
PSoC™ 6 MCU dual-core system design

About this document
Scope and purpose

AN215656 describes the dual-core architecture in PSoC™ 6 MCUs, which includes Arm® Cortex®-M4 and Cortex®-
M0+ cores, as well as an inter-processor communication (IPC) module. A dual-core architecture provides the
flexibility to help improve system performance and efficiency and reduce power consumption. The application
note also shows how to build a simple dual-core design using ModusToolbox™ software, Command-line
Interface (CLI), and PSoC™ Creator IDE, and how to debug the design using various IDEs.
To access an ever-growing list of hundreds of PSoC™ code examples, please visit our code examples web page.
You can also explore the Infineon video training library here.
Intended audience

This application note is intended for advanced engineers who want to use the full dual-core capabilities of the
PSoC™ 6 MCU.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3
1.1 Tools and libraries .5
1.2 How to use this document . 6

2 General dual-core concepts . 7

3 PSoC™ 6 MCU dual-core architecture .8

4 PSoC™ 6 MCU dual-core development . 10
4.1 ModusToolbox™ software instructions . 10
4.1.1 Creating a dual-core application . 10
4.1.1.1 Eclipse IDE for ModusToolbox™ . 10
4.1.1.2 Command-line Interface (CLI) . 11
4.1.1.3 Modify application contents .12
4.1.1.4 Build and program . 13
4.1.2 Customizing linker scripts . 14
4.1.3 Sharing libraries and peripherals .14
4.2 PSoC™ Creator instructions .16
4.3 Resource assignment considerations .19
4.4 Power mode transition considerations . 19
4.5 IPC configuration considerations . 20
4.6 Interrupt assignment considerations . 20
4.7 Debug considerations . 21
4.7.1 ModusToolbox™ instructions .22
4.7.2 PSoC™ Creator instructions . 22
4.7.3 Instructions for other IDEs .22

AN215656

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-15656 Rev. *L
www.infineon.com 2024-02-09

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://media.infineon.com/channel/89141/infineon-academy/1
https://www.infineon.com

4.7.3.1 Exporting ModusToolbox™ applications to supported IDEs .22
4.7.3.2 Exporting from PSoC™ Creator . 23
4.8 Connectivity application design considerations . 40
4.8.1 Throughput analysis .40
4.8.2 Power consumption analysis . 43
4.8.3 Porting applications between cores . 46
4.8.4 Virtual Connectivity Manager . 46

5 Summary . 47

References .48

Revision history .50

Trademarks .51

Disclaimer . 52

PSoC™ 6 MCU dual-core system design

Table of contents

Application note 2 002-15656 Rev. *L
2024-02-09

1 Introduction
PSoC™ 6 MCU is 32-bit ultra-low-power PSoC™, purpose-built for the Internet of Things (IoT). It integrates low-
power flash and SRAM technology, programmable digital logic, programmable analog, high-performance
analog-digital conversion, low-power comparators, and standard communication and timing peripherals.
Of particular interest in PSoC™ 6 MCU is the CPU subsystem. The architecture incorporates multiple bus
masters – two CPUs, DMA Controllers, and a cryptography block (Crypto) – as Figure 1 shows:

PSoC™ 6 MCU dual-core system design

1 Introduction

Application note 3 002-15656 Rev. *L
2024-02-09

CPU Subsystem

Sy
st

em
 In

te
rc

on
ne

ct
 (M

ul
ti

La
ye

r A
H

B,
 IP

C
, M

PU
/S

M
PU

)

Cortex M4 F CPU
150/ 50 MHz, 1.1/0. 9 V
SWJ, ETM, ITM, CTI

Cortex M0 + CPU
100/25 MHz, 1.1/0. 9 V

SWJ, MTB, CTI

3 x DMA
Controller

Crypto
DES/ TDES, AES, SHA,
CRC, TRNG, RSA/ ECC

Accelerator

Flash
2048 KB + 32 KB + 32 KB
8 KB cache for each CPU

SRAM0
512 KB

ROM
64 KB

Pe
rip

he
ra

l I
nt

er
co

nn
ec

t

SRAM1
256 KB

SRAM2
256 KB

Figure 1 PSoC™ 6 MCU typical CPU subsystem architecture

PSoC™ 6 MCU dual-core system design

1 Introduction

Application note 4 002-15656 Rev. *L
2024-02-09

Note: The contents of the block diagram in Figure 1 may vary depending on the device. Some PSoC™ 6
MCU parts have only one CPU available for application use. See the device datasheet for details. This
application note does not apply to single-core PSoC™ 6 MCU devices.

Generally, all memory and peripherals are shared by all bus masters. Shared resources are accessed through
standard Arm multi-layer bus arbitration. Exclusive accesses are supported by an inter-processor
communication (IPC) block, which implements semaphores and mutual exclusion (mutexes) in hardware.
A dual-core architecture, along with the DMA and cryptography (Crypto) bus masters, presents unique
opportunities for system-level design and performance optimization in a single MCU. With two CPUs you can:
• Allocate tasks to CPUs so that multiple tasks may be done at the same time.
• Allocate resources to CPUs so that a CPU may be dedicated to managing those resources, improving

efficiency.
• Enable and disable CPUs to minimize power draw.
• Send data between the CPUs using the IPC block. For more information, see the code example mtb-

example-psoc6-dual-cpu-ipc-pipes.
In one example application, the Cortex®-M0+ CPU (CM0+) can “own” and manage all communication channels.
The Cortex®-M4 CPU (CM4) can send and receive messages from the channels via CM0+. This frees CM4 to do
other tasks while CM0+ manages the communication details.

1.1 Tools and libraries
Infineon provides two development platforms that you can use for application development with PSoC™ 6 MCU:
• ModusToolbox™: ModusToolbox™ cross platform software includes configuration tools, low-level drivers,

middleware libraries, and operating system support, as well as other packages that enable you to create
MCU and wireless applications. It also includes the optional Eclipse IDE for ModusToolbox™.

• PSoC™ Creator: A Infineon-proprietary IDE that runs on Windows only. It supports a subset of PSoC™ 6 MCU
devices as well as other PSoC™ device families such as PSoC™ 3, PSoC™ 4, and PSoC™ 5LP.

Both platforms provide a mechanism to load and run applications in third-party tools, such as Keil µVision, IAR
Embedded Workbench and Visual Studio Code.
Infineon also provides a set of libraries to facilitate application development with PSoC™ 6 MCU:
• Peripheral Driver Library (PDL): PDL drivers abstract hardware functions into a set of easy to use APIs. For

more information on the PDL, go to the mtb-pdl-cat1 webpage. This library is available in PSoC™ Creator
and ModusToolbox™ software.

• Hardware Abstraction Layer (HAL): HAL is built on top of the PDL. It provides a high-level interface to
configure and use hardware blocks on Infineon MCUs. It is a generic interface that can be used across
multiple product families. For more information on the HAL, go to the mtb-hal-cat1 webpage. The HAL is
available only in ModusToolbox™ software. PSoC™ Creator does not have support for HAL.

• Middleware: This category includes multiple libraries that implement APIs for various domains, capacitive
sensing is one such example. A middleware library may be created by Infineon or come from a third party.
In PSoC™ Creator, the middleware is usually available as a PSoC™ Creator Component. In ModusToolbox™

software, it is available as a library.
• Board Support Package (BSP): BSP provides a standard interface to a board’s features and capabilities.

The API is consistent across Infineon kits. Other software (such as middleware or an application) can use
the BSP to configure and control the hardware. The BSP is available in ModusToolbox™ software only.
Although PSoC™ Creator does not offer BSP, you can install the kit software, allowing you to start a new
project based on the selected kit.

PSoC™ 6 MCU dual-core system design

1 Introduction

Application note 5 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-ipc-pipes
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-ipc-pipes
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/mtb-hal-cat1

1.2 How to use this document
This document assumes that you are familiar with PSoC™ 6 MCU architecture, and application development for
PSoC™ devices using either ModusToolbox™ software or PSoC™ Creator IDE. For an introduction to PSoC™ 6 MCU,
see the following:
• A PSoC™ 6 MCU device datasheet
• AN228571 - Getting Started with PSoC™ 6 MCU on ModusToolbox™ software
• AN221774 - Getting Started with PSoC™ 6 MCU on PSoC™ Creator
• AN210781 - Getting Started with PSoC™ 6 MCU with Bluetooth® low energy connectivity on PSoC™ Creator
If you are new to ModusToolbox™ software, see the ModusToolbox™ software home page. Some PSoC™ 6 MCU
devices are not supported by PSoC™ Creator; in this case, ModusToolbox™ software must be used. If you are
using ModusToolbox™ software, make sure that it’s version 3.0 or higher for designs based on PSoC™ 6 MCU
devices with dual CPUs.
If you are new to PSoC™ Creator, see the PSoC ™ Creator home page. Use PSoC™ Creator version 4.3 or higher for
PSoC™ 6 MCU-based designs.
Initial sections of this application note cover general concepts for dual-core MCUs and how they are
implemented in PSoC™ 6 MCU. To skip to an overview of creating a ModusToolbox™ software or PSoC™ Creator
project for a PSoC™ 6 dual-core MCU, go to the PSoC™ 6 MCU dual-core development section.

PSoC™ 6 MCU dual-core system design

1 Introduction

Application note 6 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://documentation.infineon.com/html/psoc6/pvw1667470959605.html#pvw1667470959605
https://documentation.infineon.com/html/psoc6/kno1667478869945.html#kno1667478869945
https://documentation.infineon.com/html/psoc6/rgu1667479746995.html#rgu1667479746995
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/

2 General dual-core concepts
The process of developing firmware for a dual-core MCU is similar to that for a single-core MCU, except that you
write code for two CPUs instead of one. You should also consider any need for inter-processor communication.
• Performance: The main advantage of having two CPUs is that you essentially multiply your CPU power

and bandwidth. How to use that increased bandwidth depends on the tasks that your application must
perform.

