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AN2099 describes a topology for a single-pole infinite impulse response (IIR) filter. It includes equations and software to 

implement this topology; the associated example projects give the user access to filter routines in either assembly or C. 

 

Introduction 

In the real world, analog signals are noisy; one example 
might be the output voltage of a thermistor. It is often 
undesirable to display or use this noisy data. The best way 
to remove or “clean up” the noise is to apply a filter to the 
signal. Ideally, the filter removes the noise and keeps the 
signal of interest. Filters exist in the analog domain that 
can be used to reduce noise. However, this results in extra 
cost and power consumption of an analog filter. That is 
where digital filters come in. IIR filters can be used to 
approximate many common analog filters. 

This application note derives the transfer function of a first 
order IIR Low Pass and High Pass Filter. Based on these 
transfer functions, the C and ASM code for a Low Pass 
Filter are derived. Three example projects are provided 
with this application note to provide hands-on examples of 
how the filters work.   

Infinite Impulse Response (IIR) Filters 

An IIR filter is a recursive filter; that is, the output is used 
to calculate future values. Theoretically, an impulse 
injected into the input continues to flow through the signal 
loop. It takes infinite time for the effect of the impulse to 
die down completely. 

The single-pole passive RC filter shown in Figure 1 has 
the characteristics of an IIR filter. If you give an impulse 
input, it takes an infinite time for the capacitor voltage to 
go completely to zero.  

We will build the topology of the single-pole IIR digital filter 
from the single-pole passive RC filter shown in Figure 1. 

Figure 1. Single-Pole Passive RC Filters 
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In Figure 1, the low-pass filter output is available across 
the capacitor and the high-pass filter output is available 
across the resistor. 

The output voltage, Vlp, at any instant is a function of the 
current flowing into the capacitor which is a function of  
Vin-Vlp. This represents a negative feedback.  

To construct a negative feedback equivalent to the analog 
RC filter in Figure 1, consider the following statements: 

▪ At any instant, Vin-Vlp is divided by R to give a current, 
which is then integrated to give Vlp.  

▪ Vin-Vlp represents the high-pass filtered output.  

Figure 2 shows the negative feedback topology equivalent 
to that in Figure 1. 

Figure 2. Negative Feedback Topology for Single-Pole RC 
Filter 
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Equations 1 and 2 define its operation: 
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Combining Equations 1 and 2 produces the transfer 
functions in Equations 3 and 4: 
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These are the standard transfer functions for high-pass 
and low-pass filters. The roll-off frequency f0 is shown in 
Equation 5:  
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   Equation 5 

The topology for a sampled system is constructed from the 
topology in Figure 2 and is shown in Figure 3. 

Figure 3 shows that the integrator is replaced with an 
accumulator (summer), and the term CR is replaced by a 
scaling factor. The z-1 box represents a register that stores 
the previous value of V(n)lp. 

Figure 3. IIR Topology for Sampled Single-Pole RC Filters 
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Equations 6 and 7 define its operation: 
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   Equation 6 
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where z-1 represents a unit sample delay. Replacing z-1 
with a unit sample delay gives the difference (see 
Equations 8 and 9). 
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Combining Equations 6 and 7, we get the transfer 
functions in Equations 10 and 11. 
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It can be shown that the roll-off frequency f0 for the digital 
filter represented by Equations 6 and 7 can be 
approximated by Equation 12. (See Appendix A) 
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Equation 12 is the same as Equation 5 with RC = a. The 
roll-off frequency is dependent on the sample frequency fs, 
but more importantly the attenuation value (a). Changing 
the attenuation value easily changes the filter’s roll-off 
frequency. If you increase the attenuation factor, you can 
lower the filter cut-off frequency. However, this results in 
an increased filter settling time. 

Figure 4. Filter Cut-off Versus Attenuation Factor 

 

 

Filter Settling Time 

Settling time in a low-pass filter is the time taken by the 
output to reach a certain percentage of a step input. 

