

AN2041

1

Understanding PSoC® 1 Switched Capacitor Analog Blocks

Author: Dave Van Ess

Associated Project: Yes

Associated Part Family: CY8C29x66, CY8C28xxx, CY8C27x43, CY8C24x23A,CY8C24x94

Software Version: PSoC[®] Designer™ 5.2

Related Application Notes: For a complete list of the application notes, click here.

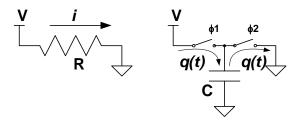
AN2041 explains the operation of PSoC[®] 1's versatile switched capacitor analog blocks, and provides practical examples of their use. Switched capacitor (SC) blocks are one of the two key components of PSoC 1's analog functionality, and can be reconfigured to perform many useful functions. This application note also explains the theory and application of these switched capacitor analog blocks.

Contents

Introduction	2
Moving Charge	
Active Switched Cap Circuits	
Theme and Variation	
Non-Inverting Amplifier	4
Comparator	
Integrator	
Differentiator	
Additional Switched Cap References	6
Comparator as 2-bit ADC	
Real Analog-to-Digital Conversion	
Switched Capacitor PSoC Blocks	
Type C Switched Capacitor Blocks	8
Type C Switched Cap Block Parameters	
Type D Switched Capacitor Blocks	
Type D Switched Cap Block Parameters	
SC Blocks and PSoC 1 Architecture	
PSoC 1 SCBlock User Module	

Additional Applications	12
Summary	15
Related Application Notes	16
Appendix A: Control Registers for a Type C Capacitor Block	
Appendix B: Control Registers for a Type D Capacitor Block	
Appendix C: A Input Multiplexer Connections	17
Appendix D: C Input Multiplexer Connections	18
Appendix E: B Input Multiplexer Connections	18
Appendix F: C Code: 2-Bit ADC Example Project	19
Appendix G: SC-Block Applications Cook Book	21
Worldwide Sales and Design Support	28

Introduction


Analog circuit design involves the use of resistors, capacitors, and integrated active devices. It is the nature of integrated circuitry that small, accurate resistors are harder and more expensive to build than small, accurate capacitors. Because making capacitors is easier and cheaper, techniques are developed to use capacitors to build accurate analog circuitry. These techniques have led to the use of switched capacitor (SC) architectures. These architectures control the movement of charge between capacitors with the precise timing of switches, instead of relying on resistors. Switched capacitor analog blocks are made up of a set of switched capacitors surrounding an opamp. The switched capacitors allow configuration of the block in many different modes, including as a comparator, amplifier, integrator, differentiator, ADC, and more. This application note provides the following:

- A brief tutorial on switched capacitor techniques.
- A detailed description of the switched capacitor PSoC blocks.
- Examples of practical circuits using these blocks.
- Information on quick settings for a particular application - Appendix G: SC-Block Applications Cook Book

Moving Charge

Analog circuit design is all about controlling the movement of charge between voltage nodes. Figure 1 shows charge movement using a resistor and using a switched capacitor. In the case of the resistor, current flow is created by the voltage differential across the resistance. In the case of the capacitor, current flow is created by electron accumulation from the higher voltage node and discharge into the lower voltage node.

Figure 1. Two Methods for Moving Charge

Equation 1 shows the current flow from a voltage potential to ground through the resistor, a manipulation of Ohm's law, as shown in Figure 1. This current is a linear, continuous movement of charge.

$$i = \frac{V}{R}$$
 Equation 1

In the case of the switched capacitor, current is moved by charging and discharging the capacitor. When the Φ_1 switch is closed and the Φ_2 switch is open, the capacitor charges to the full potential. The equation of the charge stored is shown in Equation 2.

$$q = CV$$
 Equation 2

When the Φ_1 switch is opened and Φ_2 switch is closed, all of this stored charge moves to the ground node. For each precise sequential pair of switch closures, a quantum of charge is moved. If these switches are controlled at the frequency fs, the charge quanta also move at this frequency. Equation 3 shows the current due to the repetitive movement of charge across the switched capacitor.

$$i = q/t = f_s q = f_s CV$$
 Equation 3

Unlike in the case of the resistor, this current is not a continuous movement of charge. The charge moves in clumps (quanta). This is not a problem for a sampled system where the signal is sampled at the end of each sample cycle. The following equation shows that a switched capacitor is equivalent to a resistor when they have equivalent ratios of voltage drop against delivered current. We can then replace a series resistor with a parallel switched capacitor.

$$\frac{V}{i} = R = \frac{1}{f_* C}$$
 Equation 4

The equivalent resistance is inversely proportional to the capacitance and the switching frequency. The relative value of the resistance may be altered, merely by changing the switching frequency. The larger "C" is, the larger the charge quanta. This results in more current and a smaller equivalent resistance. Making "fs" bigger causes more quanta to be transferred per unit time. This results in a higher current and a lower effective resistance.

The timing requirements for Φ_1 and Φ_2 are:

- Never close the Φ_1 and Φ_2 switches at the same
- Give the Φ_1 switch time to open before closing the Φ_2
- Give the Φ_2 switch time to open before closing the Φ_1
- When selecting a sampling rate, allow enough time for the circuitry to fully charge and discharge in the allotted phase cycle.

Active Switched Cap Circuits

Simply moving charge is useful, but most circuits require gain. Figure 2 shows a simple architecture for a fixed gain amplifier. It consists of an opamp, an input capacitor (C_A) , a feedback capacitor (C_F) , and five switches.

Figure 2. Switched Cap Fixed Gain Inverting Amplifier

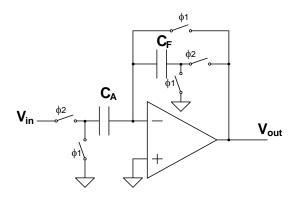
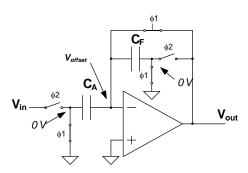
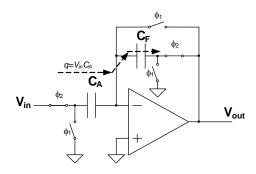



Figure 3 shows that three switches are closed during the Φ_1 phase.

Figure 3. Configuration During Φ₁ Phase



During Φ_1 phase, the opamp is configured as a follower. The opamp's negative feedback drives the voltage at the inverting input towards ground. The voltage will not be exactly ground, because all opamps have input offset error (V_{offset}). The input side of C_A is pulled to ground, as is the output side of C_F . The offset voltage is added to both capacitors. This removes the effect that this offset error may have on the output during the charge transfer phase. Because this offset removal happens without intervention during the acquisition phase, it is known as an "autozero" adjustment.

For a transition period between the phases, all of the switches are open. This period is brief and the charge stored on the capacitors does not change. This transition period is known as "dead band".

Figure 4 shows the configuration of the switches and the flow of current during Φ_2 phase.

