AR,

w CYPRESS

~g@p” EMBEDDED IN TOMORROW™

AN2100

Bootloader: PSoC® 1

Author: Andrew Smetana
Associated Project: Yes

Associated Part Family: CY8C21x34, CY8C27xxx, CY8C29xxx

Software Version: PSoC Designer™ 5.4 CP1 or later

Related Application Notes: For a complete list of the application notes, click here.

AN2100 describes a bootloader that uses the PSoC® 1 self-programming capability to allow users to reprogram the user

flash memory through a UART interface. A dedicated Windows application is developed to simplify PSoC 1 programming

through the bootloader.

Contents

What Is a Bootloader?........ccccoovevivieiiee i 1
Using a Bootloaderooocuiiieiiiiiiiiiiiecee e
Bootloader Using PSoC 1
Hardware Implementation

Firmware Implementation............ccccoccvveiieee e 6
DOOL.ASM....eeiiiiiiic 6
bootloaderconfig.asmccocvvveiiiiee i 6
flashapi.asmccoovvieiiii i 6
Macro DefinitionS..........ccooiiiiiiiieie e 7

FIOW Charts ...

PC Terminal Program...........cccccoiiiiiiiiieiiiiiieiee s
Bootloader Usecccceevuvvrennne.
Project Implementation

Create a Bootloader-Based Project............ccccveennnnee. 11
Add a Bootloader to an Existing Project..................... 12
Redefine Bootloader Pins and Configuration.............. 12
Special Considerations...........cccvevvueeeeiniieesneneee e 12
Enter Bootloader Mode Via Buttonc.cccceevvveeenn. 12
Enter Bootloader Mode After Power-On Reset........... 13

Updating the Project
SUMMAIY ..o
Related Application Notes
Worldwide Sales and Design SUPPOrt.........ccccveeeviveeennnes 15

What Is a Bootloader?

Bootloaders are a common part of MCU system design. A
bootloader makes it possible for a product's firmware to be
updated in the field. In a typical product, the firmware is
embedded in an MCU’s flash memory. The MCU is
mounted on a PCB and embedded in a product, as
Figure 1 shows.

Figure 1. Bootloader Data Flow Block Diagram

Your Product

Circuit Board

Connection to
outside world

—

Bootloader
data flow

At the factory, the initial programming of firmware into a
product is typically done through the MCU’s Joint Test
Action Group (JTAG) or serial wire debug (SWD)
interface. However, these interfaces are usually not
available in the field, and it can be difficult and expensive
to open up the product and directly access the PCB. A
better method is to use an existing connection between
the product and the outside world. That connection may
be a common protocol such as I°’C, USB, or UART, or it
may be a proprietary protocol.

Figure 1 shows that the product's embedded firmware
must be able to use the communication port for two
purposes: normal operation and updating flash. The
portion of the embedded firmware that knows how to
update the flash is called a “bootloader,” as Figure 2
shows.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G 1

http://www.cypress.com/

o CYPRESS

-— EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Figure 2. Bootloader System

Target
MCU
Communication Host
Flash
Memory - Channel -
Application
File

Application
Bootloader

Typically, the system that provides the data to update the
flash is called the “host,” and the system being updated is
called the “target.” The host can be an external PC or
another MCU on the same PCB as the target.

The act of transferring data from the host to the target
flash is called “bootloading,” a “bootload operation,” or
“bootload” for short. The data that is placed in the flash is
called the “application” or “bootloadable.”

Another common term in bootloading is “in-system
programming (ISP).” Cypress uses a proprietary protocol
with a similar name called “in-system serial programming
(ISSP)” and an operation called “host-sourced serial
programming (HSSP).” For more information, see
AN44168.

Using a Bootloader

A communication port is typically shared between the
bootloader and the application code. The first step in using
a bootloader is to manipulate the product so that the
bootloader, not the application, is executing.

Once the bootloader is running, the host can send a “start
bootload” command over the communication channel. If
the bootloader sends an “OK” response, bootloading can
begin.

During bootloading, the host reads the file for the new
application, parses it into flash write commands, and
sends those commands to the bootloader. After the entire
file is sent, the bootloader can pass control to the new
application.

Bootloader Using PSoC 1

PSoC 1 devices are programmed after they are installed in
a system. Although ISSP is the standard method used to
program PSoC 1, a bootloader is an alternative. This
method does not require the use of the Cypress ICE-Cube
programmer or third-party programming tools. It requires
only a serial cable, an RS-232 level translator, and a
terminal program to modify the PSoC 1 firmware.

Bootloader programs are used to upgrade the user code in
the flash memory without physically replacing the part on
the board. To enable this feature, you must hard-code the
bootloader program in the chip using PSoC Programmer.
In this application, the bootloader code is protected in the
high memory addresses area. The user space is
unprotected and is upgraded. To increase the reliability of

the user program in the unprotected flash memory, this
area is protected by a checksum that is verified after each
CPU reset. An additional feature suppresses loading of
the part in non-bootloader-based projects, which
eliminates the possibility of incorrect program operation.
When a bad checksum is calculated or the user code is
not detected, the program automatically enters bootloader
mode for reprogramming.