For the analog RC low-pass filter shown in Figure 1, the 
output for a step input will be an exponential rise defined 
by Equation 11. 
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t
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   Equation 13 

For Vin = 1 V, R = 1 k, and C = 10 uF, the filter settling 
(Vout Vs time) for a unit step input is shown by the blue line 
in Figure 5. 
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Figure 5. Analog LPF Unit Step Response 

 

To find the time taken by the filter to reach 99.9% of the 
input, we substitute, Vout = 0.999; Vin = 1; R = 1 k;  
C = 10 uF in Equation 13. 

0.999 = (1 – e-100t) or 

t = 0.7 s 

0.7 seconds are necessary to reach 99.9% of the step 
input. This time depends on the choice of R and C.  

Similar to the analog low-pass filter output, the digital  
low-pass filter output also takes a finite time to reach 
within a certain percentage of its input. In this case, the 
settling time is determined by the attenuation factor, a. 

It can be shown (see Appendix B) that for a unit step input, 
the amplitude of the nth sample output, s[n], is given by 
Equation 14.  
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Equation 14 is the digital equivalent of Equation 13 with 
Vin = 1. Figure 6 plots s[n] (the unit step response) Vs n 
(the number of samples) for an attenuation factor of 8. The 
red line shows the input and the blue line shows the filter 
output.  

Figure 6. Digital LPF Unit Step Response 

 

To calculate the number (n) of samples required for the 
output to reach 99.9% of the input, you must substitute 
s[n] = 0.999 in Equation 14 and compute n.  
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It takes 52 samples for the filter to reach 99.9% of the 
input voltage. If you filter an ADC output using this LPF  
(a = 8) and if the ADC sample rate is 52 sps, it takes 
approximately a second for the filter to reach 99.9% of the 
ADC input voltage. 

The filter settling time is also specified in terms of number 
of bits. 

The settling time for the filter output to reach n-bit 
accuracy is the time taken by the filter to settle to within  

(
n2

1
1 ) * input voltage. 

Table 1 shows the settling time for 10, 12, and 16-bit 
accuracies. 

For 10-bit accuracy, the output should reach within 0.1% 
of the input value; For 12-bit accuracy, the output should 
reach within 0.025% of the input value, and for 16-bit 
accuracy, the output should reach within 0.0015% of the 
input value. For a 1-V input, the filter achieves 10-bit 
accuracy at 999.03 mV, 12-bit accuracy at 999.75 mV, 
and 16-bit accuracy at 999.985 mV. 

Table 1. Filter Settling Times 

Attenuation 
Factor, a 

10-bit 
Accuracy 

12-bit 
Accuracy 

16-bit 
Accuracy 

1 0 0 0 

2 10 12 16 

4 25 29 39 

8 52 63 84 

16 108 129 173 

32 219 262 350 

64 441 527 706 

128 885 1058 1417 

256 1765 2120 2838 

How to Implement an IIR LPF 

To implement the low-pass and high-pass filters shown in 
Figure 3, we can directly use Equations 8 and 9. The 
steps are as follows: 
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1. Using your sample frequency (fs) and the roll-off 
frequency that you want to use (f0), find the necessary 
divisor (a) using Equation 12. 

2. Subtract the old Vlp from Vin. This is the new Vhp. 

3. Divide Vhp by a. 

4. Add the value generated in step 3 to the old Vlp. This 
is the new Vlp. Note that only Vlp needs to be saved 
for the calculation of the next values. 

Step 3 requires you to perform a division (involves floating 
point arithmetic) by the attenuation factor (a), which can 
take any real value greater than unity. If you choose the 
attenuation factor carefully, you can perform the division 
with just shifts and add. Let us limit the attenuation factor 
to this set of values:  
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For example, if the attenuation factor is 256/99, Equation 9 
becomes: 
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This can be easily done by a combination of shifts and 
adds, as shown by the C code snippet (Code 1). The 
variable ‘filt’ denotes the low-pass filter output and the 
variable ‘input’ denotes the low-pass filter input. 