Figure 4. Configuration During Φ₂ Phase

Equation 5 defines the amount of charge needed to excite the input capacitor to the input voltage V_{in}.

$$q = V_{in}C_A$$
 Equation 5

This charge will take the only available path: through the feedback capacitor. Therefore, the feedback capacitor receives the same charge transfer. Equation 6 describes the output voltage change due to this charge transfer.

$$V_{out} = -\frac{q}{C_r}$$
 Equation 6

Equation 7 combines Equation 5 and Equation 6 to produce the transfer function for this amplifier.

$$Gain = \frac{V_{out}}{V_{in}} = -\frac{C_A}{C_F}$$
 Equation 7

The result is an inverting amplifier with a gain set by the ratio of its two capacitors.

Note that the output voltage is only correct at the end of Φ_2 phase. The output voltage will be near ground (at V_{offset}) during Φ_1 phase. For this reason, the sampling of switched cap circuit outputs muse be timed properly.

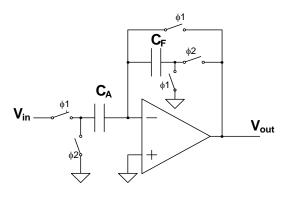
The phase Φ_2 , in this case, is also referred to as signal acquisition phase as the input capacitor acquires the input signal. Phase Φ_1 is referred to as charge transfer phase as the charge acquired by input capacitor is transferred to output.

Theme and Variation

The switched cap topology can be modified to achieve more useful configurations. Some of these are described below.

Note that in the explanation to all the below circuits, following assumptions are made:

- Zero input offset voltage
- Mentioned voltages are referenced to analog ground (AGND).



 The current direction is drawn assuming input voltage is greater than AGND value (which is same as opamp's non-inverting terminal voltage). If the input voltage is less than AGND, the current direction is reversed.

Non-Inverting Amplifier

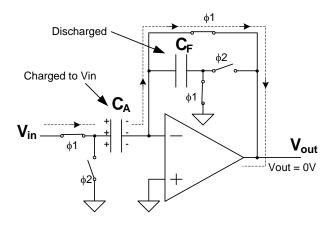

Initially, Figure 5 appears to be an exact copy of Figure 2. A closer examination shows that the input switches have swapped phase. That is, Φ_1 is now the signal acquisition phase and Φ_2 is the charge transfer phase. This configuration creates a non-inverting amplifier.

Figure 5. Switched Cap Non-Inverting Amplifier

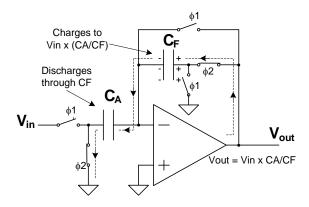
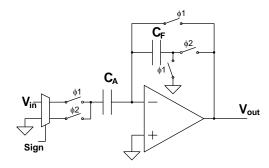

In this configuration, the input capacitor C_A acquires V_{in} during the acquisition phase Φ_1 as shown in Figure 6.

Figure 6. Non-Inverting Amplifier in Φ₁ Phase

The charge needed to pull the input back to ground during the transfer phase $\Phi 2$ moves in the opposite direction to that of the first example shown in Figure 4. Charge moving to V_{out} is likewise in the opposite direction as shown in Figure 7.

Figure 7. Non-Inverting Amplifier in Φ₂ Phase

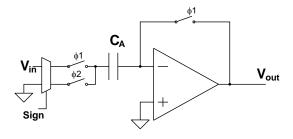


Thus, the output voltage is proportional to the input rather than inversely proportional. The result is a positive gain amplifier with a gain defined in Equation 8.

$$Gain = \frac{V_{out}}{V_{in}} = \frac{C_A}{C_F}$$
 Equation 8

Figure 8 shows the modification that allows the correct phasing for both positive and negative gain operation. A multiplexer controls the input switching phase through a "Sign" select signal.

Figure 8. Switched Cap Selectable Polarity Amplifier


For the rest of these examples the "Sign" is assumed to be positive, that is, the C_A acquires V_{in} during Φ_1 and moves back to zero during Φ_2 .

Comparator

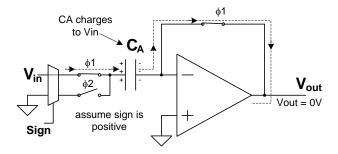
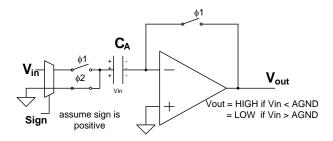
Building a comparator using SC block is relatively easy. Figure 9 shows a modification where the switch in series with the feedback capacitor is removed.

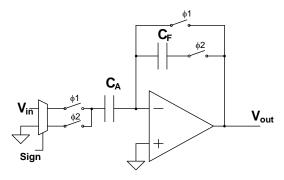
Figure 9. Switched Capacitor Comparator

This change removes the capacitor from the feedback loop, effectively setting the capacitor value to zero. Equation 8 states that the amplifier's gain is the ratio of the two capacitors. If the feedback capacitor is removed then the gain is infinite and the amplifier acts like a comparator.

See Figure 10 and Figure 11 for current path, capacitor and output voltage during Φ 1 and Φ 2 phase.

Figure 10. Comparator in Φ₁ Phase


Figure 11. Comparator in Φ_2 Phase

Integrator

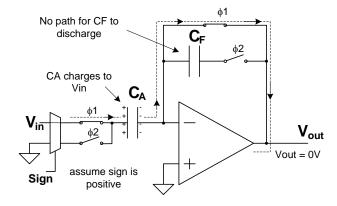

Integrators and differentiators can also be constructed using SC blocks. Figure 12 shows that removing the switch from C_F to ground, prevents the charge on the feedback capacitor from being removed during the acquisition phase while still allowing the transfer of the input charge.

Figure 12. Switched Capacitor Integrator

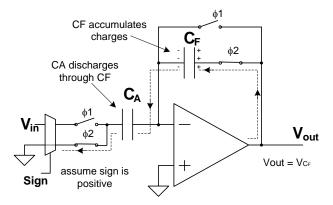

See Figure 13 and Figure 14 for integrator circuit in action.

Figure 13. Integrator in Φ₁ Phase

During Φ_1 phase, input capacitor C_A charges to input voltage, whereas, feedback capacitor C_F holds on to its charge.

Figure 14. Integrator in Φ₂ Phase

During Φ_2 phase, input capacitor C_A discharges through C_F , thus transferring all its charge to C_F .

Equation 9 defines its operation.

$$V_{out} = V_{out} z^{-1} + Vin \frac{C_A}{C_F}$$
 Equation 9

Manipulating Equation 9 results in the transfer function shown in Equation 10.

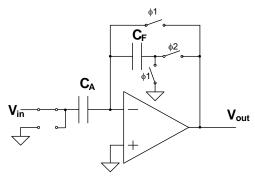
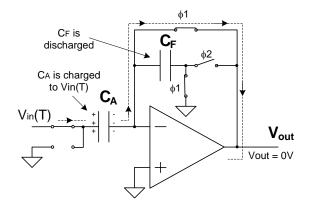
$$Gain = \frac{V_{out}}{V_{in}} = \frac{C_A}{C_F} \frac{1}{(1 - z^{-1})} \cong \frac{1}{s} \left(f_s \frac{C_A}{C_F} \right)$$
 Equation 10

Equation 9 and Equation 10 state that this circuit is an adjustable integrator whose gain can be varied by changing the capacitor ratios or adjusting the sampling frequency.