A system-level connection diagram for the PSoC 1
bootloader is shown in Figure 3. There are two ways to
access the bootloader:

® When you press and hold the bootloader switch
(SW1) at power-on reset, the PSoC 1 device goes
into bootloader mode. Then you can start the PC
terminal program and connect it with the PSoC 1
device for bootloading.

® When you select Wait for connection with PSoC in
the PC terminal program and then reset the device,
PSoC 1 interacts with the PC terminal program.
Then the host communicates with the PSoC 1 device
and the bootloader can be accessed.

Figure 3. System-Level Diagram for PSoC 1 Bootloader

@ Vee
RS-232 RS-232 RxD,
serial cable Transceiver

TxD

vee PSoC 1 ¥
CY8C27xxx/

: CY8C29xxx/
SW1 LED
()\ Bootloader Switch CY8021x34 L

vce

\| Reset Switch

L oo

A terminal program is developed for the PC to provide a
simple user interface for the flash upgrade. You can
choose any hexadecimal file and observe the
programming process using the progress bar. In this
program, the flash-block programming control and timeout
functions are implemented to provide reliable program
operation. This keeps you informed of the programming
status or if any errors occur.

Hardware Implementation

The communication between the host PC and the PSoC 1
device is established using an RS-232 interface. The
hardware connection for the bootloader on the CY3210-
PSoCEVAL1 EVK is shown in Figure 4. Connect PO[6] to
RxD, PO[4] to TxD, PO[5] to SW1, P1[7] to LED1, and an
RS-232 serial cable to J1.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G 2

http://www.cypress.com/
http://www.cypress.com/?rID=2906

A
s

-

CYPRESS

EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

For the CY8C21x34 device, you need to use the CY3280-
21x34 UCC board. To test the project, connect PO[6] and
PO[4] on the UCC board to the RX and TX pins of an
external RS-232 transceiver. Connect external switch
SW1 to port PO[5] and the LED to P1[7], as shown in
Figure 5.

Note You need to connect a current-limiting resistor in
series with the LED.

Figure 4. Hardware Connection on CY3210-PSoCEVAL1

T

A MAX232 (RS-232 interface chip from Maxim Integrated
Products) is used as a level shifter to translate the TxD
and RxD signals for the host PC. A button is needed to
enter the bootloader mode. The LED is turned on when
the bootloader mode is entered. During the programming
process, the LED blinks.

A serial receiver and transmitter implements the UART
interface, operating at 115200-baud rate.

Figure 5. Hardware Connection on CY3280 UCC Kit for CY8C21x34

W

DDDR
Pawn

e

~j g

£1 Oroe)ro[4)]
Oro[2)po[o)
GND GND
P2[8)P2[4)

e

<X o & =
R
: + +

**) Teand RXE

> JoRSZ32TH

oo oo B

SITTEYLITRS
ST
Ore)eLL)
DeN GND
vee vabd
CIVIN v

CY3280-B3M Umiversal CapSense Prototying Module

;

il

S (| | LB
-

- W
- s
S VADJ VEOETT
GNOETTR

LU
PO[7)PO[S)T
wW(3)Po[1)e=E=
P2[1)P2[S)EF -
P2(3)P2[1 10
GND GNOTFE=
PILI)PI[1)= ¢
LT LITE T
P[] NewmS=
NC PU[2)=
P N
LTCI LI
PAL0)PI[2)0uE
P2(0)P2(2) Gtz
p2(4)P2(4)0
N0 oNOCLER
PO[0)PO[2) i
POL41POL 8)t

N

The clock for these modules comes from the VC3 source.
A Counterl6 user module implements the timeout
function. When the controller tries to enter the bootloader
mode, the counter sends a connection request to the PC
after power-on reset and waits for a response. This is the
second method used to enter the bootloader mode.

The memory space of a typical bootloader program is
shown in Figure 6, in which fully protected blocks are
shaded and unprotected blocks are not.

