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AN2095 explains how logarithmic signal compression works. Routines are developed and an application is shown to 

implement a -Law compressor that converts an analog voice band signal and produces a digitized 8-bit compressed value. 
An expanding DAC is also developed that restores the compressed digital value back to an analog value. 

 

Introduction 

Virtually all telephony applications are becoming digital. 
Be it wireless or standard line, digitization of speech for 
transmission has advantages over traditional analog 

techniques. -Law (pronounced mu law) is a technique of 
data compression and expansion that allows for a greater 
dynamic range given the same signal bandwidth. This 
Application Note explains the logarithmic nature of the 
human ear’s response. Equations are developed to 
calculate the signal-to-noise ratio for variable input levels. 

A PSoC® implementation of a -Law compressor and 
expander (compandor) is developed. A project is included 
that accomplishes the following: 

Digitizes and compresses incoming data to an 8-bit value. 

Transmits this data via a RS232 transmitter. 

Receives this data via a RS232 receiver. 

Expands this data and coverts it back to an analog value. 

‘C’ callable companding routines are developed and 
presented. 

The Really Big Picture 

Figure 1 shows the block diagram for a typical telephony 
application: 

Figure 1. “The Really Big Picture” Block Diagram 
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It doesn’t get more basic than this. There are three 
different components to this system: 

 

The Signal 

The Phone Company 

The Ear 

The original analog speech must be accurately received. 
Accurate is such a fuzzy word. A better description is that 
an acceptable facsimile of the signal be transmitted to the 
ear. The definition of “acceptable” is as follows. 

Signal 

For telephony applications this is voice or speech. Human 
speech has a range approximately 100 Hz to 9 kHz. It has 
roughly 40 dB of dynamic range, however normal 
conversation rarely exceeds 20 dB. (Heavy equipment 
operators, irate customers and pointy haired managers 
excluded.) 

The Phone Company 

The phone company limits the signal bandwidth to a range 
of 300 Hz to 3.5 kHz. This is not a problem for voice 
communication applications. A voice signal limited to this 
range is easily understood. 

Digital systems require a sample rate of 8-kilo samples per 
second (ksps) with 8 bits of resolution and only 8 bits of 
resolution. No free “evening and weekend” bits or 
“anytime” bits. Just 8 bits. That’s all, no more. An upper 
limit of 3.5 kHz puts the signal bandwidth comfortably 
below the 8 kHz/2 Nyquist sampling limit.   

The Human Ear 

The human ear is an engineering marvel. It has a 
logarithmic response. That is, it has the ability to become 
more or less sensitive to sounds. The ear can hear sound 
pressure levels (SPL) as low as 0 dBSPL (a whisper) up to 
120 dBSPL (a painfully loud rock concert). However, at any 
particular sound level, the dynamic range of the ear is only 
40 dB. This means you can hear someone whisper and 
also enjoy a rock concert with same ears, just not at the 
same time. If you take your niece to a Britney Spears 
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concert she will not be able to hear you repeatedly mutter, 
“This is lame!” 

If the noise is kept 40 db below the signal, the ear does 
not detect it. 

Quantization Noise, Public Enemy #1 

In a digitalized system the noise resulting from analog to 
digital conversion is one of the largest, if not the largest, 
noise contributor. Figure 2 is a visual example of an 
analog to digital (ADC) conversion. 

Figure 2. Example of an Analog Digital Conversion 

 

The ADC output has finite resolution. The difference 
between these two signals is the quantization noise. 
Intuitively, an ADC with finer resolution levels results in 
less quantization noise. 

For the following mathematical models, use the following 
definitions: 

The ADC range is normalized to +/- 1. 

The input signal is a sinusoid with amplitude “a” (where 0 
≤ a ≤ 1). 

An “n” bit ADC has 2
n
 quantization levels. Equation (1) 

defines the ADC resolution. 
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   Equation 1 

The quantization error  is the difference between the 
actual signal and the quantized value. For a dynamic 

signal, this error averages to zero and is limited to +/- ½. 

