

The following document contains information on Cypress products. The document has the series
name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will
offer these products to new and existing customers with the series name, product name, and
ordering part number with the prefix “CY”.

How to Check the Ordering Part Number
1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click

Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes

For More Information
Please contact your local sales office for additional information about Cypress products and
solutions.

About Cypress
Cypress is the leader in advanced embedded system solutions for the world's most innovative
automotive, industrial, smart home appliances, consumer electronics and medical products.
Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable,
high-performance memories help engineers design differentiated products and get them to market
first. Cypress is committed to providing customers with the best support and development
resources on the planet enabling them to disrupt markets by creating new product categories in
record time. To learn more, go to www.cypress.com.

http://www.cypress.com/pcn
http://www.cypress.com/

www.cypress.com Document No. 002-04377 Rev. *B 1

AN204377

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

Associated Part Family: Refer to section 2

This Application Note addresses those of you who consider using the Self-Test Library (STL) for MCU by means of

software supporting an equivalent of SIL2 for the IEC61508 in the FM3 family and FM4 family of MCU manufactured

by Cypress.

Contents

1 Introduction ... 1
1.1 About This Application Note............................. 1
1.2 Background .. 1
1.3 Development and Evaluation Environment 2
1.4 Note ... 2

2 Target Products .. 2
3 Overview of IEC61508 .. 3

3.1 Glossary... 3
3.2 Safety lifecycle ... 4
3.3 SIL (Safety Integrity Level)............................... 5
3.4 Failure Definitions .. 5
3.5 Hardware Safety Evaluations

and Architectural Constraints 6
3.6 SFF (Safe Failure Fraction) 6

4 Overview of STL ... 7
4.1 Coverage of Testing .. 7
4.2 Types of Testing .. 7

4.3 Failure Detection ... 8
4.4 STL Configuration .. 8

5 Overview of API .. 10
5.1 ROM Test .. 10
5.2 RAM Test ... 11
5.3 CPU Test ... 11
5.4 Bus Test .. 17

6 STL Performance ... 18
6.1 ROM/RAM Sizes ... 18
6.2 Test Periods .. 18

7 Reference Documents .. 21
8 Additional Information ... 21
A Appendix .. 22

A.1 CRC code making method 22
9 Document History ... 26

1 Introduction

1.1 About This Application Note

This Application Note addresses those of you who consider using the Self-Test Library (STL) for MCU by means of
software supporting an equivalent of SIL2 for the IEC61508 in the FM3 family and FM4 family of MCU manufactured
by Cypress.

Note: The Self Test Library is available upon request. To request the library, please contact your local distributor.

1.2 Background

Amid growing importance being attached to the concept and methodology of keeping systems safe in various
industrial sectors, there are underway globally to pursue standardization. IEC61508, formulated by IEC (International
Electrotechnical Commission), covers an extensive range of industrial sectors in which any other safety standard is
not yet in place. The formulation of IEC61508 has resulted in increased urges for standard compliance in product
development activities.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 2

1.3 Development and Evaluation Environment

This STL has been developed and evaluated in the environment described in Table 1

Table 1. Development and Evaluation Environment Table

Microprocessor

[FM3]

MB9BF506R

[FM4]

MB9BF568R

IDE
IAR Embedded Workbench for ARM6.60 kickstart

KEIL µVision V5.0.5.15

Evaluation board

[FM3(80MHz,Flash access 2-wait)]

MB9BF506R-SK

MCB9B500

[FM4(160MHz,Flash Accelerator Enable)]

SK-FM4-U120-9B560

Optimization
[IAR] high (balanced)

[KEIL]Level3

1.4 Note

Since the STL provided has not been certified by a certification authority, using it without modification does not
necessarily ensure certification. This STL is designed on the assumption that SIL2 is fulfilled with an SFF of 90% or

more but less than 99%. (See "3.5 Hardware Safety Evaluations and Architectural Constraints".)

2 Target Products

This application note is described about below products;

(FM3 :TYPE0)

Series Product Number (not included Package suffix）

MB9B500B MB9BF504NB,MB9BF505NB,MB9BF506NB

MB9BF504RB,MB9BF505RB,MB9BF506RB

MB9B400A MB9BF404NA,MB9BF405NA,MB9BF406NA

MB9BF404RA,MB9BF405RA,MB9BF406RA

MB9B300B MB9BF304NB,MB9BF305NB,MB9BF306NB

MB9BF304RB,MB9BF305RB,MB9BF306RB

MB9B100A MB9BF102NA,MB9BF104NA,MB9BF105NA,MB9BF106NA

MB9BF102RA,MB9BF104RA,MB9BF105RA,MB9BF106RA

(FM4)

Series Product Number (not included Package suffix）

MB9B560R MB9BF566R,MB9BF567R,MB9BF568R

MB9BF566N,MB9BF567N,MB9BF568N

MB9BF566M,MB9BF567M,MB9BF568M

MB9B460R MB9BF466R,MB9BF467R,MB9BF468R

MB9BF466N,MB9BF467N,MB9BF468N

MB9BF466M,MB9BF467M,MB9BF468M

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 3

Series Product Number (not included Package suffix）

MB9B360R MB9BF366R,MB9BF367R,MB9BF368R

MB9BF366N,MB9BF367N,MB9BF368N

MB9BF366M,MB9BF367M,MB9BF368M

MB9B160R MB9BF166R,MB9BF167R,MB9BF168R

MB9BF166N,MB9BF167N,MB9BF168N

MB9BF166M,MB9BF167M,MB9BF168M

3 Overview of IEC61508

3.1 Glossary

Table 2 lists the terms used in this Application Note and their definitions.

