (9.06, 256.30)

6 (0.23, 7.56) (9.06, 297.64)

7 (0.82, 8.77) (32.28, 345.27)

8 (1.88, 8.77) (74.02, 345.27)

9 (2.93, 8.77) (115.35, 345.27)

10 (3.98, 8.77) (156.69, 345.27)

11 (5.03, 8.77) (198.03, 345.27)

12 (6.08, 8.77) (239.37, 345.27)

13 (7.13, 8.77) (280.71, 345.27)

14 (8.18, 8.77) (322.05, 345.27)

15 (8.77, 7.56) (345.27, 297.64)

16 (8.77, 6.51) (345.27, 256.30)

17 (8.77, 5.46) (345.27, 214.96)

18 (8.77, 4.41) (345.27, 173.62)

19 (8.77, 3.36) (345.27, 132.28)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 70

Figure 49 shows additional host board keep out area to achieve optimal RF performance with the CYBT-353027-02
module.

Figure 49. Host Board Additional Keep Out Area for Optimal RF Performance

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 71

B.3 CYBT-423028-02

CYBT-423028-02 is a CYW20719-based Bluetooth 5.0 dual-mode (BR/EDR + BLE) module containing 1 MB of on-
chip flash and supporting new BLE features such as 2 Mbps data rate, and SIG Mesh. Figure 50 shows a physical
picture of the CYBT-423028-02 EZ-BT WICED Module.

Figure 50. CYBT-423028-02 Module Top View

Because of its small form-factor, CYBT-423028-02 is ideal for space-constrained applications that require a large
memory footprint, increased processing power, and low-power Bluetooth communication. CYBT-423028-02 supports
a number serial communication interfaces (I2C, SPI, 2-wire UART, I2S, PCM) and peripheral functions (ADC, PWM,
Timer, Counter), and provides up to 17 GPIOs.

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBT-423028-02 datasheet.

B.3.1 Pinout and Functional i ty

The CYBLE-423028-02 module is designed to mount as a component on an end-product PCB. Only a portion of the
available connections of the CYW20719 WICED Bluetooth silicon device are exposed on the CYBT-423028-02 module
in order to minimize the module footprint size. The CYBT-423028-02 module contains 28 connections on the bottom
side of the module. Figure 51 details the bottom side connections available on the CYBT-423028-02 module.

11.0 mm

Shield

Chip Antenna

11.0 mm

http://www.cypress.com/
http://www.cypress.com/cybt-423028-02

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 72

Figure 51. CYBT-423028-02 Module Bottom View (Seen from Bottom)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 73

A list of the available I/Os and supported functionality for each I/O of CYBT-423028-02 is shown in Table 11.

Table 11. CYBT-423028-02 Module Available Connections and Functionality

Solder
Pad

Pad Name
Silicon Port Pin

Name

Functionality

XTALI/O ADC GPIO SuperMux
7
 Capable

1 GND GND Ground

2 HOST_WAKE BT_HOST_WAKE
A signal from the CYBT-423028-02 module to the host indicating that the Bluetooth

device requires attention.

3 UART_RXD BT_UART_RXD HCI UART Receive Data

4 UART_TXD BT_UART_TXD HCI UART Transmit Data

5 UART_RTS BT_UART_RTS_N HCI UART Request to Send Output

6 UART_CTS BT_UART_CTS HCI UART Clear to Send Input

7 P2 P2 Yes Yes

8 VCC VDDIO Power Supply Input (1.71V ~ 3.63V)

9 P6 P6 Yes Yes

10 GND GND Ground

11 XRES RST_N External Reset (Active LOW)

12 P33 P33 IN6 Yes Yes

13 P25 P25 Yes Yes

14 P26 P26 Yes Yes

15 P38 P38 IN1 Yes Yes

16 P34/P35/P36
P34
P35
P36

IN5 (P34)
IN4 (P35)
IN3 (P36)

Yes
(P34/P35/P36)

Yes

17 P1 P1 IN28 Yes Yes

18 P0 P0 IN29 Yes Yes

19 P29 P29 IN10 Yes Yes

20 P13/P23/P28
P13
P23
P28

IN22 (P13)
IN12 (P23)
IN11 (P28)

Yes
(P13/P23/P28)

Yes

21 P10/P11
P10
P11

IN25 (P10)
IN14 (P11)

Yes
(P10/P11)

Yes

22 P17 P17 IN18 Yes Yes

23 P7 P7 Yes

24 P4 P4 Yes

25 P16 P16 IN19 Yes

26 XTALI_32K/P158
XTALI_32K

P15
External Oscillator

Input (32 kHz)
IN20 (P15) Yes (P15) Yes (P15)

27 XTALO_32K XTALO_32K
External Oscillator
Output (32 kHz)

28 GND GND Ground

7 The CYBT-423028-02 can configure GPIO connections to any Input/Output function described in Table 12.

8 P15 should not be driven HIGH externally while the part is held in reset (it can be floating or driven LOW). Failure to do so may cause some current to
flow through P15 until the device comes out of reset.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 74

Table 12 details the available functions that can be configured on SuperMux capable GPIOs in Table 11.

Table 12. GPIO SuperMux Input and Output Functions

Function
Input or
Output

Function Type
GPIOs

Required
Function Connection Description

SWD
Input Serial Communication and

Debug
2

SWDCK, Serial Wire Debugger Clock

Input/Output SWDIO, Serial Wire Debugger I/O

SPI 1
Input/Output Serial Communication

(Master or Slave)
4 ~ 8

SPI 1 Clock

SPI 1 Chip Select

SPI 1 MOSI

SPI 1 MISO

SPI 1 I/O 2 (Quad SPI)

SPI 1 I/O 3 (Quad SPI)

SPI 1 Interrupt

Output SPI 1 DCX (DBI-C DCX 8-bit mode)

SPI 2
Input/Output Serial Communication

(Master or Slave)
4 ~ 8

SPI 2 Clock

SPI 2 Chip Select

SPI 2 MOSI

SPI 2 MISO

SPI 2 I/O 2 (Quad SPI)

SPI 2 I/O 3 (Quad SPI)

SPI 2 Interrupt

Output SPI 2 DCX (DBI-C DCX 8-bit mode)

PUART

Input
Serial Communication

Input
4

Peripheral UART RX

Peripheral UART CTS9

Output
Serial Communication

Output

Peripheral UART TX

Peripheral UART RTS12

I2C Input/Output
Serial Communication

(Master or Slave)
2

I2C Clock

I2C Data

I2C 2 Input/Output
Serial Communication

(Master or Slave)
2

I2C 2 Clock

I2C 2 Data

PCM In Input
Audio Input

Communication
3

PCM Input

PCM Clock

PCM Sync

PCM Out Output
Audio Output

Communication
3

PCM Output

PCM Clock

PCM Sync

I2S In Input
Audio Input

Communication
3

I2S DI, Data Input

I2S WS, Word Select

I2S Clock

I2S Out Output
Audio Output

Communication
3

I2S DO, Data Output

I2S WS, Word Select

I2S Clock

9 Flow control connections for the peripheral UART (PUART) are not supported in hardware. Hardware flow control is only supported on the HCI UART
connection. To enable flow control on the PUART interface, the flow control logic must be developed in the WICED application.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 75

Function
Input or
Output

Function Type
GPIOs

Required
Function Connection Description

PDM Input Microphone 1 ~ 2
PDM Input Channel 1

PDM Input Channel 2

PWM Output Pulse Width Modulator 1 ~ 6

PWM Channel 0

PWM Channel 1

PWM Channel 2

PWM Channel 3

PWM Channel 4

PWM Channel 5

ACLK Output Auxiliary Clock 1 ~ 2
Auxiliary Clock 0 (ACLK0)

Auxiliary Clock 1 (ACLK1)

HIDOFF Output HID-OFF Indicator 1 HID-OFF Indicator to host

B.3.2 Host Recommended PCB Layout

To assist in the host PCB layout design for CYBT-423028-02, Cypress provides three host PCB landing pattern
reference drawings in Figure 52, Figure 53, and in Figure 54 and Table 13. Figure 52 provides a dimensioned view of
the host PCB layout. Figure 53 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 54 and Table 13 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

Figure 52. Host Board Required PCB Layout Pattern (Dimensioned View)

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum
recommended pad length on the host PCB is 1.11 mm.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 76

Figure 53. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 77

Figure 54. Host Board Required PCB Layout Pattern
To Pad Center Relative to Origin

Table 13. Location to Pad Center from Origin
(dimensions in mm and mils)

Solder Pad
(Center of Pad)

Location (X,Y) from
Origin (mm)

Location (X,Y) from
Origin (mils)

1 (0.31, 2.79) (12.20, 109.84)

2 (0.31, 3.71) (12.20, 146.06)

3 (0.31, 4.62) (12.20, 181.89)

4 (0.31, 5.54) (12.20, 218.11)

5 (0.31, 6.45) (12.20, 253.94)

6 (0.31, 7.37) (12.20, 290.16)

7 (0.31, 8.28) (12.20, 325.98)

8 (0.31, 9.19) (12.20, 361.81)

9 (0.31, 10.11) (12.20, 398.03)

10 (1.39, 10.69) (54.72, 420.87)

11 (2.30, 10.69) (90.55, 420.87)

12 (3.21, 10.69) (126.38, 420.87)

13 (4.13, 10.69) (162.60, 420.87)

14 (5.04, 10.69) (198.42, 420.87)

15 (5.96, 10.69) (234.65, 420.87)

16 (6.87, 10.69) (270.47, 420.87)

17 (7.79, 10.69) (306.69, 420.87)

18 (8.70, 10.69) (342.52, 420.87)

19 (9.61, 10.69) (378.35, 420.87)

20 (10.69, 10.11) (420.87, 398.03)

21 (10.69, 9.19) (420.87, 361.81)

22 (10.69, 8.28) (420.87, 325.98)

23 (10.69, 7.37) (420.87, 290.16)

24 (10.69, 6.45) (420.87, 253.94)

25 (10.69, 5.54) (420.87, 218.11)

26 (10.69, 4.62) (420.87, 181.89)

27 (10.69, 3.71) (420.87, 146.06)

28 (10.69, 2.79) (420.87, 109.84)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 78

Figure 55 details additional host board keep out area to achieve optimal RF performance with the CYBT-423028-02
module.

Figure 55. Host Board Additional Keep Out Area for Optimal RF Performance

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 79

B.4 CYBT-413034-02

CYBT-413034-02 is a CYW20719-based Bluetooth 5.0 dual-mode (BR/EDR + BLE) module containing 1 MB of on-
chip flash and supporting new BLE features such as 2 Mbps data rate, and SIG Mesh. Figure 56 shows a physical
picture of the CYBT-413034-02 EZ-BT WICED Module.

Figure 56. CYBT-413034-02 Module Top View

CYBT-413034-02 is ideal for applications which require a large memory footprint, increased processing power, and
low-power Bluetooth communication. CYBT-413034-02 supports all of the same functionality that CYBT-423028-02
supports but is designed in a more economical module footprint to save cost for customers that do not require the
smallest footprint. CYBT-413034-02 provides up to 17 GPIOs.

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBT-413034-02 datasheet.

B.4.1 Pinout and Functional i ty

The CYBLE-413034-02 module is designed to mount as a component on an end-product PCB. CYBT-413034-02 is
designed with castellated GPIO pads for ease of manual soldering and prototyping.

Only a portion of the available connections of the CYW20719 WICED Bluetooth silicon device are exposed on the
CYBT-413034-02 module in order to minimize the module footprint size. The CYBT-413034-02 module contains 30
connections on the castellated pads on the periphery of the module. Figure 57 details the solder pad connections
available on the CYBT-413034-02 module.

12.0 mm

Shield

Trace Antenna

16.3 mm

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cybt-413034-02-ez-bt-wiced-module

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 80

Figure 57. CYBT-413034-02 Module Bottom View (Seen from Bottom)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 81

A list of the available I/Os and supported functionality for each I/O of CYBT-413034-02 is shown in Table 14.

