
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 www.cypress.com Document No. 001-38006 Rev. *D 1

AN2095

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is -Law

Author: David Van Ess
Associated Project: Yes

Associated Part Family: CY8C27x43, CY28x43, CY28x45, CY28x52, CY8C29x66
Software Version: PSoC

®
 Designer™ 5.4

Related Application Notes: None

AN2095 explains how logarithmic signal compression works. Routines are developed and an application is shown to

implement a -Law compressor that converts an analog voice band signal and produces a digitized 8-bit compressed value.
An expanding DAC is also developed that restores the compressed digital value back to an analog value.

Introduction

Virtually all telephony applications are becoming digital.
Be it wireless or standard line, digitization of speech for
transmission has advantages over traditional analog

techniques. -Law (pronounced mu law) is a technique of
data compression and expansion that allows for a greater
dynamic range given the same signal bandwidth. This
Application Note explains the logarithmic nature of the
human ear’s response. Equations are developed to
calculate the signal-to-noise ratio for variable input levels.

A PSoC® implementation of a -Law compressor and
expander (compandor) is developed. A project is included
that accomplishes the following:

Digitizes and compresses incoming data to an 8-bit value.

Transmits this data via a RS232 transmitter.

Receives this data via a RS232 receiver.

Expands this data and coverts it back to an analog value.

‘C’ callable companding routines are developed and
presented.

The Really Big Picture

Figure 1 shows the block diagram for a typical telephony
application:

Figure 1. “The Really Big Picture” Block Diagram

THE

 PHONE

 COMPANY

EarSignal

It doesn’t get more basic than this. There are three
different components to this system:

The Signal

The Phone Company

The Ear

The original analog speech must be accurately received.
Accurate is such a fuzzy word. A better description is that
an acceptable facsimile of the signal be transmitted to the
ear. The definition of “acceptable” is as follows.

Signal

For telephony applications this is voice or speech. Human
speech has a range approximately 100 Hz to 9 kHz. It has
roughly 40 dB of dynamic range, however normal
conversation rarely exceeds 20 dB. (Heavy equipment
operators, irate customers and pointy haired managers
excluded.)

The Phone Company

The phone company limits the signal bandwidth to a range
of 300 Hz to 3.5 kHz. This is not a problem for voice
communication applications. A voice signal limited to this
range is easily understood.

Digital systems require a sample rate of 8-kilo samples per
second (ksps) with 8 bits of resolution and only 8 bits of
resolution. No free “evening and weekend” bits or
“anytime” bits. Just 8 bits. That’s all, no more. An upper
limit of 3.5 kHz puts the signal bandwidth comfortably
below the 8 kHz/2 Nyquist sampling limit.

The Human Ear

The human ear is an engineering marvel. It has a
logarithmic response. That is, it has the ability to become
more or less sensitive to sounds. The ear can hear sound
pressure levels (SPL) as low as 0 dBSPL (a whisper) up to
120 dBSPL (a painfully loud rock concert). However, at any
particular sound level, the dynamic range of the ear is only
40 dB. This means you can hear someone whisper and
also enjoy a rock concert with same ears, just not at the
same time. If you take your niece to a Britney Spears

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 2

concert she will not be able to hear you repeatedly mutter,
“This is lame!”

If the noise is kept 40 db below the signal, the ear does
not detect it.

Quantization Noise, Public Enemy #1

In a digitalized system the noise resulting from analog to
digital conversion is one of the largest, if not the largest,
noise contributor. Figure 2 is a visual example of an
analog to digital (ADC) conversion.

Figure 2. Example of an Analog Digital Conversion

The ADC output has finite resolution. The difference
between these two signals is the quantization noise.
Intuitively, an ADC with finer resolution levels results in
less quantization noise.

For the following mathematical models, use the following
definitions:

The ADC range is normalized to +/- 1.

The input signal is a sinusoid with amplitude “a” (where 0
≤ a ≤ 1).