Table 2. Terms/Definitions

Term Definition

Safety-related system
A system designed to reduce the risk potentials that threaten a particular control system to a tolerable
level or below to maintain safety.

Safety function The function of a safety-related system

Functional safety To reduce risk potentials to a tolerable level or below by means of safety function to maintain safety.

Safety lifecycle
A 16-phase sequence of working processes in which requirements for a safety-related systems are
defined, ranging from conceptualization to decommissioning or disposal.

SIL
Short for Safety Integrity Level, or the level of risks with which a safety-related system fails to implement
its safety function. There are four SILs, from 1 to 4, 4 being the highest.

Proof test
A period test that is carried out to detect failures in a safety-related system that cannot be detected
automatically.

Low demand mode of
operation

The mode of operation of a safety-related system in which requests for its operation occur once (each
year) or less often, or less often than twice the proof test frequency.

High demand mode
of operation

The mode of operation of a safety-related system in which requests for its operation occur once (each
year) or more often, or more often than twice the proof test frequency.

Continuous mode
The mode of operation of a safety-related system in which its safety function is at constant work as part
of its normal operation.

PFDavg
Short for Average Probability of dangerous Failure on Demand, or the average probability of dangerous
failures on demand for the activation of safety function.

PFH
Short for Probability of dangerous Failure per Hour, or the average probability of dangerous failures per
unit hour.

Random failure A failure that occurs at random timings, such as a hardware fault.

Systematic failure
A failure, such as a software bug, that necessarily occurs as a result of its cause involved in a
development process.

Safe failure rate The failure of a safety-related system that does not risk a dangerous situation for the controlled object.

Dangerous failure
rate

The failure of a safety-related system that risks a dangerous situation for the controlled object.

DC
Short for Diagnostic Coverage, or the ratio of the number of detectable dangerous failures to the total
number of dangerous failures.

SFF
Short for Safe Failure Fraction, or the ratio of the total number of safe failures and detectable dangerous
failures to the total number of failures.

Fault tolerance The ability of a functional unit to implement its safety function despite the occurrence of faults.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 4

Term Definition

Type

Any safety-related system that meets all of the framework conditions listed below is called Type A, and
all other systems are called Type B. Type A is typified by resistors and capacitors, whereas Type B is
represented by ASICs. Microprocessors are considered to fall in Type B.

Capable of defining the failure modes of all its components;

Capable of determining the behavior of its subsystems completely through failure conditioning, and

Holds fully dependable field data that supports the claims of detected and yet-to-be-detected dangerous
failure rates.

3.2 Safety lifecycle

A system that is designed to keep a particular control system safe is called a "safety-related system." Requirements
for safety-related systems (which are composed solely of electrical/electronic/programmable electronic systems
(E/E/PES) are defined in IEC61508.

Defined requirements for a safety-related system range from conceptualization, through design, development and
maintenance, to decommissioning or disposal. This sequence of processes is called a "safety lifecycle."
(See Figure 1) All activities that are directed at a safety-related system are expected to be administered in this safety
life cycle.

Figure 1. Safety Lifecycle

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 5

3.3 SIL (Safety Integrity Level)

IEC61508 has tolerances established for the frequency of failure occurrence to apply to the safety function of a
safety-related system. Indicators of these tolerances are called "Safety Integrity Levels (SILs)". There are four SILs,
from 1 to 4. A specific numeric goal is defined for each SIL as listed in Table 3.

Table 3. Target Failure Measures of Safety Function

SIL
Low demand mode of operation

(PFDavg)
High demand mode of operation or continuous mode

(PFH)

4 ≧10
-5 to ＜10

-4
 ≧10

-9 to ＜10
-8

3 ≧10
-4 to ＜10

-3
 ≧10

-8 to ＜10
-7

2 ≧10
-3 to ＜10

-2
 ≧10

-7 to ＜10
-6

1 ≧10
-2 to ＜10

-1
 ≧10

-6 to ＜10
-5

The SIL is established through phases 1 to 5 of the safety lifecycle. The subsequent phases proceed to meet the SIL
thus established.

3.4 Failure Definitions

IEC61508 classifies failures occurring in a safety-related system into random failures and systematic failures.
Assuming that the safe failure rate is λS, the dangerous failure rate is λD and the total failure rate is λ, equation (1)
holds true.

