

Editing the Configuration of 3D Glasses Using BlueTool™

Associated Part Family:CYW20702

This document provides a procedure for editing the configuration of Bluetooth-enabled 3D glasses using Cypress's BlueTool® software and a Bluetooth CYW20702-equipped host. The document is intended for design engineers.

Contents

1	Intro	duction	1
	1.1	Cypress Part Numbering Scheme	1
	1.2	Acronyms and Abbreviations	1
2	loT l	Resources	1
3	Syst	em Requirements	2
	3.1	Host System Requirements	2
	3.2	Hardware Requirements	2
4	Soft	ware Requirements	2
5	Syst	em Connections	2

7 Launching BlueTool and Displaying the Log Window 4 8 8 Setting Up the HCI Control Transport	6	Determining the Bluetooth Host Device and Port3
8 Setting Up the HCI Control Transport	7	Launching BlueTool and Displaying the Log Window 4
9 Changing the Extended Inquiry Response Field6 10 Configuring Parameters for 3D Glasses	8	Setting Up the HCI Control Transport4
10 Configuring Parameters for 3D Glasses	9	Changing the Extended Inquiry Response Field6
11 Issuing 3D Synchronization Training Parameters 10 12 References	10	Configuring Parameters for 3D Glasses
12 References 11 Document History 12 Worldwide Sales and Design Support 13	11	Issuing 3D Synchronization Training Parameters 10
Document History12 Worldwide Sales and Design Support	12	References
Worldwide Sales and Design Support13	Docι	ument History12
0 11	Worl	dwide Sales and Design Support13

1 Introduction

BlueTool is a proprietary Cypress software tool for exercising, testing, scripting, debugging, and programming devices that use Cypress Bluetooth chips. BlueTool runs on a standard PC running the Microsoft[®] Windows[®] operating system. BlueTool interfaces with the Cypress Bluetooth chips at the HCI protocol layer. The HCI UART is supported.

1.1 Cypress Part Numbering Scheme

Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion, there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides Cypress ordering part number that matches an existing IoT part number.

Table 1. Mapping Table for Part Number between Broadcom and Cypress

Broadcom Part Number	Cypress Part Number
BCM20702	CYW20702

1.2 Acronyms and Abbreviations

In most cases, acronyms and abbreviations are defined on first use.

For a comprehensive list of acronyms and other terms used in Cypress documents, go to: http://www.cypress.com/glossary.

2 IoT Resources

Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates. Customers can acquire technical documentation and software from the Cypress Support Community website (http://community.cypress.com/).

3 System Requirements

3.1 Host System Requirements

A personal computer running the Microsoft® Windows® operating system is required to use BlueTool[™]. Cypress recommends running Windows XP; however, other versions of Windows are also supported.

Note: BlueTool is constantly being revised, resulting in operational and other changes to the graphical user interface. Consequently, this document contains only basic instructions on using BlueTool. These instructions should remain the same for all BlueTool releases. If discrepancies exist between this document and the version of BlueTool you are using, contact your Cypress technical representative or visit Cypress's CSP (see IoT Resources on page 1).

3.2 Hardware Requirements

In addition to a host personal computer, the following hardware is required:

- A host system Bluetooth device. (A USB dongle with a CYW20702 is assumed throughout this document.)
- Bluetooth-enabled 3D glasses.

4 Software Requirements

BlueTool is required. It is available for download from the Cypress CSP for those with access privileges. Those who require access should contact their Cypress representative.

5 System Connections

Figure 1 shows a basic setup with a host system that is connected via Bluetooth with Bluetooth-enabled 3D glasses.

6

Determining the Bluetooth Host Device and Port

To determine the port of the Bluetooth host that will be used to configure the paired 3D glasses, perform the following steps:

- 1. On a Windows® system, open the Device Manager. One way to do this is to perform the following steps:
 - a. Right-click My Computer and click Properties.
 - b. Click the Hardware tab and then click on Device Manager.
- 2. In the Device Manager window, verify the presence of an embedded Bluetooth 4.0 USB device or a Bluetooth device attached via a USB serial port.

For an embedded Bluetooth device, verify that the device is listed under Bluetooth Devices similarly to what is shown in the following example:

For a Bluetooth device attached via a USB serial port, verify its presence under Ports (COM & LPT), which in the case of the following example is USB Serial Port (COM4).

7

Launching BlueTool and Displaying the Log Window

Complete these steps to launch BlueTool and display the log window:

- 1. Click Start > All Programs>Cypress BlueTool > BlueTool to open the BlueTool application.
- 2. In BlueTool, click **View > Log Window** to display the log window.
- 3. Click **View > Log Window Details** to enable the log window to display detailed log information.

8 Setting Up the HCI Control Transport

Complete these steps to set up the HCI control transport and sanity test host control by issuing a reset.

 Click Transport > HCI Control (keyboard shortcut CTRL+1) to display the Select HCI Control Window Transport window.