An “n” bit ADC has 2
n
 quantization levels. Equation (1)

defines the ADC resolution.

nonLevelsQuantizati

ADCRange

2

2

#
 Equation 1

The quantization error  is the difference between the
actual signal and the quantized value. For a dynamic

signal, this error averages to zero and is limited to +/- ½.

It is evenly distributed between the limits of +/-½.
Figure 2 defines the noise as the RMS value of this error.

123

11 2

2

32

2

2 






















 dNoise RMS

 Equation 2

The quantization noise is directly proportional to the ADC
resolution.

The signal is a sinusoid with amplitude of “a.” Equation (3)
defines its RMS value:

2
))sin((

1

0

2 a
dttaSignal  





 Equation 3

The ratio of these two values is defined as the Signal-to-
Noise Ratio (SNR). It is normally expressed in dB as
shown in Equation (4):



























12

2
log20log20

a

Noise

Signal
SNRdB

 Equation 4

Combining equations (1) and (4) results in simplified
Equation (5):

)log(2076.102.6
2

3
2log20 anaSNR n

dB 













 Equation 5

Figure 3 is a plot of the SNR for an 8-bit ADC:

Figure 3. SNR vs. Input for 8-Bit ADC

The SNR is as high as 50 dB for a full-scale input but falls
to 40 dB for a -10 dB input. For a -20 dB input, the SNR is
down to 30 dB. This SNR calculation only accounts for
quantization noise. Other noise sources in the system
reduce the actual SNR value even further.

Equation (6) shows the dynamic range to be the ratio of
the range to the resolution:

n
ADCRange

DRdB 









 02.6log20 Equation 6

Non-Linear Quantization

Figure 3 shows the SNR as a function of the relative
amplitude of the input. It is 50 dB for a full-scale input but
falls rapidly. More bits of resolution would allow a wider
range of input signals but the phone company makes it
pretty clear that this is not going to happen.

An alternative is to make  a function of input signal

amplitude. If  is made larger for large input signals and
smaller for small signals, some of the excess SNR at the

-20

-10

0

10

20

30

40

50

60

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

S
N

R
(d

B
)

Input(dB)

SNR for 8 bit ADC

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 3

top of the input range can be used to boost the SNR for
low-level inputs. This is called non-linear quantization.
Most non-linear quantization techniques are based on
some logarithmic transfer function.

-Law Compression

North American and Japanese telephony applications use

-Law compression. Equation (7) is the compression
function. Where:

The input in normalized (-1≤ x ≤ 1).

y is the compressed output.

 is the compression factor.

)1ln(

|)|1ln(
)(










x
xsigny Equation 7

 can be any positive value. The larger  becomes, the
greater the compression. For North American and

Japanese applications,  is set to 255. Figure 4 is the plot

of Equation (7) with  set to 255 and x limited to its
positive range:

Figure 4. -Law Plot  = 255

1

0 1

dy

dx

dy

dx

Figure 4 graphically shows that for uniform quantization
levels on the y-axis, the quantization levels on x-axis
increase with amplitude.

Taking the derivative of Equation (7) results in
Equation (8):

xdx

dy











1

1

)1ln(
 Equation 8

Solving Equation (8) for dx results in Equation (9):

  dyxdx





)1ln(
1


 Equation 9

Equation (10) defines a uniform resolution of the y-axis for
an n bit ADC:

n

y
2

2
 Equation 10

Substituting y for dy in Equation (9) results in

Equation (11):

nx xdxx
2

2)1ln(
)1()(







 Equation 11

The resolution on the x-axis is shown to be a function of x.
Equation (12) shows that the noise is also a function of x:

12

2

2)1ln(
)1(

12

)(
)(

n
x

x
x

xNoise















 Equation 12

The total noise is the RMS of all the quantization noise of
the input signal. Equation (13) defines the noise for a
sinusoidal input with an amplitude of “a.”