YNIA

o

o
bes2-092600 O O ¢

O
w0 oo
»o(3) po(7)
np) w
n2q3) P2(2)
R(1) R3] gy
o e W
Pag1) Paga) 418
nes)

11938888888 RREEE]

N Mgy,
g2 nage W)
LUO U]
UL O
"™ "
M) W)
M)

P

!l

Lt

I
v

¢

93360/\)6

The high address space beginning at the following
address for each device is intended to contain the
bootloader firmware:

B CYB8C21x34: 0x1600-0x1FFF
B CYBC27xxx: 0x3600-0x3FFF

B CY8C29xxx: 0x7400-0x7FFF

These memory areas are protected from write and erase
operations.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G

http://www.cypress.com/
http://www.cypress.com/?rID=3475
http://www.cypress.com/?rID=3475

o CYPRESS

- EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Figure 6. Bootloader Memory Space

Memory Map for CY8C21x34

Memory Map for CY8C27xxx

Memory Map for CY8C29xxx

Ox1FFF Ox3FFF OX7FFF
BootLoader BootLoader BootlLoader

0x3600 74
Flash Checksum 0x1600 Flash Checksum Flash Checksum 0x7400
0x1580 0x3500 0x7200

User Application Code User Application Code User Application Code
0x00A0 0x00A0
Unlocked Interrupt Vectors Table Ox00A0 Unlocked Interrupt Vectors Table Unlocked Interrupt Vectors Table X

Locked Interrupt Vectors Table 0x0040 Locked Interrupt Vectors Table 0x0040 Locked Interrupt Vectors Table 0x0040
b 0x0000 P 0x0000 P 0x0000

In the PSoC 1 device, 64 bytes in the flash memory
constitute a block. The first flash block, 0x0000 to 0x003F,
is fully protected. The reset vector jumps directly to the
boot-verify code that is part of the bootloader. This
ensures that the bootloader code is always available
regardless of aborted bootloading attempts or incorrect
user code.

Because the first 64 bytes, 0x0000 to 0x003F, of flash are
fully protected, changing addresses in the first 15 interrupt
routines is not possible. To change interrupt vector
addresses, the locked user interrupts, up to 0x003F, jump
to an unlocked table in boot.asm. All changes to boot.asm
are done in the template boot.tpl, because after each
application generation, the content of the boot.tpl file is
copied to boot.asm.

The address 0x00AQO is the first address after the unlocked
interrupt vector table. To verify the loaded project, the
bootloader uses the following byte sequence for each
device:

" (CY8C21x34:1,2,3,4,5,6
B CY8C27xxx:0,1,2,3,4,5

" CY8C29xxx:2,3,4,5,6,7

If a user program is based on the bootloader, it must have
these bytes written in the flash at the address OxO00AO.
After this control byte sequence, all user program code
and the __Start routine follow.

The memory space from the following address for each
device exclusively stores the checksum information for
each unprotected block:

B CY8C21x34: 0x1580-0x15FF
B CY8C27xxx: 0x3500-0x35FF

B CYB8C29xxx: 0x7200-0x73FF

The checksum protects the blocks with IDs from 1 to 85
for CY8C21x34, 1 to 211 for CY8C27xxx, and 1 to 455 for
CY8C29xxx. The block with the address 0x0040 to
0x00AO has ID 1, the next 64 bytes (block 2) has ID 2, and
so on. In the bootloader project, the last block to be
checked is set at the following address for each device:

= CY8C21x34: 0x1580

B CYB8C27xxx: 0x3500

B CY8C29xxx: 0x7200

If it is set to O, then the checksum feature is turned off.
Figure 7 illustrates how the bootloader checksum memory
is used. The checksum feature provides a more reliable
operation in the event of a soft fault and accidental flash
rewrites because all user program code is unprotected
from internal writes. The checksum is checked after each
reset. If it is bad, the bootloader mode is automatically
entered.

The protection type of each flash block is set in the
flashsecurity.txt file (in the source tree of your PSoC
Designer™ project). You should set “W” for fully protected
blocks and “U” or “R” for unprotected blocks. It takes
longer to do the flash writes (per block) using the in-circuit
emulator (ICE) than on the chip. Test the bootloader on
the chip to estimate the real performance. You can
disconnect the pod from the ICE and run the program to
see the upload speed for the real code. Figure 8 through
Figure 10 show how the flashsecurity.txt file should be set
for each device.

To relocate memory areas for the bootloader project, you
should make changes in the custom.lkp file that is located
in the root directory of your project. This file contains the
following information:

-bBootCheckSum:0x1580.0x15ff CY8C21x34
-bBootLoaderArea:0x1600.0x1fff
-bBootCheckSum:0x3500.0x35ff CYBC27xxx
-bBootLoaderArea:0x3600.0x3fff
-bBootCheckSum:0x7200.0x7 3ff CY8C29xxx

-bBootLoaderArea:0x7400.0x7fff

These records determine the borders of the bootloader
and checksum segments. To learn more about this file,
see the PSoC Designer ImageCraft C Compiler Guide.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G 4

http://www.cypress.com/
http://www.cypress.com/?docID=41695

EMBEDDED IN TOMORROW™

& CYPRESS

Bootloader: PSoC® 1

Figure 7. Bootloader Checksum Memory Area

Bootloader Checksum Memory Bootloader Checksum Memory Bootloader Checksum Memory
Area for CY8C21x34 Area for CY8C27xxx Area for CY8C29xxx
Ox15FF Ox35FF Last Checked Block (Low) or 0 OX73FE
Unused Area Unused Area Last Checked Block (High) or 0 OX73FE
™ - Unused Area
Checksum of 85™ Block 0x15D5 Checksum of 211™ Block 0x35D3
Checksum of 455™ Block 0x73C7
Checksum of 2™ Block 0x1582 Checksum of 2" Block 0x3502 Checksum of 2™ Block 0x7202
Checksum of 1% Block 0x1581 Checksum of 1* Block 0x3501 Checksum of 1% Block 0x7201
Last Checked Block or 0 if Unnecessary |0x1580 Last Checked Block or 0 if Unnecessary |0x3500 Unused Byte 0x7200

