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AN2122 describes the implementation of a dual-tone multiple frequency (DTMF) detector. This application note shows how 
to build an inexpensive decoder that satisfies most ITU requirements and consumes relatively low CPU resources to be 
operational in the background, while being able to distinguish speech and music from a valid DTMF signal. 

 

Introduction 

DTMF signaling is widely used in analog telephone dialing, 
data entry, voice mail systems, remote control of various 
consumer electronics (auto answering machines, home 
automation devices, bank information services, etc.). 

The DTMF signal is the sum of two sinusoidal waveforms 
with predefined frequencies, which were selected 
according to the ITU Recommendations Q.23 [1] and Q.24 
[2] (References). A user interacts with the DTMF dialer 
using a keypad with 16 characters. Figure 1 illustrates the 
keypad layout and corresponding signal frequencies. 

 

Figure 1. The Touch-Tone Phone Keypad 
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The conventional phones contain keys ‘0’-‘9’, ‘*’, ‘#’, and 
the keys ‘A’-‘D’ can be found in the industrial controllers 
that are used especially for remote control. There are eight 
different frequencies, grouped into rows and columns. 
Each character is associated with pair frequencies from 
row and column groups. 

The DTMF decoder determines the frequencies are 
present in the incoming signal and correctly decode the 
corresponding character. Table 1 illustrates the key 
decoder ITU specifications. The full DTMF signaling 
specifications is shown in [1].

 

Table 1. DTMF Decoder ITU Specifications 

Parameter Valid Limits of Parameter 

Frequency Tolerance The frequency tolerance about of ±1.5% is allowed for valid DTMF tone. The tone with offset ±3.5% must 
be rejected. 

Signal Duration A valid signal with duration of 40 ms must be considered as valid. The tones with duration 23 ms or less 
must be rejected. 

Signal Interruption A valid DTMF signal interrupted for 10 ms or less should not be detected as two distinct tones.  

Signal Pause A valid DTMF signal separated by 40 ms pause or more must be detected as two distinct characters. 

Signal-to-Noise Ratio (SNR) The DTMF detector must correctly process signal with SNR 15 dB. 

Tones Twist The detector must correctly decode DTMF codes when row frequency signal is 8 dB larger than column 
frequency signal. The detector must also operate correctly when column frequency signal is 4 dB larger 
than row signal. 

Talk-Off The detector should operate in the presence of speech and music without incorrectly identifying the 
speech signal as valid DTMF signals. To evaluate the decoder speech resistance, the decoder is tested 
using BellCore test tapes. 

 

There are numerous design approaches to build DTMF 
decoders. The typical decoder consists of a front-end 
signal processing system and a back-end logic system to 
make conclusions concerning presence or absence of 
DTMF characters. 

The most popular algorithms for front-end signal 
processing are based on Discrete Fourier Transform 
(DFT) [7] modifications. To reduce the number of 
calculations, the coefficients are calculated by using 
modified Goertzel algorithm [8], which requires only N+2 
multiplications and 2N+2 additions to process data for 
every N samples. The modified Goertzel algorithm 
calculates the squared absolute value of DFT coefficients 
and extracts row/column frequencies via second-order 
infinite impulse response (IIR) filter:
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In spite of the fact that this algorithm is widely 
recommended in application notes from various digital 
signal processing (DSP) chipmakers, the work [3] shows 
the DFT-based detection algorithms are not strictly ITU 
compliant because the passband for row frequencies does 
not satisfy the ITU requirements. The algorithm can be 
improved by using non-uniform DFT and dedicated  
back-end logic [4]. This implementation is computation 
intensive and DSP orientated. To meet ITU specifications, 
some DTMF detectors use DFT coefficient calculation for 
shifted row/column frequencies along with sophisticated 
decision logic. 

To improve the speech resistance, DTMF decoders are 
often equipped with second-harmonic estimators. Speech 
and music are characterized by rich even harmonics; low 
levels of these harmonics characterize the DTMF signal. 
The speech estimator analyzes the second harmonics 
level and compares the results with fundamental 
frequency levels to detect speech/music, and predict false 
DTMF-signal detection. 

The other effective decoder operation principles are based 
on resonant filtering using digital wave filters [5]. These 
filters are characterized by low sensitivity to rounding filter 
coefficients, but each sample requires several 16-bit 
multiplications and additions with output normalization to 
provide reliable filter operation. So, this decoder is better 
oriented for 16-bit CPUs or DSPs. 