 




0

2))sin((
1

dxxaNoiseNoiseRMS

 Equation 13

Combining equations (12) and (13) results in
Equation (14):


















 











0

2

12
2

2

)1ln(
))sin(1(

1
dx

xa

Noise
nRMS

 Equation 14

Solving the integral in Equation (14) results in
Equation (15):







 aa
Noise

n

RMS

4

2
1

)1ln(

12

2

2
22




 Equation 15

Equation (16) defines the RMS value for the same
sinusoidal input:

2
))sin((

1

0

2 a
dxxaSignal  




 Equation 16

Equation (17) takes equations (15) and (16) to calculate
the SNR:



































aa
aSNR n

dBu

4

2
1

)1ln(

2

3
2log20.

22
)(

 Equation 17

Figure 5 is a plot of the SNR for a -Law compressed

signal with n set to 8 and  set to 255:

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 4

Figure 5. Linear and -Law SNR Plot (n=8 =255)

The math just described can be a bit overwhelming. The
spreadsheet used to generate Figure 5
uLawSNRCalculation.xls, is located in the project file
associated with this Application Note. It allows you to
change the level of compression or digitization and view
the results. The reader is encouraged to manipulate the

values of n and  to develop an intuitive feel for their effect

on signal compression and SNR.

Figure 5 also includes a plot of the SNR for an 8 bit. It is
apparent that the compression allows for an acceptable
SNR for much smaller inputs. It does so at the expense of
peak SNR. But anything over 40 dB is a waste anyway.

Equation (18) shows the dynamic range to be the ratio of
the signal range to the smallest resolution:




























)0(

2
log20

)(min
log20)(

xx

dBu
x

ADCRange
DR Equation 18

The resolution is smallest when x = 0. Combining
equations (11) and (18) result in Equation (19):


































)1ln(
2log20

2

2)1ln(

2
log20)(








n

n

dBuDR
 Equation 19

With  set to 255, Equation (19) reduces to a simplified
Equation (20):

)52.5(02.625.3302.6)( nnDR dBu
 Equation 20

The dynamic range for a -Law compressed signal is 33
dB or 5½ bits greater than the dynamic range for a linear
signal, given the same sampling bandwidth.

Again, an increase in dynamic range comes at the
expense of peak SNR.

Building a -Law Compressor

Figure 6 shows two possible ways to implement a  -Law
compressor:

Figure 6. Block Diagrams for -Law Compression

V
in

(t) D
out

(n)(t)
8 bit

ADC

(n)
ADC

>8 bits

D
out

(n)V
in

(t)

(a)

(b)

Two different techniques are shown:

Compress the signal and digitize with an 8-bit ADC.

Digitize with a higher resolution ADC and compress the
digitized signal down to 8 bits.

Each technique has its own particular advantages and
disadvantages. The first requires an ADC with only 8 bits
of resolution but requires a logarithmic amplifier to
implement the compression function. This technique is
widely used in highly integrated single-chip designs for
high volume consumer applications.

The second technique requires an ADC with a higher
resolution, but no logarithmic amplifier is required.
Equation (19) shows that 13.5 bits is the most resolution
required.

As the cost of ADCs continues to decrease faster than the

cost of logarithmic amplifiers, more -Law compression
designs can be implemented using the second technique.

The PSoC philosophy is to offer reconfigurable general-
purpose components. A logarithmic amplifier does not
meet these guidelines. It is hard to make a logarithmic
amplifier anything other than a logarithmic amplifier.

The PSoC solution uses the second technique. It digitizes,
then compresses.

For an 8-ksps sample rate, the compression in

Equation (21) is calculated every 125 sec:

)256ln(

|))(|2551ln(
))(()(

nx
nxsignny


 Equation 21

Three methods of calculating Equation (21) are:

Complete Mathematical Operation

Linear Approximation

Lookup Table

-20

-10

0

10

20

30

40

50

60

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

S
N

R
 (

d
B

)

Input (dB)

SNR vs Input Amplitude

8 bit uLaw u=255

8 bit linear

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 5

Complete Mathematical Solution requires:

Normalizing the Input Data

Calculating a Logarithm

At Least One Multiplication

Several Additions

Doing this all in just 125 sec requires a DSP or a
processor with a fast mathematical engine. It is just not an
option for a microcontroller.