Figure 8. Flash Security Settings for CY8C21x34

; 0 40 80 CO 100 140 180 1C0 200 240 280 2C0 300 340 380 3¢0 (+) Base Address

Base Address 0

Base Address 400
Base Address 800
Base Address C00
Base Address 1000
Base Address 1400
Base Address 1800
Base Address 1C00

fEfEcccccocc
EECcccccocc
EfccEcEcE
fEEccEccEE
EEcccccecC
EECcccccocc
EfEcccccocc
FEEfccccc
ffEfcccec
fEEfccccc
EEECcCcECcC
Effccccoccoc
EEfcccoccocc
FEEfccccc
ffEfcccec

w
u
u
u
u
u
w
W
E

nd 8K parts

Figure 9. Flash Security Settings for CY8C27xxx
; 0 40 80 CO 100 140 180 1CO 200 240 280 ZCO 300 340 380 3CO (+) Base Address

Base Address 0O

Base Address 400
Base Address 500
Base Address COO0

=== =
[= =Ry
oo aag
===
=== =)
=== =]
o s aa
(== -
[= =Ry
oo aag
=== =)
=== =)

o
w

Base Address 1000
Base Address 1400
Base Address 1800
Base Address 1CO00

===
o0 oo 0
o oaa
[=I= =]
[=I= =]
[=IE=N=]
=2 o aa
[SRs
o0 oo 0
o oaa
[=I= =]
[=I= =]

o
w

Base Address 2000
Base Address 2400
Base Address ZE00
Base Address z2CO00
Base Address 3000
Base Address 3400
Base Address 3800
Base Address 3C00

sgdcdgdogHraggdao i gcdg

sE=s2acdaodgdadadaa
sacgogoa
22 dodddda
s o000 co
fEsacg4g4ca
ssgdaagag4g9dg
sgagg0ddgddd
sEsaga04090g
s==s2=sadgdadadaa
s=s=ad0d0doda
s aa00co
fEsEasacgg4ca
sgagg0ddgddd
sgagg0ddgddd