Equation 1. λ = λS +λD

The failures can be further classified into detectable and non-detectable failures as summarized in Table 4.

Table 4. Failure Classifications

 Detectable Non-detectable

Safe Safe failures that allow self-testing Safe failures that resist self-testing

Dangerous Dangerous failures that allow self-testing (λDD) Dangerous failures that reject self-testing (λDU)

Equation (2) is derived from Table 4.

Equation 2. λD = λDD +λDU

DC where is the ratio of the number of failures that can be detected by self-testing can be expressed in an equation
(3) as

Equation 3. DC = λDD / λD

The value of DC weighs in considering the SFF (safe failure fraction). (For more information about the SFF, see 3.6.)

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 6

3.5 Hardware Safety Evaluations and Architectural Constraints

It’s expected that systematic failures should be checked by running the safety lifecycle, and random failures should
be checked by implementing a safe hardware architectural design that fulfills safety requirements, respectively.

The process of evaluating hardware safety should not only fulfill the target failure measures of safety function listed in
Table 3 but also achieve a certain level of fault tolerance in the subsystems that make up the safety-related system.
An upper limit to the SIL that can be claimed is determined by the three factors of such hardware fault tolerance,
subsystem type and SFF. This is called an "architectural constraint." Type A and Type B architectural constraints are
listed in Table 5 and Table 6, respectively. N means that a loss of the safety function might be incurred by the
occurrence of N+1 faults.

Table 5. Type A Architectural Constraints

SFF
Hardware fault tolerance (N)

0 1 2

< 60% SIL1 SIL2 SIL3

60% - < 90% SIL2 SIL3 SIL4

90% - < 99% SIL3 SIL4 SIL4

≧ 99% SIL3 SIL4 SIL4

Table 6. Type B Architectural Constraints

SFF
Hardware fault tolerance (N)

0 1 2

< 60% Not allowed SIL1 SIL2

60% - < 90% SIL1 SIL2 SIL3

*90% - < 99% SIL2 SIL3 SIL4

≧ 99% SIL3 SIL4 SIL4

* The target of our STL.

3.6 SFF (Safe Failure Fraction)

Under IEC61508, the SFF is defined in Equation (4) as

Equation 4. SFF = (ΣλS +ΣλDD) / (ΣλS +ΣλD))

This means that the SFF is the ratio of the fraction of safe failures to that of all failures. λDD and λS are to be handled
in an equivalent manner on the assumption that self-testing is fully effective.

Equation (5) represents the relationship between the SFF and DC on the basis of Equations (2) and (4), where η =
ΣλS /ΣλD is assumed.

Equation 5. SFF = (η + DC) / (η + 1)

η=1 is assumed for semiconductor devices in most situations. Hence, Equation (6) is derived.

Equation 6. SFF = 0.5 + 0.5*DC

The value of DC is so important, such that the SFF depends on it. For this reason, the components that should be
heeded in calculating the SFF and the associated test methods are defined in IEC61508-2 Annex A, along with the
maximum values of DC available during use of the test methods.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 7

4 Overview of STL

4.1 Coverage of Testing

Table 7 lists those types of components under test that are defined in IEC61508-2 Annex A and the associated test
methods, that are supported by our STL.

Table 7. Coverage of Testing

Component Coverage Test method
Maximum value of

DC

BUS Data paths Inspection using test patterns 99%≦

CPU Processing units Self-test by software: walking bit (one-channel) 90%≦ to <99%

ROM Invariable memory ranges Signature of a double word (16-bit) 99%≦

RAM Variable memory ranges RAM test galpat or transparent galpat 99%≦

4.2 Types of Testing

Two types of testing are supported for each component: startup test and periodic test. The startup test is to be carried
out at reset time. Once called, the startup test tests the entire range of a component in question. The periodic test, on
the other hand, is to be performed at intervals of the main loop. It tests a component in question in installments. It is
run several times to test the entire range of the component. Where the periodic ROM test is divided into x segments,
for example, if the test is called x times, then the result would be as shown in Figure 2.

Figure 2. ROM Periodic Call (x segments)

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 8

4.3 Failure Detection

Each time a failure is detected in a session of testing, it is counted and the same session of testing is continued
further. Users can set a threshold for failure detection. When a count of failures detected exceeds this threshold, the
failure state is turned on to report the occurrence of a failure in the component in question.

4.4 STL Configuration

The STL maintains the APIs listed in Table 8 for each component.

Table 8. API Types

API Overview

Initialization API Initializes the variables used during testing.

Startup test API Runs a startup test.

Periodic test API Runs a periodic test.

Failure state acquisition API Gets the latest failure state.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 9

A sample run of APIs by the STL is flowcharted in Figure 3. This sample run is common to all components.

Figure 3. API Sample Run

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 10

5 Overview of API

5.1 ROM Test

5.1.1 Test Overview

Test method ”Signature of a double word (16-bit)” is used to test ROM. For more information, refer to IEC61508-7
A4.4.