The Linear Approximation requires that the data be

normalized to 14 bits. A bias value of 33 is added to this
linear data and the five most significant bits and their
position in the data word is used to calculate the
compressed value. Figure 7 shows a table for a Linear
Approximation to Equation (21):

Figure 7. Linear to Compressed Format Chart

x

11 10 9 8 7 6 5 4 3 2 1S 0

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-+/- 1 1 1

1

1

11

1

1 1

1 1

0 00

00

00

0

00

0

0

d c b a d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a1

1

1

1

1

1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 00 0 0

0

0

0 0

0 0

0

0123456S

MantissaExponent

Compressed DataBiased Linear Input Data

xxx

xxx

xxx

xxx

xxx xxx

xxx

x

x

x

xx

xx

S = 0 for positive value

S = 1 for negative value

12

x

x

x

x

x

x

x

This is the most popular -Law compression technique. It
requires hardly any code to implement. So simple, in fact,

that it has become the de-facto standard for -Law
compression. The International Telecommunication Union
standard, ITU-T G.711, defines this approximation as

actual -Law compression.

It somehow seems wrong that an approximation be
elevated to a higher level than the real function (sort of like
picking your target after shooting). Try reading ITU-T
G.711. (Just try finding it) and you happily just accept it.

Please note that this compression algorithm is done with

14-bit data. The dynamic range of a -Law compressed
signal is no more than 13½ bits. Several software
functions claim to compress 16-bit linear data to an 8-bit
compressed value. They do so by discarding the least
significant 2 bits before compressing. And they do so with
no shame! How convenient, just throw them away. Do not
fall into the trap of assuming a 16-bit compression routine
requires a 16-bit ADC. Following this logic, one could
easily build a 24-bit linear data to an 8-bit compressor
merely by discarding the least significant 10 bits.

A Lookup Table allows Equation (22) to be implemented:

)(xfy  Equation 22

f(x) can be any function you desire. It can be a table of

mathematically calculated -Law compression values. Or
it can be a table of values generated using the ITU-T
G.711 algorithm. The table can compensate for any known
ADC non-linearity or gain errors. Merely changing the
tables easily allows A-Law compression. A-Law is the

compression standard used for European telephony

applications. It is similar to -Law with its key feature being

that it is not American. Think of it as “Metric -Law.”
Several tables can be stored to allow for different
compression schemes within a single product. The only
down side is storage space.

Equation (23) shows that only positive values of x need be
in the table:

)()(xfxf  Equation 23

So with only of half the data needed to construct a table,
Table 1 shows the table size verses the input data
resolution.

Table 1. ADC Resolution vs. Table Size

ADC Resolution Table Size

 9 Bits 256 Bytes

10 Bits 512 Bytes

11 Bits 1024 Bytes

12 Bits 2046 Bytes

13 Bits 4096 Bytes

14 Bits 8096 Bytes

15 Bits 8096 Bytes

16 Bits 8096 Bytes

Notice that the table allows for data with less than 14 bits
of resolution. This is quite acceptable. The compression
data has 13½ bits of dynamic range. Inputs with less
resolution can be compressed. The over all dynamic range
is either the resolution of the ADC or 13½ bits, whichever
is smaller.

Building a Law Expander

Figure 8 shows a block diagram for implementing a -Law
expander.

Figure 8. Block Diagram for -Law Expander

D
in

(n) V
out

(n)
(n) DAC

The digital signal is expander fed to a DAC. Like the
compressor, there are three ways to implement an
expander:

Complete Mathematical Operation

Linear Approximation

Lookup Table

The Complete Mathematical Solution requires

performing the calculation in Equation (24):

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 6

 
)(

11
)(()(

|)(|

xfnxsignnx

ny



 
 Equation 24

As with the compressor, this expansion requires a lot of

mathematical operation in the 125-sec data sample time.