wow
nd 16K parts

WWW.CYpress.com Document No. 001-32904 Rev. *G 5

http://www.cypress.com/

EMBEDDED IN TOMORROW™

& CYPRESS

Bootloader: PSoC® 1

Figure 10. Flash Security Settings for CY8C29xxx

0O 40 50 CO 100 140 180 1C0O 200 240 280 ZC0O 300 340 380 3C0 (+) Base Address
w T U u u U u u u L U L u u L U Base Address O
o o u o o u o u u o u o u o o u Base Address 400
uoT U oo i) u u u o o L} u u o o Base Address 800
T T U uonuw U u u u L U L u u L U Base Address COO0
; End 4K parts
uoT U oo i) u u u o o L} u u o o Base Address 1000
T T U uonuw U u u u L U L u u L U Base Address 1400
U T U o0 U u u u L U o u u L U Base Address 1800
o o u o o u o u u o u o u o o u Base Address 1CO0
: End 3K parts
T T U uonuw U u u u L U L u u L U Base Address z000
o o u o o u o u u o u o u o L) u Base Address 2400
uoT U oo i) u u u o o L} u u o U o Base Address 2800
T T U uonuw U u u u L U L u u L U Base Address zCO0O
U T U o0 U u u u L U o u u L U Base Address 3000
uoT U oo i) u u u o o L} u u o U o Base Address 3400
T T U uonuw U u u u L U L u u L U Base Address 3200
U T U o0 U u u u L U o u u L U Base Address 3C00
; End 16K parts
T T U uonuw U u u u L U L u u L U Base Address 4000
T T U uonuw U u u u L U L u u L U Base Address 4400
o o u o o u o u u o u o u o L) u Base Address 4300
uoT U oo i) u u u o o L} u u o U o Base Address 4C00
T T U uonuw U u u u L U L u u L U Base Address S000
U T U o0 U u u u L U o u u L U Base Address 54200
uoT U oo i) u u u o o L} u u o U o Base Address S53800
T T U uonuw U u u u L U L u u L U Base Address SCOO0
U T U o0 U u u u L U o u u L U Base Address 6000
uoT U oo i) u u u o o L} u u o U o Base Address 6400
T T U uonuw U u u u L U L u u L U Base Address 6300
U T U o0 U u u u L U o u u L U Base Address 6CO0OO0
o o u o o u o u u o u o u o L) u Base Address 7000
wow wow w w w W m w o w w m wo: Base Address 7400
wow w o w w w w w w m w w w w m wo: Base Address 7800
wow W ow w w w w w w w w w w w W Base Address 7C00
: End 32K parts
Firmware Implementatlon user.varlables, functlons, and Iabel;. Thg conflgure}thn
function name is Boot LoadConfigInit, and it is
Bootloader firmware implementation occurs in the called from the Boot Start routine at the initial stage
following files: of the bootloader operation.
® bootasm flashapi.asm
® bootloaderconfig.asm This file implements the functions to handle the flash
. memory operations. Among these functions are the
® flashapi.asm following:
n .
bootloader.c e DbflashWriteBlock: Executes the flash block write
action
boot.asm
- . ' e FlashReadBlock: Reads one block of flash
This is the project startup file. It reflects the locked and
unlocked interrupt vector tables, boot control sequence (O, e FlashCheckSum: Calculates the flash block
1, 2, 3, 4, 5 for CY8C27xxx) placed at address 0x00AO, checksum
the —dStartdr?ﬁt'ne_the user appllcz:_tlont|n|tlﬁ!|z§t‘zﬁn Boot Is Program Good finds out whether a user-
procedure, and the __Boot_Start routine to which the loaded program is created using the bootloader project. It
program jumps when the first instruction is executed after simply tests 6 bytes starting from address 0x00AOQ. If the
resgt. This rﬁUIgsL;n'lt'atlfs thel de‘i'gerﬁr the bohotloade; bytes are not equal to the following value for the specific
mode, sets the clock equal to 12 MHz, sets the top 0 device, then the function returns an error result.
the stack, loads the user module configuration, and then
calls the BootLoader () function. The Boot Start " CY8C21x34:1,2,3,4,5,6
routine is allocated to the protected bootloader area .)
(0x1600 to OX1FFF for CY8C21x34, 0x3600 to Ox3FFF for CY8C27xxx: 0,1,2,3,4,5
CY8C27xxx, and 0x7400 to Ox7FFF for CY8C29xxx). B CY8C29xXx: 2.3.4.5 6.7
The start routine carries out the initial CPU operations For reliability, it is imperative to place the code related to
and loads the user modules for the custom application. At the flash modification in the bootloader segment.
the end of this procedure, it calls the main () project
function.
bootloaderconfig.asm
This file contains the user module configurations and
APIs. It includes the serial receiver and transmitter user
modules and a timeout counter module. All module API
names start with “Boot_” to minimize confusion with the
WWW.CYpress.com Document No. 001-32904 Rev. *G 6

http://www.cypress.com/

o CYPRESS

-— EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

bootloader.c

bootloader.c is the main file in the bootloader that contains
all the functions required for boot-verify operations. It
makes the connection with the PC host and functions that
perform data transmission with the PC during the flash
programming process.

void BootLoader () Iis called after the bootloader is
initialized. First, it tries to set up communication with the
PC. If the terminal program on the PC responds,
Boot PerformWrite () is called.

Alternatively, Boot Is Program Good is called to verify
whether the project is loaded in the user flash space. If the
user code is not based on the bootloader project, then the
program automatically enters the bootloader mode. The
next phase is verification of the flash blocks’ checksum.

If the previous two steps are completed successfully, the
boot-verify action is performed. If verified, the program
enters the bootloader mode. Otherwise, it calls the
___Start routine to start user program execution.

Once the program is in the bootloader mode, it waits for a
communication from the PC. Afterward,
Boot PerformWrite () is called to complete the flash
programming operations. If this stage is completed
successfully, the program executes a software reset using
the supervisory code.

void Boot PerformWrite ()obtains the flash blocks
from the PC in Intel HEX format, writes them in the flash,
reads them back, and sends them to the PC for
comparison with the source blocks. The frame of the data
block has the following structure:

® Start symbol - “S” (1 byte)

® Flash block data (68 bytes)

® Finish symbol — “F” (1 byte)
The flash block data block contains the following records:

® Length of data to be written (1 byte)

® Starting address (2 bytes)

" Type of data (1 byte)

" Immediate data block (64 bytes)

All fields of data represent information in ASCII-encoded
hexadecimal. This means that every 8 bits of information
is encoded into 2 ASCII characters.

Once all blocks are written and if the checksum option is
set, the function calculates the checksum for each block
protected by the checksum and writes this information in
the checksum area, as shown in Figure 7.

char Boot ASCIItoBYTE (char low, char high)
translates the ASCIl-encoded byte representation into a
binary format.

The following functions are high-level UART APIs:

® BYTE Boot UART cGetChar (void) reads a byte
from RxD and blocks program execution if the buffer
is empty.

" void Boot UART PutChar (char TxDData)
sends a character to the TxD buffer and blocks
program execution if the buffer is not empty.

