
 
 
 

 
The following document contains information on Cypress products. The document has the series 
name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will 
offer these products to new and existing customers with the series name, product name, and 
ordering part number with the prefix “CY”. 
 
How to Check the Ordering Part Number 
1. Go to  www.cypress.com/pcn. 
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click 

Apply. 
3. Click the corresponding title from the search results. 
4. Download the Affected Parts List file, which has details of all changes 
 
For More Information 
Please contact your local sales office for additional information about Cypress products and 
solutions. 
 
About Cypress 
Cypress is the leader in advanced embedded system solutions for the world's most innovative 
automotive, industrial, smart home appliances, consumer electronics and medical products. 
Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, 
high-performance memories help engineers design differentiated products and get them to market 
first. Cypress is committed to providing customers with the best support and development 
resources on the planet enabling them to disrupt markets by creating new product categories in 
record time. To learn more, go to www.cypress.com. 
 

http://www.cypress.com/pcn
http://www.cypress.com/


 

www.cypress.com Document No. 002-05441Rev. *C 1 

AN205441 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

  

For debugging the Arm
®
 CoreSight

®
 interface is used in Arm Cortex

®
 R4 MCUs. Some additional features are added to 

enhance the debug possibilities and security. Following chapter will describe these features and the requirements for the 

debug tool chain in order to support these features 

Contents 

1 Introduction .................................................................. 1 
2 Debug Features and Requirements ............................. 1 

2.1 CoreSight AHB access port ................................ 1 
2.2 CoreSight APB access port................................. 1 
2.3 General overview about BootROM flow .............. 2 
2.4 BootROM waiting time for debugger ................... 2 
2.5 Establishing debug connection to  
 MCU with empty Flash ........................................ 3 

2.6 Hardware Watchdog ........................................... 3 
2.7 Debugger connection sequence ......................... 4 
2.8 Power-on debugging ........................................... 7 
2.9 Black list support ................................................. 8 

3 Appendix ..................................................................... 9 
3.1 References ......................................................... 9 

Document History ............................................................ 10 
Worldwide Sales and Design Support ............................. 11 

 

1 Introduction 

For debugging the ARM CoreSight
®
 interface is used in ARM Cortex R4 MCUs. Some additional features are added 

to enhance the debug possibilities and security. Following chapter will describe these features and the requirements 
for the debug tool chain in order to support these features. 

2 Debug Features and Requirements 

This chapter describes the additional debug features and requirements of FCR4 devices 

2.1 CoreSight AHB access port 

Besides the non-invasive trace functionality an AHB access port (AHB-AP) of the CoreSight system is connected to 
the bus fabric and allows for non-invasive debugging – or minimal-invasive since the AHB-AP bus master has lowest 
master priority. 

For peripheral register access it is recommended to use the AHB access port. Some peripherals may evaluate the 
master ID of the access and e.g. will not change FIFO read pointers or clear flags on reading. 

The debug tool chain should provide a way to select how the accesses (i.e. using AHB-AP or ARM core) are 
performed. 

2.2 CoreSight APB access port 

The CoreSight in Calypso also offers an APB access port for accessing the dedicated debug bus. The base 
addresses of the debug components can be found in the memory map or by evaluating the DAP ROM table. The 
SecurityChecker address space that is important for the debugger connection sequence starts at address 0xF000. 

The debug tool chain should provide a way to access the debug bus, e.g. if data shall be exchanged between user 
and application on a secured device via SCCFG_GPREG0~1. 

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 2 

2.3 General overview about BootROM flow 

After any reset the BootROM code is executed. Access to the device via debug interface is completely blocked (with 
the exceptions mentioned further below) until the device security settings have been evaluated. After this evaluation 
the blocking may  

 persist forever 

 persist until the user application allows security key entering and a security key has been entered successfully 

 persist until a security key has been entered successfully 

 be removed depending on the configured security markers in the Flash memory. 