A very attractive decoder on a low-cost 8-bit processor is 
discussed in a recent paper [6]. The decoder uses  
pair-adaptive notch filters to suppress one tone in the 
incoming signal and a direct frequency estimator to 
measure the frequency of the other tone. This decoder 
meets all ITU specifications (both in time and frequency 
domains) and is characterized by very low speech 
resistance. The BellCore Talk-Off test results are at the 
upper limit of allowable bounds and are much worse than 
a good DFT-based decoder with second harmonics 
analysis. The decoder consumes about 4.5 MISPs on an 
8-bit CPU. 

In the author’s opinion, the optimal way to build a DTMF 
decoder lies in using adaptive resonant/band-pass filters 
to suppress unwanted noise signals together with direct or 
indirect filter-output frequency estimation. The filters (both 
for fundamental DTMF frequencies and second 
harmonics) output level analysis meets all ITU signal level 
specifications. These levels have reliable speech detection 
and direct frequency measurement provides satisfactory 
ITU frequency specifications. The decoder, which utilizes 
this principle, will be described in a separate Application 
Note. 

DTMF Decoder Operation 

During the development of this decoder, the goal is to 
build an inexpensive decoder that satisfies most ITU 
requirements and consumes relatively low CPU resources 
to be operational in the background. It must be stable to 
speech signals and incorporate second harmonics 
analysis to distinguish speech and music from a valid 
DTMF signal. The plan is to employ the modified Goertzel 
algorithm. The MATLAB simulations showed that 16*16-bit 
multiplication with output normalization is used to get 
stable IIR filter operation together with accurate filter 
corner frequency settings. Each Goertzel filter consumes 
about 400 CPU cycles, or 17 us at 24 MHz, for each 
sample process using the macros for multi-byte 
multiplication, PSoC

®
 MAC [9]. To incorporate  

second-order harmonics analysis, 16 filter values must be 
calculated per sample and the sample rate must not be 
lower than 7.8 kHz to satisfy the Nyquist criterion. A 
particular solution can use a decimator for fundamental 
frequency filters or reject the second harmonics analysis 
but that is rejected. So, the other approach must be used. 

The proposed decoder incorporates the quadrature 
correlator for fundamental DTMF frequencies and their 
second harmonics. The correlator correlates the incoming 
signal with two quadrature signals, which correspond to 
the sign function of sine and cosine signals of one 
fundamental DTMF frequency or its second harmonic. The 
advantage of this correlator is the absence of multiplication 
operations; the correlator performs addition when the 
reference signal is positive and subtraction when the 
reference signal is negative.  

After processing the N samples, the quadrature 
components are squared to eliminate incoming  
signal-phase dependence and are ready to follow 
processing by back-end logic.  
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2

kZ  is 

the squared correlator output. 

A simulation model is constructed using MATLAB.

Figure 2 shows the simulated correlator response 
2

kZ  for 

the DTMF signal, which is also a function of the correlation 

frequency kf  and sample length N. The correlator model 

uses 16-bit, fixed-point arithmetic and the output response 

is divided by 
16 22 N  for normalization and scaling. The 

DTMF signal consists of the signal’s sum with frequencies 

at 941 Hz and 1209 Hz that corresponds to '* '  character; 
the sample rate is 8518 Hz. The sample rate is larger than 
the rate commonly used in telephone systems, 8000 Hz, 
but is utilized to simplify the anti-aliasing filter.

Figure 2. Correlator Response Simulation 

 

 

The simulation results show that the correlator  satisfies 
most ITU frequency specifications for column frequency 
group of N=127, which corresponds to the accumulation 
time of 15 ms and satisfies the minimum DTMF  
signal-level detection demands.  

For row frequencies, the allowable boundary is larger. 
Because the correlator uses output result division on 2

16
 

for output data normalization, the low limit of the input 
signal must be evaluated as well. Figure 3 shows the 
simulated normalized correlator transfer characteristics as 
a function of signal amplitude and N. 
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Figure 3. Correlator Transfer Characteristics 
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Figure 3 shows that the transfer characteristic is virtually 
linear when the DTMF signal code’s amplitude is greater 
than 15. If an 8-bit ADC is used, the input signal should be 
multiplied with a gain of 4 to increase the dynamic range of 
the input signal. Under this condition, the estimated 
correlator dynamic range for the input signal will be more 
than 25 dB, which meets ITU specifications. 

Decoder Implementation 

Signal Processing Software Front-End 

The DTMF decoder is implemented largely in software 
using both interrupt and main techniques. The signal 
processing front-end subsystem is located in an 8-bit 
sigma-delta ADC Interrupt Service Routine (ISR) and the 
back-end logic is placed in the main program loop.  