® void Boot UART CputString() sends the
ASCII string out of the TxD port.

Macro Definitions

#define LAST BLOCK TO CHECK 211

The checksum protects the flash block from 1 to the value
specified by the macro LAST_BLOCK_TO_CHECK. The
checksum block distribution is shown in Figure 11 to

Figure 13. You can set this macro to 0 to disable the
checksum feature.

#define SUPPORT_CONNECT BY PSOC 1

If this macro is not 0O, then after power-on reset, the
bootloader tries to connect with the PC to automatically
enter the bootloader mode. The following macros are
defined for easy bootloader pin redefinition:

® GETBUTTONY() — get value on switch button pin
= BOOT_LOADER_MODE_LED_ON() — turn on LED
" BOOT_LOADER_MODE_LED_OFF() — turn off LED

Figure 11. Checksum Blocks for CY8C21x34

LAST_BLOCK_TO_CHECK

'

0 1 2 3 i 86 | 87 |88 |89 | 90 127
Checksum
- Checksumed Blocks <Area | BootLoader Area .

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G

http://www.cypress.com/

o CYPRESS

- EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Figure 12. Checksum Blocks for CY8C27xxx

LAST_BLOCK_TO_CHECK

'

212

213

214

215

216 .. |255

Checksumed Blocks

Checksum Area

BootLoader Area

¢

>

Figure 13. Checksum Blocks for CY8C29xxx

LAST_BLOCK_TO_CHECK

'

¢

456

463

464 .. |511

Checksumed Blocks

Flow Charts

Figure 14 depicts the flow chart for the bootloader () function,

Boot PerformWrite () function.

Checksum Area

BootLoader Area

and Figure 15 depicts the flow chart for the

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW Bootloader: PSoC® 1

Figure 14. BootLoader() Function Flow Chart

Optionally is set by
SUPPORT_CONNECT_BY_PSoC
macro

Initiate RxD
Initiate TxD

no

Power-on Reset?

Initiate Counter16 for timeout 0.5 sec
Start Counter16

v

Try to connect with PC during 0.5 sec

no

\J

Connected?

Boot_PerformWrite()

Software Reset

Y

no

Is Program Good?

Is checksum correct?

no

Yy

yes

Y

Is bootloader button pressed?

Start User Code by calling __Start

Y

v

BOOT _LOADER_MODE_LED ON()

v

Boot_PerformWrite()

v

Software Reset

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW Bootloader: PSoC® 1

Figure 15. Boot_PerformWrite() Function Flow Chart

e

[
-

ch = Boot_UART_cGetChar()

yes

ch = Boot_UART_cGetChar()

yes
cl = Boot_UART_cGetChar()
data[0] = Boot ASClItoBYTE(cl,ch) Calculate and store checksum
Read rest bytes of data frame in \

“data” array < Finish >
¢ nis

Read last frame symbol ‘F’

v

Write data block in Flash

|

Read block back

|

Transmit read data to PC

WWW.CYpress.com Document No. 001-32904 Rev. *G 10

http://www.cypress.com/

o CYPRESS

- EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

PC Terminal Program

The PC terminal program is developed to facilitate the
user reprogramming process. This program is released
using C++ Builder tools. The program’s main menu is
shown in Figure 16. The following list explains the
program’s functions.

® COM port drop-down list: Select the COM port
corresponding to the UART communication port.
Note Make sure that the COM port number is in the
range COM1 to COM10.

® CONNECT: Connects with the PSoC 1 device ifitis
already in bootloader mode.

® Select HEX File: Selects the hex file of the project,
which is loaded in PSoC 1. This means that only the
name of the file is read, not its contents.

® Program Device: Starts programming.

® About: Presents brief information about the
program.

" EXIT: Closes the program.

If you select Wait for connection with PSoC, the
program waits until the PSoC 1 device initiates
communication after power-on reset.

The process of the program is well documented by
narrations in the program window. You can see the
connection status and the selected file as well as watch
the programming process using the progress bar. All
invalid user actions are prevented and are accompanied
by warning messages.

The PC terminal program verifies the correct flash write
operations by receiving data from the device’s written flash
blocks and comparing them with each source block. If
there are any errors, the program tries to repeat block
programming up to three times. In the event of failure, the
program informs you about the programming fault and
disconnects.

Figure 16. Example PC Terminal Program Window

[l BootLoader for CYBC21x34/CYBC2T:00¢/CYSC 2900t

BootLoader Terminal Program for PSOC microcontrollers

CONNECT Connected

Select HEX File

About

Program Device |
EXIT ‘

Blocks Written:

ANZ2100_21x34_Sample.hex

036

COM1 <

Bootloader Use

® AN2100_2x_Loader: Bootloader source code.

" AN2100_2x_Sample: Sample of bootloader-based
application.