Differentiator

A differentiator may be created using a switched cap block. Figure 15 shows that the analog input is permanently connected to the input capacitor. This topology makes the feedback capacitor behave like a resistor and the input capacitor behave like a series capacitor.

Figure 15. Switched Capacitor Differentiator

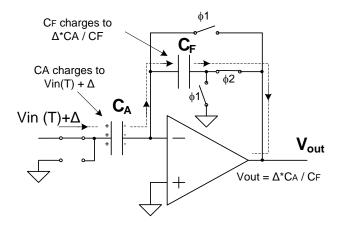

Figure 16 and Figure 17 shows the Differentiator operation in Φ 1 and Φ 2.

Figure 16. Differentiator in Φ_1 Phase

During Φ_1 phase, input capacitor acquires input voltage present at that particular instant, in this case, $V_{in}(T)$. The feedback capacitor C_F is discharged.

Figure 17. Differentiator in Φ₂ Phase

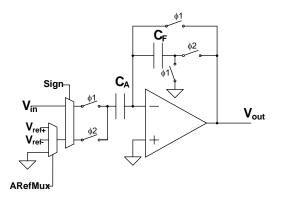
During Φ_2 , let us assume that the input voltage changes by Δ . This results in an increase in charge on the input capacitor C_A by Δ * C_A . The same amount of charge is transferred to C_F as the current path is same. This gives voltage across the feedback capacitor as Δ * C_A / C_F . Thus the output voltage is proportional to the change in an input voltage over time.

The differentiator operation can be mathematically modeled as given in equation 11.

$$(V_{in} - V_{in}z^{-1}) \cdot C_A = -V_{out}C_F$$
 Equation 11

Manipulating Equation 11 results in the transfer function shown in Equation 12.

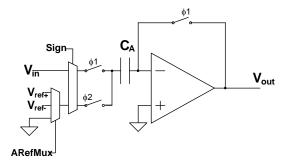
$$Gain = \frac{V_{out}}{V_{in}} = -\left(1 - z^{-1}\right)\frac{C_A}{C_F} \cong -s\left(\frac{1}{f_s}\frac{C_A}{C_F}\right)$$
 Equation 12


Equation 12 shows that this is an adjustable gain differentiator.

Additional Switched Cap References

So far, all the examples have the input voltage referenced to analog ground. Analog ground may be a convenient reference point but others are also possible. Figure 18 shows a standard circuit with an improved reference selection.

Figure 18. Improved Switched Cap Reference Selection


ARefMux allows the selection of two other references besides analog ground. Equation 13 defines the output voltage for a switched cap amplifier given different reference configurations. The equations are for the cases where the reference is analog ground, $V_{\text{ref+}}$ or $V_{\text{ref-}}$.

$$V_{out} = \frac{C_A}{C_F} V_{in}$$
 Equation 13
$$V_{out} = \frac{C_A}{C_F} (V_{in} - V_{ref+})$$

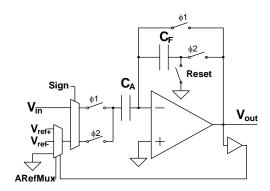
$$V_{out} = \frac{C_A}{C_F} (V_{in} - V_{ref-})$$

Comparator as 2-bit ADC

Combining the comparator in Figure 9 with the reference selection in Figure 18, results in a comparator with multiple compare points, as shown in Figure 19. This kind of comparator can be used as a simple 2 bit ADC.

Figure 19. Poor Man's 2-bit Switched Cap ADC

With proper control of ARefMux, it is possible to determine if V_{in} is:


- Greater than V_{ref+}
- Less than V_{ref+} but greater than ground
- Less the ground but greater than V_{ref}-
- Less than V_{ref}-

These four states make this circuit a 2-bit analog-to-digital converter (ADC).

Real Analog-to-Digital Conversion

Slight modification of the reference selection allows this circuit to function as an analog to digital modulator. This modification allows the output of the switched cap block to control the reference selection, creating feedback and creating a digital signal that can be measured to determine the size of the analog input. Figure 20 shows that a comparator is added to the output and is connected to the reference selection mux.

Figure 20. Analog to Digital Modulator

Selecting the proper ARefMux value allows the output of the comparator to determine the reference voltage. The relationship is:

- The reference is set to V_{ref+} when the comparator is high (positive output value).
- The reference is set to V_{ref}- when comparator is low (negative output value).

The switches around the feedback capacitor are configured to make an integrator. The comparator control causes a reference, with the same polarity as the V_{out} , to be subtracted from the input. This negative feedback causes V_{out} to move back towards zero.

Equation 14 describes Vout, given the following conditions:

- The initial condition of V_{out} is zero.
- The switch cycle is preformed "n" times.
- V_{out} is greater than zero (comparator is high) "a" of those times.

$$V_{out} = \frac{C_A}{C_F} nV_{in} - \frac{C_A}{C_F} aV_{ref+} - \frac{C_A}{C_F} (n-a)V_{ref-}$$
 Equation 14

Given that the references are of equal but opposite polarity, solving for V_{in} results in the following equation.

$$V_{in} = V_{ref} \frac{(2a-n)}{n} + \frac{1}{n} V_{out} \frac{C_F}{C_A} ; (V_{ref} = V_{ref+} = -V_{ref-})$$
 Equation 15

 V_{in} is a function of V_{ref} and $V_{\text{out}}.$ As stated earlier, the negative feedback causes V_{out} to move back towards ground every cycle. This makes V_{out} less than $(C_A/C_F)^*V_{\text{ref}}.$ As "n" becomes larger, the contribution of V_{out} to Equation 15 becomes negligible. This allows a simpler Equation 16.

$$V_{in} = V_{ref} \left(\frac{2a}{n} - 1 \right) ; \left(\frac{1}{n} V_{out} \frac{C_F}{C_A} < \frac{1}{n} V_{ref} \approx 0 \right)$$
 Equation 16

 V_{in} is not dependent on the ratio of the two capacitors. It is only the ratio of "a" and "n", and a function of $V_{\text{ref.}}$ Measuring V_{in} is just a function of counting the number of

times the comparator is high ("a") during a sequence of "n" switch cycles. The range is $-V_{ref}$ (a = 0) to $+V_{ref}$ (a=n), and the resolution is $2V_{ref}/n$. Longer the period (larger "n") the better the resolution of voltage measurement.

Switched Capacitor PSoC Blocks

The architecture previously discussed is quite versatile. It allows many different functions merely by altering the circuit's switch closures. This architecture is used as the basis for the SC blocks in the PSoC microcontroller and is implemented with Type C and Type D switched capacitor blocks.

Type C Switched Capacitor Blocks

Figure 21 shows the Type C switched capacitor block. A larger copy of this diagram along with a map of the Control registers for the block is in Appendix A. The canonical version of Figure 21 may be found in the PSoC 1 Technical Reference Manual under Analog System > Switched Capacitor PSoC Block section.