The ADC ISR performs the following tasks: 

 Correlation sum updates for fundamental DTMF 
frequencies and their second harmonics; 

 Incoming signal energy calculation using PSoC 
MAC; 

 Correlation sum squaring and normalization using 
PSoC MAC; 

 Input amplifier gain adjustment; 

 Synchronization with back-end decision logic. 
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Figure 4. ADC ISR Structure 
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Figure 4 illustrates the ADC ISR structure. A simple state 
machine is implemented in the ADC ISR to process these 
tasks. When this routine is called, the fCounter variable is 
checked first. When the correlator has processed the N 
(where N is sample length) input samples, the fCounter is 
equal to N. Then the fReady flag is checked. This flag 
marks the previous calculation results which were read by 
the back-end logic and can now be overwritten. 

If this flag is cleared, the fCounter is incremented and the 
correlation sums for fundamental DTMF frequencies are 
squared and normalized. Note that the correlation sums 
squaring and normalization code is placed in the ISR to 
save 32 bytes of RAM. Moreover, because the ISR uses 
the PSoC MAC for incoming signal calculation, there is 
sense to use this MAC unit here to avoid resource-sharing 
problems. In addition, the correlator output calculation is 
distributed into several sequential interrupts to balance the 
interrupt latency. 

The following interrupt performs the correlation results 
calculation for second harmonics and sets the fReady flag. 
Now the correlator data is completely ready and can be 
read by the back-end logic subsystem. This subsystem 
must read the correlation results and clear the fReady flag 
more often than the correlator accumulation period, or 
15 ms in our case, to avoid correlator stalls. The next ADC 
interrupt initializes the correlation sums, MAC, clears 
fCounter variable, and updates the input PGA gain value if 
the automatic gain-control loop is used after the correlator 
is ready to process the next N ADC samples. 

Back-End Logic 

The back-end decision logic is more complicated and is 
implemented as a subroutine, which is periodically called 
by the main program loop. The back-end logic routine 
implements the following tasks: 

 Performs various validity checks; 
 Parses the incoming data stream into separate DTMF 

characters; 
 Calls the automatic gain-loop routine, if needed. 
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Figure 5. Decision Logic Algorithm 
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Figure 5 illustrates the decision logic operation. The 
fReady flag is checked. When the correlator data is ready, 
the tones with maximum level from row and column 
frequency groups are found. The fReady flag is then 
cleared to allow calculation of the next correlator data and 
avoid possible correlator stalls. The back-end logic 
subsystem can be set to two modes: awaiting valid DTMF 
tone signal and pending signal pause. The fDtmf_Enable 
flag is used to switch between these modes. The 
fDtmf_Enable flag is set to enable awaiting valid DTMF 
tone mode. 

To detect a valid DTMF tone, a series of checks are 
performed. The first check is signal strength. The sum of 
squared amplitudes of the peak tones from row and 
column frequency groups must be greater than a 
predetermined threshold. Because there are possible 
twists (differences in the level between high and low 
tones) between row and column peak tones, the sum 
estimation works better than separately comparing the row 
and column tone levels. 

The second check is adjacent tones strength analysis. The 
strongest row/column tone must stand out from the 
adjacent tones within its group by more than a pre-set 
threshold ratio. To avoid overflow, the peak tone levels are 
scaled and compared with the adjacent tones. 

The third check is tone twist estimation. There are two 
possible twists types in the incoming DTMF signal. 
Assuming the telephone channel is a low-pass filter, the 
high frequency tone is usually received with lower 
amplitude than low frequency tone, which is called “normal 
twist.” To overcome this twist, the DTMF generators 
amplify the high frequency tone level. If the telephone 
channel gain-frequency characteristic is near to linear, the 
high-frequency column tone can be larger than the low 
frequency row tone. This phenomenon is called “reverse 
twist.” The decoder must accept DTMF signals with 8 dB 
row/column amplitude relations for “normal twist” and 4 dB 
for “reverse twist.” The decoder checks the relationship 
between peak row/column tones to detect both “normal” 
and “reverse” twists. 

The fourth check is the second harmonics strength check. 
It is assumed that the DTMF signal contains only 
fundamental tones of its odd harmonics (if telephone 
channel amplifiers were saturated under incorrect signal 
levels). Speech and music have significant levels of even 
harmonics added to fundamental frequencies. This check 
makes sure that the ratios between peak row/column 
tones and their second harmonics are larger than a 
predefined threshold. 

For reliable DTMF decoder operation, each character must 
be decoded twice, consecutively. If the previous character 
was correctly decoded, the summarized peak tone’s level 
between two sequentially decoded characters will not 
differ substantially. This check also prevents false 
detection of short DTMF signals. 