• Single task: A single-task application may be less of a fit for a dual-core MCU unless the application is large
and complex. In PSoC™ 6 MCU, you can execute the task on one of the CPUs and put the other CPU to sleep
to reduce power.

• Dual task: This is the most obvious fit; assign each task to a CPU. Assign the task with larger computing
requirements to the higher-performance CPU, i.e., Cortex®-M4 in PSoC™ 6 MCU.

• Multiple tasks: Again, assign each task to a CPU. In each CPU, you must include a method for executing
each task in a timely fashion.

• RTOS: A complex multitasking system may be managed by a real-time operating system (RTOS). An RTOS
basically allocates a number of CPU cycles to each task, depending on the task priority or whether a task
is waiting for an event. You effectively do that yourself by assigning tasks to the CPUs. Some examples of
dual-core RTOS architectures are:
- Each CPU has its own RTOS and its own set of tasks. Each RTOS should include a task to manage

communications with the other CPU.
- Only one CPU has an RTOS and multiple tasks. The other CPU is idle until it is messaged to do a

specified task. It then wakes up and does the task, then messages the result back to the first CPU. As
an example, the lower-performance CPU, CM0+ in PSoC™ 6 MCU, can use the higher-performance CPU,
CM4 in PSoC™ 6 MCU, to do computation-intensive tasks when needed.

• Power: In a dual-core system, firmware can start and stop the CPUs to fine-tune power usage. In the
previous example, to reduce power, the high-performance CPU is placed into a sleep state until needed for
a computation-intensive task.

• Debug: Debugging two bodies of code at the same time may be a complex process. Usually you debug
code for one CPU, then debug code for the other CPU. In addition, a device such as an oscilloscope or a
logic analyzer may be useful for monitoring communication between the CPUs.

PSoC™ 6 MCU dual-core system design

2 General dual-core concepts

Application note 7 002-15656 Rev. *L
2024-02-09

3 PSoC™ 6 MCU dual-core architecture
Figure 1 shows the overall dual-core architecture in PSoC™ 6 MCU. (For detailed block diagrams of PSoC™ 6 MCU,
see the device datasheet) Specific features and other details related to dual CPUs are listed in this section. For
more information, see the ARM® documentation sets for Cortex® - M4 and Cortex® -M0+, and the PSoC™ device
technical reference manual (TRM).
• CPUs: Both CPUs –Cortex® M4 and Cortex® M0+ – are 32-bit. CM4 runs at up to 150 MHz and has a

floating-point unit (FPU). CM0+ runs at up to 100 MHz.
• CM4 is the main CPU. It is designed for a short interrupt response time, high code density, and high

throughput. The CM0+ CPU is secondary; it is used in PSoC™ 6 MCU to implement system calls and
device-level security, safety, and protection features. CM0+ is also recommended for functions such as
Bluetooth® LE communications and CAPSENSE™.

• Performance: CM0+ typically operates at a slower clock speed than CM4. The CM0+ instruction set is more
limited than that of CM4. Therefore, it may require more cycles to implement a function on CM0+, and the
cycle time is longer. Keep this in mind when deciding to which CPU to allocate tasks.

• Security: PSoC™ 6 MCU has several security features; see the TRM for details. To meet security
requirements, CM0+ is used as a "secure CPU". It is considered to be a trusted entity; it executes Infineon
system code and application code. The use of CM0+ for system and security tasks may limit its availability
for applications. For more information, on secure systems, see AN221111 - PSoC™ 6 MCU designing a
custom secured system.
Device system calls may be initiated by either CPU but are always executed by CM0+.

• Startup sequence: After device reset, only CM0+ executes; CM4 is held in a reset state. CM0+ first
executes Infineon system and security code, including SROM code, FlashBoot, and Secure Image. For
more information on these code modules, see the Boot Code chapter of the Architecture TRM for details.
After CM0+ executes the system and security code, it executes the application code. In the application code,
CM0+ may release the CM4 reset, causing CM4 to start executing its application code. PSoC™ Creator auto-
generates code in CM0+ main() to release the CM4 reset. In ModusToolbox™ software, the BSP chooses and
includes one of the several available CM0+ prebuilt images.

• Inter-processor communication (IPC): IPC enables the CPUs to communicate and synchronize activities.
The IPC hardware contains register structures for IPC channel functions and IPC interrupts. IPC channel
registers implement mutual exclusion (mutex) lock/release mechanisms, and messaging between the
CPUs. IPC interrupt registers generate interrupts to both CPUs for messaging events and lock/release
events.

• Interrupts: Each CPU has its own set of interrupts. All peripheral interrupt lines are hard-wired to specific
CM4 interrupt inputs. Peripheral interrupts are also multiplexed to CM0+’s limited set of 8 interrupt inputs
(32 interrupt inputs in the CY8C61x7, CY8C62x7, and CY8C63x7). See Interrupt Assignment Considerations.

• Power modes: PSoC™ 6 MCU has several power modes that can affect either the entire system or just a
single CPU. CPU power modes are Active, Sleep, and Deep Sleep as defined by Arm®. Device system power
modes are LP, ULP, Deep Sleep, and Hibernate.
- System Low Power (LP) mode is the default operating mode of the device after reset. It provides the

maximum performance. While in System LP mode, the CPUs may operate in any of the Arm®-defined
modes.

- System Ultra Low Power (ULP) mode is identical to LP mode with a performance tradeoff made to
achieve a lower system current. This tradeoff lowers the core operating voltage, which then requires
a reduced operating clock frequency, and limited high-frequency clock sources. While in system ULP
mode, the CPUs may operate in any of the Arm®-defined modes.

- In System Deep Sleep mode, all high-speed clock sources are OFF. This in turn stops both CPUs and
makes high-speed peripherals unusable. However, low-speed clock sources and peripherals continue
to operate, if configured and enabled by the firmware. Interrupts from these peripherals cause the

PSoC™ 6 MCU dual-core system design

3 PSoC™ 6 MCU dual-core architecture

Application note 8 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://developer.arm.com/Processors/Cortex-M4
https://developer.arm.com/Processors/Cortex-M0-Plus
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://documentation.infineon.com/html/psoc6/isi1667483210870.html#isi1667483210870
https://documentation.infineon.com/html/psoc6/isi1667483210870.html#isi1667483210870
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

device to return to System LP or ULP mode and one or more CPUs to wake up to Active mode. Each
CPU has a Wakeup Interrupt Controller (WIC) to wake up the CPU.

- System Hibernate mode is the lowest power mode of the device. It is intended for applications that
may go into a dormant state. The device goes through a reset on wakeup from Hibernate. See Startup
sequence.

- In CPU Active mode, the CPU executes code and all logic and memory is powered. The device must be
in System LP or ULP mode.

- In CPU Sleep mode, the CPU clock is turned OFF and the CPU halts code execution. The device must be
in System LP or ULP mode.

- In CPU Deep Sleep mode, the CPU requests the device to go into System Deep Sleep mode. When the
device is ready, it enters System Deep Sleep mode. In PSoC™ 6 MCU, both CPUs must enter CPU Deep
Sleep before the system transitions to Deep Sleep. If only one CPU has entered CPU Deep Sleep mode,
the system remains in LP or ULP mode.

- For more information on PSoC™ 6 MCU power modes, see AN219528 - PSoC™ 6 MCU low-power modes
and power reduction techniques.

• Debug: PSoC™ 6 MCU has a Debug Access Port (DAP) that acts as the interface for device programming and
debug. An external programmer or debugger (the "host") communicates with the DAP through the device
Serial Wire Debug (SWD) or Joint Test Action Group (JTAG) interface pins. Through the DAP (and subject to
device security restrictions), the host can access the device memory and peripherals as well as the registers
in both CPUs.

• Each CPU offers several debug and trace features as follows:
- CM4 supports six hardware breakpoints and four watchpoints, 4-bit embedded trace macrocell (ETM),

serial wire viewer (SWV), and printf()-style debugging through the single-wire output (SWO) pin.
- CM0+ supports four hardware breakpoints and two watchpoints, and a micro trace buffer (MTB) with

4 KB dedicated RAM.
PSoC™ 6 MCU also has an Embedded Cross Trigger for synchronized debugging and tracing of both CPUs.
Some third-party IDEs support synchronized dual-core debugging; see Debug considerations. Infineon's
ModusToolbox™ software supports dual-core debugging (unsynchronized), and PSoC™ Creator supports
debugging a single CPU (either CM4 or CM0+) at a time.

PSoC™ 6 MCU dual-core system design

3 PSoC™ 6 MCU dual-core architecture

Application note 9 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/jql1667481395768.html#jql1667481395768
https://documentation.infineon.com/html/psoc6/jql1667481395768.html#jql1667481395768
https://developer.arm.com/documentation/ddi0314/h/Embedded-Cross-Trigger

4 PSoC™ 6 MCU dual-core development
This section shows only those development aspects that are unique to PSoC™ 6 MCU dual-core devices. To learn
more about PSoC™ 6 MCU, ModusToolbox™ software, or PSoC™ Creator, see one or more of the following:
• AN228571 - Getting Started with PSoC™ 6 MCU on ModusToolbox™ software
• AN221774 - Getting Started with PSoC™ 6 MCU on PSoC™ Creator
• AN210781 - Getting Started with PSoC™ 6 MCU with Bluetooth® low energy connectivity on PSoC™ Creator
• The ModusToolbox™ software home page. Some PSoC™ 6 MCU devices are not supported by PSoC™ Creator;

in this case, ModusToolbox™ software must be used. If you are using ModusToolbox™ software, then make
sure it’s version 3.0 or higher for designs based on PSoC™ 6 MCU devices with dual CPUs

• The PSoC ™ Creator home page. Use PSoC™ Creator version 4.3 or higher for PSoC™ 6 MCU-based designs

4.1 ModusToolbox™ software instructions
ModusToolbox™ software application development for a PSoC™ 6 MCU dual-core device is similar to that for any
other device supported by ModusToolbox™ software. By default, the Board Support Packages (BSP) that come
with the ModusToolbox™ software provides several prebuilt CM0+ application images. This section explains how
to create your own CM0+ application as a substitute for the prebuilt images.
To create a dual-core application, you can follow one of the following methods:
1. If you are starting dual-core application development from scratch, you can create your new application

based on an existing dual-CPU code example hosted here. You can use any code example with a
repo name that includes “dual-CPU” as a start point. For most cases, the mtb-example-psoc6-dual-cpu-
empty-app is a good choice.