Figure 21. Type C Switched Capacitor Block Architecture

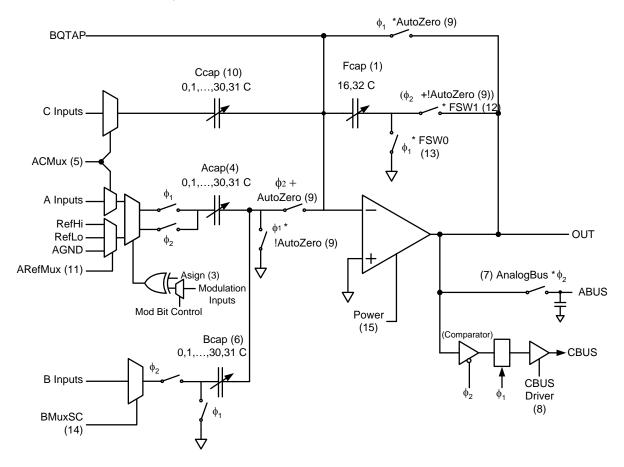


Figure 21 is similar to the architecture shown in Figure 18, with the following additions:

- A programmable CCap capacitor connects to the summing node of the opamp inverting input.
- A programmable BCap switched capacitor connects to the summing node of the opamp inverting input.
- An AnalogBus switch connects the opamp's output to an analog buffer.
- A CompBus switch connects the comparator to the digital blocks.

The BCap acts similar to the ACap except that it only samples its input on Φ_2 and is always referenced to ground. It is generally used for multiple input amplifiers. The CCap primarily benefits filter design.

Type C Switched Cap Block Parameters

PSoC 1's switched cap blocks are most easily configured using the user module interface in the PSoC Designer IDE. There are 15 different parameters for a type C switched cap block user module.

The parameters with descriptions of their operations are given as follows:

1. FCap

A 1-bit field to set the value of FCap to either 16 or 32 units. Each unit of capacitance is approximately 50 fF.

2. ClockPhase

A 1-bit field that, when set, swaps the Φ_1 and Φ_2 phases. It is primarily used to match the input signal sampling when input is taken from another SC block. This is important as the output of a switched capacitor is valid only during Φ_2 phase and not on Φ_1 phase, the acquisition phase.

3. ASign

A 1-bit field to set the gain of the block to either positive or negative.

4. ACap

A 5-bit field to set the value of ACap from 0 to 31 capacitance units.

5. ACMux

A 3-bit field to select the inputs to the ACap and the CCap. Appendix C and Appendix D show the connection options.

6. **BCap**

A 5-bit field to set the value of BCap from 0 to 31 capacitance units.

7. AnalogBus

A 1-bit field that, when set, connects the output to an analog buffer. This buffer can be used to drive pins or other analog resources in the part.

8. CompBus

A 1-bit field that, when set, connects the comparator output to the data inputs of PSoC 1's digital blocks.

9. AutoZero

A 1-bit field that, when set, forces an autozero during the Φ_1 signal acquisition phase.

10. CCap

A 5-bit field to set the value of CCap from 0 to 31 capacitance units.

11. ARefMux

A 2-bit field to select the voltage potential that the A input is referenced to. It can be AGND, $V_{\text{ref+}}$, $V_{\text{ref-}}$, or a voltage reference determined by the state of the output comparator.

12. **FSW1**

A 1-bit field to select if FCap is connected. If set to zero, FCap is not connected, and the block functions as a comparator. If set to one, the FCap is in the feedback path, and the circuit functions as a gain stage or integrator.

13. **FSW0**

A 1-bit field to select if FCap is discharged during Φ_1 . If set to one, the FCap is discharged and the circuit functions as a gain stage. If set to zero, the capacitor is not discharged and the circuit functions as an integrator.

14. BMux(SCA)

A 2-bit field to set the inputs to the BCap. Appendix E shows the connection options.

15. Power

A 2-bit field to set the power for the block. The options are: off, low, medium, and high.

Type D Switched Capacitor Blocks

PSoC 1 also contains Type D switched capacitor blocks, which allow for the construction of more complex analog circuits. Figure 22 shows the type D switched capacitor block. A map of the Control resistors for Type D SC-block is given in Appendix BAppendix B. The canonical version of Figure 22 may be found in the PSoC 1 Technical Reference Manual under Analog System > Switched Capacitor PSoC Block.

Figure 22. Type D Switched Capacitor Block Architecture

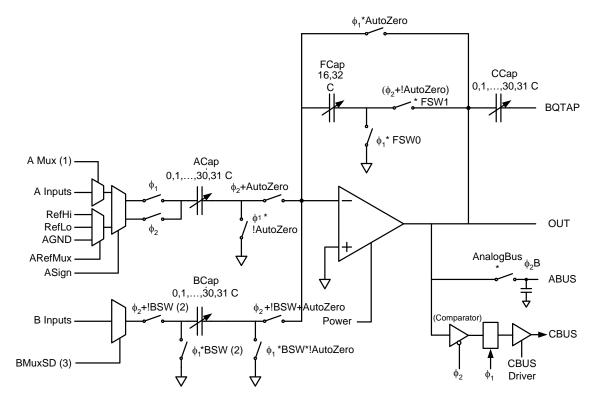


Figure 22 is similar to the Type C SC block shown in Figure 21 with the following differences:

- There is no multiplexed input to CCap but a connection to the output of the block. The other side of CCap connects to the summing node of the type C SC block next to it. It is used to build biquad filters.
- The control field BSW allows BCap to function as a switched capacitor or as just a capacitor.

Type D Switched Cap Block Parameters

There are 16 different parameters for a Type D switched cap block. Thirteen are common with the Type C **SC** block and have already been discussed. The remaining three parameters with descriptions of their operations follow:

■ AMux

A 3-bit field to set the inputs to the ACap. Appendix C shows the connection options.

BSW

A 1-bit field. When set, BCap functions as a switched capacitor input. If not set, then BCap functions as a series capacitor.

■ BMux(SD)

A 1-bit field to set the inputs to the BCap. Appendix E shows the connection options.

SC Blocks and PSoC 1 Architecture

Figure 23 shows the array of analog blocks for the CY8C27x43 family of parts.

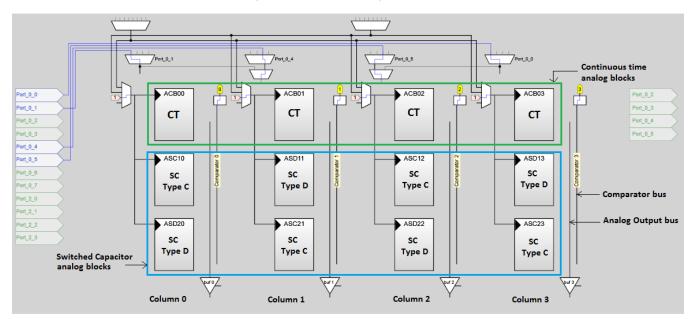
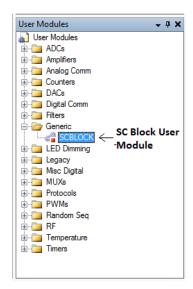


Figure 23. PSoC 1 Analog Block Array

There are four columns of analog blocks, with each column having its own analog bus, comparator bus, and clock to generate the Φ_1 and Φ_2 clocks.