 Select the appropriate option (either UART or USB). If the transport is UART, then select or type the COM port (see Determining the Bluetooth Host Device and Port on page 3) and click OK. If the transport is USB, then select usb0 and click OK.

el

3. In the HCI Control window, select **7.3 Host Controller & Baseband Commands (3 key)** from the Command Group list menu and double-click **Reset** to issue a reset command.

File	Edit	View	Transport Window Help	
6	log	Nindo	HCI Control: usb0	
E	Log		IF HCI protocol active 7.3: Host Controller & Baseband Commands (3 key)	◄
51	:35.9	40 u	ISI Set_Event_Mask	
51	:35.9	42 u	Indexet Ist Set_Event_Filter Flush	Command Group list menu
L	[0E	04]:	Read_PIN_Type Write_PIN_Type	
	eve	nt =	0: Create_New_Unit_Key c_Read_Stored_Link_Key	
	Com	mand	Write_Stored_Link_Key	
	Sta	tus =	Write_Local_Name	
<			Read_Local_Name Read_Connection_Accept_Timeout	
			Read_Page_Timeout	
			Write_Page_Timeout Read_Scan_Enable	
			Write_Scan_Enable	
			Read_Page_Scan_Activity Write_Page_Scan_Activity	

4. Verify success of the reset command by viewing the log window.

9 Changing the Extended Inquiry Response Field

Complete these steps to write to and read back from the Extended Inquiry Response (EIR) field in NVRAM.

1. In the HCI Control window, select **7.3 Host Controller & Baseband Commands (3 key)** from the Command Group list menu and double-click **Write_Extended_Inquiry_Response**.

2. In the Write_Extended_Inquiry_Response HCI command window, enter the data to write to NVRAM, being sure to separate each byte by one space. Click **OK** when done entering the data.

HCI Command: Write_Extended_Inquiry_Response (usb0)					
FEC_Required Extended_Inquiry_Response: 06 FF 0) <u>F 00 00 0</u>	D 6	4 <u>02 0A 00 04 0</u>	D 3C 04 00	OK Cancel
Manufacturer ID (4 bytes)				Added E	IR data (5 bytes). ee bytes are the COD.
Fixed ID—CID (1 byte) ———				TX powe	er section (3 bytes). e is the TX power value
EIR Flags (1 byte)				Path los	ss threshold (1 byte)

3. If prompted with a window labeled Not enough bytes, click Yes to continue.

Not e	nougł	n bytes		×
4	A	Only 15 of required 240 bytes specified. zeros?	Fill remaining 22	5 bytes with
			Yes	No

4. Verify success of the EIR write command by viewing the Log window. The results should look similar to those shown here, where the data is displayed followed by the Success message.

```
Log Window
46:53.037 usb0 c> Write_Extended_Inquiry_Response
                                   FEC Required: 0x0
       HCI Command
 [52 OC F1]:
 opcode = 0xC52 (3154, "Write_Extended_Inquiry_Response")
 FEC Required = 0x0 (0)
 Extended_Inquiry_Response = "06 FF 0F 00 00 0D 64 02 0A 00 04 0D 3C 04 00 00 00 00 00 00 00 00 00
46:53.075 usb0 <c Write_Extended_Inquiry_Response
       HCI Command Complete Event
 [OE 04]: 01 52 OC 00
 event = 0xE (14, "Command Complete")
 Num HCI Command Packets = 0x1 (1)
 Command_Opcode = 0xC52 (3154, "Write_Extended_Inquiry_Response")
 Status = 0x0 (0, "Success")
```


5. (Optionally read back the NVRAM values just written.) In the HCI Control window, select **7.3 Host Controller** & Baseband Commands (3 key) and double-click Read_Extended_Inquiry_Response.

Note: To successfully read back values just written to NVRAM, be sure not to issue a Reset between the Write_Extended_Inquiry_Response and Read_Extended_Inquiry_Response commands.

10 Configuring Parameters for 3D Glasses

Complete these steps to configure parameters for 3D glasses.

1. In the HCI Control window, select 0: Vendor-specific Commands (0 key) and double-click Parameters_For_3D_Glasses.

2. In the Parameters_For_3D_Glasses HCl command window, insert values for the **Display ID**, **LS open**, **LS close**, **RS open**, and **RS close** and then click **OK** to save the values to NVRAM.

🚨 HCI Command: Par	- • •			
(RT) Display ID (0-255):	0	0x0		ОК
LS open (0-65535):	251	0xFB		Cancel
LS close (0-65535):	252	0xFC		
RS open (0-65535):	253	0xFD		
RS close (0-65535):	254	0xFE		
Delay (0-65535):	0	0x0		
Dual view mode:	Audio on a	off l	Audio used unused	

Note: The values for shutter control and delay are in microseconds. Only Display ID, LS open, LS close, RS open, and RS close will get written to NVRAM; the Delay value will not be saved. Furthermore, this command does not prefetch the existing values for these parameters. Thus, the command window will always show all values as zeroes regardless of the actual values written in NVRAM.