2. If you have an existing single-core application that you want to convert to a dual-core application, follow
the steps from Creating a dual-core application section.

4.1.1 Creating a dual-core application
This section shows how to create a dual-core application step-by-step by using an existing single-core
application and a starter dual-core application. Here the starter dual-core application will act as a template
defining the dual-core application structure. The existing single-core application's contents can easily be
copied into the starter dual-core application.
For the single-core application, as an example, the mtb-example-psoc6-hello-world is chosen. For the starter
dual-core application, the mtb-example-psoc6-dual-cpu-empty-app is chosen. The CY8CPROTO-062S2-43439
BSP is chosen for both applications.
The applications can be created using one of the following methods:
• Eclipse IDE for ModusToolbox™

• Command-line Interface (CLI)

4.1.1.1 Eclipse IDE for ModusToolbox™

1. Launch Eclipse IDE for ModusToolbox™ 3.0 or later and select a workspace.
2. From the Quick Panel, click New Application.
3. Once the project creator wizard opens, expand PSoC™ 6 BSPs and select CY8CPROTO-062S2-43439.

Click Next.
4. In the new window, expand Getting Started, select Dual-CPU Empty PSoC6 App and Hello World. Click

Create.
5. In Figure 2 , you see both applications created in the workspace.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 10 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/pvw1667470959605.html#pvw1667470959605
https://documentation.infineon.com/html/psoc6/kno1667478869945.html#kno1667478869945
https://documentation.infineon.com/html/psoc6/rgu1667479746995.html#rgu1667479746995
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://github.com/Infineon
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-empty-app
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-empty-app
https://github.com/Infineon/mtb-example-psoc6-hello-world
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-empty-app

Figure 2 Workspace in ModusToolbox™ containing both single-core and dual-core
applications

4.1.1.2 Command-line Interface (CLI)
1. For project creation, open a CLI terminal and navigate to ModusToolbox™ software installation folder

such as <install_path>/ModusToolbox/tools_<version>/project-creator/.
2. Create both the applications by executing the following project-creator-cli commands.

• project-creator-cli \
--board-id CY8CPROTO-062S2-43439 \
--app-id mtb-example-psoc6-hello-world \
--user-app-name Hello_World \
--target-dir "C:/workspace_directory"

• project-creator-cli \
--board-id CY8CPROTO-062S2-43439 \
--app-id mtb-example-psoc6-dual-cpu-empty-app \
--user-app-name Dual-CPU_Empty_PSoC6_App \
--target-dir "C:/workspace_directory"

Alternatively, you can execute the project-creator tool in the same folder and follow the same steps described
in Eclipse IDE for ModusToolbox™.
For more information, see Section 2.3 in the ModusToolbox™ user guide.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 11 002-15656 Rev. *L
2024-02-09

https://www.Infineon.com/ModusToolboxUserguide

4.1.1.3 Modify application contents
The following contents from the Hello World example need to be selectively copied to the CM4 project
(proj_cm4) of the Dual CPU Empty application:
1. Makefile variables – Open the Makefile of the Hello World application and proj_cm4 application side-by-

side. Compare and copy the variable values from the Hello World Makefile to the proj_cm4 Makefile. If
some of the variables defined in the Hello World Makefile are not present in the proj_cm4 Makefile, they
should be available in the common.mk and common_app.mk Makefiles at the root level of the dual-core empty
application.
Current values of variables such as MTB_TYPE, APPNAME, COMPONENTS, and DISABLE_COMPONENTS in the Dual
CPU Empty application Makefiles should not be deleted or modified. Adding new values is still allowed
for variables such as COMPONENTS and DISABLE_COMPONENTS.
For the Hello World application case, there are no Makefile variables that need to be copied.

2. Source files – Replace all the source files from the proj_cm4 application with the Hello World application.
3. Libraries/Middleware – The libraries or middleware used in the Hello World application should also be

added to the proj_cm4 application. Follow these steps to add them:
a. In the Eclipse IDE of ModusToolbox™, from the quick planel launch Library Manager tool.

Alternatively, you can launch the Library Manager from the tools folder of ModusToolbox™

installation directory, in this case the correct path to the Dual CPU Empty application needs
to be selected from the Library Manager window.

b. Once the Library Manager opens, click Add Library.
c. Select Target Project as proj_cm4.
d. Under Peripheral, select retarget-io library, and click OK.
e. Click Update from the Library Manager window. Wait for the libraries to get added; see the log

messages for progress.
f. Once the libraries are updated, click Close.

The CM0+ project (proj_cm0p) of the Dual CPU Empty application enables the CM4 core and goes to Deep Sleep.
To use the core for any other purpose, the cybsp_init() function needs to be called from the CM0+ core. This
function will do all the system-level initialization required to run peripherals on the CM0+ core. Modify the
main.c file of proj_cm0p as shown in Code Listing 1.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 12 002-15656 Rev. *L
2024-02-09

Code Listing 1

#include "cy_pdl.h"
#include "cycfg.h"
#include "cybsp.h"
int main(void)
{
 cy_rslt_t result;

 /* Initialize the device and board peripherals */
 result = cybsp_init() ;
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Enable global interrupts */
 __enable_irq();

 /* Enable CM4. CY_CORTEX_M4_APPL_ADDR must be updated if CM4 memory layout is changed. */
 Cy_SysEnableCM4(CY_CORTEX_M4_APPL_ADDR);

 for (;;)
 {
 Cy_SysPm_DeepSleep(CY_SYSPM_WAIT_FOR_INTERRUPT);
 }
}

The Infineon HAL is not yet designed to run simultaneously on CM0+ and CM4 core. Since the proj_cm4 already
uses HAL, proj_cm0p should only use PDL APIs.

4.1.1.4 Build and program
The application can be built and programmed using one of the following methods:
• Using Eclipse IDE for ModusToolbox™

1. Select the Dual-CPU_Empty_PSoC6_App application from the project explorer.
2. From the quick panel, select Dual-CPU_Empty_PSoC6_App Program MultiCore (KitProg3). This

will build and program both projects – proj_cm0p and proj_cm4, one after the other.
3. Alternatively, you can program individual projects (proj_cm0p or proj_cm4), but this is only possible

through CLI interface as explained below.
• Using Command-line Interface (CLI)

1. Open a modus-shell and navigate it to the root directory of the Dual-CPU_Empty_PSoC6_App
application.

2. Run command - make program. This will build and program both projects – proj_cm0p and proj_cm4,
one after the other.

3. Alternatively, you can program individual projects (proj_cm0p or proj_cm4). Navigate the modus-shell
to the required project directory. Run command - make program_proj.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 13 002-15656 Rev. *L
2024-02-09

The build artifacts for each project is generated in its own project directory under a folder named build. Note
that the build folder in the application level has a copy of the project hex files. It also has a combined hex file
containing the data of individual project hex files.
If the projects fail to build due to a flash overflow error, follow the steps from the Customizing linker scripts
section to allocate the required memory for each project.

4.1.2 Customizing linker scripts
The CM0+ and CM4 projects each have their own linker scripts supplied by the BSP. By default, the CM0+ CPU
consumes only 8192 [0x2000] bytes of flash and 8192 [0x2000] bytes of SRAM. If your CM0+ project requires
more memory, both linker scripts require changes. Note that the increment/decrement in flash size should be
in multiples of flash row size (512 bytes). The following steps list the changes:
1. The CM0+ linker script is located at directory - bsps/TARGET_APP_<BSP_NAME>/COMPONENT_CM0P/

By default, the BSP supports the ARM (*.sct), GCC_ARM (*.ld), and IAR (*.icf) toolchains. Each toolchain
has its own linker script.

2. Edit the FLASH and SRAM size as desired:

Toolchain: Where to change

ARM (*.sct) #define RAM_SIZE 0x00002000
#define FLASH_SIZE 0x00002000

GCC_ARM (*.ld) ram (rwx) : ORIGIN = 0x08000000, LENGTH = 0x2000
flash (rx) : ORIGIN = 0x10000000, LENGTH = 0x2000

IAR (*.icf) define symbol __ICFEDIT_region_IRAM1_end__ = 0x08001FFF;
define symbol __ICFEDIT_region_IROM1_end__ = 0x10001FFF;

3. The CM4 linker script is located at directory - bsps/TARGET_APP_<BSP_NAME>/COMPONENT_CM4/
4. Edit the values based on the CM0+ memory size:

Toolchain: Where to change

ARM (*.sct) #define RAM_START 0x08002000
#define RAM_SIZE 0x000FD800
#define FLASH_CM0P_SIZE 0x2000

GCC_ARM (*.ld) FLASH_CM0P_SIZE = 0x2000;
ram (rwx) : ORIGIN = 0x08002000, LENGTH = 0xFD800

IAR (*.icf) define symbol __ICFEDIT_region_IRAM1_start__ = 0x08002000;
define symbol __ICFEDIT_region_IRAM1_end__ = 0x080FF7FF;

5. In the CM0+ Makefile, add to DEFINES the CM4 application address (CY_CORTEX_M4_APPL_ADDR). For
example, if the size of CM0+ image is 0x8000, set it to:
DEFINES=CY_CORTEX_M4_APPL_ADDR=0x10008000

4.1.3 Sharing libraries and peripherals
The deps folder of each project contains the list of libraries used by that project. As described earlier
ModusToolbox™ provides a tool to manage the libraries and BSPs, called Library Manager. You can launch this
tool from the Eclipse IDE for ModusToolbox™, Quick Panel > Tools > Library Manager. Alternatively, you can
execute the library-manager tool located at this folder: (<install_path>/ModusToolbox/tools_<version>/
library-manager/).