Code 1 

filt = filt + ((input-filt) >> 2) + ((input-

filt) >> 3) + ((input-filt) >> 7) + ((input-

filt) >> 8); 

Similarly, any attenuation factor in the set can be 
implemented with just shifts and additions. 

The negative side of limiting the attenuation factor in this 
way is that you may not have enough choices when the 
attenuation factor gets higher. For example, if you want an 
attenuation factor of 145, you must use 128 or 256. But if 
you want an attenuation factor of 6.5, you can choose a 
value very close to it, 6.5 which is 256/39. But, this should 
not be a serious problem because higher attenuation 
factors are generally not desired due to their higher 
settling times. 

For most practical purposes, you might require an 
attenuation factor in the range of 4 to 64 and can easily 
match it to one of the available values. 

Binary Weighted IIR Filters 

If the value of the attenuation factor, a, is a power of 2, it is 
much easier to implement the filter. All that is required is 
one shift and one addition. If the attenuation factor is 2^i, 
the filtering can be done very easily using the following 
line of code. 

filt = filt + (input-filt) >> i; 

This executes much faster and takes less code space as 
well. In most cases, digital filtering is done to reduce the 
noise, where the requirement to implement the actual  
cut-off frequency is not stringent. Binary-weighted IIR 
filters can be used in those cases. 

Single-pole IIR Filter versus Moving 
Average FIR Filter 

A moving average filter is also commonly used for 
reducing noise in the digital output. A moving average filter 
is implemented by simply taking the average of the last N 
samples as defined by Equation 17. The higher the value 
of N, the lower is the filter cut-off. 

N

Nxnxnxnx
ny

]1[....]2[]1[][
][


  

     Equation 17 

The pros and cons of the moving average filter and the 
single-pole IIR filter are as follows. 

▪ A single-pole IIR filter is easy to implement and 
requires a storage space of just one memory element 
to store the past output. However, the settling time 
increases as the attenuation factor increases and the 
filter takes infinite samples to settle to the input value. 

▪ A moving average FIR filter is relatively complex to 
implement and requires a storage space of N 
elements, where N is the number of samples 
averaged. The filter takes just N samples to settle to 
the input value.  

▪ A moving average filter with N elements has a 
frequency response roll-off comparable to an IIR filter 
with attenuation factor, a = N/2. Or, in other words, 
the roll-off of a 32-tap moving average filter can be 
matched by an IIR filter with an attenuation factor of 
just 16. Figure 7 shows the frequency response 
performance of a 32-element moving average filter 
and a single-pole IIR filter of attenuation factor, 16. 

However, if you compare time responses, you can 
see that it takes 108 samples (Table 1) for the IIR 
filter to settle to 99.9% of the input while the moving 
average FIR takes just 32 samples to settle to 100% 
of the input signal. 
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Table 2. Single-Pole IIR Versus Moving Average FIR 

 Single-pole IIR Moving Average FIR 

Defining 
parameter 

Attenuation 
factor, a 

Number of samples 
averaged, N 

Firmware 
implementation 

Easy Relatively complex 

Memory 
storage 
required 

Single-pole IIR Moving Average FIR 

Settling time Infinite N 

Figure 7. Frequency Responses of Moving Average and 
Single-Pole IIR filters 

Associated Projects 

This application note includes four projects: 

▪ IIR_Filter_PSoC3_5 - PSoC Creator workspace 
containing two projects, one for PSoC 3 (IIR_PSoC3) 
and one for PSoC5 (IIR_PSoC5) 

▪  AN2099_asm - PSoC designer project for PSoC 1 in 
assembly  

▪  AN2099_C -PSoC designer project for PSoC 1 in C.  

PSoC 3 Filter Implementation  

The PSoC Creator project, IIR_PSoC3, performs low-pass 
filtering on the 20-bit delta sigma ADC output and displays 
the filtered and unfiltered value on the LCD. 

The filter routine takes the filter input as an argument and 
returns the filtered output after low-pass filtering the input 
data with an attenuation factor of 16.  