3. To verify NVRAM values, in the HCI Control window, select **0: Vendor-specific Commands (0 key)** and double-click **Read_RAM**.

HCI Control: usb0	_ 🗆 🗙
I HCI protocol active 0: Vendor-specific Commands (0	key)
Write_UART_Clock_Setting Set_Sleep_Clock_Accuracy_And_Settling_Time Configure_Sleep_Mode Read_Raw_RSSI Write_Channel_Class_Config IOP_Test_Tx IOP_Test_Tx IOP_Test_Rx	
Read RAM Launch_RAM	
Install_Patches Set_Link_Quality_Threshold Tx Test	
Rx_Test	~

4. In the Read_RAM HCI command window, set the address and number of bytes and click OK.

📲 HCI Command: Read_RAM (usb0)					
Address (0-4294967295):	536004	0x82DC4	ОК		
Length (0-251):	50	0x32	Cancel		

5. By viewing the Log window, verify the shutter control values are as expected.

🕒 Log Window	• 🗙
09:55.806 usb0 c> Read_RAM Address: 0x82DC4	*
HCI Command	
[4D FC 05]: C4 2D 08 00 32	
opcode = UxrC4D (64589, "kead_KAM")	
Address = 0x82DC4 (536004)	
Length = 0x32 (50)	
D9:55.814 USDO <c 00="" 00<="" data:="" read_ram="" td=""><td>0 00 0</td></c>	0 00 0
HCI Command Complete Event	
[0E 36]:	
01 4D FC 00 00 00 00 00 01 00 00 00 00 00 00 00	
FE 00 FF FF 00 00 00 00 00 00 00 00 00 00	
event = 0xE (14, "Command Complete")	
Num HCI Command Packets = 0x1 (1) Shutter control values	
Command Opcode = 0xFC4D (64589, "Read RAM") begin here	
Status = 0x0 (0, "Success")	
Data = "00 00 00 01 00 00 00 00 00 00 00 00 00 0	FF FF
	-
<	<u>ار</u> ا

11 Issuing 3D Synchronization Training Parameters

Complete these steps to issue 3D synchronization training sequence parameters.

1. In the HCI Control window, select 0: Vendor-specific Commands (0 key) and double-click 3D_Sync_Train_params.

HCI Control: usb)	_ 🗆 🔀
HCI protocol active	0: Vendor-specific Commands (0 key)	•
Set_LTE_Coex_Config Write_VS_ID Read_VS_ID Read_FW_Info RSSI_Measurements 3D Sync Train params Sector_Erase 2042_Read_SPI_Reg 2042_Read_SPI_Reg 2042_Write_SPI_Reg 2042_Read_EEPROM_Ad 2073x_Read_EEPROM_A 2073x_Write_EEPROM_A	ldress dress ddress ddress	

2. In the **3d_bd_addr** field in the 3D Sync Train params window, enter the new host address, inserting a space between each byte. When done entering the address, click **OK**.

🔥 HCI Command: 3D	- • •	
3d_bd_addr:	BE EF BE EF BE EF	ОК
3D_version_id (0-255):	0 0x0	Cancel

3. View the Log window to verify a successful status.

🕒 Log Window		_ 🗆 🔀
54:45.194 usb0 c> 3D Sync Train params HCI Command	3d_bd_addr: BE EF BE EF BE EF	
<pre>[05 FD 07]: BE EF BE EF BE EF 00 opcode = 0xFD05 (64773, "3D Sync Train params")</pre>		
3d_bd_addr = "BE EF BE EF BE EF" 3D_version_id = 0x0 (0)		
54:45.200 usb0 <c 3d="" params<br="" sync="" train="">HCI Command Complete Event</c>		
[OE 04]: 01 05 FD 00		
event = 0xE (14, "Command Complete") Num_HCI_Command_Packets = 0x1 (1)		
Command_Opcode = 0xFD05 (64773, "3D Sync Train params") Status = 0x0 (0, "Success")		
<		>

12 References

The references in this section may be used in conjunction with this document.

Note: Cypress provides customer access to technical documentation and software through its Customer Support Portal (CSP) and Downloads and Support site (see IoT Resources).

	Document or Item Name	Item Number	Source
[1]	BLUETOOL_MI_1.6.3.2 (or later)	BLUETOOL_MI_1.6.3.2.zip	community.cypress.com
[2]	BTSP User's Guide	-	Bundled with the BlueTool software package

Document History

Document Title: AN21/1771 Editing the Contiguration of 3D Classes Heir	
DOCUMENT THE ANZ 14// 1 - CUMMU THE COMMUNICATION OF SD GIASSES USIN	

Document Number: 002-14771

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	-	-	06/06/2012	20702-AN400-R: Initial release
*A	5451124	UTSV	09/30/2016	Updated to Cypress template
*В	5882509	AESATMP8	09/13/2017	Updated logo and Copyright.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1s) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.