It is evenly distributed between the limits of +/-½.  
Figure 2 defines the noise as the RMS value of this error. 
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The quantization noise is directly proportional to the ADC 
resolution. 

The signal is a sinusoid with amplitude of “a.” Equation (3) 
defines its RMS value: 
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  Equation 3 

The ratio of these two values is defined as the Signal-to-
Noise Ratio (SNR). It is normally expressed in dB as 
shown in Equation (4): 
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Combining equations (1) and (4) results in simplified 
Equation (5): 
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Figure 3 is a plot of the SNR for an 8-bit ADC: 

Figure 3. SNR vs. Input for 8-Bit ADC 

 

The SNR is as high as 50 dB for a full-scale input but falls 
to 40 dB for a -10 dB input.  For a -20 dB input, the SNR is 
down to 30 dB. This SNR calculation only accounts for 
quantization noise.  Other noise sources in the system 
reduce the actual SNR value even further. 

Equation (6) shows the dynamic range to be the ratio of 
the range to the resolution: 
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Non-Linear Quantization 

Figure 3 shows the SNR as a function of the relative 
amplitude of the input. It is 50 dB for a full-scale input but 
falls rapidly. More bits of resolution would allow a wider 
range of input signals but the phone company makes it 
pretty clear that this is not going to happen. 

An alternative is to make  a function of input signal 

amplitude. If  is made larger for large input signals and 
smaller for small signals, some of the excess SNR at the 
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top of the input range can be used to boost the SNR for 
low-level inputs. This is called non-linear quantization.  
Most non-linear quantization techniques are based on 
some logarithmic transfer function. 

-Law Compression 

North American and Japanese telephony applications use 

-Law compression. Equation (7) is the compression 
function. Where: 

The input in normalized (-1≤ x ≤ 1). 

y is the compressed output. 

 is the compression factor. 

)1ln(
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x
xsigny    Equation 7 

 can be any positive value. The larger  becomes, the 
greater the compression. For North American and 

Japanese applications,  is set to 255. Figure 4 is the plot 

of Equation (7) with  set to 255 and x limited to its 
positive range: 

Figure 4. -Law Plot   = 255 
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Figure 4 graphically shows that for uniform quantization 
levels on the y-axis, the quantization levels on x-axis 
increase with amplitude. 

Taking the derivative of Equation (7) results in 
Equation (8): 
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Solving Equation (8) for dx results in Equation (9):  
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Equation (10) defines a uniform resolution of the y-axis for 
an n bit ADC: 
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Substituting y for dy in Equation (9) results in 

Equation (11): 
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The resolution on the x-axis is shown to be a function of x. 
Equation (12) shows that the noise is also a function of x: 
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The total noise is the RMS of all the quantization noise of 
the input signal. Equation (13) defines the noise for a 
sinusoidal input with an amplitude of “a.” 
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Combining equations (12) and (13) results in 
Equation (14): 
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Solving the integral in Equation (14) results in 
Equation (15): 
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Equation (16) defines the RMS value for the same 
sinusoidal input: 
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Equation (17) takes equations (15) and (16) to calculate 
the SNR: 
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Figure 5 is a plot of the SNR for a -Law compressed 

signal with n set to 8 and  set to 255: 
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Figure 5. Linear and -Law SNR Plot (n=8 =255) 

 

The math just described can be a bit overwhelming. The 
spreadsheet used to generate Figure 5 
uLawSNRCalculation.xls, is located in the project file 
associated with this Application Note. It allows you to 
change the level of compression or digitization and view 
the results. The reader is encouraged to manipulate the 

values of n and  to develop an intuitive feel for their effect 

on signal compression and SNR. 

Figure 5 also includes a plot of the SNR for an 8 bit. It is 
apparent that the compression allows for an acceptable 
SNR for much smaller inputs. It does so at the expense of 
peak SNR. But anything over 40 dB is a waste anyway. 