Table 14. CYBT-413034-02 Module Available Connections and Functionality

Solder
Pad

Pad Name
Silicon Port Pin

Name

Functionality

XTALI/O ADC GPIO SuperMux
10

 Capable

1 GND GND Ground

2 VDD VDDIO Power Supply Input (1.76V ~ 3.63V)

3 XRES RST_N External Reset (Active LOW)

4 P25 P25 Yes Yes

5 P33 P33 IN6 Yes Yes

6 P26 P26 Yes Yes

7 P38 P38 IN1 Yes Yes

8 P1 P1 IN28 Yes Yes

9 P0 P0 IN29 Yes Yes

10 P29 P29 IN10 Yes Yes

11 GND GND Ground

12 P13/P23/P28
P13
P23
P28

IN22 (P13)
IN12 (P23)
IN11 (P28)

Yes
(P13/P23/P28)

Yes

13 P17 P17 IN18 Yes Yes

14 P7 P7 Yes

15 P4 P4 Yes

16 P2 P2 Yes Yes

17 P16 P16 IN19 Yes

18 XTALI_32K/P1511
XTALI_32K

P15

External
Oscillator Input

(32 kHz)
IN20 (P15) Yes (P15) Yes (P15)

19 P6 P6 Yes Yes

20 XTALO_32K XTALO_32K
External
Oscillator

Output (32 kHz)

21 P10/P11
P10
P11

IN25 (P10)
IN14 (P11)

Yes
(P10/P11)

Yes

22 P34/P35/P36
P34
P35
P36

IN5 (P34)
IN4 (P35)
IN3 (P36)

Yes
(P34/P35/P36)

Yes

23 UART_CTS BT_UART_CTS HCI UART Clear to Send Input

24 UART_RTS BT_UART_RTS_N HCI UART Request to Send Output

25 UART_TXD BT_UART_TXD HCI UART Transmit Data

26 UART_RXD BT_UART_RXD HCI UART Receive Data

27 HOST_WAKE BT_HOST_WAKE
A signal from the CYBT-413034-02 module to the host indicating that the Bluetooth

device requires attention.

28 GND GND Ground

29 GND GND Ground

30 GND GND Ground

Table 12 on Page 74 details the available functions that can be configured on SuperMux capable GPIOs shown above.

10 CYBT-423028-02 can configure GPIO connections to any Input/Output function described in Table 12.

11 P15 should not be driven HIGH externally while the part is held in reset (it can be floating or driven LOW). Failure to do so may cause some current to
flow through P15 until the device comes out of reset.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 82

B.4.2 Host Recommended PCB Layout

To assist in the host PCB layout design for CYBT-413034-02, Cypress provides three host PCB landing pattern
reference drawings in Figure 58, Figure 59, and in Figure 60 and Table 15. Figure 58 provides a dimensioned view of
the host PCB layout. Figure 59 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 60 and Table 15 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

Figure 58. Host Board Required PCB Layout Pattern (Dimensioned View)

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum
recommended pad length on the host PCB is 1.11 mm.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 83

Figure 59. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 84

Figure 60. Host Board Required PCB Layout Pattern
 To Pad Center Relative to Origin

Table 15. Location to Pad Center from Origin
(dimensions in mm and mils)

Solder Pad
(Center of Pad)

Location (X,Y) from
Origin (mm)

Location (X,Y) from
Origin (mils)

1 (0.31, 5.26) (12.20, 207.09)

2 (0.31, 6.27) (12.20, 246.85)

3 (0.31, 7.29) (12.20, 287.01)

4 (0.31, 8.31) (12.20, 327.16)

5 (0.31, 9.32) (12.20, 366.93)

6 (0.31, 10.34) (12.20, 407.09)

7 (0.31, 11.35) (12.20, 446.85)

8 (0.31, 12.37) (12.20, 487.01)

9 (0.31, 13.39) (12.20, 527.16)

10 (0.31, 14.40) (12.20, 566.93)

11 (1.44, 15.99) (56.69, 629.53)

12 (2.46, 15.99) (96.85, 629.53)

13 (3.47, 15.99) (136.61, 629.53)

14 (4.49, 15.99) (176.77, 629.53)

15 (5.51, 15.99) (216.93, 629.53)

16 (6.52, 15.99) (256.69, 629.53)

17 (7.54, 15.99) (296.85, 629.53)

18 (8.55, 15.99) (336.61, 629.53)

19 (9.57, 15.99) (376.77, 629.53)

20 (10.59, 15.99) (416.93, 629.53)

21 (11.69, 14.40) (460.24, 566.93)

22 (11.69, 13.39) (460.24, 527.16)

23 (11.69, 12.37) (460.24, 487.01)

24 (11.69, 11.35) (460.24, 446.85)

25 (11.69, 10.34) (460.24, 407.09)

26 (11.69, 9.32) (460.24, 366.93)

27 (11.69, 8.31) (460.24, 327.16)

28 (11.69, 7.29) (460.24, 287.01)

29 (11.69, 6.27) (460.24, 246.85)

30 (11.69, 5.26) (460.24, 207.09)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 85

Figure 61 details additional host board keep out area to achieve optimal RF performance with the CYBT-413034-02
module.

Figure 61. Host Board Additional Keep Out Area for Optimal RF Performance

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 86

B.5 CYBT-483039-02

CYBT-483039-02 is a CYW20719-based Bluetooth 5.0 dual-mode (BR/EDR + BLE) module containing 1 MB of on-
chip flash, supports new BLE features such as 2 Mbps data rate and SIG Mesh, and boasts the longest range in the
Cypress Bluetooth portfolio with over 1 km of connection-based range. Figure 62 shows a physical picture of the CYBT-
483039-02 EZ-BT WICED Module.

Figure 62. CYBT-483039-02 Module Top View

CYBT-483039-02 is a specialized module, ideal for customers desiring maximum connection range for Bluetooth Low
Energy solutions. CYBT-483029-02 can be used to communicate over long distances (>1 km), or to provide adequate
range in challenging environments. If maximizing the range of your application is not a priority in your design, then it is
recommended to look at the CYBT-423028-02 or CYBT-413034-02 modules instead. CYBT-483039-02 provides up
to 15 GPIOs.

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBT-483039-02 datasheet.

12.0 mm

Shield

Chip Antenna

16.3 mm

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cybt-483039-02-ez-bt-xr-wiced-module

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 87

B.5.1 Pinout and Functional i ty

CYBLE-483039-02 module is designed to mount as a component on an end-product PCB. CYBT-483039-02 is
designed with castellated GPIO pads for ease of manual soldering and prototyping.

Only a portion of the available connections of the CYW20719 WICED Bluetooth silicon device are exposed on the
CYBT-483039-02 module in order to minimize the module footprint size. The CYBT-483039-02 module contains 34
connections on the castellated pads on the periphery of the module. Figure 63 details the solder pad connections
available on the CYBT-483039-02 module.

Figure 63. CYBT-483039-02 Module Bottom View (Seen from Bottom)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 88

A list of the available I/Os and supported functionality for each I/O of CYBT-483039-02 is shown in Table 16.

Table 16. CYBT-483039-02 Module Available Connections and Functionality

Solder
Pad

Pad Name
Silicon Port Pin

Name

Functionality

XTALI/O ADC GPIO SuperMux
12

 Capable

1 VDD VDDIO Power Supply Input (2.0V ~ 3.63V)

2 GND GND Ground

3 XRES RST_N External Reset (Active LOW)

4 P33 P33 IN6 Yes Yes

5 P25 P25 Yes Yes

6 P26 P26 Yes Yes

7 P38 P38 IN1 Yes Yes

8 P34/P35/P36
P34
P35
P36

IN5 (P34)
IN4 (P35)
IN3 (P36)

Yes
(P34/P35/P36)

Yes

9 P1 P1 IN28 Yes Yes

10 P0 P0 IN29 Yes Yes

11 P29 P29 IN10 Yes Yes

12 P13/P23/P28
P13
P23
P28

IN22 (P13)
IN12 (P23)
IN11 (P28)

Yes
(P13/P23/P28)

Yes

13 GND GND Ground

14 P10/P11
P10
P11

IN25 (P10)
IN14 (P11)

Yes
(P10/P11)

Yes

15 P17 P17 IN18 Yes Yes

16 P7 P7 Yes

17 P6 P6 Yes Yes

18 P4 P4 Yes

19 XTALO_32K XTALO_32K
External Oscillator
Output (32 kHz)

20 XTALI_32K/P1513
XTALI_32K

P15
External Oscillator

Input (32 kHz)
IN20 (P15) Yes (P15) Yes (P15)

21 UART_CTS BT_UART_CTS HCI UART Clear to Send Input

22 UART_RTS BT_UART_RTS_N HCI UART Request to Send Output

23 UART_TXD BT_UART_TXD HCI UART Transmit Data

24 UART_RXD BT_UART_RXD HCI UART Receive Data

25 HOST_WAKE BT_HOST_WAKE
A signal from the CYBT-413034-02 module to the host indicating that the Bluetooth

device requires attention.

26 GND GND Ground

27 GND GND Ground

12 CYBT-423028-02 can configure GPIO connections to any Input/Output function described in Table 12.

13 P15 should not be driven HIGH externally while the part is held in reset (it can be floating or driven LOW). Failure to do so may cause some current to
flow through P15 until the device comes out of reset.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 89

Solder
Pad

Pad Name
Silicon Port Pin

Name

Functionality

XTALI/O ADC GPIO SuperMux
12

 Capable

28 GND GND Ground

29 GND GND Ground

30 GND GND Ground

31 GND GND Ground

32 VDDPA N/A PA/LNA Power Supply Voltage (2.0 ~ 3.6V)

33 GND GND Ground

34 GND GND Ground

Table 12 on Page 74 details the available functions that can be configured on SuperMux capable GPIOs shown above.

B.5.2 Host Recommended PCB Layout

To assist in the host PCB layout design for CYBT-483039-02, Cypress provides three host PCB landing pattern
reference drawings in Figure 64, Figure 65, and in Figure 66 and Table 17. Figure 64 provides a dimensioned view of
the host PCB layout. Figure 65 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 66 and Table 17 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

Figure 64. Host Board Required PCB Layout Pattern (Dimensioned View)

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum
recommended pad length on the host PCB is 1.27 mm.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 90

Figure 65. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 91

Figure 66. Host Board Required PCB Layout Pattern
 To Pad Center Relative to Origin

Table 17. Location to Pad Center from Origin
(dimensions in mm and mils)

Solder Pad
(Center of Pad)

Location (X,Y) from
Origin (mm)

Location (X,Y) from
Origin (mils)

1 (0.38, 5.92) (14.96, 233.07)

2 (0.38, 6.93) (14.96, 272.83)

3 (0.38, 7.95) (14.96, 312.99)

4 (0.38, 8.97) (14.96, 353.15)

5 (0.38, 9.98) (14.96, 392.91)

6 (0.38, 11.00) (14.96, 433.07)

7 (0.38, 12.01) (14.96, 472.83)

8 (0.38, 13.03) (14.96, 512.99)

9 (0.38, 14.05) (14.96, 553.15)

10 (0.38, 15.06) (14.96, 592.91)

11 (0.38, 16.08) (14.96, 633.07)

12 (0.38, 17.09) (14.96, 672.83)

13 (1.80, 18.21) (70.87, 716.93)

14 (2.82, 18.21) (111.02, 716.93)

15 (3.84, 18.21) (151.18, 716.93)

16 (4.85, 18.21) (190.94, 716.93)

17 (5.87, 18.21) (231.10, 716.93)

18 (6.88, 18.21) (270.87, 716.93)

19 (7.90, 18.21) (311.02, 716.93)

20 (8.92, 18.21) (351.18, 716.93)

21 (9.93, 18.21) (390.94, 716.93)

22 (10.95, 18.21) (431.10, 716.93)

23 (12.37, 17.09) (487.01, 672.83)

24 (12.37, 16.08) (487.01, 633.07)

25 (12.37, 15.06) (487.01, 592.91)

26 (12.37, 14.05) (487.01, 553.15)

27 (12.37, 13.03) (487.01, 512.99)

28 (12.37, 12.01) (487.01, 472.83)

29 (12.37, 11.00) (487.01, 433.07)

30 (12.37, 9.98) (487.01, 392.91)

31 (12.37, 8.97) (487.01, 353.15)

32 (12.37, 7.95) (487.01, 312.99)

33 (12.37, 6.93) (487.01, 272.83)

34 (12.37, 5.92) (487.01, 233.07)

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 92

Figure 67 details additional host board keep out area to achieve optimal RF performance with the CYBT-483039-02
module.