Code 2 

int32 LowPassFilter(int32 input) 

{ 

  int32  k; 

  input <<= 8;     

  filt = filt + ((input-filt) >> 4);    

  k = (filt>>8) + ((filt & 0x00000080) >> 7); 

  return k;                               

} 

 

In this code, the statement  

filt = filt + ((input-filt) >> 4); 

performs the filtering with an attenuation factor of 16. The 
attenuation factor can be easily changed to the required 
value by replacing this line of code with a code similar to 
Code 1 (code 1 implements an attenuation factor of 2.56) 

The variable ‘input’ is the input to the low-pass filter. The 
variable ‘filt’ is a long int variable that accumulates the 
filter running sum.  

To avoid any loss of precision due to right-shifts, we left-
shift the input variable. The input is left-shifted by 8 so that 
we can perform a right shift of 8 (maximum right-shift for  
a = 256) without losing precision. For this reason, the 
variable filter should at least be 8 bits wider than the input. 
The variable ‘filter’ is declared a long int variable while the 
‘input’ is declared an int variable. This left-shift by 8 is 
compensated by performing a right-shift by 8 before 
returning the LPF output. This is done by the following 
statement. 

k = (filt>>8) + ((filt & 0x00000080) >> 7); 

While right-shifting, perform rounding-off instead of 
truncation. The additive term ((filt & 0x00000080) >> 

7) checks the Most Significant bit (bit 8) of the bits shifted 

out and performs the round-off before shifting the 8 bits 
out. 

PSoC 4 and PSoC 5LP Filter 
Implementation 

In PSoC 4 and PSoC 5LP, the filtering can be done much 
faster due to the availability of a single-cycle multiply 
instruction in ARM cortex M0 and M3. In PSoC 4 and 
PSoC 5LP, the filter routine for a low-pass filter (a = 
256/17) looks like this: 

Code 3 

int32 LowPassFilter(int32 input) 

{ 

  int32 k; 

  input <<= 8;     

  filt = filt + (((input-filt) >> 8) * 17); 

  k = (filt>>8) + ((filt & 0x00000080) >> 7); 

  return k;                 

} 

 

The third statement performs the filtering. As you can see, 
the division by 256 is done by right-shifting by 8 and the 
multiplication is performed directly (without shift and add). 
It is very easy to change the attenuation factor to any 
value in Equation 15 by directly changing the value 17 to 
the required value. Note that the division is performed 
before the multiplication so that the variable filt stays 
within the int32 limit. 
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If you program the PSoC Creator project in a PSoC 5LP 
chip, you can see that the filtered value is comparatively 
more stable than the raw ADC output. Try changing the 
attenuation factor (a), and notice the change in settling 
time and stability of the filtered output. 

The PSoC 4 project is designed to work on the CY8CKIT-
042. This kit does not have an LCD. Thus the data is 
output via UART on P3.1 (Pin 5 of J3). Connect this pin to 
Pin 9 of J11 (the 12-pin header next to the USB 
connector).  

Plug a USB cable between your computer and the 
CY8CKIT-042. Next, open the Cypress Bridge Control 
Panel. In the Connected I2C/SPI/RX8 Ports: dialog, you 
should see a COM port that corresponds to the CY8CKIT-
042 (for example COM8). Click on this COM port. 

Next, click the Tools menu option and select Protocol 
Configuration. Configure it to match Figure 8. 

Figure 8 : RX8 Protocol Configuration 

 

After you have configured the protocol, go to the Chart 
Menu and select Variable Settings. Configure it to match 
Figure 9. 

Figure 9: Variable settings for COM Port 

 

Now go to back to the editor and type the following 
command: 

rx8 [h=aa] @2RawData @1RawData @0RawData 
@2FilData @1FilData @0FilData [t=55] 

Hit the Repeat button and then move to the Chart tab. You 
should now be able to see a graph of the data. You can 
move the input voltage around to see how the filtered and 
raw data change. 