The Linear Approximation has a normalized output of 14

bits. It is shown in Figure 9:

Figure 9. Compressed to Linear Format Chart

11 10 9 8 7 6 5 4 3 2 1S 0

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/- +/-1 1 1

1

1

11

1

1 1

1 1

0 00

00

00

0

00

0

0

d c b ad c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a

d c b a1

1

1

1

1

1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 00 0 0

0

0

0 0

0 0

0

0123456S

MantissaExponent

Compressed Data Biased Linear Input Data

xx

xx

xx

xx

xx xxx

xxx

x

x

x

xx

12

x

x

x

x

x

x

x

1

1

1

1

1

1

1

1

Thirty-three is subtracted from the bias output value to
produce the linear output. As with compression, this is the

ITU-T G.711 standard for -Law data expansion.

A Lookup Table allows Equation (25) to be implemented:

)(1 yfx  Equation 25

As with the compressor, this equation can implement any
function you desire. It can be a table of mathematically

calculated -Law compression values. Or it can be a table
of values generated using the ITU-T G.711 algorithm. It
can compensate for any system non-linearity. The actual
output can be a 14-bit linear output or it can be the data
required to control a DAC. The symmetry of the positive
and negative values allows for only 128 words of table
storage. With most likely two bytes per word, the storage
requirement is 256 bytes.

A PSoC -Law Compressor

Figure 10 shows a block diagram for a -Law compressor:

Figure 10. PSoC -Law Compressor Block Diagram

PreAmp
P0.3P0.1

V
in

P2.1

DELSIG11

8ksps

(n) Tx

115.2k

baud

P1.4 Serial
out

buf0

P0.5

AGNDBuffer

buf1

It consists of the following sections:

 PreAmp

11-Bit Delta Sigma ADC

-Law Compressor

Serial Transmitter

PreAmp

The input signal is AC coupled to the input of PreAmp. It is
a PGA User Module set for unity gain. Depending on the
application, the gain can vary as much as +/- 24 dB. The
output is brought outside the chip via an analog buffer.

ADC

The signal is, again, AC coupled and brought to
DELSIG11. Equation (26) defines the sample rate:

)()(
1024

xfxf
DataClock

SampleRate  Equation 26

For a maximum data clock of 8 MHz, the sample rate is
only 7.81 ksps. This falls well below the required 8 ksps.
The DELSIG11 uses a timer with a period of 256 to control
its decimator. If its period is changed to 250 then Equation
(27) defines the sample rate:

)()(
1000

xfxf
DataClock

SampleRate  Equation 27

For a data clock of 8 MHz, the sample rate is now 8 ksps.
Without going into details about delta-signal operation, the
gain is also reduced by (250/256)

2
.

The following code segment shows how to alter the ADC
for 8 ksps operation:

 DELSIG11_StartAD();

 DELSIG11_TimerDR1 = 0xF9;//set period to

250

-Law Compressor

The compressor uses a lookup table. The table has a gain
adjust factored into it to compensate for the ADC loss. It
implements the ITU-T G.711 compression algorithm. It
takes 11-bit signed output data from the DELSIG11 and
converts it to an 8-bit compressed value. Example Code 1
is the actual routine:

Code 1

;---

;; cDS11_to_uLaw:

;; Takes an 11 linear value and

;; converts it to a uLaw Value

;; and mantissa. Updates DACs.

;; INPUTS: X, A ia an 11 bit integer

;; OUTPUTS: A is the uLaw Value

;;--

 cDS11_to_uLaw:

_cDS11_to_uLaw:

 swap A,X

 and A,07h ;keep lower 3 bits

 add A,(>uLawData);point to uLawData

Table

 romx ;uLaw Value returned in

A

ret

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 7

This function can be found in uLawStuff.asm, located in
the project file associated with this Application Note. Also
included is uLawStuff.h that makes it a fastcall ‘C’ function.

Serial Transmitter

It is just a 115.2 k-baud serial UART transmitter. For data
having a bandwidth of 64 kbps, this transmission rate is
adequate.