An overview of the ROM test is shown in Figure 4.The CRC code that has been generated during at build time is
placed in a particular ROM area. Then, a CRC code is generated by running a startup or periodic test after the
system has started up. This CRC code is compared with the CRC code generated at build time to check that the two
versions of the CRC code match. This STL uses CRC32 offering higher detection accuracy than CRC16 to compute
the CRC code. The CRC code that is generated by testing may be computed either by software or by using a
hardware macro at the users' option.

Figure 4. ROM Test Schematic

5.1.2 Programmable Parameters

User-programmable parameters in using the ROM test API are as follows:

1. Number of areas under test

2. Start and end addresses of each area under test

3. Threshold for failure detection

4. Test length calculated in a single run of the periodic test (bytes)

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 11

5.2 RAM Test

5.2.1 Test Overview

Test method ”RAM test galpat or transparent galpat” is used to test RAM. For more information, refer to IEC61508-7
A5.3.

Both startup test and periodic test use galpat. A startup test is performed across an area of interest, whereas a
periodic test is run for a segment of 4 bytes at a time. (See Figure 5).

Figure 5. RAM Test

5 .2 .2 Programmable Parameters

User-programmable parameters in using the RAM test API are as follows:

1. Number of areas under test

2. Start and end addresses of each area under test (which may be differentiated between the startup and periodic
tests)

3. Threshold for failure detection

5.3 CPU Test

5.3.1 Test Overview

Test method “Self-test by software: walking bit (one-channel)” is used to test CPUs. For more information, refer to
IEC61508-7 A3.2.

The CPU test tests for the normal operations of each of the instructions in the 16-bit ARMv7-M Thumb instruction set
(FM3 family and FM4 family are common. When inspecting the Thumb-2 instruction set is necessary, separate
preparation is required) listed in Table 9 and each of the registers (R0 to R14). Testing is carried out by computing a
walking-bit pattern as an input value and checking to see if the result of the computation is as expected or not.

Table 9. ARMv7-M Thumb Instruction Set (16-bit)

No. Instruction Syntax Description

1 ADC <Rd>, <Rm>+
Add the register value and the C-flag to the register value.
Rd = Rd + Rm + C

2 ADD <Rd>, <Rn>, #<immed_3>+
Add a 3-bit immediate value to the register.
Rd + Rn + immed_3

3 ADD <Rd>, #<immed_8>+
Add an 8-bit immediate value to the register.
Rd + Rd + immed_8

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 12

No. Instruction Syntax Description

4 ADD <Rd>, <Rn>, <Rm>+
Add the lower register value to the lower register value.
Rd = Rn + Rm

5 ADD <Rd>, <Rm>
Add the upper register value to the lower or upper register
value.
Rd = Rn + Rm

6 ADD <Rd>, PC, #<immed_8>*4
Add the PC address + 4 × (8-bit immediate value) to the
register.
Rd = PC + 4*immed_8

7 ADD <Rd>, SP, #<immed_8>*4
Add the SP address + 4 × (8-bit immediate value) to the
register.
Rd = SP + 4*immed_8

8 ADD SP, #<immed_7>*4
Add 4 × (7-bit immediate value) to SP.
SP = SP + 4*immed_7

9 AND <Rd>, <Rm>+
AND the register value bitwise.
Rd = Rd AND Rm

10 ASR <Rd>, <Rm>, #<immed_5>+
Shift to right arithmetically depending on the immediate value.
Rd = Rd >> Rs

11 B<cond> <target_address_8>
Conditional branch
if <cond> then
PC = (PC + 4) + (SignExtend (target_address_8) * 2)

12 B <target_address_11>
Unconditional branch
PC = (PC + 4) + (SignExtend (target_address_11) * 2)

13 BIC <Rd>, <Rm>+
Bit clear

Rd = Rd AND (NOT Rm)

14 BKPT <immed_8> Software breakpoint

15 BL <target_address11> Linked branch

16 BLX <Rm> Linked branch and state transition (Rm[bit 0] set to 1)

17 BX <Rm> Branch and state transition (Rm[bit being 0] set to 1)

18 CBNZ <Rn>, <label> Branch if non-zero on comparison (forward branch only).

19 CBZ <Rn>, <label> Branch if 0 on comparison (forward branch only).

20 CMN <Rn>, <Rm>+
Compare two's complement of the register value (negative,
negation) with the value of another register (Rn - (-Rm)) and
update the flag accordingly.

21 CMP <Rn>, #<immed_8>+ Compare the register value with an 8-bit immediate value.

22 CMP <Rn>, <Rm>+ Compare with the register.

23 CMP <Rn>, <Rm>+ Compare the upper register with the lower or upper register.

24
CPSIE

CPSID

< i or f >

< i or f >

Processor status change
CPSIE clears PRIMASK(i) or FAULTMASK(f) to enable
interrupt.
CPSID clears PRIMASK(i) or FAULTMASK(f) to disable
interrupt.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 13

No. Instruction Syntax Description

25 CPY <Rd>, <Rm>
Copy the upper register or lower register value to another
upper or lower register.

26 EOR <Rd>, <Rm>+ Exclusive OR the register value bitwise.

27

IT
IT<x>
IT<x><y>
IT<x><y><z>

<cond>
<cond>
<cond>
<cond>

Instruction to create a block with an IF-THEN condition.