Filter Feedforward 

Filter feedforward eliminates the filter for a fast changing 
input. If the input changes from 0 V to 5 V, the filter takes 
108 iterations (attenuation factor = 16) to reach 4.995 V. 
This delay can be reduced by including a feedforward term 
to Code 3. Code 4 modifies Code 3 to include the 
feedforward term. 

Code 4 

int32 LowPassFilter(int32 input) 

{ 

 int32 k; 

 int32 feedforward = (int32)100 * 256; 

 input <<= 8; 

 if ((input > (filt + feedforward)) || (input <  

(filt - feedforward))) 

 { 

 filt = input; 

 } 

 else 

{ 

 filt = filt + ((input - filt) >> 4); 

} 

k = (filt>>8) + ((filt & 0x00000080) >> 7); 

  return k;                 

} 

 

In Code 4, the ‘if else’ structure ensures that the filter is 
not applied when the input value exceeds the current filter 
value by more than 100. The feedforward term is 
multiplied by 256 to bring it in the same order as the input 
(the input is multiplied by 256 inside the filter code). If 
there is a sudden change in input, say, from 0 V to 5 V (0 
counts to 2^19 counts), the filter will not be applied and the 
filtered value will reach the input value instantaneously. 
The input will be filtered only when the input change is 
< 100 counts. To ensure that noise is filtered, the 
feedforward coefficient should be higher than the peak-to-
peak noise. 
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PSoC 1 Filter Implementation 

The two PSoC 1 based projects provide both low-pass 
and high-pass filter functions written in assembly. The 
functions have been written in assembly in PSoC 1 
because the PSoC 1 CPU is low MIPS compared to that of 
PSoC 3 and PSoC 5LP. The functions can be found in the 
file IIRFilters.asm in the PSoC Designer project. One 
project has the main file written in assembly and the other 
project has the main file in C.  

Both projects are similar to the PSoC Creator project in 
that they take the ADC input and show both the ADC 
output and low-pass filtered output in an LCD. 

IIR High-Pass Filter – PSoC 1 

The iSimpleHighPassFilter function in the file 
IIRFilters.asm implements a high-pass filter with an 
attenuation factor of 256. Equation 18 defines the roll-off 
frequency. An attenuation of 256 is selected because it 
can easily be implemented with a byte shift. 

16082562
0

ss ff
f 


  Equation 18 

For a sample rate of 5 ksps, the roll-off frequency is 
3.1 Hz. 

The function takes a 16-bit signed input and, using the old 
Vlp, calculates the next value. The new 16-bit Vhp is 
returned. This function assumes that 16-bit data is input 
through the X (MSByte) and A (LSByte) registers. The 
output is a 16-bit high-pass value returned through the X 
and A registers. Code 5 shows the function. 

This function is not called in the project. Only the 
iSimpleLowPassFilter function is called. But if needed, you 
can call this function in your project the same way the 
iSimpleLowPassFilter function is called. 

Code 4 

area bss(RAM)  

    iVlp:     BLK  3    

    ;[iVlp]     = MSByte 

    ;[iVlp + 1] = LSByte 

    ;[iVlp + 2] = Residue 

area text(ROM,REL) 

export  SimpleHighPassFilter 

export _SimpleHighPassFilter 

;;---------------------------------- 

;;  SimpleHighPassFilter: 

;;   

;;  Take input and output new 

;;  highpassvalue 

;;  INPUTS:  X,A Vin 

;;  OUTPUTS: X,A Vhp   

;;---------------------------------- 

 SimpleHighPassFilter: 

_SimpleHighPassFilter: 

   sub  A,[iVlp+1]    

   swap A,X 

   sbb  A,[iVlp] 

   ;Vhp now in A,X 

   cmp A,128 ;test if Vhp is neg 

   swap A,X 

   if1: jc elseif1 ;(if neg) 

      add [iVlp+2],A 

      swap X,A 

      adc [iVlp+1],A 

      swap A,X 

      adc [iVlp],ffh ;extended neg sign 

      ret 

   elseif1:;(pos) 

      add [iVlp+2],A 

      swap X,A  

      adc [iVlp+1],A 

      swap A,X 

      adc [iVlp],0 ;extended pos sign 

      ret   

   endif1: 

;----------------------------------- 

An initialization function is required to set the initial value 
for Vlp. Code 6 shows this function: 

Code 5 

;;---------------------------------- 

;;  SimpleHighPassInit: 

;;   

;;  Initializes the Vlp value 

;;  INPUTS:  X,A Init Value 

;;  OUTPUTS: None.   