Figure 67. Host Board Additional Keep Out Area for Optimal RF Performance

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 93

Appendix C. EZ-BT WICED Evaluation Boards

Appendix C provides detailed information on each EZ-BT WICED Evaluation Boards. The information contained for
each subsection below includes the following:

▪ Physical image for each EZ-BT WICED Evaluation marketing part number

▪ What’s included on the specific EZ-BT WICED Evaluation board

To jump to your specific EZ-BT WICED Evaluation board, click the marketing part number in the below list:

▪ CYBT-343026-EVAL

▪ CYBT-353027-EVAL

▪ CYBT-423028-EVAL

▪ CYBT-413034-EVAL

▪ CYBT-483039-EVAL

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 94

C.1 CYBT-343026-EVAL

CYBT-343026-EVAL is the evaluation board for the CYBT-343026-01 WICED module. Figure 68 shows the CYBT-
343026-EVAL board and calls out the main components and connections available on the board.

Figure 68. CYBT-343026-EVAL Evaluation Board

Note: Connections not called out on J3, J4, J6, and J7 Arduino-compatible headers are NC (No Connect), where no
physical connection is present between the CYBT-343026-01 EZ-BT WICED Module and associated headers.

CYBT-343026-EVAL includes the following elements:

C.1.1 Act ive Devices

▪ EZ-BT WICED Module: The EZ-BT WICED Module is mounted to the evaluation board as shown in Figure 68.

▪ USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate USB
communication to UART communication (and vice-versa). For example, when HCI UART communication is
configured to “On” on SW4, the USB traffic from the Host PC is connected to the HCI UART connections of the
CYBT-343026-01 module.

C.1.2 Connectors and Headers

▪ USB receptacle: The USB connection on the CYBT-343026-EVAL board provides power to the evaluation board
and also provides communication to the board via USB, which is translated to UART communication and routed
to either the HCI UART or PUART connection on the EZ-BT WICED Module depending on the configuration of
SW4 and SW5 on CYBT-343026-EVAL.

▪ Power Supply Option Header (J8): J8 allows for configuration of three different power supplies to the EZ-BT WICED
Module. All power is sourced from the USB connection, as mentioned above, but the power supply directly input
to the CYBT-343026-01 module can be configured to either 2.3 V, 3.3 V, or 3.6 V using the provided three-pin
header. The power supply input is configured by shorting two neighboring header positions on J8 or leaving the
header open. Table 18 details the available power supply options and the associated header position connections
required.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 95

Table 18. J8 Header Power Supply Connection Options

J8 Jumper Configuration VDD Voltage Level

Short 1 & 2 3.6 V Supply

Short 2 & 3 3.3 V Supply

No Jumper (all headers open) 2.3 V Supply

All Other Configurations Not Allowed

▪ Arduino-compatible base headers – headers J3/J4/J6/J7: The CYBT-343026-EVAL provides Arduino-compatible
base headers that can be used for Arduino shield connections. The associated signals that are routed out to these
headers are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

▪ HCI UART direct connection header (J1): The J1 header provides all HCI UART communication lines to the user.
This allows for connection to the EZ-BT WICED Module without having to connect through USB. This can be used
to connect a host controller evaluation board directly to the EZ-BT WICED Module HCI UART connection. HCI
UART connections are not brought out to the Arduino-compatible headers. The J1 direct HCI UART connection
bypasses the SW4 (HCI UART to USB-to-UART bridge to Host PC) configuration. It is recommended that SW4
elements 1 ~ 4 are placed in the OFF position if the J1 direct HCI UART connection is used.

▪ Power consumption measurement header (J2): J2 is provided to allow for easy power consumption measurement
reading with a multimeter or current measurement probe. Refer to KBA223800 for information related to low-
power implementations for the CYBT-343026-01 module as well as power consumption measurement methods
using the J2 header.

▪ User Element Disconnection Headers (J9 and J10): J9 (USER SW3) and J10 (USER D1 - LED) are provided to
allow for disconnection of these elements from the CYBT-343026-01 module. In both cases, the GPIO that is
routed to these USER elements is also routed to the Arduino-compatible headers. Disconnecting the elements
(SW3 and/or D1) may be required if you plan to use either of these GPIOs through the Arduino-compatible headers.

C.1.3 UART Configurat ion Switches and LEDs

▪ SW4 (HCI UART configuration switch): SW4 controls the connection of USB data traffic to the HCI UART
connections of the module. SW4 is a four-element switch (each element corresponding to the 4-wire UART signals
– TX, RX, CTS, RTS); used to connect HCI UART signals on CYBT-343026-EVAL to the host PC USB interface.
To connect HCI UART signals from CYBT-343026-01 to the host PC, simply put each element of SW4 in the “On”
position. To disconnect HCI UART communication from the CYBT-343026-01 module and the host PC, simply set
each of the SW4 elements to the Off position. There is no High-Z configuration available on the SW4 elements;
only On or Off positions. Flow control is supported in hardware on the HCI UART connection.

▪ SW5 (Peripheral UART (PUART) configuration switch): SW5 controls the connection of the PUART connections
of the CYBT-343026-01 module to the host PC connection (via the USB/UART Bridge). SW5 is a four-element
switch; to connect PUART signals on CYBT-343026-EVAL to the host PC, simply put each element of SW4 in the
“On” position. To disconnect PUART communication from the CYBT-343026-02 module and the host PC, simply
set each of the SW5 elements to the Off position. There is no High-Z configuration available on the SW5 elements;
only On or Off positions.

Note: PUART on the CYBT-343026-01 module does not support flow control in HW. Flow control logic is required
to be developed in the WICED SDK if this is required. In any case, if flow control is developed and enabled, only
the GPIOs that are noted as supporting RTS and/or CTS can be used for this functionality.

Note: PUART connections from the CYBT-343026-01 module to Arduino headers are not gated by SW5. These
connections are always present.

Notes on HCI UART and PUART configurations:

▪ It is acceptable to have SW4 and SW5 elements all set to the “On” position at the same time (i.e., HCI UART and
PUART both connected to the CYBT-343026-01 module). PUART and HCI UART connections are handled by
two different hardware UART blocks, and the connection to the CYBT-343026-01 module from the USB-to-UART
bridge enumerates as two different COM ports on the host PC (not a shared connection/bus).

▪ Both HCI UART and PUART configurations can be used for UART communication within your application.

▪ HCI UART (Positions 1 ~ 4 of SW4 = ON) is the UART configuration generally used for interfacing to the WICED
Studio SDK, with the goal of downloading a compiled image to the EZ-BT WICED Module. The HCI UART
connection can also be used for general UART communication in Application mode (executing a downloaded

http://www.cypress.com/
https://community.cypress.com/docs/DOC-15243?sr=search&searchId=882199da-4236-444a-a73d-d7373bbec072&searchIndex=0

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 96

image in SFLASH). If 4-wire UART with flow control is required, it is recommended to use HCI UART as the UART
connection for your application.

▪ PUART (Positions 1 ~ 4 of SW5 = ON) is the configuration to use when you need to have the PUART connected
to the host PC. This PUART interface to the host PC can be used for terminal communication (print statements).

Note: PUART communication signals routed to Arduino headers are not gated by SW5 and can be used to
communicate with any peripheral device over UART.

Note: The PUART interface cannot be used to download a new binary image to the CYBT-343026-01 module.

C.1.4 Addit ional Switches and LEDs

▪ SW1 (RESET switch): SW1 is a tactile switch that is connected directly to the XRES connection of the CYBT-
343026-01 module. Activating this switch will reset the EZ-BT WICED Module. This switch is also used in the
process of (re-)programming the CYBT-343026-01 module on the evaluation board.

▪ SW2 (RECOVER switch): SW2 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW1 (RESET). Recovery mode is used prior to programming the module with a new binary
image.

▪ SW3 (USER switch): SW3 is provided as an element that the user can configure as required. The SW3 element
is connected to P0/P34 on the CYBT-343026-01 module (solder pad 1). Header J9 is provided on the CYBT-
343026-EVAL board to disconnect P0/P34 from the USER switch to allow this connection to be used on the Arduino
Headers without SW3 connected.

▪ D1 USER LED is provided for user-configured behavior as required. The D1 LED is connected to the module
P2/P28/P37 connection (solder pad 5). Header J10 is provided on the CYBT-343026-EVAL board to disconnect
P2/P28/P37 from the USER LED to allow this connection to be used on the Arduino Headers without SW3
connected.

▪ D2 and D3 LEDs are provided to display programming or USB activity while in progress.

▪ D7 LED is provided to show that power is provided from the host PC.

C.1.5 Programming or Reprogramming the CYBT -343026-EVAL Board

Refer to Section 7.5.3 for general information on how to program or reprogram EZ-BT WICED Modules. You may also
refer to KBA223428 for online information.

To program an EZ-BT WICED module in your own manufacturing line, you must ensure that both the Recover and
Reset connections on the EZ-BT module are exposed in order to put the module into programming/recovery mode.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14990

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 97

C.2 CYBT-353027-EVAL

CYBT-353027-EVAL is the evaluation board for the CYBT-353027-02 WICED module. Figure 69 shows the CYBT-
353027-EVAL board and calls out the main components and connections available on the board.

Figure 69. CYBT-353027-EVAL Evaluation Board

Note: Connections not called out on J3, J4, J6, and J7 Arduino compatible headers are NC (No Connect), where no
physical connection is present between the CYBT-353027-02 EZ-BT WICED Module and the associated headers.

The CYBT-353027-EVAL includes the following elements:

C.2.1 Act ive Devices

▪ EZ-BT WICED Module: The EZ-BT WICED Module is mounted to the evaluation board as shown in Figure 69.

▪ USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate USB
communication to UART communication (and vice-versa). For example, when HCI UART communication is
configured to “On” on SW4, the USB traffic from the Host PC is connected to the HCI UART connections of the
CYBT-353027-02 module.

C.2.2 Connectors and Headers

▪ USB receptacle: The USB connection on the CYBT-353027-EVAL board provides power to the evaluation board
and also provides communication to the board via USB, which is translated to UART communication and routed
to either the HCI UART or PUART connection on the EZ-BT WICED Module depending on the configuration of
SW4 and SW5 on CYBT-353027-EVAL.

▪ Power Supply Option Header (J8): J8 allows for configuration of three different power supplies to the EZ-BT WICED
Module. All power is sourced from the USB connection, as mentioned above, but the power supply directly input
to the CYBT-353027-02 module can be configured to either 2.3 V, 3.3 V, or 3.6 V using the provided three-pin
header. The power supply input is configured by shorting two neighboring header positions on J8 or leaving the

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 98

header open. Table 19 details the available power supply options and the associated header position connections
required.

Table 19. J8 Header Power Supply Connection Options

J8 Jumper Configuration VDD Voltage Level

Short 1 & 2 3.6 V Supply

Short 2 & 3 3.3 V Supply

No Jumper (all headers open) 2.3 V Supply

All Other Configurations Not Allowed

▪ Arduino-compatible base headers – headers J3/J4/J6/J7: CYBT-353027-EVAL provides Arduino-compatible base
headers that can be used for Arduino shield connections. Associated signals that are routed out to these headers
are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

▪ HCI UART direct connection header (J1): The J1 header provides all HCI UART communication lines to the user.
This allows for connection to the EZ-BT WICED Module without having to connect through USB. This can be used
to connect a host controller evaluation board directly to the EZ-BT WICED Module HCI UART connection. HCI
UART connections are not brought out to the Arduino-compatible headers. The J1 direct HCI UART connection
bypasses the SW4 (HCI UART to USB-to-UART bridge to Host PC) configuration. It is recommended that SW4
elements 1 ~ 4 are placed in the OFF position if the J1 direct HCI UART connection is used.

▪ Power consumption measurement header (J2): J2 is provided to allow for easy power consumption measurement
reading with a multimeter or current measurement probe. Refer to KBA223800 for information related to low-
power implementations for the CYBT-353027-02 module as well as power consumption measurement methods
using the J2 header.