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 14 002-15656 Rev. *L
2024-02-09

The BSPs added through the library manager by default will be downloaded to a folder named bsps located at
the root directory of the dual CPU application. Both projects share the BSPs in an application.
The libraries added through the library manager by default will be downloaded to a folder named mtb_shared,
located one level above the root directory of the dual CPU application. The libraries can be shared or project-
specific. When adding the libraries through the library manager, an option is provided to select the project it
belongs to. If the same library is added to both the projects, then both the projects can access the same library
copy from the mtb_shared directory.
If a peripheral is shared, you should only initialize it in one of the CPUs and use some sort of mutex
orsynchronization mechanism to avoid both CPUs using it at the same time. It is not recommended to use the
HAL for shared peripherals, since the CM0+ would not have access to the HAL object created by the CM4.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 15 002-15656 Rev. *L
2024-02-09

4.2 PSoC™ Creator instructions
PSoC™ Creator project development for a PSoC™ 6 MCU dual-core device is similar to that for any other device
supported by PSoC™ Creator. To create a new project, select File > New > Project. A Create Project dialog is
displayed, as shown in Figure 3.

Figure 3 PSoC™ Creator create project dialog

Select Target Device (A), and PSoC 6 (B). On the pull-down list (C), select <Launch Device Selector...> to see a
list of PSoC™ 6 devices.
Figure 4 shows the Device Selector dialog. To see a list of dual-core devices, click the CPU category (D) and
select only CortexM0p, CortexM4.
In the PSoC™ 6 Bluetooth® LE Pioneer Kit CY8CKIT -062- BLE, the PSoC™ 6 MCU dual-core device part number is
CY8C6347BZI-BLD53. In the PSoC™ 6 Wi-Fi Bluetooth® Pioneer Kit CY8CKIT -062- WiFi -BT, the PSoC™ 6 MCU dual-
core device part number is CY8C6247BZI-D54.

Figure 4 PSoC™ Creator device selector dialog

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 16 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-wifi-bt/

After selecting a PSoC™ 6 MCU part, the rest of the project creation process is the same as for other devices.
Click through the rest of the Create Project dialogs; PSoC™ Creator creates the project.
The initial project windows layout (Figure 5) includes a Workspace Explorer window with the following
features for dual-core devices:
• Separate main.c files – main_cm0p.c and main_cm4.c – for each CPU. Sources in the folders CM0p (Core 0) and

CM4 (Core 1) are compiled into separate binaries for the respective CPUs.
• A Shared Files folder. Source files in this folder are compiled into both binaries.

Figure 5 PSoC™ Creator initial project layout for dual-core devices

The initial project layout also includes a TopDesign hardware schematic, along with an associated component
catalog window.
After the project is created, implement your hardware design by dragging Components onto the schematic, and
configuring and wiring them.
When schematic design entry is complete, select Build > Generate Application. This creates several system
source code files and folders in the existing folders as well as in the new folder Generated Source, as Figure 6
shows.
The generated source contains drivers for each Component on the schematic, as well as Infineon's peripheral
driver library (PDL). The PDL is a software development kit (SDK) that integrates device header files, start-up
code, and peripheral drivers. The peripheral drivers abstract the hardware functions into a set of easy-to-use
APIs.
For more information on the PDL, select PSoC™ Creator Help > Documentation > Peripheral Driver Library.
Also, each Component has a datasheet that documents the driver API for that Component. Right-click the
Component and select Open Datasheet....
PSoC™ Creator IDE creates several other files and folders, and places them in existing folders CM0p (Core 0), CM4
(Core 1), and Shared Files. These files generally support configuration, start-up, and linking options for PSoC™

Creator as well as other IDEs. For more information on these files, see PSoC™ Creator Help article, Generated
Files (PSoC™ 6).

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 17 002-15656 Rev. *L
2024-02-09

Figure 6 Add generated source to a project

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 18 002-15656 Rev. *L
2024-02-09

4.3 Resource assignment considerations
All PDL driver source and other API files are available to both CPUs. If code for a CPU references any API element
in a generated source file, that file is compiled into the binary for that CPU. The same file can be compiled into
both binaries – see code example CE216795 , PSoC ™ 6 MCU dual-CPU basics.

Note: Customers using PSoC™ Creator should download the required examples inside the tool using the
project creation wizard. The PSoC™ Creator code example links provided in this document point only
to the code example document.

If the same source file is compiled into both binaries, a function in that file is duplicated in both binaries. Even
though the copies are in separate builds and binaries, in some cases it is convenient to consider a function to be
executed simultaneously by both CPUs.
As noted previously, it is possible for a peripheral to be accessed by both CPUs; for example, both CPUs may
send data through the same UART.
There are two ways to do resource management:
• Dedicate a resource to one CPU. Include code to use the resource only in the firmware for the desired

CPU. Also, if you are using PSoC™ Creator, a good practice is to indicate on the project schematic the CPU
that “owns” the resource, as Figure 7 shows

Figure 7 PSoC™ Creator project schematic for dual CPUs controlling separate pin components

• Share resources between the CPUs. Code example CE216795 shows how the PSoC™ 6 MCU’s IPC block
may be used to implement a mutex to share memory between the CPUs. Use the same technique to share a
peripheral resource such as a UART

Flash and SRAM that are allocated in a CPU’s binary are generally separate from that for the other CPU. If
custom sections and section placement are defined in the CPUs’ linker scripts, you must ensure that the
sections do not overlap. Conversely, another way to share memory is to define for each CPU custom sections
with the same address.

4.4 Power mode transition considerations
Resources such as system clocks are always shared between CPUs and all peripherals. The cybsp_init()
function calls cybsp_register_sysclk_pm_callback() function. This function registers a power management
callback that prepares the clock system for Deep Sleep mode and restores the clocks upon wakeup from a Deep
Sleep.
The default cybsp_register_sysclk_pm_callback() is designed for single CPU examples, where CM0+ is in a Deep
Sleep. If the CM4 CPU is also put to Deep Sleep, the callback function disables the clock system. This will not
cause any problem to the CM0+ CPU as it is already in a Deep Sleep. In the case of dual CPU examples, this is
not the case. If one of the CPUs goes to Deep Sleep, the callback doesn’t check the state of the other CPUs and
disables the clock system. This causes the other active CPUs to misbehave.
To avoid the above issue, a custom power management callback function is needed. In this custom callback,
you can decide whether to disable the system clocks or not. You can also implement any other custom

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 19 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338
https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

functions required for your application when performing a power mode transition. See the default callback
function implementation to write your custom callback in the correct format.
Follow these steps to create and call a custom power management callback function:
1. From the root of your dual CPU example, create a shared folder to add source files.

For example: shared/source/
2. Create a C file with any name.

For example: shared/source/custom_pm_callback.c
3. Open the file and write a custom callback function with the exact same definition and name as shown

below:

cy_rslt_t cybsp_register_custom_sysclk_pm_callback(void)
{
. . .
}

4. Open the Makefiles of both CM0p and CM4 projects. Make the following changes:
a. Edit the SOURCES variable to add the newly created C file to the build process.

SOURCES= ../shared/source/custom_pm_callback.c
b. Add CYBSP_CUSTOM_SYSCLK_PM_CALLBACK macro to the DEFINES variable.

4.5 IPC configuration considerations
Inter-Process Communication (IPC) provides the functionality for multiple CPUs to communicate and
synchronize their activities. Following are some of the guidelines one needs to consider while using IPC:
1. The shared memory used for IPC communication can be placed in an unprotected public RAM region.

This public_ram region is defined and commented in the default CM0+ linker script provided by the target
BSP. To use this public RAM region, uncomment the public_ram line and .cy_sharedmem section in the CM0+
linker script.

2. The public_ram region must be given executable privileges to allow for flash write functions to run out of
the SRAM. This can be achived by changing the rw parameter to rwx parameter in the public_ram line of
the CM0+ linker script.

3. If the public_ram region is not used, the shared memory will be allocated in the SRAM region defined for
the CM0+ CPU.

4. When using protection units, the user application should take care not to protect the shared memory
region.

4.6 Interrupt assignment considerations
An important consideration for dual-core designs is assigning and handling interrupts. As noted previously, all
device interrupts are available to CM4, and a subset of interrupts are routed through multiplexers to CM0+. You
must decide which CPU will handle each interrupt.
For more information, see application note AN217666 - PSoC ™ 6 MCU interrupts.
ModusToolbox™ software: In ModusToolbox™ software, interrupts are assigned programmatically; at this time,
there is no GUI support. Examples of the required code are in AN217666; and in the PDL/HAL documentation,
Infineon Bluetooth® LE Middleware Library section, Configure BLESS interrupt subsection. The code in this
subsection shows how to assign PSoC™ 6 MCU Bluetooth® LE subsystem (BLESS) interrupts to either CM0+ or
CM4. The code can be easily modified to support other interrupt sources. If you are using Infineon HAL, all
interrupts required by a HAL driver are assigned to the CPU calling the HAL functions.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 20 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/sfm1667482739165.html#sfm1667482739165
https://documentation.infineon.com/html/psoc6/sfm1667482739165.html#sfm1667482739165

Note: In CY8C61x6/7, CY8C62x6/7, and CY8C63xx devices, the CM0+ CPU is only capable of handling 32
system interrupts, out of which only 8 are deep sleep capable. If HAL functions are being used to
initialize peripherals which require interrupts, the function will return “none free error” when all
interrupts lines are fully utilized.