Equation (18) shows the dynamic range to be the ratio of 
the signal range to the smallest resolution: 
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The resolution is smallest when x = 0.   Combining 
equations (11) and (18) result in Equation (19): 
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With  set to 255, Equation (19) reduces to a simplified 
Equation (20): 

)52.5(02.625.3302.6)(  nnDR dBu
 Equation 20 

The dynamic range for a -Law compressed signal is 33 
dB or 5½ bits greater than the dynamic range for a linear 
signal, given the same sampling bandwidth. 

Again, an increase in dynamic range comes at the 
expense of peak SNR. 

 

Building a -Law Compressor 

Figure 6 shows two possible ways to implement a  -Law 
compressor: 

Figure 6. Block Diagrams for -Law Compression 
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Two different techniques are shown: 

Compress the signal and digitize with an 8-bit ADC. 

Digitize with a higher resolution ADC and compress the 
digitized signal down to 8 bits. 

Each technique has its own particular advantages and 
disadvantages. The first requires an ADC with only 8 bits 
of resolution but requires a logarithmic amplifier to 
implement the compression function. This technique is 
widely used in highly integrated single-chip designs for 
high volume consumer applications. 

The second technique requires an ADC with a higher 
resolution, but no logarithmic amplifier is required. 
Equation (19) shows that 13.5 bits is the most resolution 
required. 

As the cost of ADCs continues to decrease faster than the 

cost of logarithmic amplifiers, more -Law compression 
designs can be implemented using the second technique. 

The PSoC philosophy is to offer reconfigurable general-
purpose components. A logarithmic amplifier does not 
meet these guidelines. It is hard to make a logarithmic 
amplifier anything other than a logarithmic amplifier. 

The PSoC solution uses the second technique. It digitizes, 
then compresses. 

For an 8-ksps sample rate, the compression in 

Equation (21) is calculated every 125 sec: 
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Three methods of calculating Equation (21) are: 

Complete Mathematical Operation 

Linear Approximation 

Lookup Table 
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Complete Mathematical Solution requires: 

Normalizing the Input Data 

Calculating a Logarithm 

At Least One Multiplication 

Several Additions 

Doing this all in just 125 sec requires a DSP or a 
processor with a fast mathematical engine. It is just not an 
option for a microcontroller. 

The Linear Approximation requires that the data be 

normalized to 14 bits. A bias value of 33 is added to this 
linear data and the five most significant bits and their 
position in the data word is used to calculate the 
compressed value. Figure 7 shows a table for a Linear 
Approximation to Equation (21): 

Figure 7. Linear to Compressed Format Chart 
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This is the most popular -Law compression technique. It 
requires hardly any code to implement. So simple, in fact, 

that it has become the de-facto standard for -Law 
compression. The International Telecommunication Union 
standard, ITU-T G.711, defines this approximation as 

actual -Law compression. 

It somehow seems wrong that an approximation be 
elevated to a higher level than the real function (sort of like 
picking your target after shooting). Try reading ITU-T 
G.711. (Just try finding it) and you happily just accept it. 

Please note that this compression algorithm is done with 

14-bit data. The dynamic range of a -Law compressed 
signal is no more than 13½ bits.  Several software 
functions claim to compress 16-bit linear data to an 8-bit 
compressed value.  They do so by discarding the least 
significant 2 bits before compressing. And they do so with 
no shame! How convenient, just throw them away.  Do not 
fall into the trap of assuming a 16-bit compression routine 
requires a 16-bit ADC. Following this logic, one could 
easily build a 24-bit linear data to an 8-bit compressor 
merely by discarding the least significant 10 bits. 

A Lookup Table allows Equation (22) to be implemented: 

)(xfy      Equation 22 

f(x) can be any function you desire. It can be a table of 

mathematically calculated -Law compression values. Or 
it can be a table of values generated using the ITU-T 
G.711 algorithm. The table can compensate for any known 
ADC non-linearity or gain errors. Merely changing the 
tables easily allows A-Law compression. A-Law is the 

compression standard used for European telephony 

applications. It is similar to -Law with its key feature being 

that it is not American. Think of it as “Metric -Law.” 
Several tables can be stored to allow for different 
compression schemes within a single product. The only 
down side is storage space. 