A PSoC -Law Expander

Figure 11 shows a block diagram for a Law expander:

Figure 11. PSoC -Law Expander Block Diagram

p0.0 p0.2

SallenKey

Rx
p1.6

p0.4

115.2K

baud

(n)

V
cc

Serial
in

V
ref

Mantisa Exponent

4 Pole

Low Pass

Filter

buf2 buf3

V
out

It consists of the following sections:

Serial Receiver

-Law Expander

Four-Pole Switched Cap Filter

Two-Pole Sallen Key Filter

Serial Receiver

It is just a 115.2 k-baud serial UART receiver. For data
being received having a bandwidth of 64 kbps, this is
adequate.

-Law Expander

The expander uses lookup tables to control the Matissa
and Exponent multiplying DACs.

The ITU-T G.711 expansion is implemented in these
tables to provide an 11-bit signed linear output. Example
Code 2 is the actual routine:

Code 2

;---------------------------------------

;; WriteuLawDAC:

;; Takes an 8 bit signed value and

;; separates into sign, exponent

;; and mantissa. Updates DACs.

;; INPUTS: A contains the uLaw value

;; OUTPUTS: None.

;;--------------------------------------

 WriteuLawDAC:

_WriteuLawDAC:

 mov X,A

 add A,80h

 if1: jnc else1 ;(is a neg value)

 index MantissaData

 jmp endif1

 else1:;(A is a positive value)

 index (MantissaData - 128)

 add A,32 ;pos is neg * neg

 endif1:

 swap A,X

 and A,7fh ;mask out sign

 index ExponentData

 M8C_Stall

 mov reg[Exponent_cr0],A

 M8C_Unstall

 mov A,X

 mov reg[Mantissa_cr0],A

 ret

As with the compression function, this expander function
can be found in uLawStuff.asm, located in the project file

associated with this Application Note. It also is defined as
a fastcall ‘C’ function.

The DAC output updates at 8 ksps. For a 300 Hz sinusoid
this works out to 26.67 samples. Twenty-six points do
make up something that resembles a sinusoid. But a
3 kHz sinusoid only has only 2.67 samples. Not much of a
sinusoid. A reconstruction filter is required to produce a
smooth output over 300 Hz - 3500 Hz bandwidth. This
application uses a six-pole, low pass filter.

Four-Pole Switched Cap Filter

Four of these poles are implemented with two LPF2 User
Modules in series. They are switched capacitor bi-quad
filters. Their component values can be viewed in the
parameter section of each filter in the project associated
with this Application Note. The output of these filters is
brought outside the chip via an analog buffer.

Two-Pole Sallen Key Filter

This filter is built with a PGA User Module configured as a
buffer, two external resistors, and two external capacitors.
It completes the rest of six-pole response. It also removes
switch noise generated by the previous filter. Appendix A
has the values of the discrete components. It also shows
User Module placement for the whole project.

A Complete System Test

Figure 12 is a block diagram of the compressor and
expander figured as a compandor.

Figure 12. Compressor and Expander

D
in

V
out-Law

Expander

V
in

D
out-Law

Compressor

Of course, for real applications, the compressor and
expander would be separate applications in different
chips, if not different products. Combining them allows the
SNR of a complete compression, expansion to be
measured.

The code to do this is added into the DELSIG11 interrupt
at the point marked for user code addition. It is shown in
following example Code 3:

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 8

Code 3

;;---

 ;; data is now in X,A

 ;; The user's handler should be placed

here

 call cDS11_to_uLaw

 call TX8_1_SendData

 include "RX8_1.inc"

 mov A,reg[RX8_1_CONTROL_REG]

 and A,RX8_RX_COMPLETE

 if_100: jz endif_100 ;(data is

available)

 mov A, reg[RX8_1_RX_BUFFER_REG]

 call WriteuLawDAC

 endif_100:

;;---

The 11-bit data is compressed and sent out the serial port.
The serial receiver is polled for an available byte. If an
available byte is found, it is retrieved, expanded, and
converted back to an analog signal.