Each column contains one type "C" SC block and one type "D" SC block for a total of eight SCBlocks. The order of the C and D blocks is reversed in each column, so that each type C block is surrounded by type D blocks, and vice versa.

Different User Modules use different numbers of blocks. For example:


- The DAC6 User Module uses one SC block.
- The DAC8 User Module uses two SC blocks.
- The DELSIG8, DELSIG11, and ADCINC12 ADC user modules each use only one SC block.
- The LPF2 User Module uses two SC blocks.
- The PWM8 is a digital only User Module and uses no SC blocks.

The PSoC 1 switched capacitor blocks are so versatile that one of the best ways to utilize them is to configure all settings of the block manually. To assist the user, a fully parameterized SC block User Module has been developed.

PSoC 1 SCBlock User Module

The SCBlock User Module is found under the "generic" category of User Modules in PSoC Designer IDE.

Figure 24 SCBlock User Module in Catalog

This block may be placed in any of the eight available SC blocks.

Additional Applications

Switched cap blocks can be used in many applications besides those described previously. Some additional examples are described in the following sections. The project containing all three examples shown is distributed along with this application note. Besides these examples, Appendix G: SC-Block Applications Cook Book gives settings for variety of applications using SC Block.

PSoC Designer Tool is used to create the projects for PSoC 1. If you are new to PSoC 1 Designer, it is recommended to go through online training material.

Example 1: Differential Amplifier with Common Mode Output

A common mode output signal is useful to many signal processing applications. It is also highly useful where the common mode feedback is used to drive a shield or signal guard. Figure 25 shows the architecture for a differential amplifier with a common mode output. The PSoC implementation is shown in Figure 26:

Figure 25. Differential Amplifier with Common Mode Output

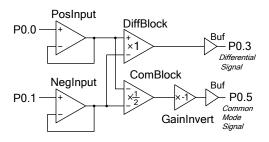
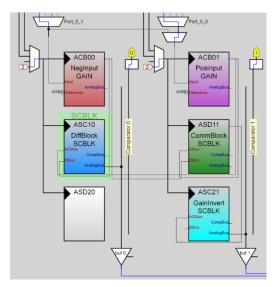



Figure 26. PSoC Block Placement of Differential Amplifier with Common Mode Output

The two input buffers are programmable gain amplifier (PGA) User Modules with matched gains. The three switched cap blocks are populated with generic SC Block user modules.

The difference output is defined by Equation 17.

$$V_{difference} = PosInput - NegInput$$
 Equation 17

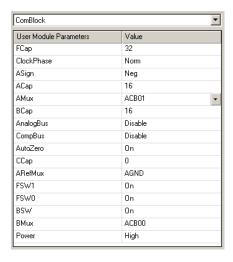
The amplifier is an A-B amplifier with a gain of one. Its parameters are shown in Figure 27.

Figure 27. Parameters for DiffBlock SCBLOCK

User Module Parameters	Value
FCap	16
ClockPhase	Norm
ASign	Pos
ACap	16
ACMux	ACB01
BCap	16
AnalogBus	AnalogOutBus_0
CompBus	Disable
AutoZero	On
ССар	0
ARefMux	AGND
FSW1	On
FSW0	On
BMux	ACB00
Power	High

For a difference amplifier with a gain of one, the values of FCap, ACap, and BCap must be the same. CCap is not used so its value is set to zero. The continuous time blocks source both input signals, and thus ClockPhase can remain set to "Norm." The ACMux is set to connect its input to "ACB01." ARefMux is set to "AGND" so both input references have the same potential. BMux is set to connect its input into "ACB00." ASign is set to "Pos". To be an amplifier, FSW1, FSW0, and AutoZero must be set "On." The comparator is not used so CompBus is set to "Disable." AnalogBus is set to "AnalogOutBus0" so that the output can be brought to the analog buffer on P0[3]. Power is set "High."

The common mode output is defined by the Equation 18.


$$V_{common} = \frac{PosInput + NegInput}{2}$$
 Equation 18

A stage that can implement an A+B amplifier is required. Unfortunately, the architecture limits the B input to negative gains. The solution is to build a -A-B amplifier and follow it with a gain stage of -1.

The parameters for a -A-B amplifier with a gain of one half are shown in Figure 28 :

Figure 28. Parameters for the ComBlock SCBLOCK

For a gain of one half on both inputs, **FCap** is set to '32' and both **ACap** and **BCap** are set to '16'. **CCap** is not used so its value is set to zero. The continuous time blocks source both input signals, and thus **ClockPhase** can remain set to "Norm." The **AMux** is set to connect its input to "ACB01." **ARefMux** is set to "AGND" so both inputs references have the same potential. **BMux** is set to connect its input into "ACB00." **BCap** is required to be a switched capacitor so **BSW** is set "On." **ASign** is set to "Neg." To be an amplifier, **FSW1**, **FSW0**, and **AutoZero** must be set "On." The comparator is not used so **CompBus** is set to "Disable." **AnalogBus** is also not used so it is set to "Disable." **Power** is set to "High."

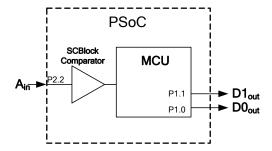
This block is to be followed by a gain inversion stage. The parameters for a -1 gain stage are shown in Figure 29.

Figure 29. Parameters for the GainInvert SCBLOCK

User Module Parameters	Value	
FCap	16	
ClockPhase	Norm	
ASign	Neg	
ACap	16	_
ACMux	ASD11	
BCap	0	
AnalogBus	AnalogOutBus_1	
CompBus	Disable	
AutoZero	On	
ССар	0	
ARefMux	AGND	
FSW1	On	
FSW0	On	
BMux	?	
Power	High	

For a gain of -1, the values of Fcap and ACap must be the same. BCap and CCap are not used so their values are set to zero. ASign is set to "Neg." Its input is sampled on the same phase as a valid Com Block output signal so ClockPhase can remain set to "Norm." The ACMux is set to connect its input to "ASD11." ARefMux is set to "AGND." BMux is not needed so it is not set. Again FSW1, FSW0, and AutoZero must be set to "On." The comparator is not used so CompBus is set to "Disable."

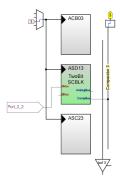
AnalogBus is set to "AnalogOutBus1" so that the output can be brought to the analog buffer on P0[5]. **Power** for this example is set to "High." The actual setting for other applications is determined by signal bandwidth.


These five blocks implement the circuit shown in Figure 25. The column **clocks** are set to **1 MHz**. This sets the sample rate to 250 Ksps. It is recommended that when used as amplifiers, the SC Blocks should not be sampled faster than 350 Ksps.

Example Code: Example 1 only requires the PGA user modules to be started. The code in C language follows.

Example 2: A 2-Bit ADC

In Figure 19, a four state ADC was shown using a SCBlock as a comparator and using the reference mux to test different ranges. Figure 30 shows the block level representation.


Figure 30. Two Bit ADC Example

The PSoC 1 implementation is shown in Figure 31. Note that the PSoC 1 SC block is capable of implementing a 6-bit SAR ADC using single SC block. It is available in the form of a user module in PSoC Designer.