® AN2100_2x_Config: Project for bootloader pins and
configuration redefinition. See Redefine Bootloader
Pins and Configuration.

Project Implementation

Create a Bootloader-Based Project
1. Start PSoC Designer.

2. In the New Project dialog box, enter the new project
name and its location. Click OK.

3. Place the user modules and develop your program as
usual.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G 11

http://www.cypress.com/

o CYPRESS

-— EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Add a Bootloader to an Existing Project

1. Select the following files from the BootLoader project
folder location:

Q boot.tpl

bootloader.c
flashapi.asm
bootloaderconfig.asm
BLconf.h

custom.lkp
HTLinkOpts.lkp

0O 000 D0 D0 O

flashsecurity.txt

N

Copy these files to the Existing_Project directory and
replace the existing files.

w

Select the following files from the BootLoader/lib
directory: bootloader.h, bootloader.inc.

Ea

Copy these files to the Existing_Project/lib directory.
Open Existing_Project in PSoC Designer.

o

Add the copied files to your project:
bootloader.c

flashapi.asm
bootloaderconfig.asm
BLconf.h

0000 o

bootloader.h
Q bootloader.inc

7. Click Generate Application. Now you can use the
bootloader features in your application.

Redefine Bootloader Pins and Configuration

In some applications, it is difficult or impossible to use the
hardwired pins (RxD, TxD, LED, and press-button pins)
established in the bootloader project. For this reason, the
ability to redefine the bootloader pins is provided. In the
BootLoader_Deliverables directory, you can find project
BootLoader_Config, which is used to create a new
bootloader configuration.

1. Open project BootLoader Config, modify its
configuration, and redefine the pins as required.

a. Route the RxD and TxD pins, and set the drive
mode of the pin where the button is connected to
StdCPU PullDown.

b. Set the drive mode of the pin where the LED is
connected to StdCPU Strong.

2. Generate the application.

3. Copy the chip configuration from file
psocconfigtbl.asm (AN2100_2x_Config project) to file
bootloaderconfig.asm (AN2100_2x_Loader project):

Q Copy the content of Config_Ordered.
Q Copy the content of Config_BankO.
a Copy the content of Config_Bank1.

4. Open the BLconf.h file in your program and modify
the following macros according to the changes done
in your configuration:

O GETBUTTON()
O BOOT_LOADER_MODE_LED_ON()
0 BOOT_LOADER _MODE_LED OFF()

5. Compile and program the code to the
PSoC 1 device.

Now your project is set to use the newly redefined pins in
bootloader mode.

Special Considerations

Flash Checksum

If you set macro LAST_BLOCK_TO_CHECK not equal to
0, the blocks from 1 to LAST _BLOCK_TO_CHECK are
protected by the checksum. Afterwards, the reset
bootloader () routine calculates the checksum for each
given block and compares it with the corresponding
checksum stored in flash.

When you use this feature and program the PSoC 1
device the first time through MiniProg, your application will
not start after reset. Instead, it enters the bootloader mode
because the checksum for each block is not yet
calculated. The checksum feature works correctly only
after programming the part through the terminal program.
So you should run the terminal program, open your project
.hex file, and store it in flash. If you do not use the
checksum feature, you must set the macro
LAST_BLOCK_TO_CHECK equal to 0.

Your application works immediately after using PSoC
Programmer to write program in the chip.

Enter Bootloader Mode Via Button
1. Start the terminal program.

2. Click the button in the bootloader application.
3. Turn on the supply.
4

The device is now in bootloader mode, as it waits for
connection with the PC.

Click CONNECT in the terminal program.

o

Once the PC is connected to the PSoC 1 device, the
bootloader code waits for programming to begin.

7. Select the .hex file and click Program.

8. After programming, a software reset will be initiated.

WwWWw.Ccypress.com

Document No. 001-32904 Rev. *G 12

http://www.cypress.com/

o CYPRESS

-— EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Enter Bootloader Mode After Power-On
Reset
1. Start the PC terminal program.

2. Select the Wait for connection with PSoC option.

3. Switch off power to PSoC 1 and then switch it back

on.

4. PSoC 1 is connected to the PC, and the user code is
programmed.

5. Select the .hex file and click Program.

After programming, a software reset occurs, and your
application starts.