▪ User Element Disconnection Headers (J9 and J10): J9 (USER SW3) and J10 (USER D1 - LED) are provided to
allow for disconnection of these elements from the CYBT-353027-02 module. In both cases, the GPIO that is
routed to these USER elements are also routed to the Arduino-compatible headers. Disconnecting the elements
(SW3 and/or D1) may be required if you plan to use either of these GPIOs through the Arduino-compatible headers.

C.2.3 Switches and LEDs

▪ SW4 (HCI UART configuration switch): SW4 controls the connection of USB data traffic to the HCI UART
connections of the module. SW4 is a four-element switch (each element corresponding to the 4-wire UART signals
– TX, RX, CTS, RTS); used to connect the HCI UART signals on CYBT-353027-EVAL to the host PC USB
interface. To connect HCI UART signals from CYBT-353027-02 to the host PC, simply put each element of SW4
in the “On” position. To disconnect HCI UART communication from the CYBT-353027-02 module and the host PC,
simply set each of the SW4 elements to the Off position. There is no High-Z configuration available on the SW4
elements; only On or Off positions. Flow control is supported in hardware on the HCI UART connection.

▪ SW5 (Peripheral UART (PUART) configuration switch): SW5 controls the connection of the PUART signals of the
CYBT-353027-02 module to the host PC connection (via the USB/UART Bridge). SW5 is a four-element switch; to
connect PUART signals on CYBT-353027-EVAL to the host PC, simply put each element of SW4 in the “On”
position. To disconnect PUART communication from the CYBT-353027-02 module and the host PC, simply set
each of the SW5 elements to the Off position. There is no High-Z configuration available on the SW5 elements;
only On or Off positions. PUART of the CYBT-353027-02 module supports only 2-wire UART interface. Flow
control is not supported on PUART of the CYBT-353027-02 module.

Note: PUART connections from the CYBT-353027-02 module to the Arduino headers are not gated by SW5.
These connections are always present.

Notes on HCI UART and PUART configurations:

▪ It is acceptable to have SW4 and SW5 elements all set to the “On” position at the same time (i.e., HCI UART and
PUART both connected to the CYBT-353027-02 module). The PUART and HCI UART connections are handled
by two different hardware UART blocks, and the connection to the CYBT-353027-02 module from the USB-to-
UART bridge enumerates as two different COM ports on the host PC (not a shared connection/bus).

▪ Both HCI UART and PUART configurations can be used for UART communication within your application.

▪ HCI UART (Positions 1 ~ 4 of SW4 = ON) is the UART configuration generally used for interfacing to the WICED
Studio SDK, with the goal of downloading a compiled image to the EZ-BT WICED Module. The HCI UART
connection can also be used for general UART communication in Application mode (executing a downloaded

http://www.cypress.com/
https://community.cypress.com/docs/DOC-15243?sr=search&searchId=882199da-4236-444a-a73d-d7373bbec072&searchIndex=0

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 99

image in SFLASH). If 4-wire UART with flow control is required, it is recommended to use HCI UART as the UART
connection for your application.

▪ PUART (Positions 1 ~ 4 of SW5 = ON) is the configuration to use when desiring to have the PUART connected to
the host PC. This PUART interface to the host PC can be used for terminal communication (print statements).

Note: PUART communication signals routed to Arduino headers are not gated by SW5 and can be used to
communicate with any peripheral device over UART.

Note: The PUART interface cannot be used to download a new binary image to the CYBT-353027-02 module.

C.2.4 Addit ional Switches and LEDs

▪ SW1 (RESET switch): SW1 is a tactile switch that is connected directly to the XRES connection of the CYBT-
353027-02 module. Activating this switch will reset the EZ-BT WICED Module. This switch is also used in the
process of (re-)programming the CYBT-353027-02 module on the evaluation board.

▪ SW2 (RECOVER switch): SW2 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW1 (RESET). Recovery mode is used prior to programming the module with a new binary
image.

▪ SW3 (USER switch): SW3 is provided as an element that the user can configure as required. The SW3 element
is connected to GPIO_6 on the CYBT-353027-02 module (solder pad 18). Header J9 is provided on the CYBT-
353027-EVAL board to disconnect GPIO_6 from the USER switch to allow this connection to be used on the
Arduino Headers without SW3 connected.

▪ D1 USER LED is provided for user-configured behavior as required. The D1 LED is connected to the module P11
connection (solder pad 5). Header J10 is provided on the CYBT-353027-EVAL board to disconnect P11 from the
USER LED to allow this connection to be used on the Arduino Headers without D1 connected. Note that the CYBT-
353027-02 module does not support PWM hardware blocks, so functionality of the D1 LED is limited to driving the
LED using a GPIO signal (either on, off, or a firmware-based timer PWM representation).

▪ D2 and D3 LEDs are provided to display programming or USB activity while in progress.

▪ D7 LED is provided to show that power is provided from the host PC.

C.2.5 Programming or Reprogramming the CYBT -353027-EVAL Board

Refer to Section 7.5.3 for general information on how to program or reprogram EZ-BT WICED Modules. You may also
refer to KBA223428 for online information.

To program an EZ-BT WICED module in your own manufacturing line, you must ensure that both the Recover and
Reset connections on the EZ-BT module are exposed in order to put the module into programming/recovery mode.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14990

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 100

C.3 CYBT-423028-EVAL

CYBT-423028-EVAL is the evaluation board for the CYBT-423028-02 WICED module. Figure 70 shows the CYBT-
423028-EVAL board and calls out the main components and connections available on the board.

Figure 70. CYBT-423028-EVAL Evaluation Board

Note: Connections not called out on J3, J4, J6, and J7 Arduino compatible headers are NC (No Connect), where no
physical connection is present between the CYBT-423028-02 EZ-BT WICED Module and the associated headers.

The CYBT-423028-EVAL includes the following elements:

C.3.1 Act ive Devices

▪ EZ-BT WICED Module: The EZ-BT WICED Module is mounted to the evaluation board as shown in Figure 70.

▪ USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate USB
communication to UART communication (and vice-versa). For example, when HCI UART communication is
configured to “On” on SW4, the USB traffic from the host PC is connected to the HCI UART connections of the
CYBT-423028-02 module.

C.3.2 Connectors and Headers

▪ USB receptacle: The USB connection on the CYBT-423028-EVAL board provides power to the evaluation board
and also provides communication to the board via USB, which is translated to UART communication and routed
to either the HCI UART or PUART connection on the EZ-BT WICED Module depending on the configuration of
SW4 and SW5 on CYBT-423028-EVAL.

▪ Power Supply Option Header (J8): J8 allows for configuration of two different power supplies to the EZ-BT WICED
Module. All power is sourced from the USB connection, as mentioned above, but the power supply directly inputted
to the CYBT-423028-02 module can be configured to either 1.8 V or 3.3 V using the provided three-pin header.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 101

The power supply input is configured by shorting two neighboring header positions on J8. Table 20 details the
available power supply options and the associated header position connections required.

Table 20. J8 Header Power Supply Connection Options

J8 Jumper Configuration VDD Voltage Level

Short 1 & 2 3.3 V Supply

Short 2 & 3 1.8 V Supply

All Other Configurations Not Allowed

▪ Arduino-compatible base headers – headers J3/J4/J6/J7: CYBT-423028-EVAL provides Arduino-compatible base
headers that can be used for Arduino shield connections. Associated signals that are routed out to these headers
are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

▪ HCI UART direct connection header (J1): The J1 header provides all HCI UART communication lines to the user.
This allows for connection to the EZ-BT WICED Module without having to connect through USB. This can be used
to connect a host controller evaluation board directly to the EZ-BT WICED Module HCI UART connection. HCI
UART connections are not brought out to the Arduino-compatible headers. The J1 direct HCI UART connection
bypasses the SW4 (HCI UART to USB-to-UART bridge to Host PC) configuration. It is recommended that SW4
elements 1 ~ 4 are placed in the OFF position if the J1 direct HCI UART connection is used.

▪ Power consumption measurement header (J2): J2 is provided to allow for easy power consumption measurement
reading with a multimeter or current measurement probe.

▪ User Element Disconnection Headers (J9 and J10): J9 (USER SW3) and J10 (USER D1 - LED) are provided to
allow for disconnection of these elements from the CYBT-423028-02 module. In both cases, the GPIO that is
routed to these USER elements is also routed to the Arduino-compatible headers. Disconnecting the elements
(SW3 and/or D1) may be required if you plan to use either of these GPIOs through Arduino-compatible headers.

C.3.3 Switches and LEDs

▪ SW4 (HCI UART configuration switch): SW4 controls the connection of the USB data traffic to the HCI UART
connections of the module. SW4 is a four-element switch (each element corresponding to the 4-wire UART signals
– TX, RX, CTS, RTS); used to connect the HCI UART signals on CYBT-423028-EVAL to the host PC USB
interface. To connect HCI UART signals from CYBT-423028-02 to the host PC, simply put each element of SW4
in the “On” position. To disconnect HCI UART communication from the CYBT-423028-02 module and the host PC,
simply set each of the SW4 elements to the Off position. There is no High-Z configuration available on the SW4
elements; only On or Off positions. Flow control is supported in hardware on the HCI UART connection.

▪ SW5 (Peripheral UART (PUART) configuration switch): SW5 controls the connection of the PUART signals of the
CYBT-423028-02 module to the host PC connection (via the USB/UART Bridge). SW5 is a four-element switch; to
connect PUART signals on CYBT-423028-EVAL to the host PC, simply put each element of SW4 in the “On”
position. To disconnect PUART communication from the CYBT-423028-02 module and the host PC, simply set
each of the SW5 elements to the Off position. There is no High-Z configuration available on the SW5 elements;
only On or Off positions.

Note: PUART on the CYBT-423028-02 module does not support flow control in hardware. Flow control logic is
required to be developed in the WICED SDK if this is required. In any case, if flow control is developed and enabled,
only the GPIOs that are noted as supporting RTS and/or CTS can be used for this functionality.

Note: PUART connections from the CYBT-423028-02 module to the Arduino headers are not gated by SW5.
These connections are always present.

Notes on HCI UART and PUART configurations:

▪ It is acceptable to have SW4 and SW5 elements all set to the “On” position at the same time (i.e., HCI UART and
PUART both connected to the CYBT-423028-02 module). PUART and HCI UART connections are handled by
two different hardware UART blocks, and the connection to the CYBT-423028-02 module from the USB-to-UART
bridge enumerates as two different COM ports on the host PC (not a shared connection/bus).

▪ Both HCI UART and PUART configurations can be used for UART communication within your application.

▪ HCI UART (Positions 1 ~ 4 of SW4 = ON) is the UART configuration generally used for interfacing to the WICED
Studio SDK, with the goal of downloading a compiled image to the EZ-BT WICED Module. The HCI UART
connection can also be used for general UART communication in Application mode (executing a downloaded

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 102

image from on-chip flash). If 4-wire UART with flow control is required, it is recommended to use HCI UART as the
UART connection for your application.

▪ PUART (Positions 1 ~ 4 of SW5 = ON) is the configuration to use when desiring to have the PUART connected to
the host PC. This PUART interface to the host PC can be used for terminal communication (print statements).

Note: PUART communication signals routed to the Arduino headers are not gated by SW5 and can be used to
communicate with any peripheral device over UART.

Note: The PUART interface cannot be used to download a new binary image to the CYBT-423028-02 module.

C.3.4 Addit ional Switches and LEDs

▪ SW1 (RESET switch): SW1 is a tactile switch that is connected directly to the XRES connection of the CYBT-
423028-02 module. Activating this switch will reset the EZ-BT WICED Module. This switch is also used in the
process of (re-)programming the CYBT-423028-02 module on the evaluation board.

▪ SW2 (RECOVER switch): SW2 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW1 (RESET). Recovery mode is used prior to programming the module with a new binary
image.

▪ SW3 (USER switch): SW3 is provided as an element that the user can configure as required. The SW3 element
is connected to P1 on the CYBT-423028-02 module (solder pad 17). Header J9 is provided on the CYBT-423028-
EVAL board to disconnect P1 from the USER switch to allow this connection to be used on the Arduino Headers
without SW3 connected.

▪ D1 USER LED is provided for user-configured behavior as required. The D1 LED is connected to the module P26
connection (solder pad 14). Header J10 is provided on the CYBT-423028-EVAL board to disconnect P26 from the
USER LED to allow this connection to be used on the Arduino Headers without D1 connected.