The following resources are accessible at any time with the debugger by using the APB access port (APB-AP) of 
CoreSight: 

 DAP ROM table 

 SCCFG_STAT2 (Security Checker Status register 2) 

 SCCFG_SECKEY0~3 (Security Checker Security Key register 0~3) 

 SCCFG_GPREG0~1 (Security Checker General Purpose register 0~1) 

 SCCFG_UNLCK (Security Checker Unlock register), writing the correct unlock key to this register is required 
before write accesses to other Security Checker registers are accepted 

The point in time when BootROM has finished the evaluation is indicated by the status bit SCCFG_STAT2_DBGRDY. 

Any debugger access to other resources than mentioned above must wait until SCCFG_STAT2_DBGRDY is „1‟ and 
device is either unsecured or secured but security key has been entered successfully. Note, this also means that 
security key can be entered at any point of time, e.g. while BootROM is still evaluating security settings. 

At the end of the BootROM code an optional waiting time may be enabled with a certain marker in the Flash memory. 
Afterwards the BootROM will branch to the user application. 

2.4 BootROM waiting time for debugger 

There is a Boot Description Record (BDR) in the Flash memory. Besides other entries this BDR also contains a so-
called marker that determines if the BootROM will wait a certain time before branching to the user application. 

By programming a “magic word” to this marker in the Flash memory the waiting time is skipped. If the marker value 
does not match this magic word – e.g. if Flash is empty – the waiting time is applied. Before it is applied it is checked 
if a debugger is connected at all otherwise the waiting time is also skipped. 

Conditions that leave or skip the waiting loop are: 

 Magic word in Flash marker is set. 

 No debugger connection was recognized. The MCU assumes that a debugger is connected if at least 16 JTAG 
clock cycles at the TCLK pin have been recognized (status bit: SYSC_JTAGDETECT_DBGCON) 

 Debugger sets bit SYSC_JTAGCNFG_DBGDONE to indicate that the debug configuration has finished (e.g. 
trace, breakpoint settings) 

 Half of the default watchdog interval has elapsed (since reset). This ensures that for the user application at least 
the other half of the default watchdog interval is remaining for watchdog configuration 

The minimum default watchdog interval after reset is dependent on the maximum possible RC clock frequency 
(nominal frequency + “plus-tolerance”). 

If no other conditions mentioned above apply, the BootROM will branch to the user application after a certain amount 
of time. In this time frame the debugger must also complete all necessary configurations: 

frequency RC Maximum

luecounter va  watchdogInitial
*

2

1
resetafter  ion timeconfigurat Maximum   

Initial watchdog counter value: 0x01000000 

Maximum RC frequency  = Nominal frequency + Plus-Tolerance 

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 3 

= 12 MHz + 100% * 12 MHz =24 MHz 

Maximum configuration time after reset = 350 ms 

Most debugger accesses are blocked until a certain point in the BootROM execution flow that is indicated by the 
SCCFG_STAT2_DBGRDY status bit (refer chapter 0). The BootROM execution time up to this point must be 
subtracted from the calculated 350ms. 

The BootROM execution duration up to this point is not specified but since it is very small compared to the 350ms 
calculated above it can be neglected for most cases. 

2.5 Establishing debug connection to MCU with empty Flash 

In case a connection to a MCU with empty Flash memory shall be done, debugger needs to ensure that the ARM 
core is halted after the connection has been successfully established.  

During the waiting time explained in chapter 2.4 the debugger must connect, disable the watchdog and halt the ARM 
core. After that e.g. the Flash programming kernel can be downloaded. 

If the core is not halted in time the BootROM will branch to an “empty” Flash address and therefore fetches 
0xFFFFFFFF as instruction code. Since 0xFFFFFFFF is an undefined instruction an exception handler is called. In 
the default exception handler implemented in the BootROM a software-triggered hardware reset will be executed. 