Updating the Project

Whenever you start using a newer version of PSoC
Designer, during Project Update, the existing boot.tpl is
moved to the backup directory, and a new boot.tpl is
created. If you do a project update, perform the following
steps:

1. Open the old boot.tpl from the backup directory.

2. Copy the contents from “export _ Boot_Start” to the
end of the file.

Related Application Notes

ANG60317— PSoC 3 and PSoC 5LP 1°C Bootloader
AN86526 — PSoC 4 1°C Bootloader

AN73503 — USB HID Bootloader for PSoC 3 and
PSoC 5LP

AN68272 — PSoC 3, PSoC 4 and PSoC 5LP UART
Bootloader

ANB84401 — PSoC 3 and PSoC 5LP SPI Bootloader

AN44168 — PSoC 1 Device Programming Using an
External Microcontroller (HSSP)

AN73054 — PSoC 3/PSoC 5LP Programming Using
an External Microcontroller (HSSP)

AN75320 — Getting Started with PSoC 1
ANb54181 — Getting Started with PSoC 3
AN79953 — Getting Started with PSoC 4
AN77759 — Getting Started with PSoC 5LP

About the Author

3. Replace the content of the new boot.tpl with the Name: Andrew Smetana
copied text to the export directives.
Title: Electronic Engineer
4. Save the boot.tpl.
o Education: Andrew earned a Master of Science
5. Generate the application. diploma in 2004 from Lviv Polytechnic
National University (Ukraine). His
Summary interests involve several aspects of
embedded systems development.
This application note provided a basic overview of . .
bootloaders—their use and important design Contact: andi@cypress.com
considerations. It also described how the PSoC Designer
development environment addresses these considerations
for PSoC 1 devices.
The document also discussed how to use PSoC Designer
to quickly and easily add a bootloader to your design. For
more detailed information about bootloaders, see Related
Application Notes.
WWW.CYpress.com Document No. 001-32904 Rev. *G 13

http://www.cypress.com/
http://www.cypress.com/go/AN60317
http://www.cypress.com/?rID=83293&source=an73854
http://www.cypress.com/?rID=57561&source=an73854
http://www.cypress.com/?rID=57561&source=an73854
http://www.cypress.com/?rID=50230&source=an73854
http://www.cypress.com/?rID=50230&source=an73854
http://www.cypress.com/?rID=50230&source=an73854
http://www.cypress.com/?rID=50230&source=an73854
http://www.cypress.com/?rID=2906
http://www.cypress.com/?rID=2906
http://www.cypress.com/?rID=57435
http://www.cypress.com/?rID=57435
http://www.cypress.com/?rID=58639
http://www.cypress.com/?rID=39157&source=an73854
http://www.cypress.com/?rID=78695&source=an83854
http://www.cypress.com/?rID=60890&source=an73854
mailto:andi@cypress.com

A
s

-

CYPRESS

EMBEDDED IN TOMORROW™

Bootloader: PSoC® 1

Document History

Document Title: AN2100 — Bootloader: PSoC® 1
Document Number: 001-32904

Revision ECN Orig. of Submission Description of Change
Change Date

ki 1494923 YIS 09/21/2007 New application note

*A 2936426 | ANDI 05/24/2010 Updated cross reference

*B 3201039 BIOL_UKR 03/20/2011 Minor updates

*C 3291243 | ANBI_UKR 06/23/2011 Updated software version.

*D 3340375 | ANBI_UKR 08/09/2011 Updated software version and minor text edits.
Updated project to support Hi-Tech compiler.

*E 4414552 | ASRI 06/20/2014 Updated the introduction and included “What is a Bootloader?” section.
Included system level and hardware connection diagrams for PSoC 1 bootloader
Updated the projects to PSoC Designer 5.4
Included section Summary and Related Application Notes

*F 4700239 DCHE 04/08/2015 Added bootloader projects for CY8C21x34.
Updated the terminal program to program the CY8C21x34 device.
Updated the projects to PSoC Designer 5.4 CP1.

*G 5688098 | AESATMP8 04/19/2017 Updated logo and Copyright.

WWW.CYpress.com Document No. 001-32904 Rev. *G 14

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW Bootloader: PSoC® 1

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions

ARM® Cortex® Microcontrollers cypress.com/arm PSoC 1| PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Automotive cypress.com/automotive .
Cypress Developer Community

Clocks & Buffers cypress.com/clocks

Interface cvoress.comfinterface Forums | WICED IOT Forums | Projects | Videos | Blogs |

yp) Training | Components

Internet of Things cypress.com/iot .
Technical Support

Memory cypress.com/memory

Microcontrollers cypress.com/mcu cypress.com/support

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A,

£ Cypress Semiconductor
- CYP R E S s 198 Champion Court
Y San Jose, CA 95134-1709

~gge” EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.CYpress.com Document No. 001-32904 Rev. *G 15

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Contents
	What Is a Bootloader?
	Using a Bootloader
	Bootloader Using PSoC 1
	Hardware Implementation

	Firmware Implementation
	boot.asm
	bootloaderconfig.asm
	flashapi.asm
	Macro Definitions

	Flow Charts
	PC Terminal Program
	Bootloader Use
	Project Implementation
	Create a Bootloader-Based Project
	Add a Bootloader to an Existing Project
	Redefine Bootloader Pins and Configuration
	Special Considerations
	Flash Checksum

	Enter Bootloader Mode Via Button
	Enter Bootloader Mode After Power-On Reset

	Updating the Project
	Summary
	Related Application Notes
	About the Author
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