;;---------------------------------- 

 SimpleHighPassInit: 

_SimpleHighPassInit: 

   mov [iVlp],X    

   mov [iVlp + 1],A 

   mov [iVlp + 2],0 

ret 

;;---------------------------------- 

IIR Low Pass Filter – PSoC 1 

The iSimpleLowPassFilter function implements a low-pass 
filter with attenuation factor 256/12. The cut-off frequency 
is given by Equation 19. To change the attenuation, you 
have to change the SHIFT ACCUM sequence in the 
assembly code. 

1342562

12*
0

ss ff
f 


 Equation 19 

Code 7 is the function that takes a 16-bit signed input and, 
using the old Vlp, calculates the next value. The new 16-bit 
Vlp is returned: 

Code 6 

macro  SHIFT 

   asr [TempReg] 

   rrc [TempReg + 1] 

   rrc [TempReg + 2]    

endm 
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macro  ACCUM 

   mov A,[TempReg + 2] 

   add [iVlp1 + 2],A 

   mov A,[TempReg + 1] 

   adc [iVlp1 + 1],A 

   mov A,[TempReg] 

   adc [iVlp1],A 

endm 

 

export  iSimpleLowPassFilter 

export _iSimpleLowPassFilter 

;;---------------------------------- 

;;  iSimpleLowPassFilter: 

;;   

;;  Take input and output new 

;;  higpassvalue 

;;  INPUTS:  X,A Vin 

;;  OUTPUTS: X,A Vhp   

;;---------------------------------- 

 iSimpleLowPassFilter: 

_iSimpleLowPassFilter: 

   push A 

   mov A,0 

   sub A,[iVlp1+2]  

   mov  [TempReg + 2],A 

   pop  A 

   sbb  A,[iVlp1+1] 

   mov  [TempReg + 1],A 

   mov  A,X 

   sbb  A,[iVlp1] 

   mov  [TempReg],A 

    

   SHIFT 

   SHIFT 

   SHIFT 

   SHIFT 

   SHIFT 

   ACCUM ;32 

   SHIFT 

   ACCUM  ;64 

   

   mov  A,[iVlp1 + 2] 

   add  A,128 

   mov  X,[iVlp1] 

   mov  A,[iVlp1 + 1] 

   adc  A,0 

   swap X,A 

   adc  A,0 

 

   swap X,A 

ret   

;----------------------------------- 
 

This function also requires an initialization function. It is 
shown in Code 7: 

Code 7 

export  SimpleLowPassInit 

export _SimpleLowPassInit 

;;---------------------------------- 

;;  SimpleLowPassInit: 

;;   

;;  Initializes the Vlp value 

;;  INPUTS:  X,A Init Value 

;;  OUTPUTS: None.   

 

 

 

;;---------------------------------- 

 SimpleLowPassInit: 

_SimpleLowPassInit: 

   mov [iVlp1],X    

   mov [iVlp1 + 1],A 

   mov [iVlp1 + 2],0 

ret 

;;---------------------------------- 

Summary 

Single-pole IIR filters are useful for removing noise from 
useful signals. Four projects have been presented that can 
easily be tailored to your filtering requirements. 
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Appendix A 

The actual cut-off frequency for the single-pole low-pass 
filter can be derived from Equation 20 
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Substituting z-1 = e-jw, we get, 
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The magnitude of the transfer function is given by 
Equation 21 
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     Equation 22 

 

Equation 21 gives the actual expression for the cut-off 
frequency for the single-pole low-pass IIR filter. However, 
for a >8 (filter attenuation factors commonly used are 
between 8 and 64), Equation 21 can be approximated by 
Equation 23: 

 

a

f
f s

2
0      Equation 23 

 
Table 3 shows the difference between the two cut-off 
frequencies (Equations 12 and 21) at different values of 
attenuation factor at a sample frequency of 10 kHz. 