When all tone checks have been completed, the peak 
tones are mapped in the corresponding character. If the 
previously detected character is the same as the current 
character detected, the previous character is cleared, the 
decoder is switched from the “pause” to ”await” mode by 
clearing the fDtmf_Enable flag, and a valid character is 
returned. This switch is required to prevent the  
misdetection of one durable DTMF signal as several 
separate identical characters. 

If any of the checks fail, the previously detected character 
is cleared and a routine to calculate the input amplifier 
gain is called. If a valid DTMF detection sequence is in 
progress, the gain adjusting system is completely blocked. 
Note that the gain is updated in the ADC ISR to 
synchronize the gain update with the new measurement 
cycle and eliminate unwanted correlator data fluctuations. 

In “pause” mode (fDtmf_Enable is equal to 0); the strength 
of peak row/column tones is checked. The sum of the 
squared row and column peak tones detects the pause. If 
this sum is smaller than the predefined threshold value, 
the fDtmf_Enable flag is set and the decoder exits pause 
mode. 
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Automatic Gain -Control  Subsystem 

The automatic gain control (AGC) subsystem expands the decoder input signal’s dynamic range. The AGC adjusts the input 
PGA gain according to the estimated signal energy. Figure 6 illustrates the AGC  operation. 

  

Figure 6. Automatic Gain Control Algorithm 
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AGC operates as follows; when the energy signal is too 
low, the variable gCounter is incremented. If this variable 
reaches the upper predefined limit, the gain is increased 
and gCounter is reinitialized. If the incoming energy signal 
is too high, gCounter is decremented. When this variable 
reaches the lower limit, the PGA gain is decreased. If the 
incoming energy signal falls into the allowed range, the 
gain counter variable gCounter is reinitialized to an 
immediate value. Upper and lower PGA gain level checks 
are implemented as well. 

Note that the automatic gain subsystem has asymmetric 
transient characteristics; the gain rising time is much 
shorter than the gain falling time. This allows for quick 
recovery from over-range situations, but preserves the 
existing gain level during speech/signal pauses. These 
AGC transient characteristics were obtained by proper 
selection of gain counter gCounter upper, lower limits and 
intermediate initialization values. The AGC can be turned 
off at the time of compilation by setting AGCUSE condition 
variables in dtmfcalc.asm and globdefs.h to 0 if AGC is not 
used. 
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Decoder Hardware  

Figure 7 illustrates the internal PSoC connections and 
several external components that are needed to make the 
DTMF detector operational. 

 

 

Figure 7. PSoC Internals 

 

The high-pass filter R1C1 cuts the low-frequency signals as 
the AC mains. The input programmable gain amplifier 
scales the incoming signal. The amplifier output is 
connected with input from the 8-bit sigma-delta ADC. The 
baud-rate timer forms the clock signal for the serial 
transmitter, which can be connected via level shifter 
(MAX3221E, for example) to a PC to analyze the decoded 
characters. The default data rate is 115200 bauds. 

The optional component is crystal oscillator, that clock the 
processor. The external oscillator (for example, DS32KHz 
from Maxim, and SG-3030JF from Epson, etc.), connected 
with the P1[1] port via small decoupling capacitor is 
recommended. Although, the 32.768 kHz crystal, 
connected accordingly to P1[0], is also used.  

If optional watch crystal is used, the high-frequency PSoC 
generator output must be analyzed to verify that the 
phase-locked loop (PLL) is working properly and no visible 
jitter is present on the generator signal when the serial 
transmitter is active. To do this, the baud-rate timer output 
can be passed to an external pin and observed via an 
oscilloscope. The possible jitter can degrade the ADC 
signal-to-noise ratio and reduce overall performance of the 
DTMF. The external clock oscillator is strongly 
recommended for debugging purposes. This is because 
the emulation board has dense traces and other digital 
signals can break/degrade the PLL and oscillation stability. 
For end products, the watch crystal is completely 
sufficient. 
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Decoder Test Results 

Table 2 illustrates test results for the proposed decoder. The decoder is tested using generated waveforms from sound editor 
Cool Edit Pro 2.0; you can download the full-featured evaluation copy at [11]. Note that the text marked in red italics illustrates 
the properties that are outside of ITU specifications. 

  

Table 2. Decoder Test Results 

Test Item Parameter Comment 

Frequency Tests 

Frequency Allowed Deviation 

The larger frequency tolerance for lower limit of 697 Hz, 
upper limit of 941 Hz, and lower limit for 1209 Hz is caused 
by the absence of proximity tone level checks for these 
frequencies.  