This works only if the data rates are exact. It only happens
when they are generated with the same clock. For real
applications, incoming data would be handled with its own
interrupt or collected in a circular FIFO.

The performance measures of a signal compression
system are harmonic distortion and noise over the range
of signal frequency and level. Figure 13 shows a 1 kHz
mid-band signal at an input level of 2Vpp. The highest
harmonic is 45 dB below the fundamental. Noise
contributions are from broadband noise and sampling
aliases.

The first sampling alias (fsample-fsignal) is at 7.0 kHz (8 kHz-
1 kHz) is 65 dB below signal level:

Figure 13. Spectral Plot for 1 kHz 2 Vpp Input

The nature of -Law compression is to generate
essentially fixed SNR over a wide range of signal levels.

Figure 14 shows the same 1.0 kHz signal but at an input
level of 100 mVp-p, 26 dB down from the input level of
Figure 13. The harmonic levels and noise level drop along
with the signal level to maintain essentially constant
signal-to-noise ratio. The first sampling alias at 7.0 kHz
remains at 65 dB below signal level:

Figure 14. Spectral Plot for 1 kHz 100 mVpp Input

Signals at 300 and 3.0 kHz and at 2.0 Vp-p and
100 mVp-p are shown in figures 15 through 18.

Figure 15. Spectral Plot for 300 Hz 2 Vpp Input

Figure 16. Spectral Plot for 300 Hz 100 mVpp Input

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 9

Figure 17. Spectral Plot for 3 kHz 2 Vpp Input

Figure 18. Spectral Plot for 3 kHz 100 mVpp Input

Note The low harmonic distortion level is maintained.

Higher frequencies have harmonics out of the nominal
voice band, but alias harmonics can wind up in the voice
band. The largest alias, shown in figures 17 and 18, is the
6 kHz harmonic of the 3 kHz signal below the 8 kHz
sample frequency or 2.0 kHz for a 3.0 kHz input. This
represents the highest noise case, but in a practical
system these alias levels almost certainly would not
impact usable signal fidelity.

Summary

Logarithmic Data Compression makes acceptable quality
voice communication with a greater reduced signal
bandwidth. The PSoC architecture allows easy

implementation of the ITU-T G.711 -Law
compression/expansion format. The large amount of chip
analog resources allows complete signal conditioning,
digitization, filtering, and signal reconstruction with only a
handful of additional passive components.

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 10

Appendix A. PSoC User Module Placement and Pin Interface Schematic

Pin 8 P21

P01

Pin 4

Pin 3

P03 P05 P04 P02

Pin 2 Pin 26 Pin 25

Vout

15KΩ

470Ω

15KΩ

39KΩ

1
8

.1
K

Ω

4700pF1000pF0.1μF

0.1μF

AGND 22μF

Vin

Pin 24

Vcc

Pin 17
P14

Global Out 4

P16
Pin 18

Global In 6

8.2KΩ

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 11

Document History
Document Title: Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is -Law – AN2095

Document Number: 001-38006

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1520284 PFZ 10/09/2007 New application note

*A 3110002 PFZ 12/14/2010 No Technical updates. Correct few typo errors. Added Document History details.

*B 3658917 SAMP 6/28/2012 Updated Appendix A. PSoC User Module Placement and Pin Interface Schematic:

Updated the Analog and Digital Block Diagrams to PD 5.2.

Included all PSoC1 part numbers with 4 analog columns.

Put in new application note template.

*C 4224527 DCHE 12/18/2013 Updated in new template.

Completing Sunset Review.

*D 4609931 DCHE 12/29/2014 Updated example project to PSoC Designer 5.4

Removed references of AN2036

Rephrased application note abstract

http://www.cypress.com/

Algorithm - Logarithmic Signal Companding - Not Just a Good Idea - It Is µ-Law

 www.cypress.com Document No. 001-38006 Rev. *D 12

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