PSoC™ Creator: For PSoC™ Creator, let us assign interrupts in an example design. Figure 8 shows a design with
two interrupts; one from a PWM Component, connected to an Interrupt Component MyPWM_Int; and the other
from an I2C Component.
In the Design wide Resources window (file type .cydwr), select the Interrupts tab to see all of the interrupts in
the design, as Figure 9 shows.
In this example, the I2C component has an interrupt embedded in it. That interrupt is not shown on the
schematic in Figure 8; it is shown in the Design-Wide Resources window as MyI2C_SCB_IRQ.

Figure 8 Example schematic design with two interrupts

Check or uncheck the boxes in the Arm® CM0+ Enable and Arm® CM4 Enable columns to assign interrupts to
the respective CPUs.

Figure 9 Assign interrupts to the CPUs

Each peripheral interrupt is hard-wired to CM4, so the Interrupt Number is automatically assigned by PSoC™

Creator when you build the project. Because interrupts are routed through multiplexers to CM0+, you can select
an Arm® CM0+ Vector for each interrupt.

Note: A warning symbol and tooltip are displayed if an interrupt is assigned to both CPUs. This is generally
not recommended; however, an interrupt can be used to wake up one or both CPUs from their Sleep
modes.

4.7 Debug considerations
Third-party IDEs such as Keil µVision and IAR Embedded Workbench support dual-core debugging. Eclipse IDE
for ModusToolbox™ software supports dual-core debugging (unsynchronized), and PSoC™ Creator supports
debugging a single CPU (either CM4 or CM0+) at a time.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 21 002-15656 Rev. *L
2024-02-09

4.7.1 ModusToolbox™ instructions
Eclipse IDE for ModusToolbox™ software supports asynchronous dual core debugging. You can launch the
debug session for both cores simultaneously, but debug activites (For example, halt, stop, breakpoints) on one
core will not affect the other. For detailed instructions, open the ModusToolbox™ User Guide, and see the
subsection PSoC™ 6 MCU Programming/Debugging.

4.7.2 PSoC™ Creator instructions
PSoC™ Creator supports debugging just one CPU at a time. Before starting a debug session with PSoC™ 6 MCU,
select the desired debug target (Debug > Select Debug Target...), as Figure 10 shows. Select the desired CPU
and click OK/Connect. To debug the other CPU, you must exit the debugger and then re-enter it with a
connection to that CPU.

Figure 10 PSoC™ Creator select CPU for debug

Recommended: Develop and debug first the portions of code where the CPUs communicate with each other.
After that, code executed by an individual CPU can be debugged separately. For example, when the shared
memory project in CE216795 was developed, the portion where CM0+ sends an initial message to CM4 was
developed and debugged before subsequent portions of code were developed.
You can debug both CPUs simultaneously by using other IDEs such as µVision or IAR. To do so, you must export
your PSoC™ Creator project to the other IDE. PSoC™ Creator documents this topic in the help articles Integrating
into 3rd Party IDEs, PSoC™ 6 Designs. Review the instructions in the help articles; the general steps are
summarized in the following sections.

4.7.3 Instructions for other IDEs

4.7.3.1 Exporting ModusToolbox™ applications to supported IDEs
ModusToolbox™ software has a mechanism to load and run applications on the following IDEs:
• IAR Embedded Workbench

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 22 002-15656 Rev. *L
2024-02-09

https://www.Infineon.com/ModusToolboxUserguide
https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

• Keil µVision
• Visual Studio Code
For more details on how to export and set up debugging with these tools, see the “Exporting to IDEs” chapter in
the ModusToolbox™ user guide.

4.7.3.2 Exporting from PSoC™ Creator
If you are using PSoC™ Creator, you can export your project to Keil µVision or IAR Embedded Workbench for
dual-core debugging. Following are the steps to do so:
1. Configure the PSoC™ Creator Project
2. Create µVision Projects
3. Debug µVision Projects
4. Create IAR-EW Projects
5. Debug IAR-EW Projects
1. Configure the PSoC™ Creator Project

Update the Target IDEs settings in the project Build Settings, as Figure 11 shows
For µVision, select CMSIS Pack: > Generate. Enter appropriate identifying text for the CMSIS pack in the
Vendor, Pack, and Version fields
Recommended: select Toolchain: > ARM MDK Generic
For IAR, you only need to select IAR EW-ARM: > Generate. (An advanced option, Generate without
copying PDL files, is also available.) IAR has its own compiler (not supported by PSoC™ Creator), so the
Toolchain selection is irrelevant

Figure 11 Build settings for target IDEs

Then build your PSoC™ Creator project in the usual manner. A folder Export is created in your <project>.
cydsn folder, which contains relevant files for exporting to the selected IDE or IDEs
For µVision, after the PSoC™ Creator project is built, find the corresponding .pack file in the folder
Export \ Pack. Double-click the file to install it as a µVision pack, as Figure 12 shows.

Note: Do not use the µVision Pack Installer Wizard File Import function to install this pack.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 23 002-15656 Rev. *L
2024-02-09

https://www.Infineon.com/ModusToolboxUserguide

Figure 12 Install µVision pack from PSoC™ Creator project

if you update the PSoC™ Creator project, consider changing the µVision pack version number (see Figure
11) and installing the new pack
For more information, see AN219434 - Importing PSoC™ Creator Code into an IDE for a PSoC™ 6 Project

2. Create µVision projects
For µVision, you must create two projects: one for each PSoC™ 6 MCU CPU: CM0+ and CM4. Do the
following:
Recommended: create a new folder (For example. µVisionBuild) within your PSoC™ Creator <project>.
cydsn folder to store all µVision project files separately from the PSoC™ Creator files (this is different from
the IAR instructions). Within that folder, create another new folder for CM4 object files (For example,
ObjectsM4), as Figure 13 shows:

Figure 13 New folders for µVision projects

Open µVision 5.25 or later and create a new project (Project > New µVision Project...) in the
µVisionBuild folder
Recommended: name the project based on the original PSoC™ Creator project name and the target CPU.
For example, for the CE216795 dual-core blinky project, create a µVision project BlinkyM0p for the CM0+
CPU, as Figure 14 shows:

Figure 14 Create a µVision project for CM0+

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 24 002-15656 Rev. *L
2024-02-09

https://documentation.infineon.com/html/psoc6/evv1667483064119.html#evv1667483064119
https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

After you click Save, a Select Device for Target ‘Target 1’... dialog box is displayed. The two PSoC™ 6
MCU CPUs that were defined in the previously installed pack (Figure 12) are displayed. Select the CM0+
CPU, as Figure 15 shows. Click OK.

Figure 15 Select CM0+ as the project device

Next, a Manage Run-Time Environment dialog box is displayed. Click Select Packs and uncheck Use
latest versions of all installed Software Packs. Select the pack from the PSoC™ Creator project, as
Figure 16 shows:

Figure 16 Select the PSoC™ Creator project pack

Click OK; the Manage Run-Time Environment dialog changes as Figure 17 shows. Select the Device
Startup and PDL Drivers and click OK. The project is created, with a Target 1, a Source Group 1, and
Device startup and PDL files, as Figure 18 shows

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 25 002-15656 Rev. *L
2024-02-09

Figure 17 Select pack start-up and PDL driver files

Figure 18 Initial project creation

Right-click Source Group 1, and select Add Existing Files to Group ‘Source Group 1’.... Navigate to
your PSoC™ Creator project folder and select main_cm0p.c, cy_ipc_config.c, and all other non-system .c
and assembler files needed for your project, as Figure 19 shows. You do not have to add any .h files,
startup, or system .c, or assembler files. Click Add; the files are added to the source group in the µVision
project. Click Close.

Figure 19 Add PSoC™ Creator project C source files to the source group

Now that the project is created, you must set its options. Right-click Target 1, and select Options for
Target ‘Target 1’.... Confirm in the Target tab that the device, CPU, IROM1, and IRAM1 are correct for
your PSoC™ 6 MCU device, as Figure 20 shows. Updating other fields such as Xtal (MHz) and Operating
system is optional

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 26 002-15656 Rev. *L
2024-02-09

Figure 20 Project target options

In the User tab, verify that the correct post-build batch file from the pack is being called. Hover the
cursor over the User Command field and confirm that postbuildCortexm0p.bat is called, as Figure 21
shows. Add other pre- and post-build batch files, and select other options, as needed

Figure 21 Project user options

Confirm in the C/C++ tab that the C99 mode option is checked, as Figure 22 shows. (PDL is developed
based on C99.) Add the PSoC™ Creator <project>.cydsn folder to the Include Paths; this provides a link
to the .h files in the PSoC™ Creator project. Update other options and fields as needed

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 27 002-15656 Rev. *L
2024-02-09

Figure 22 Project C/C++ options

Confirm in the Linker tab that the R/O Base and R/W Base fields are correct for your PSoC™ 6 MCU
device, as Figure 23 shows. Select the appropriate Scatter File from your PSoC™ Creator project folder

Figure 23 Project linker options

Connect the CY8CKIT-062-BLE USB port to your computer. Press the kit button SW3 to put KitProg2 into
CMSIS-DAP mode; see the kit guide for details. This allows debugging without using any external probes
In the Debug tab, select Use CMSIS-DAP Debugger, as Figure 24 shows. Click Settings, select KitProg2
CMSIS-DAP, and confirm that all other settings are at the defaults shown. Click OK and go back to the
Options dialog

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 28 002-15656 Rev. *L
2024-02-09

Figure 24 Project debug options

In the Utilities tab, confirm that Use Debug Driver is checked, and then uncheck Update Target before
Debugging. Click Settings, and uncheck all Download Function boxes, as Figure 25 shows. Click Do not
Erase. Click OK and go back to the Options dialog.A warning “Nothing to do ... “ is displayed; click OK.
The application will be loaded by the CM4 project. Click OK to save and close the options settings