Figure 31. PSoC 1 SC Block Placement of TwoBit ADC

The input is brought in from P2[2] to an SCBlock (Instance name: "TwoBit"). It is configured as a comparator. Software manipulates the **ARefMux** field in Control register TwoBit_cr3 to select the reference as Agnd, V_{ref+} , or V_{ref-} .

Bit 7 of the Analog Comparator Control Register (**CMP_CR**) allows the software to determine the state of the column 3 comparator. This allows the software to determine if the input is:

- Greater than V_{ref+}
- Less than V_{ref+} but greater than analog ground
- Less than analog ground but greater than V_{ref}-
- Less than V_{ref}-

The parameters for a comparator with a configurable reference are shown in Figure 32:

Figure 32. Parameters for the TwoBit SCBLOCK

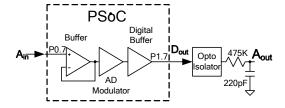
TwoBit	▼
User Module Parameters	Value
FCap	16
ClockPhase	Norm
ASign	Pos
ACap	31 💠
AMux	Port_2_2
BCap	0
AnalogBus	Disable
CompBus	ComparatorBus_3
AutoZero	On
CCap	0
ARefMux	AGND
FSW1	Off
FSW0	Off
BSW	Off
BMux	?
Power	High

For a comparator, the **FCap** is not connected so its value is not important. **ACap** must be a non-zero value. **BCap** and **CCap** are not used so their values are set to zero. The input is from a continuous input signal so there is no phase sampling problem and **ClockPhase** can remain set

to "Norm." The AMux is set to connect its input to "Port_2_2." ARefMux must be controlled by software but is set to a default value of "AGND." BMux is not needed so it is not set. ASign is set to "Pos." To be a comparator, FSW1 and FSW0 must be set to "Off," but AutoZero must be set "On." This disconnects the feedback capacitor. Setting CompBus to "ComparatorBus_3" allows the CPU access to the state of the comparator. AnalogBus is set to "Disable." BSW is not used and is set to "Off." Power is set "High." The column clock is set to 8 MHz. This sets the sample rate to 2 Msps. It is recommended that when used as a comparator, the SC Blocks should not be sampled faster than 2 Msps.

Example Code: In Example 2, the ARefMux reference is controlled using software. This requires substantial code in the main loop, shown in Appendix F.

Example 3: Isolated Analog Driver


It is sometimes necessary to get an analog signal across an isolated barrier. For a higher frequency signal with no DC component, this is easily done with capacitor or transformer coupling. For lower frequencies, the transformers and capacitors become increasing larger. The expense and size of these components for lower frequency and DC coupled signals makes this solution prohibitively expensive.

A cheaper solution requires using a SC Block as an analog-to-digital (AD) modulator. Figure 20 shows the architecture for an AD modulator that converts an input signal to a series of pulses where:

- A one represents V_{ref+}
- A zero represents V_{ref}-
- The average is equal to the input signal

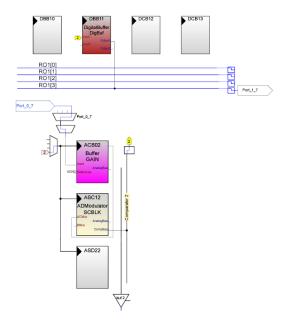
Figure 33 shows how it is assembled to pass the signal across an isolation barrier.

Figure 33. PSoC 1 Isolated Analog Driver

The input signal (A_{in}) is buffered and passed to the AD modulator where the signal is converted to a series of digital pulses. These pulses are brought out of the chip through the digital buffer. The pulses (D_{out}) pass through an opto-isolator. Now isolated, these pulses are averaged to reconstruct an analog signal (A_{out}).

The low-pass filter is set to 1.5 kHz to knock out the harmonics generated by the pulses.

The PSoC 1 implementation is shown in Figure 34.


Example Code: Example 3 does not require any main code, but does require a start call to start the PGA. The switched capacitor blocks do not require any calls to start.

The C code follows.

```
void main(void)
{
    //Start user modules
    DigBuf_Start();
    PGA_Start(PGA_HIGHPOWER);

    //SC block starts itself
    while(1);//Execution requires no further firmware interaction
}
```

Figure 34. PSoC 1 Analog Isolator Driver Block Placement

The input buffer is a PGA User Module. Its parameter selection is left as an exercise for the reader.

The ADModulator is an integrator with a comparator controlled input reference. Its parameters are shown in Figure 35.

Figure 35. Parameters for ADModulator SCBLOCK

Pa	rameters - A	DModulator 🗵
П	Name	ADModulator
	User Module	SCBLOCK
	Version	2.4
	FCap	32
	ClockPhase	Norm
	ASign	Pos
	ACap	16
	ACMux	ACB00
	BCap	0
	AnalogBus	Disable
	CompBus	ComparatorBus_0
	AutoZero	On
	ССар	0
	ARefMux	ComparatorBus_0
	FSW1	On
	FSW0	Off
	BMux	
	Power	High

In theory, the ratio of ACap/FCap is unimportant. Practical considerations of loop gain and comparator offset dictate that FCap must be set to '32' while ACap is set to '16'. BCap and CCap are not used so their values are set to zero. The continuous time blocks source the input signal, and thus ClockPhase can remain set to "Norm." The ACMux is set to connect its input to "ACB00." ARefMux is set to "ComparatorBus_0", allowing the output comparator to control the reference selection. BMux is not required so it need not be set. ASign must be set to "Pos." To be an integrator, FSW1 and AutoZero must be set "On" while FSW0 must be set "Off." The comparator needs to connect to the digital blocks so CompBus is set to "ComparatorBus_0". AnalogBus is set to "Disable." Power is set "High."

The DigitalBuffer is a User Module that allows the comparator bus to be output on P1[7]. This output is connected to an external opto-isolator followed by an RC filter.

Summary

Switched capacitor circuitry allows building of integrated circuitry with capacitors instead of expensive resistors. Changing a circuit's function can be as easy as changing the sequence in which its switches are closed. With eight SC Blocks offers good integration options. This makes PSoC 1 a true programmable system on a chip.

Related Application Notes

 AN2223: PSoC[®] 1 Approximating an Opamp with a Switched Capacitor Integrator

This application note explains how to use a switched capacitor block in integrator mode as a simple Opamp.

 AN2168: PSoC[®] 1 Understanding Switched Capacitor Filters

This application note presents the theory behind switched capactor filters – Low pass, High pass, Bandpass and notch filters and provides guidelines and examples for implementing these filters in PSoC®1 devices.

 AN64475: PSoC[®] 1 Optimizing Cascaded Switched Capacitor filters

AN64475 demonstrates how PSoC® 1 switched capacitor band pass filters (BPF2, BPF4) and elliptical

low pass filters (ELPF2 and ELPF4) can be combined to provide excellent near out-of-band rejection for communications applications.

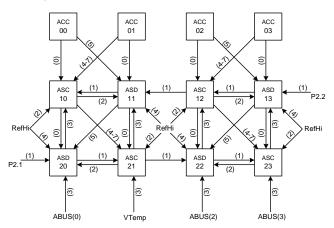
 AN2219: PSoC[®] 1 Selecting Analog Ground and Reference

This application note explains PSoC®1 internal analog ground and reference voltage structure.