2.6 Hardware Watchdog 

2.6.1  Overview and general  requirements  

The FCR4 series supports an RC oscillator based Hardware Watchdog. This watchdog is enabled by default and its 
configuration needs to be locked before the default watchdog interval has elapsed, otherwise the MCU is reset. 

The configuration options allow the user to completely disable the watchdog or to enable a debug mode. If the debug 
mode is enabled the watchdog timer will be halted while the core is in debug state. 

After every reset the configuration can only be adjusted and locked once. After it has been locked no further writes 
are possible to the configuration registers and they will result in an error response. 

All the points mentioned above must be regarded in the following situations: 

 Flash is empty: Since no user application is configuring/clearing the watchdog, it should be disabled and the 
configuration must be locked afterwards. Then, e.g. the Flash programming kernel can be downloaded 

 User application is programmed that configures the watchdog at a certain point in the application start-up code. 
User should enable debug mode during application development. 

 Debugger should not halt the core before the application has locked the watchdog configuration. 

 If it is necessary to debug the application start-up code up to the point where the watchdog is configured, debugger 
must configure the watchdog appropriately. If the application is not aware of this problem and gets to the point where it 
tries to write the locked watchdog registers a data abort exception will be raised. (Workaround: application may check 
if watchdog registers are already locked before it tries to write the configuration registers) 

For above stated reasons the debugger user needs to have the possibility to set the required watchdog configuration 
via debugger. In case of script file support of a tool chain this could probably be done with a script.  

2.6.2  Stopping Watchdog during breakpoint  

The bit WDG_CFG_DEBUGEN defines if watchdog is stopped during breakpoint or not. This bit should be set during 
application development. If this bit is set debugger does not need to trigger watchdog during breakpoint.  

As an option debugger could check register configuration given by user and notify if this bit is not set.  

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 4 

2.7 Debugger connection sequence 

It is possible to close the debug port for security reasons. A secured debug interface requires the debugger user to 
send a valid security key in order to open the debug port. 

Security settings are configured with markers in the Flash memory. 

It is possible to identify if the debug port is secured by reading SCCFG_STAT2 register. This register can be read at 
any time via the debug bus (APB access port). Following information can be obtained by reading this register: 

 Bit 0 (SECEN) identifies if the device is secured („1‟) or not („0‟). 

 Bit 1 (SECLOCK) identifies if the device is locked („1‟) or unlocked („0‟). 

 Bit 2 (SEC) identifies if the Security key can be entered („1‟) or not („0‟).  

 Bit 8 (DBGRDY) identifies if the device is ready for debug access („1‟) or not („0‟). This bit indicates the end of the 
BootROM security evaluation. Certain resources are also accessible while DBGRDY is „0‟. 

After reset there is a certain time while debug port blocks most other accesses. Refer chapter 0 for more information. 

The user and/or debugger must be aware of following three potential situations and behave accordingly when 
connecting to the target MCU: 

 It is known that the target MCU is unsecured 

 It is known that the target MCU is secured 

 The security status of the target MCU is unknown (generic approach) 

These 3 possibilities are covered in the following sub-chapters. 

Furthermore, the debugger must be aware that most types of resets cause a re-evaluation of the security setting by 
the BootROM, and hence unlocking the device may also be necessary during a debug session if such a reset had 
occurred. Information about which reset types cause a re-evaluation of security can be found in sub chapter “Effect of 
reset sources” of System Controller chapter in the Hardware Manual. 

2.7.1  MCU unsecured  

Although target MCU is actually unsecured debugger must wait until BootROM has finished security evaluation 
before debugger is accessing any resources other than those that are always accessible. 