One to four instructions that follow this instruction can be
executed conditionally on the basis of condition <cond>.

28 LDMIA <Rn>!, <registers>
Load Multiple Increment After Load multiple words starting from
the address specified by Rn into the register.

29 LDR <Rd>, [<Rn>, #<immed_5>*4]
Load a word from the memory location addressed by the base
register offset by a 5-bit immediate value.

30 LDR <Rd>, [<Rn>, <Rm>]
Load a word from the memory location addressed by the base
register offset by the register.

31 LDR <Rd>, [PC, #<immed_8>*4]
Load a word from the memory location addressed by PC offset
by an 8-bit immediate value.

32 LDR <Rd>, [SP, #<immed_8>*4]
Load a word from the memory location addressed by SP offset
by and 8-bit immediate value.

33 LDRB <Rd>, [<Rn>, #<immed_5>]
Load byte [7:0] from the memory location addressed by the
base register offset by a 5-bit immediate value into the register.

34 LDRB <Rd>, [<Rn>, <Rm>]
Load byte [7:0] from the memory location addressed by the
base register offset by the register into the register.

35 LDRH <Rd>, [<Rn>, #<immed_5>*2]
Load halfword [15:0] from the memory location addressed by
the base register offset by a 5-bit immediate value into the
register.

36 LDRH <Rd>, [<Rn>, <Rm>]
Load halfword [15:0] from the memory location addressed by
the base register offset by the register into the register.

37 LDRSB <Rd>, [<Rn>, <Rm>]
Load byte [7:0] from the memory location addressed by the
base register offset by the register into the register, signed.

38 LDRSH <Rd>, [<Rn>, <Rm>]
Load halfword [15:0] from the memory location addressed by
the base register offset by the register into the register, signed.

39 LSL <Rd>, <Rm>, #<immed_5>+
Shift left logically depending on the immediate value.
Rd = Rd << immed_5

40 LSL <Rd>, <Rs>+
Shift left logically depending on the register value.
Rd = Rd << Rs

41 LSR <Rd>, <Rm>, #<immed_5>+
Shift right logically depending on the immediate value.
Rd = Rd >> immed_5

42 LSR <Rd>, <Rs>+
Shift right logically depending on the register value.
Rd = Rd >> Rs

43 MOV <Rd>, #<immed_8>+ Move the 8-bit immediate value to the register.

44 MOV <Rd>, <Rn>+ Move the lower register value to the lower register.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 14

No. Instruction Syntax Description

45 MOV <Rd>, <Rm>
Move the upper or lower register value to the upper or lower
register.

46 MUL <Rd>, <Rm>+
Multiply the register value.
Rd = Rd * Rm

47 MVN <Rd>, <Rm>+
Move the negation of the register value (one's complement) to
the register.
Rd = NOT(Rm)

48 NEG <Rd>, <Rm>+

Convert the register value to negative (two's complement,
negative) and save to the register.

Rd = 0 –Rm

49 NOP No operation

50 ORR <Rd>, <Rm>+
OR the register value bitwise.
Rd = Rd OR Rm

51 POP <registers> Pop multiple registers from the stack.

52 POP <registers, PC> Pop multiple registers and PC from the stack.

53 PUSH <registers> Push multiple registers to the stack.

54 PUSH <registers, LR> Push multiple registers and LR to the stack.

55 REV <Rd>, <Rn>
Copy a word to the register in inverted byte order.

Rd = {Rn[7:0], Rn[15:8], Rn[23:16], Rn[31:24]}

56 REV16 <Rd>, <Rn>
Copy two halfwords to the register each in inverted byte order.
Rd = {Rn[23:16], Rn[31:24], Rn[7:0], Rn[15:8]}

57 REVSH <Rd>, <Rn>

Copy lower halfword [15:0] and copy it to the register in
inverted byte order, sign-extended.

Rd = SignExtend ({Rn[7:0], Rn[15:8]})

58 ROR <Rd>, <Rs>+ Rotate right by the value specified by the register.

59 SBC <Rd>, <Rm>+
Subtract the register value and a borrow (~C) from the register
value.
Rd = Rd - Rm -NOT(C)

60 SEV

61 STMIA <Rn>!, <registers>
Store multiple registers to a sequence of memory locations in
words.

62 STR <Rd>, [<Rn>, #<immed_5>*4]
Store the register value at the memory location addressed by
the register offset by a 5-bit immediate value as a word.

63 STR <Rd>, [<Rn>, <Rm>]
Store the register value at the memory location addressed by
the base register offset by the register as a word.

64 STR <Rd>, [SP, #<immed_8>*4]
Store the register value at the memory location addressed by
SP offset by an 8-bit immediate value as a word.