Figure 25 Project utilities options

Repeat the previous steps and create a second project for CM4.
Recommended: name the project based on the original PSoC™ Creator project name and the target CPU.
For example, for the CE216795 dual-core blinky project, create µVision project BlinkyM4p; see Figure 14.
Configure the project in the same manner as the CM0+ project, with the following differences:

• The CM4 project must be in the same folder as the CM0+ project; in this case, µVisionBuild.
See Figure 14

• Select the CM4 CPU from the previously installed pack; see Figure 15

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 29 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

• Navigate to your PSoC™ Creator project folder and select main_cm4.c, cy_ipc_config.c, and all other
non-system .c and assembler files needed for your project, as Figure 19 shows. You do not have to
add any .h files, startup, system .c, or assembler files

• In the Options dialog, Output tab, click Select Folder for Objects..., and select the ObjectsM4 folder
that you created; see Figure 13

• In the Options dialog, C/C++ tab, add --fpu=fpv4-sp to Misc Controls; see Figure 22
• In the Options dialog, Linker tab, select the “cm4_dual” scatter file, as Figure 26 shows. The CM4

project will contain code for both CPUs. Add --fpu=fpv4-sp to Misc Controls

Figure 26 Linker options for CM4 project

• In the Options dialog, Debug tab, Target Driver Setup, select VECTRESET for the Reset option; see
Figure 24.

• In the Options dialog, Utilities tab, confirm that Update Target before Debugging is checked, as
Figure 27 shows. Set the RAM for Algorithm values as indicated. Checking Reset and Run is optional
but convenient

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 30 002-15656 Rev. *L
2024-02-09

Figure 27 Utilities options for CM4 project

Finally, create a µVision workspace (Project > New Multi-Project Workspace...), named for example
Blinky, in the uVisionBuild folder. Add the two created projects to that workspace. The created
workspace and projects, and the corresponding files, should be similar to Figure 28.

Figure 28 Resultant µVision project window and project files

Build the projects in sequence; build the CM0+ project first. Note that µVision has a batch build feature to
automate the process. After building is successfully completed, right-click the BlinkyM4 project and set it
as the active project. Then test your build options by (1) erasing flash (Flash > Erase), and (2)
downloading the project (Flash > Download) and confirming correct operation. If you did not select
Reset and Run (see Figure 27), you must press the kit reset button (RST / SW1) to start operation

Note: If you change any code in the CM0+ project, you must rebuild both projects. Note that µVision
has a batch build feature to automate the process.

3. Debug µVision projects

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 31 002-15656 Rev. *L
2024-02-09

Start debugging with the CM4 project – downloading the CM4 project installs code for both CPUs. Set the
CM4 project as the active project, download it if needed, and click Debug > Start/Stop Debug Session
to start debugging. The µVision window appears similar to Figure 29.

Figure 29 CM4 debug window

If you are running the CE216795 dual-core blinky project, set a breakpoint at line 63, Cy_Syslib_Delay().
Then repeatedly click Debug > Run, and the red LED toggles on each stop at the breakpoint
Now open a second instance of µVision and load the same workspace. Both instances share the kit
connection and the PSoC™ 6 MCU debug access port (DAP). Make the CM0+ project active, and start a
debug session. Set a breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Run, and
the blue LED toggles on each stop at the breakpoint

Note: Executing the Cy_SysEnableCM4() function call at line 55 causes CM4 to start running again. Go
to the CM4 window, click Debug > Stop, then Debug > Run. CM4 runs to the breakpoint again.

It helps to place the instance windows side by side on your desktop. The windows appear similar to
Figure 30. Click in the appropriate window to perform a debug operation on the desired CPU. Note that
breakpoints can be set separately for each CPU. You can read and update the same memory addresses
from either window

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 32 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

Figure 30 µVision dual-core debugging
4. Create IAR-EW projects

For IAR Embedded Workbench (IAR-EW), you must create two projects: one for each PSoC™ 6 MCU CPU:
CM0+ and CM4. Do the following:

Note: The IAR-EW project files should be created in your PSoC™ Creator <project>.cydsn folder. Do
not create a separate folder within your PSoC™ Creator <project>.cydsn folder (this is different
from the µVision instructions). Recommended: add a tag such as “IAR_” to each project and
workspace file name, to distinguish the IAR-EW files from the PSoC™ Creator files in the same
folder.

Open IAR Embedded Workbench for ARM® 8.22 or later and create a new project (Project > Create New
Project...). In the Create New Project dialog (Figure 31), confirm that the Tool chain is Arm®, select the
Empty project template, then click OK.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 33 002-15656 Rev. *L
2024-02-09

Figure 31 IAR Embedded Workbench create new project dialog

Recommended: in the Save As dialog (Figure 32), name the project based on the original PSoC™ Creator
project name and the target CPU. For example, for the CE216795 dual-core blinky project, create a
µVision project IAR_BlinkyM0p for the CM0+ CPU

Figure 32 Create an IAR Embedded Workbench project for CM0+

Select Tools > Options and make sure that Enable project connections is checked. Click OK. Then
select Project > Add Project Connection.... In the next dialog, select Connect using IAR Project
Connection, and click OK. Then select the ...CortexM0p.ipcf file, as Figure 33 shows. Click OK, and
several folders and files are added to the project in the Workspace window

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 34 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

Figure 33 Select IAR project connection file from PSoC™ Creator project export
folder

Now that the project is created, you must set its options. Right-click the project, and select Options....
Confirm in the Options dialog, Build Actions section that postbuildCortexM0p.bat is called, as Figure 34
shows

Figure 34 Select PSoC™ Creator post-build batch file

In the Debugger section, Setup tab, select the CMSIS DAP driver. In the Download tab, check Suppress
download. In the CMSIS DAP section, Setup tab, set Reset to Disabled (no reset). The application will
be loaded by the CM4 project. In the Interface tab, select SWD. Click OK.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 35 002-15656 Rev. *L
2024-02-09

Repeat the previous steps and create a second project for CM4. Recommended: name the project based
on the original PSoC™ Creator project name and the target CPU. For example, for the CE216795 dual-core
blinky project, create IAR-EW project IAR_BlinkyM4; see Figure 32. Configure the project similar to the
CM0+ project, with the following differences:

• The CM4 project must be in the same folder as the CM0+ project; in this case, your PSoC™ Creator
<project>.cydsn folder. See Figure 32

• Select the ...CortexM4.ipcf file; see Figure 33
• In the Options dialog, General Options section, Output tab, change the output directories for

object and list files, as Figure 35 shows. Do not change the executables/libraries output folder

Figure 35 Unique output folders for CM4 project

• In the Build Actions section, confirm that postbuildCortexM4.bat is called, see Figure 34
• In the Debugger section, Setup tab, select the CMSIS DAP driver. In the CMSIS DAP section, Setup

tab, confirm that Reset is set to System (default). In the Interface tab, select SWD. Click OK
Save Workspace As dialog, create an IAR-EW workspace, named for example IAR_Blinky, in your PSoC™

Creator <project>.cydsn folder. The created workspace and projects, and the corresponding files, should
be similar to Figure 36. The files and folders generated by IAR-EW are highlighted

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 36 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-CPU_Basics_(ModusToolbox)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6ed6470338

Figure 36 Resultant IAR Embedded Workbench project window and project files

Connect the CY8CKIT-062-BLE USB port to your computer. Press kit button SW3 to put KitProg2 into
CMSIS-DAP mode; see the kit guide for details. This allows debugging without using any external debug
probes
Build the projects in sequence; build the CM0+ project first. Note that IAR-EW has a batch build feature to
automate the process. After building is successfully completed, right-click the BlinkyM4 project and set it
as the active project. Then confirm that your build options are correct, by (1) erasing flash (Project >
Download > Erase memory), and (2) downloading the project (Project > Download > Download active
application) and confirming correct operation. After downloading, press the kit reset button (RST / SW1)
to start operation

Note: When erasing flash, you typically only need to erase PSoC™ 6 MCU application flash
(0x1000 0000 – 0x100F FFFF), as Figure 37 shows.

Figure 37 IAR Embedded Workbench erase memory dialog for PSoC™ 6 MCU

Note: If you change any code in the CM0+ project, you must rebuild both projects. Note that IAR-EW
has a batch build feature to automate the process.

5. Debug IAR-EW projects
Reopen the options for the CM4 project, and go to the Debugger section, Multicore folder. PSoC™ 6 MCU
has different cores, for example, CM0+ and CM4, which is referred to as "asymmetric multicore".
Therefore, fill in the fields in the Asymmetric multicore section as Figure 38 shows. Checking Enable
multicore master mode makes the CM4 CPU the master for download and debugging purposes. Do not
change the Port.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 37 002-15656 Rev. *L
2024-02-09

Figure 38 Set up multicore debugging

Select File > Save All to save the project options changes. Then start debugging by selecting either
Project > Download and Debug or Project > Debug without Downloading. A second (slave) instance of
IAR Embedded Workbench is automatically opened for the CM0+ project. Both instances share the kit
connection and the PSoC™ 6 MCU debug access port (DAP).
In the slave instance, set a breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Go,
and the blue LED toggles on each stop at the breakpoint
Click anywhere in the CM4 instance window and repeat the process. The red LED toggles on each stop at
the breakpoint
It helps to place the instance windows side by side on your desktop. The windows appear like Figure 39.
Click in the appropriate window to perform a debug operation on the desired CPU. Note that
breakpoints can be set separately for each CPU. You can read and update the same memory addresses
from either window

Figure 39 IAR Embedded Workbench dual-CPU debugging

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 38 002-15656 Rev. *L
2024-02-09

You can stop debugging in either window; debugging is ended for both CPUs. Press the kit reset button
(RST/SW1) to restart kit operation

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 39 002-15656 Rev. *L
2024-02-09

4.8 Connectivity application design considerations
ModusToolbox™ Connectivity, Wi-Fi, and Bluetooth® middleware libraries are made available through GitHub.
These libraries can be used for developing wireless IoT applications using PSoC 6™ MCUs and Infineon’s AIROC™

Wi-Fi and Bluetooth® combo devices. The user has the option of choosing either the Arm® CM0+ or CM4 core for
executing the connectivity application along with its necessary middleware and driver libraries. Throughput
(data transmission speed in bits per second) and PSoC™ 6 MCU power consumption (in milliampere/
microampere) are important factors to consider when deciding the core for the connectivity application. The
related performance requirements play a crucial role in determining the optimal core to be used for the
connectivity application. The following sections show the results of those analyses.