Figure 2-1. Connection sequence if MCU is unsecured 

 
 

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 5 

2.7.2  MCU secured  

Security key can be entered at any time. The key comparison and its result can be obtained when 
SCCFG_STAT2_DBGRDY is „1‟ 

Figure 2-2. Connection sequence if MCU is secured 

 
In case a wrong key has been entered no further key entry is possible without resetting the MCU 

 

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 6 

2.7.3  MCU state unknown, generic sequence  

Following flow chart shows the generic connection sequence 

Figure 2-3. Generic Connection Sequence 

 

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 7 

2.8 Power-on debugging 

It is possible to do power-on debugging with the FCR4 series. Since the debug configuration is lost after a power on 
reset it is normally not possible to .e.g. setup the trace component for tracing the first user instructions. This can be 
achieved by using the waiting time mechanism that is described in chapter 2.4. 

First time configuration of the CoreSight system can be done as follows: 

After the hidden part of the BootROM is executed, the BDR is evaluated. In case the debugger waiting time is 
enabled and a debugger is connected, the SYSC_JTAGDETECT_DBGCON bit is set to "1". In this case the 
hardware initializes the SYSC_JTAGCNFG_DBGDONE bit to "0". After the debugger has finished the configuration of 
all necessary CoreSight components, the debugger has to set the SYSC_JTAGCNFG_DBGDONE bit to "1". Now the 
boot resumes with public boot ROM part. If a timeout occurs before the DBGDONE bit is set the boot process 
resumes also. The check if a debugger is connected is done by counting 16 TCK clocks. In case no debugger is 
connected or a timeout occurs, the boot process resumes. The CoreSight System uses TRST for reset, so the 
CoreSight configuration is still valid after system resets other than power on reset. 

Figure 2-4. Power on debug flow chart (BootROM) 

 
 

The MCU has several internal power-domains which can be enabled / disabled separately to have a flexible low 
power mode for different use cases. The debug and trace components are located in power domain PD2 and PD3. 
Within the System Controller there is a Fake Power Down bit. Setting this bit will keep PD2 and PD3 active even if 
application is disabling these power domains. 

 

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 8 

2.8.1  Required registers  

The MCU includes a SYSC_JTAGDETECT register, which is used for debugger connection status 

Bit 0, DBGCON bit, signals that a connection is recognized; this bit is set / cleared by MCU.  

              Table 2-1. DBGCON bit description   

Bit value Description 

0 Debugger unconnected 

(initial value after reset) 

1 Debugger connected 

The JTAG configuration register (SYSC_JTAGCNFG) has a configuration bit to show that CoreSight configuration is 
completed. This register is initialized to „0‟, when debugger is connected. This bit is set by the debugger after the 
debug configuration is done. This register bit is read by BootROM to check the status of debug configuration. 

The DBGDONE bit signals if CoreSight configuration is done.  

Table 2-2. DBGDONE bit description  

Bit value  Description 

0 Debugger configuration ongoing 

1 Debugger not connected  or configuration done 

(initial value after reset) 

2.9 Black list support 

The tool chain needs to support a black / or white list for memory accesses. 

The FCR4 MCU will apply an abort when accessing reserved areas. For some legacy peripheral memory areas 
(peripheral bus 0, 1 and 3) a special unit, called Bus Error Collection Unit (BECU) is responsible for issuing an NMI 
and collecting information about the access if a connected peripheral reports an access violation. 

For this reason it is mandatory that the tool chain can apply a black list for given regions e.g. memory window, watch 
window to ensure that only accesses to allowed memory areas are executed by the tool chain. 

Following features are required: 

Table 2-3. Required Black list features  

Feature Required Details 

Minimum region size Byte (8-bit) Also within a peripheral there are reserved areas 

Write/ Read access Selectable Should be possible to define also if read / write / or both should not be 
done 

Access width Selectable 

8-bit, 16-bit, 32-bit, 
64-bit and all 
combination 

Should be possible to define which access width is not allowed to use. 
As some of the registers also report violations when accessing with 
wrong access width. In addition, multiple access width should be able 
to set. 