65 STRB <Rd>, [<Rn>, #<immed_5>]
Store the register value at the memory location addressed by
the register offset by a 5-bit immediate value as a byte [7:0].

66 STRB <Rd>, [<Rn>, <Rm>]
Store the register value at the memory location addressed by
the register offset as byte [7:0].

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 15

No. Instruction Syntax Description

67 STRH <Rd>, [<Rn>, #<immed_5>*2]
Store the register value at the memory location addressed by
the register offset by a 5-bit immediate as halfword [15:0].

68 STRH <Rd>, [<Rn>, <Rm>]
Store the register value at the memory location addressed by
the register offset as halfword [15:0].

69 SUB <Rd>, <Rn>, #<immed_3>+
Subtract a 3-bit immediate value from the register.
Rd = Rn -immed_3

70 SUB <Rd>, #<immed_8>+
Subtract an 8-bit immediate value from the register.
Rd = Rd -immed_8

71 SUB <Rd>, <Rn>, <Rm>+
Decrement the register value.
Rd = Rn - Rm

72 SUB SP, #<immed_7>*4
Subtract 4 × (7-bit immediate value) from SP.

SP = SP - immed_7*4

73 SVC <immed_8>
Call the operating system services (supervisor call) with an 8-
bit immediate value call code.

74 SXTB <Rd>, <Rm>
Extract byte [7:0] from the register and move it to the register to
sign-extend to 32 bits.

75 SXTH <Rd>, <Rm>
Extract halfword [15:0] from the register and move it to the
register to sign-extend to 32 bits.

76 TST <Rn>, <Rm>+
AND with another register value to test the set bits of the
register.
Rn AND Rm

77 UXTB <Rd>, <Rm>+
Extract byte [7:0] from the register and move it to the register to
zero-extend to 32 bits.

78 UXTH <Rd>, <Rm>+
Extract halfword [15:0] from the register and move it to the
register to zero-extend to 32 bits.

79 WFE Wait for an event.

80 WFI Wait for an interrupt.

Nos. 49, 60, 79 and 80 are excluded.

FM4 family, to test the instruction of ARMv7-M Thumb instruction set other than. From the instruction set of Cortex-
M4 supports, to perform the DSP multiply instruction, the test of the FPU multiply instruction. (If other tests instruction
is needed, will require additional) Inside the CPU core, it is not possible to judge whether all paths from the register to
the DSP and FPU in all instructions are identical. Therefore, change the register in each instruction for testing. At that
time, use the walking bit pattern for the test input value. FPU multiply instruction and DSP multiply instruction in the
following list is tested.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 16

Table 10. ARMv7-M Instruction Set (DSP)

No. Instruction Syntax Description

1
SMMLA SMMLA <Rd>,<Rn>,<Rm>,<Ra> Signed Most Significant Word Multiply Accumulate multiplies

two signed 32-bit values, extracts the most significant 32 bits of
the result, and adds an accumulate value.

2

SMMLS SMMLS <Rd>,<Rn>,<Rm>,<Ra> Signed Most Significant Word Multiply Subtract multiplies two
signed 32-bit values, subtracts the result from a 32-bit
accumulate value that is shifted left by 32 bits, and extracts the
most significant 32 bits of the result of that subtraction.

3
SMMUL SMMUL <Rd>,<Rn>,<Rm> Signed Most Significant Word Multiply multiplies two signed 32-

bit values, extracts the most significant 32 bits of the result, and
writes those bits to the destination register.

4
SMMLAR SMMLAR

<Rd>,<Rn>,<Rm>,<Ra>
Signed Most Significant Word Multiply Accumulate multiplies
two signed 32-bit values, extracts the most significant 32 bits of
the result, and adds an accumulate value.

5

SMMLSR SMMLSR
<Rd>,<Rn>,<Rm>,<Ra>

Signed Most Significant Word Multiply Subtract multiplies two
signed 32-bit values, subtracts the result from a 32-bit
accumulate value that is shifted left by 32 bits, and extracts the
most significant 32 bits of the result of that subtraction.

6
SMMULR SMMULR <Rd>,<Rn>,<Rm> Signed Most Significant Word Multiply multiplies two signed 32-

bit values, extracts the most significant 32 bits of the result, and
writes those bits to the destination register.

Table 11. ARMv7-M Instruction Set (FPU)

No. Instruction Syntax Description

1
VMUL.F32 VMUL.F32 <Sd>, <Sn>, <Sm> Floating-point Multiply multiplies two single-precision register

values, and places the result in the destination single-precision
register.

2
VMLA.F32 VMLA.F32 <Sd>, <Sn>, <Sm> Floating-point Multiply Accumulate multiplies two single-

precision registers, and accumulates the results into the
destination single-precision register.

3
VMLS.F32 VMLS.F32 <Sd>, <Sn>, <Sm> Floating-point Multiply Accumulate multiplies two single-

precision registers, and accumulates the results into the
destination single-precision register.