4.8.1 Throughput analysis
The below figure shows the test setup used for measuring the throughput. The CY8CPROTO-062S2-43439 kit is
set up to run an iperf application in TCP client mode. The kit is connected to a PC running ModusToolbox™ via
USB for programming and iperf log viewing. The KitProg3 USB-UART bridge is used with Tera Term software for
log viewing. The PC also runs an iperf application in server mode. Both the kit and PC are connected to the
same Wi-Fi router. The test setup is at a normal ambient setting meaning not inside a temperature/anechoic
chamber.

Figure 40 Throughput measurement setup

The following table shows the achieved throughput with the default BSP settings with System Idle Power Mode
set to Active, in a home Wi-Fi network:

Table 1 Throughput details

Scenario Throughput (Megabits per second, Mbps)

CM0+ core sleep, CM4 core active @100 MHz Peak = 21.9, Typical = 21.2

CM4 core sleep, CM0+ core active @100 MHz Peak = 16.2, Typical = 15.9

Below are the screenshots of the iperf measurement output from both the kit and the PC.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 40 002-15656 Rev. *L
2024-02-09

https://github.com/Infineon/modustoolbox-software
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://sourceforge.net/projects/iperf2/files/

CM4 execution:

Figure 41 Throughput observed on the kit with CM4 core

Figure 42 Throughput observed on the PC with app running on CM4 core

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 41 002-15656 Rev. *L
2024-02-09

CM0+ execution

Figure 43 Throughput observed on the kit with CM0+ core

Figure 44 Throughput observed on the PC with app running on CM0+ core

The above table and images clearly show that the CM4 core has approximately 5.7 Mbps higher throughput
than the CM0+ core. So, we can conclude that running from CM4 generally results in higher throughput due to
core architecture features compared to CM0+.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 42 002-15656 Rev. *L
2024-02-09

Figure 45 CPU cycle consumed by the Wi-Fi task on CM core

A TCP client application, which periodically receives data bytes, consumes approximately 42k CPU cycles per
transfer on the CM4 core, as shown in the image above. The same can be saved by moving the Wi-Fi stack and
application code to the CM0+ core, which can be utilized for other process intense tasks.

4.8.2 Power consumption analysis
The below figure shows the test setup used for measuring the power consumption. CY8CPROTO-062S2-43439
kit is set up to run the mtb-example-wifi-wlan-lowpower application in low-power mode is connected over USB
cable to a PC running ModusToolbox™ for programming the kit. Both the kit and PC are connected to the same
Wi-Fi router. On the kit, current measurement points are then connected to a multimeter to measure the
current consumption.
Note: Minor kit rework is needed to measure the current on this board. Remove the resistor R65 and connect

the multimeter probes between the P6_VDD and VTARG signals.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 43 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://github.com/Infineon/mtb-example-wifi-wlan-lowpower
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

Figure 46 Current measurement setup

The following table shows the achieved throughput with the default BSP settings, for 10 ping commands:

Table 2 Current consumption details

Scenario Current (mA)

CM0+ core sleep, CM4 core active @3.3 V Peak = 3.42 mA, Average = 773 µA

CM4 core sleep, CM0+ core active @3.3 V Peak = 2.58 mA, Average = 751 µA

The figures below show the current measurement obtained from a power analyzer.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 44 002-15656 Rev. *L
2024-02-09

Figure 47 Application execution on CM4

Figure 48 Application execution on CM0+

Table 2, Figure 47, and Figure 48 show that the peak current consumption is approximately 0.85 mA higher
while running the application on the CM4 core compared to the CM0+ core. Please note that the application
used in this example is designed to minimize power consumption by utilizing offload features such as packet
filtering. As a result, there is only a slight difference in average current consumption between the cores.
Therefore, we can conclude that running from CM4 generally results in higher current consumption due to core
architecture features compared to CM0+.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 45 002-15656 Rev. *L
2024-02-09

4.8.3 Porting applications between cores
You can easily port ModusToolbox™ connectivity applications developed by you from one core to another (For
example, from CM4 to CM0+) by following the guidelines in Infineon developer community article KBA236435.
This porting may be needed at times to evaluate the tradeoffs of requirements from the application.

4.8.4 Virtual Connectivity Manager
If you need to run connectivity applications on both the CM4 and CM0+ cores at the same time (For example,
two MQTT clients), ModusToolbox™ offers a VCM library for sharing the connectivity libraries between the cores.
This library uses the IPC mechanism to call connectivity-related APIs from a secondary connectivity core to a
primary connectivity core. This way the application design becomes simple and save memory as there is no
need to link the connectivity libraries on the binaries for both the cores. The mtb-example-wifi-dual-core-
virtual-mqtt-client code example demonstrates the features of this library.

PSoC™ 6 MCU dual-core system design

4 PSoC™ 6 MCU dual-core development

Application note 46 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://community.infineon.com/
https://community.infineon.com/t5/Knowledge-Base-Articles/Porting-Wi-Fi-and-Bluetooth-LE-applications-to-CM0-core-KBA236435/ta-p/378238
https://github.com/Infineon/mtb-example-wifi-dual-core-virtual-mqtt-client
https://github.com/Infineon/mtb-example-wifi-dual-core-virtual-mqtt-client

5 Summary
This application note has shown how to use and optimize your firmware and hardware designs for the dual-
core feature in PSoC™ 6 MCUs.
Another way to optimize your PSoC™ 6 MCU design is based on the fact that PSoC™ devices are designed to be
flexible and enable you to build custom functions in programmable analog and digital blocks. For example,
PSoC™ 6 MCU has the following peripherals that can act as “co-processors”:
• DMA controllers Note that the most common CPU assembler instructions output by C compilers are MOV,

LDR, and STR, which implies that the CPU spends a lot of cycles just moving bytes around. Let the DMA
controllers do that instead
Note: PSoC™ 6 MCU DMA controllers have an extensive set of features that enable you to construct

complex data transfer and control systems that are independent of the CPUs. Software support
of these features is provided in the ModusToolbox™ software Device Configurator, a PSoC™ Creator
DMA Component, and an API in the PDL. For more information, see the Device Configurator Help
Guide, the DMA Component datasheet, or the PDL documentation.

• Crypto block This block offers hardware acceleration for symmetric and asymmetric cryptographic
methods (AES, 3DES, RSA, and ECC) and hash functions (SHA-512, SHA-256). It also has a true random
number generator (TRNG) function. Software support for these features is provided by an API in the PDL;
see the PDL documentation. The Infineon HAL does not have a crypto driver at the moment

• Universal Digital Blocks (UDBs) There are as many as 12 UDBs, and each UDB has an 8-bit datapath
that can add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). Datapaths
can be chained for word-wide calculations. Consider offloading CPU calculations to the datapaths. At the
moment, only PSoC™ Creator supports UDBs. ModusToolbox™ software does not have any support for UDBs

• UDBs also have programmable logic devices (PLDs) which can be used to build state machines; see
for example the Lookup Table (LUT) Component datasheet. LUTs can be an effective hardware-based
alternative to programming state machines in the CPU, for example by using C switch/case statements.
In addition, two GPIO ports include Smart I/O™, which can be used to perform Boolean operations directly
on signals going to, and coming from, GPIO pins. The Infineon HAL does not have support for Smart I/O

• Other smart peripherals include serial communication blocks (SCB), counter/timer/PWM blocks (TCPWM),
Bluetooth® Low Energy, I2S/PDM audio, programmable analog, and CAPSENSE™. Use these peripherals to
further offload processing from the CPUs

PSoC™ Creator and ModusToolbox™ software offer many Components and extensive APIs in the PDL to support
the peripherals’ functions. This allows you to develop an effective multiprocessing system in a single chip,
offloading many functionalities from the CPUs. This, in turn, can not only reduce code size, but by reducing the
number of tasks that the CPUs must perform, presents an opportunity to reduce CPU speed and power
consumption.
For example, you can implement a digital system to control multiplexed ADC inputs, and interface with DMA to
save the data in the SRAM to create an advanced analog data collection system with zero usage of the CPUs.
ModusToolbox™ software provides a set of tools for setting up peripherals, pre-defined BSPs for all Infineon kits,
libraries for popular functionality like CAPSENSE™ and emWin, and a comprehensive array of example
applications to get you started.
Infineon offers extensive application note and code example support for PSoC™ peripherals, as well as detailed
data in the device datasheets, PDL documentation, HAL documentation, and technical reference manuals
(TRMs). For more information, see Related Documents.

PSoC™ 6 MCU dual-core system design

5 Summary

Application note 47 002-15656 Rev. *L
2024-02-09

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

References
For a comprehensive list of PSoC™ 6 MCU resources, see KBA223067 in the Infineon Support.