Equation (23) shows that only positive values of x need be 
in the table: 

)()( xfxf      Equation 23 

So with only of half the data needed to construct a table, 
Table 1 shows the table size verses the input data 
resolution. 

Table 1. ADC Resolution vs. Table Size 

ADC Resolution Table Size 

  9 Bits   256 Bytes 

10 Bits   512 Bytes 

11 Bits 1024 Bytes 

12 Bits 2046 Bytes 

13 Bits 4096 Bytes 

14 Bits 8096 Bytes 

15 Bits 8096 Bytes 

16 Bits 8096 Bytes 

 

Notice that the table allows for data with less than 14 bits 
of resolution. This is quite acceptable.  The compression 
data has 13½ bits of dynamic range. Inputs with less 
resolution can be compressed. The over all dynamic range 
is either the resolution of the ADC or 13½ bits, whichever 
is smaller. 

Building a Law Expander 

Figure 8 shows a block diagram for implementing a -Law 
expander. 

Figure 8. Block Diagram for -Law Expander 
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The digital signal is expander fed to a DAC. Like the 
compressor, there are three ways to implement an 
expander: 

Complete Mathematical Operation 

Linear Approximation 

Lookup Table 

The Complete Mathematical Solution requires 

performing the calculation in Equation (24): 
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As with the compressor, this expansion requires a lot of 

mathematical operation in the 125-sec data sample time. 

The Linear Approximation has a normalized output of 14 

bits. It is shown in Figure 9:  

Figure 9. Compressed to Linear Format Chart 
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Thirty-three is subtracted from the bias output value to 
produce the linear output. As with compression, this is the 

ITU-T G.711 standard for -Law data expansion. 

A Lookup Table allows Equation (25) to be implemented: 

)(1 yfx      Equation 25 

As with the compressor, this equation can implement any 
function you desire. It can be a table of mathematically 

calculated -Law compression values. Or it can be a table 
of values generated using the ITU-T G.711 algorithm. It 
can compensate for any system non-linearity. The actual 
output can be a 14-bit linear output or it can be the data 
required to control a DAC. The symmetry of the positive 
and negative values allows for only 128 words of table 
storage. With most likely two bytes per word, the storage 
requirement is 256 bytes. 

A PSoC -Law Compressor 

Figure 10 shows a block diagram for a -Law compressor: 

Figure 10. PSoC -Law Compressor Block Diagram 
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It consists of the following sections: 

 PreAmp 

11-Bit Delta Sigma ADC 

-Law Compressor 

Serial Transmitter 

PreAmp 

The input signal is AC coupled to the input of PreAmp. It is 
a PGA User Module set for unity gain. Depending on the 
application, the gain can vary as much as +/- 24 dB. The 
output is brought outside the chip via an analog buffer. 

ADC 

The signal is, again, AC coupled and brought to 
DELSIG11. Equation (26) defines the sample rate: 

)()(
1024

xfxf
DataClock

SampleRate   Equation 26 

For a maximum data clock of 8 MHz, the sample rate is 
only 7.81 ksps.  This falls well below the required 8 ksps. 
The DELSIG11 uses a timer with a period of 256 to control 
its decimator. If its period is changed to 250 then Equation 
(27) defines the sample rate: 

)()(
1000

xfxf
DataClock

SampleRate   Equation 27 

For a data clock of 8 MHz, the sample rate is now 8 ksps. 
Without going into details about delta-signal operation, the 
gain is also reduced by (250/256)

2
. 