4

VNMLA.F32 VNMLA.F32 <Sd>, <Sn>, <Sm> Floating-point Multiply Accumulate and Negate multiplies two
single-precision register values, adds the negation of the
single-precision value in the destination register to the negation
of the product, and writes the result back to the destination
register.

5

VNMLS.F32 VNMLS.F32 <Sd>, <Sn>, <Sm> Floating-point Multiply Accumulate and Negate multiplies two
single-precision register values, adds the negation of the
single-precision value in the destination register to the negation
of the product, and writes the result back to the destination
register.

5.3.2 Programmable Parameters

User-programmable parameters in using the CPU test API are as follows:

1. Test instructions

2. Threshold for failure detection

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 17

5.4 Bus Test

5.4.1 Test Overview

Test method “Inspection using test pattern” is to test buses. For more information, refer to IEC61508-7 A7.4.

The functions that are tested by the bus test are listed below.

[Bus functions under test]

 I-code bus

 D-code bus

 System bus

 DMAC bus

 DSTC bus (FM4)

 Bit-banding

 Unaligned access

 Arbitration

The bus periodic test is carried out by dividing the bus functions under test into three groups (FM3), or into four
groups (FM4).

5.4.2 Programmable Parameters

The user-programmable parameter in using the bus test API is as follows:

1. Threshold for failure detection

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 18

6 STL Performance

The following table shows the performance of the STL with "ARM6.60 kickstart version of IAR Embedded Workbench
for". It is a measurement result of FM3 (MB9BF506R).

6.1 ROM/RAM Sizes

Table 12 lists the sizes of ROM and RAM by component.

Table 12. ROM/RAM Sizes

 (in bytes)

 ROM size (total) RAM size (total)

RAM test 584 24

ROM test* 298 28

Bus test 784 248

CPU test 7742 148

Total 9408 448

*: The ROM size that is cited for the ROM test applies where a hardware macro is used to calculate the CRC code.

 If the software is used, the ROM size would be 1,306 (bytes).

6.2 Test Periods

This section presents the test periods by component. The indicated periods have been measured on a normal.

6.2.1 RAM Test Periods

Table 13 and Table 14 list the RAM startup test and periodic test periods, respectively.

Table 13. RAM Startup Test Periods

Number of areas Area under test (byte) Startup test (ms)

1 100 12

1 500 278

1 1000 1100

8 100 14

8 500 290

8 1000 1130

Table 14. RAM Periodic Test Periods

Area under test (byte) Periodic test(μs)

4 (fixed) 19.6

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 19

6.2.2 ROM Test Periods

Table 15 and Table 16 list the ROM startup test and periodic test periods, respectively.

Table 15. ROM Startup Test Periods

Method of computing the CRC code Number of areas Area under test (byte) Startup test (μs)

HW 1 500 110

HW 1 1000 211

HW 4 500 110

HW 4 1000 211

SW 1 500 380

SW 1 1000 752

SW 4 500 380

SW 4 1000 752

Table 16. ROM Periodic Test Periods

Method of computing the CRC code Area under test (byte)
Periodic test

(μs)

HW 10 9.6

HW 50 13.8

HW 100 19

SW 10 4.5

SW 50 19.4

SW 100 37.6

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 20

6.2.3 CPU Test period

The CPU startup test takes 246μs to execute.

Table 17 lists the CPU periodic test periods. Measurement is carried for each instruction set (for example, LDR set for
LDR, LDRB and LDRH).

Table 17. CPU Periodic Test Periods

Instruction set Periodic test (μs)

ADD 10.2

ASR 8.2

Logical operation 17.4

Branch 18

Compare 10.4

IT 20.2

LDR 8.4

LDM 13.8

STR 7.8

STM 10.2

SHIFT 5

MLA 4.4

MOV 14

REV 5.6

SUB 6.6

SXT 7.2

Register 7.2

6.2.4 Bus Test per iod

The bus startup test takes 88.8μs to execute.

Table 18 lists the bus periodic test periods. Measurement is carried out for each of the three separate test items (test
numbers 1 to 3).

Table 18. Bus Periodic Test periods

TestNo Periodic test (μs)

TestNo1 9.68

TestNo2 76

TestNo3 2.8

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 21

7 Reference Documents

1. IEC61508 1-7(ed2.0)

2. ARMv7-M Architecture Application Level Reference Manual, 2008

3. MB9BF504NB-DS706-00021-2v0-J.pdf (MB9B500 Data Sheet)

4. MB9B560R-DS709-00001.pdf(MB9B560R Data Sheet)

5. MB9Bxxx-MN706-0002-4v0-E (FM3 family Periphery Manual)

6. MN709-00001-1v0-J.pdf(FM4 family Periphery Manual)

7. Cortex-M3 Revision r2p1 Technical Reference Manual

8. Cortex-M4 Revision r0p1 Technical Reference Manual

8 Additional Information

For more information, please contact us on our website:

www.cypress.com/contact-us

Please mail us at:

customercare@cypress.com

http://www.cypress.com/contact-us
mailto:customercare@cypress.com.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 22

A Appendix

A.1 CRC code making method

The method to make CRC code to use in X5. 15.1 ROM Test X, follows is examples of IAR Embedded Workbench. Please
refer to IAR’s manual for details.