 

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 9 

3 Appendix 

3.1 References 

Related documents for further information are listed in the table below: 

Ref. # Document file name Description 

1 FCR4_Cluster_Series_Hardware_Manual.pdf FCR4 Cluster Series Hardware Manual 

2 MB9EF126-MN707-00001-0v??-E.pdf FCR4 Cluster Series MB9EF126 - CALYPSO Datasheet 

3 DDI0363D_cortexr4_r1p3_trm.pdf ARM Cortex-R4 and Cortex-R4F Technical Reference 
Manual 

4 DDI0406B_arm_architecture_reference_manual_errat
a_markup_4_0.pdf 

ARM® Architecture Reference ManualARM®v7-A and 
ARM®v7-R edition 

5 IHI0031A_ARM_debug_interface_v5.pdf ARM® Debug Interface v5Architecture Specification 

6 IHI0029B__CoreSight_ArchSpec.pdf CoreSight™v1.0Architecture Specification 

7 CoreSightComponentsTechnicalReferenceManual.pdf CoreSight™ ComponentsTechnical Reference Manual 

 

  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 10 

Document History 

Document Title: AN205441 - FCR4, MB9EF126, Debug Requirements for Tool Chain 

Document Number:002-05441 

Revision ECN Orig. of 
Change 

Submission 
Date 

Description of Change 

** - MKEA 11/25/2010 MSt, 1.0 

First release 

02/14/2010 CEy, 1.1 

Several changes 

05/02/2013 MSt, 1.2 

Removed confidential remark 

*A 5074257 MKEA 01/14/2016 Converted Spansion Application Note “MCU-AN-300125-E-V12” to Cypress 
format 

*B 5870463 AESATMP9 09/01/2017 Updated logo and copyright. 

*C 6054547 NOFL 02/12/2018 Updated links 

Updated template  

http://www.cypress.com/


 

FCR4, MB9EF126, Debug Requirements for Tool Chain 

www.cypress.com Document No. 002-05441Rev.*C 11 

Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find 
the office closest to you, visit us at Cypress Locations. 

Products 

Arm
®
 Cortex

®
 Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  

Cypress Developer Community 

Community | Projects | Videos | Blogs | Training | 
Components 

Technical Support 

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners. 

 

 Cypress Semiconductor 
 198 Champion Court 

 San Jose, CA 95134-1709 

© Cypress Semiconductor Corporation, 2010-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including 
Spansion LLC (“Cypress”).  This document, including any software or firmware included or referenced in this document (“Software”), is owned by 
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide.  Cypress reserves all rights under such 
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other 
intellectual property rights.  If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with 
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to 
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for 
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end 
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of 
Cypress‟s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for 
use with Cypress hardware products.  Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD 
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  No computing device can be absolutely secure.  Therefore, despite 
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, 
such as unauthorized access to or use of a Cypress product.  In addition, the products described in these materials may contain design defects or 
errors known as errata which may cause the product to deviate from published specifications.  To the extent permitted by applicable law, Cypress 
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of 
any product or circuit described in this document.  Any information provided in this document, including any sample design information or programming 
code, is provided only for reference purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality 
and safety of any application made of this information and any resulting product.  Cypress products are not designed, intended, or authorized for use as 
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or 
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances 
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”).  A 
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or 
system, or to affect its safety or effectiveness.  Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, 
damage, or other liability arising from or related to all Unintended Uses of Cypress products.  You shall indemnify and hold Cypress harmless from and 
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of 
Cypress products. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are 
trademarks or registered trademarks of Cypress in the United States and other countries.  For a more complete list of Cypress trademarks, visit 
cypress.com.  Other names and brands may be claimed as property of their respective owners.  

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Debug Features and Requirements
	CoreSight AHB access port
	CoreSight APB access port
	General overview about BootROM flow
	BootROM waiting time for debugger
	Establishing debug connection to MCU with empty Flash
	Hardware Watchdog
	Overview and general requirements
	Stopping Watchdog during breakpoint

	Debugger connection sequence
	MCU unsecured
	MCU secured
	MCU state unknown, generic sequence

	Power-on debugging
	Required registers

	Black list support

	Appendix
	References

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support