▪ D2 and D3 LEDs are provided to display programming or USB activity while in progress.

▪ D7 LED is provided to show that power is provided from the host PC.

C.3.5 Programming or Reprogramming the CYBT -423028-EVAL Board

Refer to Section 7.5.3 for general information on how to program or reprogram EZ-BT WICED Modules. You may also
refer to KBA223428 for online information.

To program an EZ-BT WICED module in your own manufacturing line, you must ensure that both the Recover and
Reset connections on the EZ-BT module are exposed in order to put the module into programming/recovery mode.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14990

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 103

C.4 CYBT-413034-EVAL

The CYBT-413034-EVAL is the evaluation board for the CYBT-413034-02 WICED module. Figure 71 shows the CYBT-
413034-EVAL board and calls out the main components and connections available on the board.

Figure 71. CYBT-413034-EVAL Evaluation Board

Note: Connections not called out on J3, J4, J6, and J7 Arduino compatible headers are NC (No Connect), where no
physical connection is present between the CYBT-413034-02 EZ-BT WICED Module and the associated headers.

CYBT-413034-EVAL includes the following elements:

C.4.1 Act ive Devices

▪ EZ-BT WICED Module: The EZ-BT WICED Module is mounted to the evaluation board as shown in Figure 71.

▪ USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate USB
communication to UART communication (and vice-versa). For example, when HCI UART communication is
configured to “On” on SW4, the USB traffic from the Host PC is connected to the HCI UART connections of the
CYBT-413034-02 module.

C.4.2 Connectors and Headers

▪ USB receptacle: The USB connection on the CYBT-413034-EVAL board provides power to the evaluation board
and also provides communication to the board via USB, which is translated to UART communication and routed
to either the HCI UART or PUART connection on the EZ-BT WICED Module depending on the configuration of
SW4 and SW5 on CYBT-413034-EVAL.

▪ Power Supply Option Header (J8): J8 allows for configuration of two different power supplies to the EZ-BT WICED
Module. All power is sourced from the USB connection, as mentioned above, but the power supply directly inputted
to the CYBT-413034-02 module can be configured to either 1.8 V or 3.3 V using the provided two-pin header. The
power supply input is configured by shorting the header positions or leaving them open on J8. Table 21 details the
available power supply options and the associated header position connections required.

Table 21. J8 Header Power Supply Connection Options

J8 Jumper Configuration VDD Voltage Level

Short 1 & 2 3.3 V Supply

Leave 1 & 2 Open 1.8 V Supply

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 104

▪ Arduino-compatible base headers – headers J3/J4/J6/J7: The CYBT-413034-EVAL provides Arduino-compatible
base headers that can be used for Arduino shield connections. The associated signals that are routed out to these
headers are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

▪ HCI UART direct connection header (J1): The J1 header provides all HCI UART communication lines to the user.
This allows for connection to the EZ-BT WICED Module without having to connect through USB. This can be used
to connect a host controller evaluation board directly to the EZ-BT WICED Module HCI UART connection. HCI
UART connections are not brought out to the Arduino-compatible headers. The J1 direct HCI UART connection
bypasses the SW4 (HCI UART to USB-to-UART bridge to Host PC) configuration. It is recommended that SW4
elements 1 ~ 4 are placed in the OFF position if the J1 direct HCI UART connection is used.

▪ Power consumption measurement header (J2): J2 is provided to allow for easy power consumption measurement
reading with a multimeter or current measurement probe.

▪ User Element Disconnection Headers (J9 and J10): J9 (USER SW3) and J10 (USER D1 - LED) are provided to
allow for disconnection of these elements from the CYBT-413034-02 module. In both cases, the GPIO that is
routed to these USER elements is also routed to the Arduino-compatible headers. Disconnecting the elements
(SW3 and/or D1) may be required if you plan to use either of these GPIOs through the Arduino-compatible headers.

C.4.3 Switches and LEDs

▪ SW4 (HCI UART configuration switch): SW4 controls the connection of USB data traffic to the HCI UART
connections of the module. SW4 is a four-element switch (each element corresponding to the 4-wire UART signals
– TX, RX, CTS, RTS); used to connect the HCI UART signals on CYBT-413034-EVAL to the host PC USB
interface. To connect HCI UART signals from CYBT-413034-02 to the host PC, simply put each element of SW4
in the “On” position. To disconnect HCI UART communication from the CYBT-413034-02 module and the host PC,
simply set each of the SW4 elements to the Off position. There is no High-Z configuration available on the SW4
elements; only On or Off positions. Flow control is supported in Hardware on the HCI UART connection.

▪ SW5 (Peripheral UART (PUART) configuration switch): SW5 controls the connection of the PUART signals of the
CYBT-413034-02 module to the Host PC connection (via the USB/UART Bridge). SW5 is a four-element switch;
to connect PUART signals on CYBT-413034-EVAL to the host PC, simply put each element of SW4 in the “On”
position. To disconnect PUART communication from the CYBT-413034-02 module and the host PC, simply set
each of the SW5 elements to the Off position. There is no High-Z configuration available on the SW5 elements;
only On or Off positions.

Note: PUART on the CYBT-413034-02 module does not support flow control in hardware. Flow control logic is
required to be developed in the WICED SDK if this is required. In any case, if flow control is developed and enabled,
only the GPIOs that are noted as supporting RTS and/or CTS can be used for this functionality.

Note: PUART connections from the CYBT-413034-02 module to the Arduino headers are not gated by SW5. These
connections are always present.

Notes on HCI UART and PUART configurations:

▪ It is acceptable to have SW4 and SW5 elements all set to the “On” position at the same time (i.e., HCI UART and
PUART both connected to the CYBT-413034-02 module). PUART and HCI UART connections are handled by
two different hardware UART blocks, and the connection to the CYBT-413034-02 module from the USB-to-UART
bridge enumerates as two different COM ports on the host PC (not a shared connection/bus).

▪ Both HCI UART and PUART configurations can be used for UART communication within your application.

▪ HCI UART (Positions 1 ~ 4 of SW4 = ON) is the UART configuration generally used for interfacing to the WICED
Studio SDK, with the goal of downloading a compiled image to the EZ-BT WICED Module. The HCI UART
connection can also be used for general UART communication in Application mode (executing a downloaded
image from on-chip flash). If 4-wire UART with flow control is required, it is recommended to use HCI UART as the
UART connection for your application.

▪ PUART (Positions 1 ~ 4 of SW5 = ON) is the configuration to use when desiring to have the PUART connected to
the host PC. This PUART interface to the host PC can be used for terminal communication (print statements).

Note: PUART communication signals routed to the Arduino headers are not gated by SW5 and can be used to
communicate with any peripheral device over UART.

Note: The PUART interface cannot be used to download a new binary image to the CYBT-413034-02 module.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 105

C.4.4 Addit ional Switches and LEDs

▪ SW1 (RESET switch): SW1 is a tactile switch that is connected directly to the XRES connection of the CYBT-
413034-02 module. Activating this switch will reset the EZ-BT WICED Module. This switch is also used in the
process of (re-)programming the CYBT-413034-02 module on the evaluation board.

▪ SW2 (RECOVER switch): SW2 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW1 (RESET). Recovery mode is used prior to programming the module with a new binary
image.

▪ SW3 (USER switch): SW3 is provided as an element that the user can configure as required. The SW3 element
is connected to P1 on the CYBT-413034-02 module (solder pad 8). Header J9 is provided on the CYBT-413034-
EVAL board to disconnect P1 from the USER switch to allow this connection to be used on the Arduino Headers
without SW3 connected.

▪ D1 USER LED is provided for user-configured behavior as required. The D1 LED is connected to the module P26
connection (solder pad 6). Header J10 is provided on the CYBT-413034-EVAL board to disconnect P26 from the
USER LED to allow this connection to be used on the Arduino Headers without D1 connected.

▪ D2 and D3 LEDs are provided to display programming or USB activity while in progress.

▪ D7 LED is provided to show that power is provided from the host PC.

C.4.5 Programming or Reprogramming the CYBT -413034-EVAL Board

Refer to Section 7.5.3 for general information on how to program or reprogram EZ-BT WICED Modules. You may also
refer to KBA223428 for online information.

To program an EZ-BT WICED module in your own manufacturing line, you must ensure that both the Recover and
Reset connections on the EZ-BT module are exposed in order to put the module into programming/recovery mode.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14990

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 106

C.5 CYBT-483039-EVAL

CYBT-483039-EVAL is the evaluation board for the CYBT-483039-02 WICED module. Figure 72 shows the CYBT-
483039-EVAL board and calls out the main components and connections available on the board.

Figure 72. CYBT-483039-EVAL Evaluation Board

Note: Connections not called out on J3, J4, J6, and J7 Arduino compatible headers are NC (No Connect), where no
physical connection is present between the CYBT-483039-02 EZ-BT WICED Module and the associated headers.

The CYBT-483039-EVAL includes the following elements:

C.5.1 Act ive Devices

▪ EZ-BT WICED Module: The EZ-BT WICED Module is mounted to the evaluation board as shown in Figure 72.

▪ USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate USB
communication to UART communication (and vice-versa). For example, when HCI UART communication is
configured to “On” on SW4, the USB traffic from the Host PC is connected to the HCI UART connections of the
CYBT-483039-02 module.

C.5.2 Connectors and Headers

▪ USB receptacle: The USB connection on the CYBT-483039-EVAL board provides power to the evaluation board
and also provides communication to the board via USB, which is translated to UART communication and routed
to either the HCI UART or PUART connection on the EZ-BT WICED Module depending on the configuration of
SW4 and SW5 on CYBT-483039-EVAL.

▪ Power Supply Option Header (J8): J8 allows for configuration of two different power supplies to the EZ-BT WICED
Module. All power is sourced from the USB connection, as mentioned above, but the power supply directly inputted
to the CYBT-483039-02 module can be configured to either 2.0 V or 3.3 V using the provided two-pin header. The
power supply input is configured by shorting the header positions or leaving them open on J8. Table 22 details the
available power supply options and the associated header position connections required.

Table 22. J8 Header Power Supply Connection Options

J8 Jumper Configuration VDD Voltage Level

Short 1 & 2 3.3 V Supply

Leave 1 & 2 Open 2.0 V Supply

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 107

▪ Arduino-compatible base headers – headers J3/J4/J6/J7: The CYBT-483039-EVAL provides Arduino-compatible
base headers that can be used for Arduino shield connections. Associated signals that are routed out to these
headers are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

▪ HCI UART direct connection header (J1): The J1 header provides all HCI UART communication lines to the user.
This allows for connection to the EZ-BT WICED Module without having to connect through USB. This can be used
to connect a host controller evaluation board directly to the EZ-BT WICED Module HCI UART connection. HCI
UART connections are not brought out to the Arduino-compatible headers. The J1 direct HCI UART connection
bypasses the SW4 (HCI UART to USB-to-UART bridge to Host PC) configuration. It is recommended that SW4
elements 1 ~ 4 are placed in the OFF position if the J1 direct HCI UART connection is used.

▪ Power consumption measurement header (J2): J2 is provided to allow for easy power consumption measurement
reading with a multi-meter or current measurement probe.

▪ User Element Disconnection Headers (J9 and J10): J9 (USER SW3) and J10 (USER D1 - LED) are provided to
allow for disconnection of these elements from the CYBT-483039-02 module. In both cases, the GPIO that is
routed to these USER elements is also routed to the Arduino-compatible headers. Disconnecting the elements
(SW3 and/or D1) may be required if you plan to use either of these GPIOs through the Arduino-compatible headers.

C.5.3 Switches and LEDs

▪ SW4 (HCI UART configuration switch): SW4 controls the connection of USB data traffic to the HCI UART
connections of the module. SW4 is a four-element switch (each element corresponding to the 4-wire UART signals
– TX, RX, CTS, RTS); used to connect the HCI UART signals on CYBT-483039-EVAL to the host PC USB
interface. To connect HCI UART signals from CYBT-483039-02 to the host PC, simply put each element of SW4
in the “On” position. To disconnect HCI UART communication from the CYBT-483039-02 module and the host PC,
simply set each of the SW4 elements to the Off position. There is no High-Z configuration available on the SW4
elements; only On or Off positions. Flow control is supported in Hardware on the HCI UART connection.