- AN32200: PSoC® Clocks and Global Resources

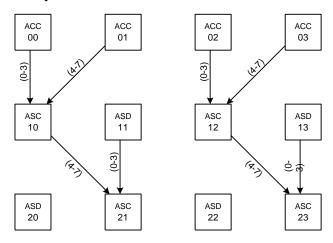
 This application note describes the clock resources of PSoC® 1.
- AN2108: PSoC[®] 1 Implementing Hysteresis Comparator

This application note explains multiple implementations of a hysteresis comparator.

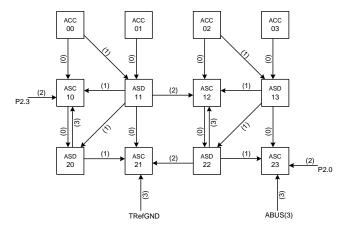

Appendix A: Control Registers for a Type C Switched Capacitor Block

	7	6	5	4	3	2	1	0
CR0	FCap 16, 32	ClockPhase Norm, Swap	ASign Pos, Neg	ACap [031]				
CR1	CR1 ACMux C: North => A: North, Elw2, REFHI, South; C: Diag => A: Diag, Diag, Diag, Diag			BCap [031]				
CR2	AnalogBus CompBus Disable, Enable Disable, Enable Off, On		CCap [031]					
CR3	ARefMux AGND, REFHI, RE	FLO, CMP	FSW1 Off, On	FSW0 Off, On	BMuxSCC North, E1W2, E2W	1, South	Power Off, Low, Med, High	n

Appendix B: Control Registers for a Type D Switched Capacitor Block



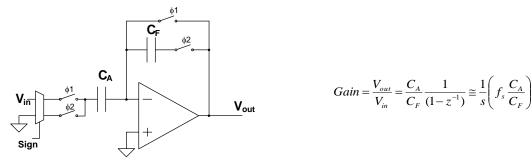
Appendix C: A Input Multiplexer Connections



Appendix D: C Input Multiplexer Connections

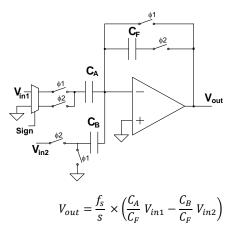
Appendix E: B Input Multiplexer Connections

Appendix F: C Code: 2-Bit ADC Example Project


```
// C main line - This code runs in a loop where the input
// input is continuously sampled and compared with the
// selectable references to determine one of four different
// levels. Dout1 and Dout0 are set accordingly.
// Inline assembly "nop" no-ops are used to stabilize the
// comparator readings.
//----
                     ______
void main()
   //TwoBit SCBLOCKcr3 register bits 6 and 7 are the reference bits
   //00b Analog ground is selected.
   //01b RefHi input selected. (This is usually the high reference.)
   //10b RefLo input selected. (This is usually the low reference.)
   while(1){
       TwoBit cr3 &= 0x3F;
                              //Initialize to analog ground reference
       //TEST Comparator Bus
       asm("nop");
       asm("nop");
       asm("nop");
       asm("nop");
       asm("nop");
       asm("nop");
       if(CMP CR0 && 0x80){
                             //If it is greater then select RefHi reference
           //Reference set to RefHi
           TwoBit cr3 &= 0x7F;
           TwoBit cr3 \mid = 0x40;
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           if(CMP CR0 && 0x80){ //Value is above RefHi D = 11
               PRT1DR \mid = 0 \times 03;
           else{
                               //Value is between AGND and RefHI D = 10
              PRT1DR &= 0xFE;
              PRT1DR \mid = 0 \times 02;
       }
       else{
                               //Else select RefLo reference
           //Reference set to RefLo
           TwoBit_cr3 &= 0xBF;
           TwoBit cr3 \mid = 0x80;
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           asm("nop");
           if(CMP CR0 && 0x80){ //Value is between AGND and RefLo D = 01
               PRT1DR \&= 0xFD;
```

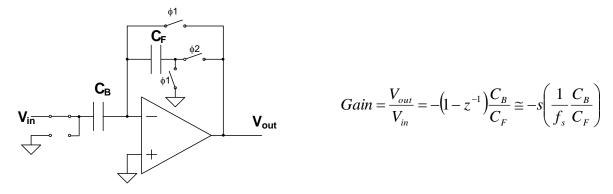

Appendix G: SC-Block Applications Cook Book

Integrator


Both Type C and Type D SC block can be used to build an integrator.

SCBlock				
Parameter	Type C / D	Value	Comments	
FCap	Both	16 / 32	Select FCap based on integrator time constant requirement	
ClockPhase	Both	Norm	Options – Norm, Swap	
ASign	Both	Pos	Options: Pos – Non-inverting configuration Neg – Inverting configuration	
ACap	Both	1 – 31	Select ACap (C _A) value based on required Integrator time constant	
ACMux	Type C only	source	Select the source for integrator input signal (input V _{in})	
ВСар	Both	0	Disconnect 'B' input	
AnalogBus	Both	AnalogOutB us_0	SC block output is routed to Analog output bus (which is then routed to pin)	
CompBus	Both	Disable	Not used	
Autozero	Both	On	Autozero (input offset voltage correction) enabled	
CCap	Type C only	0	Not used	
ARefMux	Both	AGND	SC block reference is analog ground. The integrator output ramps up or down depending on whether input voltage is greater than or less than AGND.	
FSW1	Both	On	FSW1 is enabled	
FSW0	Both	Off	FSW0 is disabled	
BMux	Both	х	Not used	
Power	Both	High	SC block is operated in high power mode	
AMux	Type D only	Source	Select the source for integrator input signal (input V _{in})	
BSW (SD)	Type D only	х	Not used	

Integrator: Dual input


This is slight variant of the application given above. This architecture uses two inputs V_{in1} and V_{in2} . In this implementation, outputs ramps high or low depending on the difference between two input voltages. This can be implemented in both Type C and D blocks.

SCBlock				
Parameter	Type C / D	Value	Comments	
FCap	Both	16 / 32	Select FCap based on integrator time constant requirement	
ClockPhase	Both	Norm	Options – Norm, Swap	
ASign	Both	Pos	Options: Pos – Non-inverting configuration Neg – Inverting configuration	
ACap	Both	1 – 31	Select ACap (C _A) value based on required Integrator time constant	
ACMux	Type C only	Source 1	Select the source for integrator input signal (V _{in1})	
ВСар	Both	1 – 31	Select BCap (C _B) value based on required Integrator time constant	
AnalogBus	Both	AnalogOutB us_0	SC block output is routed to Analog output bus (which is then routed to pin)	
CompBus	Both	Disable	Not used	
Autozero	Both	On	Autozero (input offset voltage correction) enabled	
ССар	Type C only	0	Not used	
ARefMux	Both	AGND	SC block reference is analog ground. The integrator output ramps up or down depending on whether input voltage is greater than or less than AGND respectively.	
FSW1	Both	On	FSW1 is enabled	
FSW0	Both	Off	FSW0 is disabled	
BMux	Both	Source 2	Select the source for integrator input signal (V _{in2})	
Power	Both	High	SC block is operated in high power mode	
AMux	Type D only	Source 1	Select the source for integrator input signal (V _{in1})	
BSW (SD)	Type D only	ON	Switching enabled for B input	

Differentiator

Note Differentiator can be implemented only in Type-D SC block because of presence of BSW switch.