Application notes
AN228571 - Getting started with PSoC™ 6
MCU on ModusToolbox™ software

Describes PSoC™ 6 MCU devices and how to build your first
ModusToolbox™ project

AN221774 – Getting started with PSoC™ 6
MCU on PSoC™ Creator

Describes PSoC™ 6 MCU devices and how to build your first
ModusToolbox™ or PSoC™ Creator project

AN210781 – Getting started with PSoC™ 6
MCU with Bluetooth® low energy
connectivity on PSoC™ Creator

Describes PSoC™ 6 MCU with Bluetooth® LE Connectivity devices
and how to build your first PSoC™ Creator project

AN217666 – PSoC™ 6 MCU interrupts Describes PSoC™ 6 MCU interrupt architecture and how to configure
interrupts

AN219434 – Importing PSoC™ Creator
Code into an IDE for a PSoC™ 6 MCU
Project

Describes how to import the code generated by PSoC™ Creator into
your preferred IDE

Code examples (PSoC™ Creator)
CE216795 – PSoC™ 6 MCU dual-CPU
basics

Demonstrates the two CPU cores in PSoC™ 6 MCU doing separate
independent tasks and communicating with each other using
shared memory and the inter-processor communication (IPC) block

CE223820 – PSoC™ 6 MCU IPC pipes This example demonstrates how to use the inter-processor
communication (IPC) driver to implement a message pipe in PSoC™

6 MCU. The pipe is used to send messages between CPUs

CE223549 – PSoC™ 6 MCU IPC semaphore This example demonstrates how to use the inter processor
communication (IPC) driver to implement a semaphore in PSoC™ 6
MCU. The semaphore is used as a lock to control access to a
resource shared by the CPUs

CE226306 – PSoC™ 6 MCU power
measurements

This example shows how to achieve the power measurements
listed in the PSoC™ 6 MCU datasheets

Code examples (ModusToolbox™)
mtb-example-psoc6-dual-cpu-empty-app This is a minimal starter Dual-CPU application template for PSoC™

6 MCU devices

mtb-example-psoc6-dual-cpu-ipc-sema This example demonstrates how to use the inter-processor
communication (IPC) driver to implement a semaphore in PSoC™ 6
MCU. The semaphore is used to lock to control access to a resource
shared by the CPUs and synchronize the initialization instructions

mtb-example-psoc6-dual-cpu-ipc-pipes This example demonstrates how to use the inter-processor
communication (IPC) driver to implement a message pipe in PSoC™

6 MCU. The pipe is used to send messages between CPUs

PSoC™ Creator component datasheets
Interrupt Supports generating interrupts from hardware signals

Device documentation
PSoC™ 6 MCU datasheets PSoC™ 6 technical reference manuals

Development kit documentation
CY8CKIT-062-BLE PSoC™ 6 Bluetooth® LE Pioneer Kit

CY8CKIT-062-WiFi-BT PSoC™ 6 Wi-Fi Bluetooth® Pioneer Kit

CY8CKIT-062S2-43012 PSoC™ 62S2 Wi-Fi Bluetooth® Pioneer Kit

PSoC™ 6 MCU dual-core system design

References

Application note 48 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/cms/en/about-infineon/company/contacts/support/?redirId=47672
https://documentation.infineon.com/html/psoc6/pvw1667470959605.html#pvw1667470959605
https://documentation.infineon.com/html/psoc6/kno1667478869945.html#kno1667478869945
https://documentation.infineon.com/html/psoc6/rgu1667479746995.html#rgu1667479746995
https://documentation.infineon.com/html/psoc6/sfm1667482739165.html#sfm1667482739165
https://documentation.infineon.com/html/psoc6/evv1667483064119.html#evv1667483064119
https://www.infineon.com/dgdl/Infineon-CE216795_PSoC_6_MCU_Dual-Core_Basics_(PSoC_Creator)-Code%20Example-v05_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e6eb1140323
https://www.infineon.com/dgdl/Infineon-CE223820_PSoC_6_MCU_IPC_Pipes-Code%20Example-v02_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e749f7b0687
https://www.infineon.com/dgdl/Infineon-CE223549_PSoC_6_MCU_IPC_Semaphore-Code%20Example-v02_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e748d68067d
https://www.infineon.com/dgdl/Infineon-CE226306_PSoC_6_MCU_Power_Measurements_(PSoC_Creator)-Code%20Example-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e774c990802
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-empty-app
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-ipc-sema
https://github.com/Infineon/mtb-example-psoc6-dual-cpu-ipc-pipes
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-6-components/system-interrupt-sysint/
https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-wifi-bt/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s2-43012/

CY8CPROTO-063-BLE PSoC™ 6 Bluetooth® LE Prototyping Kit

CY8CPROTO-062-4343W PSoC™ 6 Wi-Fi Bluetooth® Prototyping Kit

CY8CPROTO-062S3-4343W PSoC™ 62S3 Wi-Fi Bluetooth® Prototyping Kit

CYW9P62S1-43438EVB-01 PSoC™ 62S1 Wi-Fi Bluetooth® Pioneer Kit

CYW9P62S1-43012EVB-01 PSoC™ 62S1 Wi-Fi Bluetooth® Pioneer Kit

CY8CPROTO-062S2-43439 PSoC™ 62S2 Wi-Fi Bluetooth® Prototyping Kit

Tool documentation
ModusToolbox™ software ModusToolbox™ software simplifies development for IoT designers.

It delivers easy-to-use tools and a familiar microcontroller (MCU)
integrated development environment (IDE) for Windows, macOS,
and Linux

PSoC™ Creator PSoC™ Creator enables concurrent hardware and firmware editing,
compiling and debugging of PSoC™ devices. Applications are
created using schematic capture and over 150 pre-verified,
production-ready peripheral Components. Look in the downloads
tab for Quick Start and user guides

Peripheral Driver Library (PDL) Installed by PSoC™ Creator 4.3 and available through GitHub. Visit
mtb-pdl-cat1; for PSoC™ Creator, look in <PDL install folder>/doc for
the User Guide and API Reference

Hardware Abstraction Layer (HAL) Available through GitHub only. Visit mtb-hal-cat1

PSoC™ 6 MCU dual-core system design

References

Application note 49 002-15656 Rev. *L
2024-02-09

https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-063-ble/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062-4343w/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s3-4343w/
https://www.infineon.com/cms/en/product/evaluation-boards/cyw9p62s1-43438evb-01/
https://www.infineon.com/cms/en/product/evaluation-boards/cyw9p62s1-43012evb-01/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/psoc-6-peripheral-driver-library-pdl-for-psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-design_guide
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/mtb-hal-cat1

Revision history
Document
version

Date of release Description of changes

** 2017-02-16 New Application Note

*A 2017-03-08 Updated Template

*B 2017-06-09 Updated text and screen shots for release versions of PSoC™ Creator 4.1
and PDL 3.0.0
Other miscellaneous edits

*C 2017-08-23 Minor edits
Ported to new application note document template
Confidential tag removed

*D 2018-03-07 Added a new Figure 2
Updated Figure 4 and associated kit device part number
Updated Figures 6 and 9 for PSoC™ Creator 4.2 beta 2
Emphasized using CM0+ as a support CPU for tasks such as Bluetooth® LE
and CAPSENSE™

Added references to AN221111, Creating a Secure System; AN217666,
PSoC™ 6 Interrupts; AN219528, PSoC™ 6 Low Power Modes; and
CE216795, PSoC™ 6 Dual-CPU
Updated power modes description
Miscellaneous minor edits
Ported to new application note template
Changed the document title to PSoC™ 6 MCU Dual-CPU System Design

*E 2018-06-11 Expanded section 4.3 to include dual-CPU debugging with µVision and
IAR Embedded Workbench IDEs
Updated power mode descriptions in section 3
Miscellaneous minor edits
Ported to *Y application note template

*F 2018-06-12 Added support for ModusToolbox™

*G 2020-05-25 Updated instructions based on ModusToolbox™ 2.1
Added HAL support

*H 2020-08-26 Updated instructions based on ModusToolbox™ 2.2

*I 2022-09-19 Migrated to Infineon template
Updated instruction based on ModusToolbox™ 3.0

*J 2023-08-03 Updated link references

*K 2023-12-01 Added the Connectivity application design considerations section and its
subsection
Removed the Techniques to improve throughput section

*L 2024-02-09 Replaced CY8CPROTO-062-4343W with CY8CPROTO-062S2-43439 and
added reference to CY8CPROTO-062S2-43439 in the Development kit
documentation table.

PSoC™ 6 MCU dual-core system design

Revision history

Application note 50 002-15656 Rev. *L
2024-02-09

Trademarks
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

PSoC™ 6 MCU dual-core system design

Trademarks

Application note 51 002-15656 Rev. *L
2024-02-09

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-02-09
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-jii1649671899455

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Tools and libraries
	1.2 How to use this document

	2 General dual-core concepts
	3 PSoC™ 6 MCU dual-core architecture
	4 PSoC™ 6 MCU dual-core development
	4.1 ModusToolbox™ software instructions
	4.1.1 Creating a dual-core application
	4.1.1.1 Eclipse IDE for ModusToolbox™
	4.1.1.2 Command-line Interface (CLI)
	4.1.1.3 Modify application contents
	4.1.1.4 Build and program

	4.1.2 Customizing linker scripts
	4.1.3 Sharing libraries and peripherals

	4.2 PSoC™ Creator instructions
	4.3 Resource assignment considerations
	4.4 Power mode transition considerations
	4.5 IPC configuration considerations
	4.6 Interrupt assignment considerations
	4.7 Debug considerations
	4.7.1 ModusToolbox™ instructions
	4.7.2 PSoC™ Creator instructions
	4.7.3 Instructions for other IDEs
	4.7.3.1 Exporting ModusToolbox™ applications to supported IDEs
	4.7.3.2 Exporting from PSoC™ Creator

	4.8 Connectivity application design considerations
	4.8.1 Throughput analysis
	4.8.2 Power consumption analysis
	4.8.3 Porting applications between cores
	4.8.4 Virtual Connectivity Manager

	5 Summary
	References
	Revision history
	Trademarks
	Disclaimer