If you require a decoder strict in ITU-compliance, you can 
add two intermediate frequency bins. For example, take 
660 Hz and 1075 Hz and add additional checks in the 
back-end logic routine. 

697 Hz -5.5%... +3.1% 

770 Hz -2.8%…+3.4% 

852 Hz -3.4%...+3.5% 

941 Hz -3.7%...+4.5% 

1209 Hz -4.2%...+2.8% 

1336 Hz -3.2%...+2.7% 

1447 Hz -2.8%...+2.6% 

1633 Hz -2.6%...+2.5% 

Twist Tests 

Normal Twist Limit 9.1 dB The tests were performed for digits 1, 5, 9, D. 

Reverse Twist Limit 4.7 dB 

Time Tests 

Minimum Tone Time 45 ms The test is performed for digits 1, 2, 3, 4. 

Min Pause Time 13 ms 

Dynamic Range Tests 

Dynamic Range 

(AGC Off) 

17 dB The dynamic range of 25 dB can be obtained by lowering 
the DTMF signal-strength check threshold.  

Dynamic Range 

(AGC On) 

38 dB The AGC must have time to stabilize, so if it is used, a 
continuous tone must precede the information tones. 

Talk-Off Resistance Tests 

False Character Detection Rate 3-7 responses per hour when 
speech/music signal was present. 

The talk-off test gets complete using the BellCore 
reference tape. 

 

  



 
 
 

Analog – Standard –
 
DTMF Detector 

 

www.cypress.com Document No. 001-38003 Rev. *G 12 

Frequency Amplitudes 1.5 V 

 

 

High Frequency Amplitudes 1.5 V 
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Maximum Amplitudes 2.0 V 

 

Possible Decoder Modifications 

The proposed application provides the basic DTMF 
decoder, which satisfies most designs. Many variations 
can be suggested. The decoder can be equipped with an 
anti-aliasing LPF for some applications. This LPF can be 
built using the PSoC switched-capacitor filters or 
adjustable Sallen and Key low-pass filters, AN2031. 

If the user cannot dynamically allocate the sigma-delta 
ADC for detection, it can be done using PSoC dynamic  
re-configuration. A 6-bit SAR ADC or single-bit comparator 
can replace the ADC. The comparator-based DTMF 
detector has some performance issues, but is still suitable 
for many remote-control applications. 

The correlation memory consumes 4*N bytes of Flash 
memory. This is not suitable for some applications. In this 
case, the modified Goertzel algorithm can be implemented 
instead of a quadrature correlator and the second 
harmonics analysis can be omitted. Secondly, the user 
adjusts the sample length and sample frequency 
according to application demands. The command-line 
utility, dtmf.exe (included in the downloadable files), 
automatically generates the assembler include file, 
corrtables.inc, for given N and sample frequency. 

The total time of execution for the ADC ISR during the 
incoming signal is near 70 us with a sample period of 117 
us and PSoC clock frequency at 24 MHz. If the second 
harmonic analysis is not required, the ISR can be 
simplified by omitting the 16-quadrature sum calculation 
(saving 32 bytes of RAM). The CPU clock can be 
decreased to 12 or 6 MHz. In this case, the sample rate 
can be reduced as well, and an anti-aliasing filter is 
suppresses possible speech/music signals. 

 

If high accuracy in the DTMF tone frequency analysis is 
required, the sample length can be increased by 
discarding the rule that each character must be 
consecutively detected twice.  

Additional frequency bins with intermediate frequencies 
can be estimated and compared. To improve timing 
specifications and guarantee strong ITU compliance, the 
detector can be equipped with an incoming signal 
synchronizer to synchronize the correlation cycles with the 
DTMF start signal. 

For debugging and testing purposes, a special debug 
mode is implemented when the detector sends, via serial 
port, the debug information concerning incoming signal 
level, correlator data, and both fundamental DTMF 
frequencies and their second harmonics. You can use any 
terminal program to see this stream. The number at the far 
left is the scaled energy signal and the other sixteen 
numbers are correlator output data. The number at the far 
left corresponds to 697 Hz. The number at the far right 
corresponds to 3266 Hz.  

Figure 8 illustrates the terminal window during debug 
information transmission when the phone is dialed. Debug 
mode can be entered during compilation by setting the 
DEBUG variable to 1 in the globdefs.h file. In normal mode 
(DEBUG is set to 0), the decoder sends only the properly 
decoded characters, followed with new line symbols. Note 
that users should disconnect the ICE when the project is 
being debugged to decrease the possible influence of 
noise introduced by the ICE on analog part performance. 
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Figure 8. Terminal Window in Debug Mode 
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