The following code segment shows how to alter the ADC 
for 8 ksps operation: 

   DELSIG11_StartAD(); 

   DELSIG11_TimerDR1 = 0xF9;//set period to 

250 

-Law Compressor 

The compressor uses a lookup table. The table has a gain 
adjust factored into it to compensate for the ADC loss. It 
implements the ITU-T G.711 compression algorithm. It 
takes 11-bit signed output data from the DELSIG11 and 
converts it to an 8-bit compressed value. Example Code 1 
is the actual routine: 

Code 1 

;----------------------------------------- 

;;  cDS11_to_uLaw: 

;;  Takes an 11  linear value and 

;;  converts it to a uLaw Value 

;;  and mantissa.  Updates DACs. 

;;  INPUTS:  X, A ia an 11 bit integer 

;;  OUTPUTS: A is the uLaw Value   

;;---------------------------------------- 

 cDS11_to_uLaw: 

_cDS11_to_uLaw: 

   swap A,X 

   and A,07h        ;keep lower 3 bits 

   add A,(>uLawData);point to uLawData 

Table     

   romx             ;uLaw Value returned in 

A 

ret 
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This function can be found in uLawStuff.asm, located in 
the project file associated with this Application Note. Also 
included is uLawStuff.h that makes it a fastcall ‘C’ function. 

Serial Transmitter 

It is just a 115.2 k-baud serial UART transmitter.  For data 
having a bandwidth of 64 kbps, this transmission rate is 
adequate. 

A PSoC -Law Expander 

Figure 11 shows a block diagram for a Law expander: 

Figure 11. PSoC -Law Expander Block Diagram 
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It consists of the following sections: 

Serial Receiver 

-Law Expander 

Four-Pole Switched Cap Filter 

Two-Pole Sallen Key Filter 

Serial Receiver 

It is just a 115.2 k-baud serial UART receiver.  For data 
being received having a bandwidth of 64 kbps, this is 
adequate. 

-Law Expander 

The expander uses lookup tables to control the Matissa 
and Exponent multiplying DACs. 

The ITU-T G.711 expansion is implemented in these 
tables to provide an 11-bit signed linear output.  Example 
Code 2 is the actual routine: 

Code 2 

;--------------------------------------- 

;;  WriteuLawDAC: 

;;  Takes an 8 bit signed value and 

;;  separates into sign, exponent 

;;  and mantissa.  Updates DACs. 

;;  INPUTS:  A contains the uLaw value 

;;  OUTPUTS: None.   

;;-------------------------------------- 

 WriteuLawDAC: 

_WriteuLawDAC: 

   mov   X,A 

   add   A,80h 

   if1: jnc else1 ;(is a neg value) 

       index MantissaData 

       jmp endif1 

   else1:;(A is a positive value) 

      index (MantissaData - 128) 

      add   A,32  ;pos is neg * neg 

   endif1: 

   swap  A,X 

   and   A,7fh ;mask out sign 

   index ExponentData 

   M8C_Stall 

   mov   reg[Exponent_cr0],A 

   M8C_Unstall 

   mov   A,X 

   mov  reg[Mantissa_cr0],A 

   ret 

As with the compression function, this expander function 
can be found in uLawStuff.asm, located in the project file 

associated with this Application Note. It also is defined as 
a fastcall ‘C’ function. 
 
The DAC output updates at 8 ksps. For a 300 Hz sinusoid 
this works out to 26.67 samples. Twenty-six points do 
make up something that resembles a sinusoid. But a  
3 kHz sinusoid only has only 2.67 samples. Not much of a 
sinusoid. A reconstruction filter is required to produce a 
smooth output over 300 Hz - 3500 Hz bandwidth.  This 
application uses a six-pole, low pass filter. 

Four-Pole Switched Cap Filter 

Four of these poles are implemented with two LPF2 User 
Modules in series. They are switched capacitor bi-quad 
filters. Their component values can be viewed in the 
parameter section of each filter in the project associated 
with this Application Note. The output of these filters is 
brought outside the chip via an analog buffer. 

Two-Pole Sallen Key Filter 

This filter is built with a PGA User Module configured as a 
buffer, two external resistors, and two external capacitors.  
It completes the rest of six-pole response. It also removes 
switch noise generated by the previous filter. Appendix A 
has the values of the discrete components. It also shows 
User Module placement for the whole project. 