▪ SW5 (Peripheral UART (PUART) configuration switch): SW5 controls the connection of the PUART signals of the
CYBT-483039-02 module to the Host PC connection (via the USB/UART Bridge). SW5 is a four-element switch;
to connect PUART signals on CYBT-483039-EVAL to the host PC, simply put each element of SW4 in the “On”
position. To disconnect PUART communication from the CYBT-483039-02 module and the host PC, simply set
each of the SW5 elements to the Off position. There is no High-Z configuration available on the SW5 elements;
only On or Off positions.

Note: PUART on the CYBT-483039-02 module does not support flow control in hardware. Flow control logic is
required to be developed in the WICED SDK if this is required. In any case, if flow control is developed and enabled,
only the GPIOs that are noted as supporting RTS and/or CTS can be used for this functionality.

Note: PUART connections from the CYBT-483039-02 module to the Arduino headers are not gated by SW5. These
connections are always present.

Notes on HCI UART and PUART configurations:

▪ It is acceptable to have SW4 and SW5 elements all set to the “On” position at the same time (i.e., HCI UART and
PUART both connected to the CYBT-483039-02 module). The PUART and HCI UART connections are handled
by two different hardware UART blocks, and the connection to the CYBT-483039-02 module from the USB-to-
UART bridge enumerates as two different COM ports on the host PC (not a shared connection/bus).

▪ Both HCI UART and PUART configurations can be used for UART communication within your application.

▪ HCI UART (Positions 1 ~ 4 of SW4 = ON) is the UART configuration generally used for interfacing to the WICED
Studio SDK, with the goal of downloading a compiled image to the EZ-BT WICED Module. The HCI UART
connection can also be used for general UART communication in Application mode (executing a downloaded
image from on-chip flash). If 4-wire UART with flow control is required, it is recommended to use HCI UART as the
UART connection for your application.

▪ PUART (Positions 1 ~ 4 of SW5 = ON) is the configuration to use when desiring to have the PUART connected to
the host PC. This PUART interface to the host PC can be used for terminal communication (print statements).

Note: PUART communication signals routed to the Arduino headers are not gated by SW5 and can be used to
communicate with any peripheral device over UART.

Note: The PUART interface cannot be used to download a new binary image to the CYBT-483039-02 module.

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 108

C.5.4 Addit ional Switches and LEDs

▪ SW1 (RESET switch): SW1 is a tactile switch that is connected directly to the XRES connection of the CYBT-
483039-02 module. Activating this switch will reset the EZ-BT WICED Module. This switch is also used in the
process of (re-)programming the CYBT-483039-02 module on the evaluation board.

▪ SW2 (RECOVER switch): SW2 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW1 (RESET). Recovery mode is used prior to programming the module with a new binary
image.

▪ SW3 (USER switch): SW3 is provided as an element that the user can configure as required. The SW3 element
is connected to P1 on the CYBT-483039-02 module (solder pad 9). Header J9 is provided on the CYBT-483039-
EVAL board to disconnect P1 from the USER switch to allow this connection to be used on the Arduino Headers
without SW3 connected.

▪ D1 USER LED is provided for user-configured behavior as required. The D1 LED is connected to the module P26
connection (solder pad 6). Header J10 is provided on the CYBT-483039-EVAL board to disconnect P26 from the
USER LED to allow this connection to be used on the Arduino Headers without D1 connected.

▪ D2 and D3 LEDs are provided to display programming or USB activity while in progress.

▪ D7 LED is provided to show that power is provided from the host PC.

C.5.5 Programming or Reprogramming the CYBT -483039-EVAL Board

Refer to Section 7.5.3 for general information on how to program or reprogram EZ-BT WICED Modules. You may also
refer to KBA223428 for online information.

To program an EZ-BT WICED module in your own manufacturing line, you must ensure that both the Recover and
Reset connections on the EZ-BT module are exposed in order to put the module into programming/recovery mode.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14990

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 109

Appendix D. Code Examples

The WICED Studio SDK comes with a set of sample application
projects that demonstrate a variety of Bluetooth BR/EDR, BLE and
peripheral functionality. These projects are available in the Project
Explorer inside the IDE, as Figure 73 shows.

Example projects can speed up your design process by starting you off
with a reference design, instead of a blank page. Code examples
include comments describing their functionality and basic
demonstration instructions near the top of the main .c source file for
each project.

Each example also has a dedicated make target available to provide
an easy way to build and download onto an EZ-BT Module. These
make targets should be renamed before use in order to provide
compatibility with the CYBT-343026-EVAL board. Simply change the
“CYW920706WCDEVAL” portion of the target name to
“CYBT_343026_EVAL” instead. For example:

Before: demo.hello_sensor-CYW920706WCDEVAL download

After: demo.hello_sensor-CYBT_343026_EVAL download

Some examples assume peripheral devices that are not present or are
routed differently on the CYBT-343026-EVAL board compared to
CYW920706WCDEVAL evaluation board. The table below defines all
built-in peripherals and their routed pin connections.

Table 23. CYBT-343026-EVAL Pin Assignments

Pin Function Macro

P24 Button (active HIGH) WICED_P00

P14 LED (active LOW) WICED_P28

P2 PUART RXD WICED_P04

P0 PUART TXD WICED_P31

P1 PUART RTS WICED_P30

P3 PUART CTS WICED_P03

These pins are defined in the custom platform files (refer KBA221025
for CYBT-343026-EVAL), accessible via compiler macros to improve
code portability. However, some projects may also use pin numbers
directly. As you explore the examples that come with the SDK, be sure
to double-check any instances of GPIO pin usage if you encounter
compiler errors or missing peripheral functionality.

Figure 73. Code Examples in WICED Studio

http://www.cypress.com/
https://community.cypress.com/docs/DOC-13750

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 110

Appendix E. Example Project spp.c

#include "sparcommon.h"

#include "wiced.h"

#include "wiced_gki.h"

#include "wiced_bt_dev.h"

#include "wiced_bt_sdp.h"

#include "wiced_bt_ble.h"

#include "wiced_bt_uuid.h"

#include "wiced_hal_nvram.h"

#include "wiced_bt_app_hal_common.h"

#include "wiced_bt_trace.h"

#include "wiced_bt_cfg.h"

#include "wiced_bt_spp.h"

#include "hello_sensor.h"

#include "wiced_timer.h"

#include "wiced_transport.h"

#include "wiced_hal_platform.h"

#include "wiced_memory.h"

#define HCI_TRACE_OVER_TRANSPORT 1 // If defined HCI traces are send over transport/WICED HCI interface

#define SEND_DATA_ON_INTERRUPT 1 // If defined application button causes 1Meg of data to be sent

#define SEND_DATA_ON_TIMEOUT 1 // If defined application sends 4 bytes of data every second

//#define LOOPBACK_DATA 1 // If defined application loops back received data

#define WICED_EIR_BUF_MAX_SIZE 264

#define SPP_NVRAM_ID 0x50

/* Max TX packet to be sent over SPP */

#define MAX_TX_BUFFER 1017

#define TRANS_MAX_BUFFERS 10

#define TRANS_UART_BUFFER_SIZE 1024

#define SPP_MAX_PAYLOAD 1007

#if SEND_DATA_ON_INTERRUPT

#include "wiced_hal_gpio.h"

#include "wiced_hal_platform.h"

#define APP_TOTAL_DATA_TO_SEND 1000000

#define BUTTON_GPIO WICED_P30

int app_send_offset = 0;

uint8_t app_send_buffer[SPP_MAX_PAYLOAD];

#endif

#ifdef SEND_DATA_ON_TIMEOUT

void app_timeout(uint32_t count);

#endif

/***

** Structures

***/

#define SPP_RFCOMM_SCN 2

static void spp_connection_up_callback(uint16_t handle, uint8_t* bda);

static void spp_connection_down_callback(uint16_t handle);

static wiced_bool_t spp_rx_data_callback(uint16_t handle, uint8_t* p_data, uint32_t data_len);

wiced_bt_spp_reg_t spp_reg =

{

 SPP_RFCOMM_SCN, /* RFCOMM service channel number for SPP connection */

 MAX_TX_BUFFER, /* RFCOMM MTU for SPP connection */

 spp_connection_up_callback, /* SPP connection established */

 NULL, /* SPP connection establishment failed, not used because this app never

initiates connection */

 NULL, /* SPP service not found, not used because this app never initiates

connection */

 spp_connection_down_callback, /* SPP connection disconnected */

 spp_rx_data_callback, /* Data packet received */

};

wiced_transport_buffer_pool_t* host_trans_pool;

uint16_t spp_handle;

wiced_timer_t app_tx_timer;

const uint8_t app_sdp_db[] = // Define SDP database

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 111

{

 SDP_ATTR_SEQUENCE_2(142),

 SDP_ATTR_SEQUENCE_1(69), // 2 bytes

 SDP_ATTR_RECORD_HANDLE(0x10003), // 8 bytes

 SDP_ATTR_CLASS_ID(UUID_SERVCLASS_SERIAL_PORT), // 8

 SDP_ATTR_RFCOMM_PROTOCOL_DESC_LIST(SPP_RFCOMM_SCN), // 17 bytes

 SDP_ATTR_BROWSE_LIST, // 8

 SDP_ATTR_PROFILE_DESC_LIST(UUID_SERVCLASS_SERIAL_PORT, 0x0102), // 13 byte

 SDP_ATTR_SERVICE_NAME(10), // 15

 'S', 'P', 'P', ' ', 'S', 'E', 'R', 'V', 'E', 'R',

 // Device ID service

 SDP_ATTR_SEQUENCE_1(69), // 2 bytes, length of the record

 SDP_ATTR_RECORD_HANDLE(0x10002), // 8 byte

 SDP_ATTR_CLASS_ID(UUID_SERVCLASS_PNP_INFORMATION), // 8

 SDP_ATTR_PROTOCOL_DESC_LIST(1), // 18

 SDP_ATTR_UINT2(ATTR_ID_SPECIFICATION_ID, 0x103), // 6

 SDP_ATTR_UINT2(ATTR_ID_VENDOR_ID, 0x0f), // 6

 SDP_ATTR_UINT2(ATTR_ID_PRODUCT_ID, 0x0401), // 6

 SDP_ATTR_UINT2(ATTR_ID_PRODUCT_VERSION, 0x0001), // 6

 SDP_ATTR_BOOLEAN(ATTR_ID_PRIMARY_RECORD, 0x01), // 5

 SDP_ATTR_UINT2(ATTR_ID_VENDOR_ID_SOURCE, DI_VENDOR_ID_SOURCE_BTSIG) // 6

};

// Length of the SDP database

const uint16_t app_sdp_db_len = sizeof(app_sdp_db);

uint8_t pincode[4] = { 0x30, 0x30, 0x30, 0x30 };

extern const wiced_bt_cfg_settings_t wiced_bt_cfg_settings;

extern const wiced_bt_cfg_buf_pool_t wiced_bt_cfg_buf_pools[WICED_BT_CFG_NUM_BUF_POOLS];

#if defined WICED_BT_TRACE_ENABLE || defined HCI_TRACE_OVER_TRANSPORT

const wiced_transport_cfg_t transport_cfg =

{

 WICED_TRANSPORT_UART,

 { WICED_TRANSPORT_UART_HCI_MODE, HCI_UART_DEFAULT_BAUD },

 { TRANS_UART_BUFFER_SIZE, 1},

 NULL,

 NULL,

 NULL

};

#endif

/***

 * Function Prototypes

 **/

static wiced_bt_dev_status_t app_management_callback (wiced_bt_management_evt_t event, wiced_bt_management_evt_data_t

*p_event_data);

static void app_write_eir(void);

static int app_write_nvram(int nvram_id, int data_len, void *p_data);

static int app_read_nvram(int nvram_id, void *p_data, int data_len);

#if SEND_DATA_ON_INTERRUPT

static void app_tx_ack_timeout(uint32_t param);

static void app_interrupt_handler(void *data, uint8_t port_pin);

#endif

#ifdef HCI_TRACE_OVER_TRANSPORT

static void app_trace_callback(wiced_bt_hci_trace_type_t type, uint16_t length, uint8_t* p_data);

#endif

//extern wiced_bt_rfcomm_result_t wiced_bt_rfcomm_init(uint32_t buffer_size, uint32_t buffer_cnt);

/***

 * Function Definitions

 **/

/*

 * Entry point to the application. Set device configuration and start BT

 * stack initialization. The actual application initialization will happen

 * when stack reports that BT device is ready

 */

APPLICATION_START()

{

 wiced_result_t result;

#if defined WICED_BT_TRACE_ENABLE || defined HCI_TRACE_OVER_TRANSPORT

 wiced_transport_init(&transport_cfg);

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 112

 // create special pool for sending data to the MCU

 host_trans_pool = wiced_transport_create_buffer_pool(TRANS_UART_BUFFER_SIZE, TRANS_MAX_BUFFERS);

 // Set the debug uart as WICED_ROUTE_DEBUG_NONE to get rid of prints

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_NONE);

 // Set to PUART to see traces on peripheral uart(puart)

 wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_PUART);

 wiced_hal_puart_select_uart_pads(WICED_PUART_RXD, WICED_PUART_TXD, 0, 0);

 // Set to HCI to see traces on HCI uart - default if no call to wiced_set_debug_uart()

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_HCI_UART);

 // Use WICED_ROUTE_DEBUG_TO_WICED_UART to send formatted debug strings over the WICED

 // HCI debug interface to be parsed by ClientControl/BtSpy.