	SCBlock				
Parameter	Value Comments				
FCap	16/32	Select FCap based on differentiator gain requirement			
ClockPhase	Norm	Options: Norm, Swap			
ASign	Pos	Options: Pos – Non-inverting configuration Neg – Inverting Configuration			
ACap	0	Disconnect 'A' input			
AMux	х	Not used			
ВСар	1 - 31	Select BCap (C _B) value based on differentiator gain requirement			
AnalogBus	AnalogOutBus_1	Output routed to analog output bus			
CompBus	Disable	Not used			
Autozero	On	Autozero enabled			
ССар	0	Not used			
ARefMux	AGND	Reference of SC-Block set to AGND			
FSW1	On	FSW1 is enabled			
FSW0	On	FSW0 is enabled			
BSW	Off	BSW switch is disabled			
BMux	source	Select V _{in}			
Power	High	High power mode			

Non-Inverting and Inverting Amplifier

Figure 36. Non-Inverting Amplifier

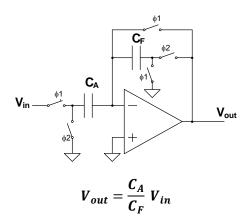
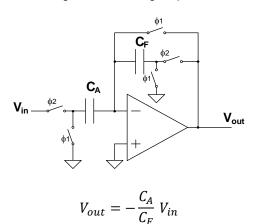
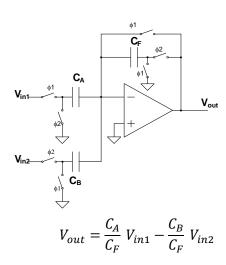



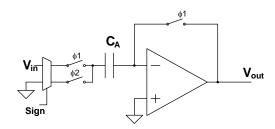
Figure 37. Inverting Amplifier



SCBlock				
Parameter	Type C / D	Value	Comments	
FCap	Both	16 / 32	Select FCap (C _F) based on amplifier gain requirement	
ClockPhase	Both	Norm	Options – Norm, Swap	
ASign	Both	Pos / Neg	Pos - Non-Inverting amplifier configuration Neg – Inverting amplifier configuration	
ACap	Both	1 – 31	Select ACap (C _A) value based on amplifier gain requirement	
ACMux	Type C only	Source 1	Select the source for amplifier input signal (V _{in})	
ВСар	Both	0	Disconnects B input	
AnalogBus	Both	AnalogOutB us_0	SC block output is routed to Analog output bus (which is then routed to pin)	
CompBus	Both	Disable	Not used	
Autozero	Both	On	Autozero (input offset voltage correction) enabled	
CCap	Type C only	0	Not used	
ARefMux	Both	AGND	SC block reference is analog ground.	

SCBlock				
Parameter	Type C / D	Value	Comments	
FSW1	Both	On	FSW1 is enabled	
FSW0	Both	On	FSW0 is enabled	
BMux	Both	Х	Not used	
Power	Both	High	High power mode	
AMux	Type D only	Source 1	Select the source for amplifier input signal (V _{in})	
BSW (SD)	Type D only	Х	Not used	

Differential Amplifier



SCBlock						
Parameter	Type C / D	Value	Comments			
FCap	Both	16 / 32	Select FCap (C _F) based on amplifier gain requirement			
ClockPhase	Both	Norm	Options – Norm, Swap			
ASign	Both	Pos	Non-Inverting configuration for input V _{in1}			
ACap	Both	1 – 31	Select ACap (C _A) value based on amplifier gain requirement			
ACMux	Type C only	Source 1	Select the source for amplifier input signal (V _{in1})			
BCap	Both	1 – 31	Select BCap (C _B) value based on amplifier gain requirement			
AnalogBus	Both	AnalogOutB us_0	SC block output is routed to Analog output bus (which is then routed to pin)			
CompBus	Both	Disable	Not used			
Autozero	Both	On	Autozero (input offset voltage correction) enabled			
CCap	Type C only	0	Not used			
ARefMux	Both	AGND	SC block reference is analog ground			
FSW1	Both	On	FSW1 is enabled			
FSW0	Both	On	FSW0 is enabled			
BMux	Both	Source 2	Select the source for amplifier input signal (V _{in2})			

SCBlock					
Parameter	Type C / D	Value	Comments		
Power	Both	High	High power mode		
AMux	Type D only	Source 1	Select the source for amplifier input signal (V _{in1})		
BSW (SD)	Type D only	On	Enable switching for input B		

Comparator

$$V_{out} = HIGH \ when \ V_{in} > AGND$$

$$V_{out} = LOW \ when \ V_{in} < AGND$$

	SCBlock		
Parameter	Type C / D	Value	Comments
FCap	Both	Х	Not used
ClockPhase	Both	Norm	Φ1 – charge acquisition Φ2 – charge transfer
ASign	Both	Pos	Non-Inverting configuration
ACap	Both	>0	Select value greater than 0
ACMux	Type C only	source	Select the source for integrator input signal (input V _{in})
ВСар	Both	0	Disconnects 'B' input
AnalogBus	Both	Disable	Not used
CompBus	Both	Enable	Routes the comparator output to bus
Autozero	Both	On	Autozero enabled, but no effect on the offset correction
CCap	Type C only	0	Not used
ARefMux	Both	AGND	SC block reference is analog ground.
FSW1	Both	Off	FSW1 is disabled
FSW0	Both	Off	FSW0 is disabled
BMux	Both	х	Not used
Power	Both	High	High power mode
AMux	Type D only	Source	Select the source for comparator input signal (input V _{in})
BSW (SD)	Type D only	х	Not used

Document History

Document Title: AN2041 - Understanding PSoC® 1 Switched Capacitor Analog Blocks

Document Number: 001-40440

Revision	ECN	Orig. of Change	Submissio n Date	Description of Change
**	1532004	DWV	10/02/2007	New application note
*A	1793485	DWV	12/03/2007	Added Appendix E: Input Multiplexer Connections
*B	2344389	CFW	04/11/2008	Appendix A and Appendix B - figures transposed Corrected a couple of typos
*C	3210347	MAXK	03/30/2011	Updated projects to PD 5.1 SP1 Added Isolated Analog Driver project (was missing from previous versions) General formatting updates Added document history table Updated figures Updated Title and Abstract
*D	3244236	MAXK	04/29/2011	Corrected symbol fonts in various figures.
*E	3671850	RJVB	07/10/2012	Updated template. Added detailed explanation for inverting amplifier, non-inverting amplifier, comparator, differentiator and integrator. Updated figures. Added Appendix G: SC-Block Applications Cook Book.
*F	4393365	RJVB	05/29/2014	Sunset Review.
*G	5705924	AESATMP9	04/21/2017	Updated logo and copyright.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

USB Controllers

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

cypress.com/usb

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.