A Complete System Test 

Figure 12 is a block diagram of the compressor and 
expander figured as a compandor. 

Figure 12. Compressor and Expander 
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Of course, for real applications, the compressor and 
expander would be separate applications in different 
chips, if not different products.  Combining them allows the 
SNR of a complete compression, expansion to be 
measured. 

The code to do this is added into the DELSIG11 interrupt 
at the point marked for user code addition. It is shown in 
following example Code 3: 
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Code 3 

;;-----------------------------------------

------- 

 

   ;;  data is now in X,A 

   ;;  The user's handler should be placed 

here 

    

   call cDS11_to_uLaw 

   call TX8_1_SendData  

   include "RX8_1.inc"         

   mov A,reg[RX8_1_CONTROL_REG] 

   and A,RX8_RX_COMPLETE 

   if_100: jz endif_100 ;(data is 

available) 

      mov A, reg[RX8_1_RX_BUFFER_REG] 

      call WriteuLawDAC  

   endif_100: 

    

;;-----------------------------------------

-------- 

 

The 11-bit data is compressed and sent out the serial port. 
The serial receiver is polled for an available byte. If an 
available byte is found, it is retrieved, expanded, and 
converted back to an analog signal. 

This works only if the data rates are exact. It only happens 
when they are generated with the same clock. For real 
applications, incoming data would be handled with its own 
interrupt or collected in a circular FIFO. 

The performance measures of a signal compression 
system are harmonic distortion and noise over the range 
of signal frequency and level. Figure 13 shows a 1 kHz 
mid-band signal at an input level of 2Vpp. The highest 
harmonic is 45 dB below the fundamental. Noise 
contributions are from broadband noise and sampling 
aliases.  

The first sampling alias (fsample-fsignal) is at 7.0 kHz (8 kHz-
1 kHz) is 65 dB below signal level: 

Figure 13. Spectral Plot for 1 kHz 2 Vpp Input 

 

The nature of -Law compression is to generate 
essentially fixed SNR over a wide range of signal levels. 

Figure 14 shows the same 1.0 kHz signal but at an input 
level of 100 mVp-p, 26 dB down from the input level of 
Figure 13. The harmonic levels and noise level drop along 
with the signal level to maintain essentially constant 
signal-to-noise ratio. The first sampling alias at 7.0 kHz 
remains at 65 dB below signal level: 

Figure 14. Spectral Plot for 1 kHz 100 mVpp Input 

 

Signals at 300 and 3.0 kHz and at 2.0 Vp-p and  
100 mVp-p are shown in figures 15 through 18. 

Figure 15. Spectral Plot for 300 Hz 2 Vpp Input 

 

Figure 16. Spectral Plot for 300 Hz 100 mVpp Input 
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Figure 17. Spectral Plot for 3 kHz 2 Vpp Input 

 

 

Figure 18. Spectral Plot for 3 kHz 100 mVpp Input 

 

Note The low harmonic distortion level is maintained. 

Higher frequencies have harmonics out of the nominal 
voice band, but alias harmonics can wind up in the voice 
band.  The largest alias, shown in figures 17 and 18, is the 
6 kHz harmonic of the 3 kHz signal below the 8 kHz 
sample frequency or 2.0 kHz for a 3.0 kHz input. This 
represents the highest noise case, but in a practical 
system these alias levels almost certainly would not 
impact usable signal fidelity. 

Summary 

Logarithmic Data Compression makes acceptable quality 
voice communication with a greater reduced signal 
bandwidth. The PSoC architecture allows easy 

implementation of the ITU-T G.711 -Law 
compression/expansion format. The large amount of chip 
analog resources allows complete signal conditioning, 
digitization, filtering, and signal reconstruction with only a 
handful of additional passive components.  
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Appendix A. PSoC User Module Placement and Pin Interface Schematic 
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