Table 3. Cut-off Frequency Approximation Error 

a 
Cut-off Calculated 
using Equation 12 

Actual Cut-off 
(Equation 21) 

2 795.7747155 1150.267281 

4 397.8873577 461.0511704 

8 198.9436789 212.8383013 

16 99.47183943 102.7519182 

32 49.73591972 50.53386767 

64 24.86795986 25.0648066 

128 12.43397993 12.48286862 

256 6.216989965 6.229172189 
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Appendix B 

The settling time of the single-pole digital IIR filter can be 
derived from Equation 11, which is re-written below 

)1(

1
1 


 azaV

V

in

lp

   Equation 24 

If you rearrange Equation 24, you get Equation 25, which 
is the frequency response of a digital low-pass filter with 
attenuation factor, a. 
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  Equation 25 

If you take inverse z-transform, you get the impulse 
response of the filter (h[n]). 
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   Equation 26 

Summation of the impulse response over 0 to n samples 
gives the unit step response (s[n]). 
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 Equation 27 

Simplifying Equation 27, we get Equation 28 
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http://www.cypress.com/


 

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse Response (IIR) Filters 

www.cypress.com Document No. 001-38007 Rev. *J 11 

Document History  

Document Title: AN2099 – PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse Response (IIR) Filters 

Document Number: 001-38007 

Revision ECN Orig. of 
Change 

Submission 
Date 

Description of Change 

** 1520284 DWV 10/01/2007 Old application note updated to CY web. 

*A 2711571 YARA 05/27/2009 Added CY8C29x66, CY8C27x43, CY8C24x23A, CY8C24x94, CY8C21xxx, and 
CY8C20xxx part families. 

Updated Software version to PD 5.0. 

*B 3248285 DSG 05/04/2011 Added section Implementation in C 

*C 3394927 PFZ 10/12/2011 Major rewrite of the document 

*D 3457966 PFZ 12/09/2011 Template Update 

Updated project for PSoC Creator 2.0 

*E 3492061 PFZ 01/11/2012 Fixed Table 2. 

*F 3806325 RRSH 11/27/2012 Updated for PSoC 5LP. 

*G 4202704 TDU 11/26/2013 Added PSoC 4 Project. 

Fixed Equation 14. 

Corrected equation reference in Appendix B. 

*H 4373327 TDU 05/08/2014 No Change 

*I 5687739 AESATMP8 04/19/2017 Updated logo and Copyright. 

*J 5778574 TDU 06/19/2017 Updated Projects to Creator 4.0. 

http://www.cypress.com/


 

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse Response (IIR) Filters 

www.cypress.com Document No. 001-38007 Rev. *J 12 

Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find 
the office closest to you, visit us at Cypress Locations. 

 

Products 

ARM® Cortex® Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 

Cypress Developer Community 

Forums | WICED IOT Forums | Projects | Videos | Blogs | 
Training | Components 

Technical Support 

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners. 

 

 Cypress Semiconductor 
 198 Champion Court  
 San Jose, CA 95134-1709 

© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including 
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by 
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such 
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other 
intellectual property rights.  If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with 
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to 
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for 
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end 
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of 
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for 
use with Cypress hardware products.  Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD 
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to 
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or 
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is 
provided only for reference purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality and 
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as 
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or 
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances 
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A 
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or 
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, 
damage, or other liability arising from or related to all Unintended Uses of Cypress products.  You shall indemnify and hold Cypress harmless from and 
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of 
Cypress products. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are 
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit 
cypress.com. Other names and brands may be claimed as property of their respective owners. 

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