 // Note: WICED HCI must be configured to use this - see wiced_trasnport_init(), must

 // be called with wiced_transport_cfg_t.wiced_tranport_data_handler_t callback present

 // wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_WICED_UART);

#endif

 WICED_BT_TRACE("APP Start\n");

 /* Initialize Stack and Register Management Callback */

 // Register call back and configuration with stack

 wiced_bt_stack_init(app_management_callback, &wiced_bt_cfg_settings, wiced_bt_cfg_buf_pools);

}

/*

 * AMS application initialization is executed after BT stack initialization is completed.

 */

void application_init(void)

{

 wiced_bt_gatt_status_t gatt_status;

 wiced_result_t result;

 /* Initialize wiced app */

 wiced_bt_app_init();

#if SEND_DATA_ON_INTERRUPT

 /* Configure the button available on the platform */

 wiced_hal_gpio_configure_pin(WICED_GPIO_BUTTON, WICED_GPIO_BUTTON_SETTINGS(GPIO_EN_INT_RISING_EDGE),

WICED_GPIO_BUTTON_DEFAULT_STATE);

 wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_BUTTON, app_interrupt_handler, NULL);

 // init timer that we will use for the rx data flow control.

 wiced_init_timer(&app_tx_timer, app_tx_ack_timeout, 0, WICED_MILLI_SECONDS_TIMER);

#endif

 app_write_eir();

 // Initialize RFCOMM. We will not be using application buffer pool and will rely on the

 // stack pools configured in the wiced_bt_cfg.c

 wiced_bt_rfcomm_init(MAX_TX_BUFFER, 1);

 // Initialize SPP library

 wiced_bt_spp_startup(&spp_reg);

#ifdef HCI_TRACE_OVER_TRANSPORT

 // There is a virtual HCI interface between upper layers of the stack and

 // the controller portion of the chip with lower layers of the BT stack.

 // Register with the stack to receive all HCI commands, events and data.

 wiced_bt_dev_register_hci_trace(app_trace_callback);

#endif

 /* create SDP records */

 wiced_bt_sdp_db_init((uint8_t *)app_sdp_db, sizeof(app_sdp_db));

 // This application will always configure device connectable and discoverable

 wiced_bt_dev_set_discoverability(BTM_GENERAL_DISCOVERABLE, 0x0012, 0x0800);

 wiced_bt_dev_set_connectability(BTM_CONNECTABLE, 0x0012, 0x0800);

#if SEND_DATA_ON_TIMEOUT

 /* Starting the app timers, seconds timer and the ms timer */

 wiced_bt_app_start_timer(1, 0, app_timeout, NULL);

#endif

}

/*

 * Management callback receives various notifications from the stack

 */

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 113

wiced_result_t app_management_callback(wiced_bt_management_evt_t event, wiced_bt_management_evt_data_t *p_event_data)

{

 wiced_result_t result = WICED_BT_SUCCESS;

 wiced_bt_dev_status_t dev_status;

 wiced_bt_dev_pairing_info_t* p_pairing_info;

 wiced_bt_dev_encryption_status_t* p_encryption_status;

 int bytes_written, bytes_read;

 wiced_bt_power_mgmt_notification_t* p_power_mgmt_notification;

 WICED_BT_TRACE("bt_management_callback 0x%02x\n", event);

 switch(event)

 {

 /* Bluetooth stack enabled */

 case BTM_ENABLED_EVT:

 application_init();

 hello_sensor_application_init();

 WICED_BT_TRACE("Free mem:%d", wiced_memory_get_free_bytes());

 break;

 case BTM_DISABLED_EVT:

 break;

 case BTM_PIN_REQUEST_EVT:

 WICED_BT_TRACE("remote address= %B\n", p_event_data->pin_request.bd_addr);

 wiced_bt_dev_pin_code_reply(*p_event_data->pin_request.bd_addr,result/*WICED_BT_SUCCESS*/,4, &pincode[0]);

 break;

 case BTM_USER_CONFIRMATION_REQUEST_EVT:

 /* This application always confirms peer's attempt to pair */

 wiced_bt_dev_confirm_req_reply (WICED_BT_SUCCESS, p_event_data->user_confirmation_request.bd_addr);

 break;

 case BTM_PAIRING_IO_CAPABILITIES_BR_EDR_REQUEST_EVT:

 /* This application supports only Just Works pairing */

 WICED_BT_TRACE("BTM_PAIRING_IO_CAPABILITIES_REQUEST_EVT bda %B\n", p_event_data-

>pairing_io_capabilities_br_edr_request.bd_addr);

 p_event_data->pairing_io_capabilities_br_edr_request.local_io_cap = BTM_IO_CAPABILITIES_NONE;

 p_event_data->pairing_io_capabilities_br_edr_request.auth_req =

BTM_AUTH_SINGLE_PROFILE_GENERAL_BONDING_NO;

 break;

 case BTM_PAIRING_COMPLETE_EVT:

 p_pairing_info = &p_event_data->pairing_complete.pairing_complete_info;

 WICED_BT_TRACE("Pairing Complete: %d\n", p_pairing_info->br_edr.status);

 result = WICED_BT_USE_DEFAULT_SECURITY;

 break;

 case BTM_ENCRYPTION_STATUS_EVT:

 p_encryption_status = &p_event_data->encryption_status;

 WICED_BT_TRACE("Encryption Status Event: bd (%B) res %d\n", p_encryption_status->bd_addr,

p_encryption_status->result);

 break;

 case BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT:

 /* This application supports a single paired host, we can save keys under the same NVRAM ID overwriting

previous pairing if any */

 bt_write_nvram(SPP_NVRAM_ID, sizeof(wiced_bt_device_link_keys_t), &p_event_data-

>paired_device_link_keys_update);

 break;

 case BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT:

 /* read existing key from the NVRAM */

 if (bt_read_nvram(SPP_NVRAM_ID, &p_event_data->paired_device_link_keys_request,

sizeof(wiced_bt_device_link_keys_t)) != 0)

 {

 result = WICED_BT_SUCCESS;

 }

 else

 {

 result = WICED_BT_ERROR;

 WICED_BT_TRACE("Key retrieval failure\n");

 }

 break;

 case BTM_POWER_MANAGEMENT_STATUS_EVT:

 p_power_mgmt_notification = &p_event_data->power_mgmt_notification;

 WICED_BT_TRACE("Power mgmt status event: bd (%B) status:%d hci_status:%d\n", p_power_mgmt_notification-

>bd_addr, \

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 114

 p_power_mgmt_notification->status, p_power_mgmt_notification->hci_status);

 break;

 default:

 result = WICED_BT_USE_DEFAULT_SECURITY;

 break;

 }

 return result;

}

/*

 * Prepare extended inquiry response data. Current version publishes device name and 16bit

 * SPP service.

 */

void app_write_eir(void)

{

 uint8_t *pBuf;

 uint8_t *p;

 uint8_t length;

 uint16_t eir_length;

 pBuf = (uint8_t *)wiced_bt_get_buffer(WICED_EIR_BUF_MAX_SIZE);

 WICED_BT_TRACE("hci_control_write_eir %x\n", pBuf);

 if (!pBuf)

 {

 WICED_BT_TRACE("app_write_eir %x\n", pBuf);

 return;

 }

 p = pBuf;

 length = strlen((char *)wiced_bt_cfg_settings.device_name);

 *p++ = length + 1;

 *p++ = BT_EIR_COMPLETE_LOCAL_NAME_TYPE; // EIR type full name

 memcpy(p, wiced_bt_cfg_settings.device_name, length);

 p += length;

 *p++ = 2 + 1; // Length of 16 bit services

 *p++ = BT_EIR_COMPLETE_16BITS_UUID_TYPE; // 0x03 EIR type full list of 16 bit service UUIDs

 *p++ = UUID_SERVCLASS_SERIAL_PORT & 0xff;

 *p++ = (UUID_SERVCLASS_SERIAL_PORT >> 8) & 0xff;

 *p++ = 0; // end of EIR Data is 0

 eir_length = (uint16_t) (p - pBuf);

 // print EIR data

 wiced_bt_trace_array("EIR :", pBuf, MIN(p-pBuf, 100));

 wiced_bt_dev_write_eir(pBuf, eir_length);

 return;

}

/*

 * The function invoked on timeout of app seconds timer.

 */

#if SEND_DATA_ON_TIMEOUT

void app_timeout(uint32_t count)

{

 static uint32_t timer_count = 0;

 timer_count++;

 WICED_BT_TRACE("app_timeout: %d\n", timer_count);

 if (spp_handle != 0)

 {

 wiced_bt_spp_send_session_data(spp_handle, (uint8_t *)&timer_count, sizeof(uint32_t));

 }

}

#endif

/*

 * SPP connection up callback

 */

void spp_connection_up_callback(uint16_t handle, uint8_t* bda)

{

 WICED_BT_TRACE("%s handle:%d address:%B\n", __FUNCTION__, handle, bda);

 spp_handle = handle;

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 115

}

/*

 * SPP connection down callback

 */

void spp_connection_down_callback(uint16_t handle)

{

 WICED_BT_TRACE("%s handle:%d\n", __FUNCTION__, handle);

 spp_handle = 0;

}

/*

 * Process data received over EA session. Return TRUE if we were able to allocate buffer to

 * deliver to the host.

 */

wiced_bool_t spp_rx_data_callback(uint16_t handle, uint8_t* p_data, uint32_t data_len)

{

 int i;

// wiced_bt_buffer_statistics_t buffer_stats[4];

// wiced_bt_get_buffer_usage (buffer_stats, sizeof(buffer_stats));

// WICED_BT_TRACE("0:%d/%d 1:%d/%d 2:%d/%d 3:%d/%d\n", buffer_stats[0].current_allocated_count,

buffer_stats[0].max_allocated_count,

// buffer_stats[1].current_allocated_count, buffer_stats[1].max_allocated_count,

// buffer_stats[2].current_allocated_count, buffer_stats[2].max_allocated_count,

// buffer_stats[3].current_allocated_count, buffer_stats[3].max_allocated_count);

// wiced_result_t wiced_bt_get_buffer_usage (&buffer_stats, sizeof(buffer_stats));

 WICED_BT_TRACE("%s handle:%d len:%d %02x-%02x\n", __FUNCTION__, handle, data_len, p_data[0], p_data[data_len -

1]);

#if LOOPBACK_DATA

 wiced_bt_spp_send_session_data(handle, p_data, data_len);

#endif

 return WICED_TRUE;

}

/*

 * Write NVRAM function is called to store information in the NVRAM.