A.1.1 Star t of the Command-Line

Click “Project”→”Options”→”Linker”→”Extra options” tabs, then check the “Use command line options”.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 23

A.1.2 Input the command

“--place_holder” command

"--place_holder" is used that make CRC code and a section in ROM. If input the following command, to set the size of
section in 4byte and the alignment in 1.

--place_holder __checksum,4,.checksum,1

“--fill” command

The unused area of the target area needs to fill with optional value making the CRC code. Therefore, use “--fill”
command. If input the following command, 0x00000000-0x00003FFF is filled with 0xFF.

--fill 0xFF;0x0000-0x3FFF

If input the following command, 0x00000000-0x00003FFF, 0x5000-0x5FFF and 0x6500-0x6FFF are filled with 0xFF.

--fill 0xFF;0x0-0x3FFF;0x5000-0x5FFF;0x6500-0x6FFF

“--checksum” command

Set algorithm of CRC. If input the following command, you can set items as follow. The CRC code is stored in the
symbol name “__checksum”, the CRC code size is 4byte, the algorithm is CRC32, calculation is LSB first, CRC code
is initialized by 0xFFFFFFFF, 0x00000000-0x00003FFF, 0x5000-0x5FFF and 0x6500-x6FFF are filled with 0xFF.

--checksum __checksum:4,crc32:mi,0xffffffff;0x0-0x3FFF;0x5000-0x5FFF;0x6500-0x6FFF

If input the command mentioned above (1, 2, and 3), close the window by clicking the “OK”.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 24

A.1.3 Sett ing of bui ld messages to display in the message window

If set the following contents, you can display build messages at the time of make to the message window.

Click “Tools”→”Options”→”Messages” tabs, then select the “All” from the combo box of “Show build messages”.
Finally, close the window by clicking the “OK”.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 25

A.1.4 Sett ing of the Linker configurat ion f i le

Add setting to the Linker configuration file to store CRC code in Flash. In the case of debug mode, you must use
“mb9bf506_ram.icf” file. In the case of release mode, you must use “mb9bf506.icf” file. If input the following
command, CRC code is stored in 0x8000.

define symbol __ICFEDIT_checksum_start__ = 0x00008000;

define block CHECKSUM {ro section .checksum};

define symbol __ICFEDIT_checksum_start__ = 0x00008000;

A.1.5 Making CRC code

Confirm that the CRC code was made after make.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 26

9 Document History

Document Title: AN204377 - FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

Document Number: 002-04377

Revision ECN Orig. of
Change

Submission
Date

Description of Change

**

-

YUIS

04/24/2014

Rev 1.0 Initial release

Rev 2.0 Section-1:Porting to FM4

 Section-5.3.1 and 5.3.2: Add FM4 DSP instruction and FPU
 instruction to CPU Test and Add DSTC bus test to BUS Test

*A 5099882 YUIS 07/14/2016 Migrated Spansion Application Note from FM3_AN706-00048-2v0-E
to Cypress format.

*B 5824509 AESATMP9 07/19/2017 Updated logo and copyright.

FM3 and FM4 Family, IEC61508 SIL2 Self-Test Library

www.cypress.com Document No. 002-04377 Rev. *B 27

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 About This Application Note
	1.2 Background
	1.3 Development and Evaluation Environment
	1.4 Note

	2 Target Products
	3 Overview of IEC61508
	3.1 Glossary
	3.2 Safety lifecycle
	3.3 SIL (Safety Integrity Level)
	3.4 Failure Definitions
	3.5 Hardware Safety Evaluations and Architectural Constraints
	3.6 SFF (Safe Failure Fraction)

	4 Overview of STL
	4.1 Coverage of Testing
	4.2 Types of Testing
	4.3 Failure Detection
	4.4 STL Configuration

	5 Overview of API
	5.1 ROM Test
	5.1.1 Test Overview
	5.1.2 Programmable Parameters

	5.2 RAM Test
	5.2.1 Test Overview
	5.2.2 Programmable Parameters

	5.3 CPU Test
	5.3.1 Test Overview
	5.3.2 Programmable Parameters

	5.4 Bus Test
	5.4.1 Test Overview
	5.4.2 Programmable Parameters

	6 STL Performance
	6.1 ROM/RAM Sizes
	6.2 Test Periods
	6.2.1 RAM Test Periods
	6.2.2 ROM Test Periods
	6.2.3 CPU Test period
	6.2.4 Bus Test period

	6.3

	7 Reference Documents
	8 Additional Information
	A.1 CRC code making method
	A.1.1 Start of the Command-Line
	A.1.2 Input the command
	A.1.3 Setting of build messages to display in the message window
	A.1.4 Setting of the Linker configuration file
	A.1.5 Making CRC code

	9 Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