 */

int bt_write_nvram(int nvram_id, int data_len, void *p_data)

{

 wiced_result_t result;

 int bytes_written = wiced_hal_write_nvram(nvram_id, data_len, (uint8_t*)p_data, &result);

 WICED_BT_TRACE("NVRAM ID:%d written :%d bytes result:%d\n", nvram_id, bytes_written, result);

 return (bytes_written);

}

/*

 * Read data from the NVRAM and return in the passed buffer

 */

int bt_read_nvram(int nvram_id, void *p_data, int data_len)

{

 uint16_t read_bytes = 0;

 wiced_result_t result;

 if (data_len >= sizeof(wiced_bt_device_link_keys_t))

 {

 read_bytes = wiced_hal_read_nvram(nvram_id, sizeof(wiced_bt_device_link_keys_t), p_data, &result);

 WICED_BT_TRACE("NVRAM ID:%d read out of %d bytes:%d result:%d\n", nvram_id,

sizeof(wiced_bt_device_link_keys_t), read_bytes, result);

 }

 return (read_bytes);

}

#if SEND_DATA_ON_INTERRUPT

/*

 * Test function which sends as much data as possible.

 */

void app_send_data(void)

{

 int i;

 int increment = 0;

 while ((spp_handle != 0) && wiced_bt_spp_can_send_more_data() && (app_send_offset != APP_TOTAL_DATA_TO_SEND))

 {

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 116

 int bytes_to_send = app_send_offset + SPP_MAX_PAYLOAD < APP_TOTAL_DATA_TO_SEND ? SPP_MAX_PAYLOAD :

APP_TOTAL_DATA_TO_SEND - app_send_offset;

 for (i = 0; i < bytes_to_send; i++)

 {

// app_send_buffer[i] = app_send_offset + i;

 app_send_buffer[i] = 65 + increment;

 increment++;

 if (increment == 26)

 {

 increment = 0;

 }

 }

 wiced_bt_spp_send_session_data(spp_handle, app_send_buffer, bytes_to_send);

 app_send_offset += bytes_to_send;

 }

 // Check if we were able to send everything

 if (app_send_offset < APP_TOTAL_DATA_TO_SEND)

 {

 wiced_start_timer(&app_tx_timer, 100);

 }

 else

 {

 app_send_offset = 0;

 }

}

/*

 * Test function which start sending data.

 */

void app_interrupt_handler(void *data, uint8_t port_pin)

{

 int i;

 WICED_BT_TRACE("gpio_interrupt_handler pin:%d send_offset:%d\n", port_pin, app_send_offset);

 /* Get the status of interrupt on P# */

 if (wiced_hal_gpio_get_pin_interrupt_status(BUTTON_GPIO))

 {

 /* Clear the GPIO interrupt */

 wiced_hal_gpio_clear_pin_interrupt_status(BUTTON_GPIO);

 }

 // If we are already sending data, do nothing

 if (app_send_offset != 0)

 return;

 app_send_data();

}

/*

 * The timeout function is periodically called while we are sending big amount of data

 */

void app_tx_ack_timeout(uint32_t param)

{

 app_send_data();

}

#endif

#ifdef HCI_TRACE_OVER_TRANSPORT

/*

 * Pass protocol traces up over the transport

 */

void app_trace_callback(wiced_bt_hci_trace_type_t type, uint16_t length, uint8_t* p_data)

{

 wiced_transport_send_hci_trace(host_trans_pool, type, length, p_data);

}

#endif

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 117

Appendix F. Makefile Customization

The WICED Studio SDK build system uses a hierarchical Makefile structure when building each project. The root
Makefile is found in the main SDK installation folder as \WICED-Studio-SDK\Makefile, and each project contains its
own specific makefile.mk file along with the source files in its dedicated directory. To customize the build process for a
specific project, always edit the project’s own makefile.mk content instead of modifying the top-level file.

The most common changes that you may need to make are as follows:

1. Adding new .c source files to be compiled and linked:

Splitting the source code into multiple files can greatly improve organization and maintainability as the project
grows. To add more files to the build process beyond the initial set that is created from the WICED Bluetooth
Designer tool, use the APP_SRC keyword:

You can include as many extra files as you need. Note that the very first file should use the direct assignment
operator (“=”), while all subsequent files should use the append operator (“+=”).

2. Adding extra include folders into the search path:

Some projects require the use of additional libraries that assume particular 'include' folders are in the compiler’s
include search path. To avoid having to rewrite source files with explicit include paths throughout, use the INCS
keyword along with the $(DIR) variable to denote the project’s root folder:

You can add as many extra include search folders as you need. Note that all additional folders should use the
append operator (“+=”) since the SDK’s top-level Makefile assigns some folders already. Using the direct
assignment operator (“=”) will wipe out these default folders and break the compile process.

3. Applying pre-built optional patches that are part of the WICED SDK:

Since the WICED Studio Bluetooth LE stack is part of the chipset ROM inside the module, updates and fixes to
low-level functionality require the use of precompiled patches, which are loaded and applied during the boot
process. These patches must be included especially during the compile process so that they are part of the final
firmware binary image. To specify patches for this purpose, use the APP_PATCHES_AND_LIBS keyword:

APP_SRC = spp.c

APP_SRC += hello_sensor.c

APP_SRC += wiced_bt_cfg.c

INCS += $(DIR)/library1/include

INCS += $(DIR)/library2/include
INCS += $(DIR)/some/other/include

APP_PATCHES_AND_LIBS += FM25Q04_sflash.a

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 118

Appendix G. Bluetooth Qualification and Regulatory Certification References

Table 24 details the references for Bluetooth Qualification and Listing as well as Regulatory test reports and certificates
for each EZ-BT module. These references can be found by visiting www.cypress.com/cypress_bluetooth_modules or
by clicking on the hyperlinks in the table below.

Table 24. Bluetooth QDID and Regulatory Test Report and Certificate References

EZ-BT Module

Part Number

Knowledge Base Article Containing

Regulatory Reports and Certificates

Module QDID and Link to
Bluetooth SIG Listing Page

CYBT-343026-01 KBA220396 D035378

CYBT-353027-02 KBA223952 D039123

CYBT-423028-02 KBA223751 D039125

CYBT-413034-02 TBD D040142

CYBT-483039-02 TBD D040143

http://www.cypress.com/
http://www.cypress.com/cypress_bluetooth_modules
https://community.cypress.com/docs/DOC-14196
https://launchstudio.bluetooth.com/ListingDetails/49920
https://community.cypress.com/docs/DOC-15283
https://launchstudio.bluetooth.com/ListingDetails/56536
https://community.cypress.com/docs/DOC-15090
https://launchstudio.bluetooth.com/ListingDetails/56565
https://launchstudio.bluetooth.com/ListingDetails/61614
https://launchstudio.bluetooth.com/ListingDetails/61617

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 119

Document History

Document Title: AN223400 – Getting Started with EZ-BT WICED Modules

Document Number: 002-23400

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 6352193 DSO 12/06/2018 New application note

http://www.cypress.com/

 Getting Started with EZ-BT WICED Modules

www.cypress.com Document Number: 002-23400 Rev. ** 120

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and () under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A crit ical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 More Information
	2.1 EZ-BT WICED Module Datasheets
	2.2 EZ-BT WICED Evaluation Boards
	2.3 Silicon Device Datasheet
	2.4 Cypress WICED Bluetooth Community
	2.5 Application Notes
	2.6 Technical Support

	3 EZ-BT WICED Module Overview
	3.1 EZ-BT WICED Module Family Features
	3.2 EZ-BT WICED Module Low-Power Modes
	3.3 EZ-BT WICED Part Number Overview

	4 Development Tools
	4.1 WICED Studio SDK and IDE
	4.1.1 WICED Studio IDE Overview
	4.1.2 Project Explorer
	4.1.3 Code Editor
	4.1.3.1 Eliminating False Code Analysis Errors
	4.1.3.2 Improving Search Results
	4.1.3.3 Taking Advantage of Code Completion

	4.1.4 Make Target List
	4.1.5 Console

	4.2 CySmart PC Application
	4.3 CySmart Mobile App

	5 Development Kits and Evaluation Boards
	5.1 EZ-BT WICED Module Evaluation Boards

	6 EZ-BT WICED Module Development Setup
	7 My First EZ-BT WICED Module Design
	7.1 About the Design
	7.2 Prerequisites
	7.3 Part 1: Merge SPP and Hello Sensor Application Samples
	7.3.1 Creating a New Project
	7.3.2 Add ‘hello_sensor’ Project Files to the make file
	7.3.3 Add BLE-related Initialization and Other Callback Functions in the spp.c File
	7.3.4 Modify ‘hello_sensor’ Files to Remove Duplication and Allow Access from spp.c
	7.3.5 Create Platform Files, Build, and Download

	7.4 Part 2: Understanding the Flow of the WICED Project
	7.4.1 System Initialization
	7.4.2 Bluetooth Stack Event Handlers
	7.4.3 BLE Functions
	7.4.3.1 GATT Read Request
	7.4.3.2 GATT Write Request
	7.4.3.3 Indication Confirmation
	7.4.3.4 Connection Up
	7.4.3.5 Connection Down

	7.4.4 Bluetooth Functions
	7.4.5 Low-Power Implementation and Eliminating Leakage Current

	7.5 Part 3: Program the Module
	7.5.1 Host UART Interface Selection and Preparation
	7.5.2 Compiling and Downloading into the Module
	7.5.3 Performing a Recovery Procedure and (Re-)Programming Your Module

	7.6 Part 4: Test Your Design
	7.7 UART Debug Trace
	7.8 Design Source

	8 Module Placement and Enclosure Considerations
	8.1 Antenna Ground Clearance
	8.2 Module Placement in a Host System
	8.3 Enclosure Effects on Antenna Performance
	8.3.1 Antenna Near-Field and Far-Field
	8.3.2 Effect of Nonmetallic Enclosure
	8.3.3 Effect of Metallic Objects
	8.3.4 Recommendations for Placement over a Large Metal Plane

	8.4 Guidelines for Enclosures and Ground Plane

	9 Manufacturing with EZ-BT WICED Modules
	9.1 SMT Manufacturing Pick-and-Place
	9.2 Manufacturing Solder Reflow

	10 Summary
	11 Related Application Notes
	Appendix A. Cypress Terms of Art
	Appendix B. EZ-BT WICED Module Product Details
	B.1 CYBT-343026-01
	B.1.1 Pinout and Functionality
	B.1.2 Host Recommended PCB Layout

	B.2 CYBT-353027-02
	B.2.1 Pinout and Functionality
	B.2.2 Host Recommended PCB Layout

	B.3 CYBT-423028-02
	B.3.1 Pinout and Functionality
	B.3.2 Host Recommended PCB Layout

	B.4 CYBT-413034-02
	B.4.1 Pinout and Functionality
	B.4.2 Host Recommended PCB Layout

	B.5 CYBT-483039-02
	B.5.1 Pinout and Functionality
	B.5.2 Host Recommended PCB Layout

	Appendix C. EZ-BT WICED Evaluation Boards
	C.1 CYBT-343026-EVAL
	C.1.1 Active Devices
	C.1.2 Connectors and Headers
	C.1.3 UART Configuration Switches and LEDs
	C.1.4 Additional Switches and LEDs
	C.1.5 Programming or Reprogramming the CYBT-343026-EVAL Board

	C.2 CYBT-353027-EVAL
	C.2.1 Active Devices
	C.2.2 Connectors and Headers
	C.2.3 Switches and LEDs
	C.2.4 Additional Switches and LEDs
	C.2.5 Programming or Reprogramming the CYBT-353027-EVAL Board

	C.3 CYBT-423028-EVAL
	C.3.1 Active Devices
	C.3.2 Connectors and Headers
	C.3.3 Switches and LEDs
	C.3.4 Additional Switches and LEDs
	C.3.5 Programming or Reprogramming the CYBT-423028-EVAL Board

	C.4 CYBT-413034-EVAL
	C.4.1 Active Devices
	C.4.2 Connectors and Headers
	C.4.3 Switches and LEDs
	C.4.4 Additional Switches and LEDs
	C.4.5 Programming or Reprogramming the CYBT-413034-EVAL Board

	C.5 CYBT-483039-EVAL
	C.5.1 Active Devices
	C.5.2 Connectors and Headers
	C.5.3 Switches and LEDs
	C.5.4 Additional Switches and LEDs
	C.5.5 Programming or Reprogramming the CYBT-483039-EVAL Board

	Appendix E. Example Project spp.c
	Appendix F. Makefile Customization
	Appendix G. Bluetooth Qualification and Regulatory Certification References
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

