

www.cypress.com Document No. 001-40409 Rev. *F 1

AN2034

PSoC® 1 – Reading Matrix and Common Bus Keypads
 Author: Dave Van Ess, Rajiv Badiger

 Associated Project: Yes

 Associated Part Family: CY8C27xxx, CY8C29xxx,
CY8C21x23, CY8C21x34,CY8C21x45, CY8C22x45,

CY8C24x23, CY8C24x94, CY8C28xxx

 Software Version: PSoC
®
 Designer™ 5.4

 Related Application Notes: None

AN2034 shows how to use PSoC
®
 1 to read mechanical keypads. It covers matrix and common bus keypads, in both polled

and interrupt modes.

Contents

Introduction ... 1
Matrix Keypad ... 2

Algorithm .. 2
C Function .. 2
Decoding a Key Press .. 3
Debounce Mechanism .. 3
Making the Scanning Process Polled or
Interrupt Driven ... 4
Example Project ... 4

Common Bus Keypad ... 5
PSoC 1 Implementation.. 5
SAR ADC Input Voltages.. 6
Determining Resistor Values .. 7
Interrupt Driven Keypad Reading 7
Debouncing .. 7
Example Project ... 7

Summary ... 8
Appendix A: ‘C’ Code for Matrix Keypad Scanning
Using Interrupt Method .. 9
Appendix B: ‘C’ Code for Common Bus Keypad
Using Polling Method .. 14
Document History .. 17

Introduction

Depending on how individual switches are connected,
mechanical keypads are commonly available in two
forms – matrix and common bus.

A typical matrix keypad – the telephone keypad - is shown
in Figure 1. In this keypad, each switch connects a unique
pair of row and column wires. The number of I/Os (pins)
required equals ROWS + COLUMNS. The number of
switches supported is ROWS x COLUMNS.

Figure 1. Matrix Keypad

In a common bus keypad, one terminal of each switch is
connected to a common bus wire as shown in Figure 2.

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 2

Figure 2. Common Bus Keypad

The number of I/Os required for a common bus keypad
appears to equal the number of switches plus 1, however,
a method exists that uses only one pin to read the
common bus keypads.

This application note shows how to use PSoC 1 to read
both the matrix and common bus keypads. The associated
projects are created using the PSoC Designer software
tool. If you are new to the PSoC 1 device or the
PSoC Designer development tool, it is recommended that
you review the online tutorials.

Matrix Keypad

This section focuses on a typical 4x4 matrix keypad, but
you can use the same technique with a matrix keypad of
any dimensions. A matrix keypad can be connected to the
PSoC 1 without using any external components as shown
in Figure 3.

Figure 3. Matrix Keypad Interface to PSoC 1

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

0

1

2

3

4

5

6

7

CPU

Port Data

registerPSoC 1

4 x 4 Matrix Keypad

R0

R1

R2

R3

C0 C1 C2 C3

PSoC 1 pins are highly flexible and can be configured in
many different modes, such as strong drive, resistive
pull-up, resistive pull-down, open drain drive high/low, and
high impedance. To avoid a floating input when no key is
pressed, use the resistive pull-down mode for all row and
column pins.

Algorithm

The standard algorithm for reading a matrix keypad is to
drive each row high, one at a time, and sample the column
lines. This technique enables detection of multiple key
presses. However, scanning the entire keypad takes
significant CPU time. If only a single key press needs to
be detected, you can use the following algorithm instead:

 Drive all rows high simultaneously and read all
columns

 Drive all columns high simultaneously and read all
rows

 Combine the above data to determine which switch is
closed

To understand how the algorithm works, consider the
following example, where switch [1, 2] (row 1, column 2) is
pressed. The algorithm reads the keypad in six steps.

1. Output b00001111 to the port. This drives all the rows
high, leaving the columns passively pulled down.

2. Read the port. The driven pins 0 through 3 remain
high, and because the switch [1, 2] is closed pin 6 is
now high. The value read is b01001111.

3. Output b11110000 to the port. This drives all the
columns high, leaving the rows passively pulled down.

4. Read the port. The driven pins 4 through 7 remain
high, and because the switch [1, 2] is closed pin 1 is
now high. The value read is b11110010.

5. Do a logical AND of the results of steps 2 and 4 to get
the answer b01000010.

6. The upper 4 bits can be decoded as column 2 and the
lower 4 bits as row 1.

C Function

The above algorithm can be implemented as a function
keypad_scan(). It reads a 4x4 keypad connected to port 0
and returns the ANDed result, as shown in Code 1:

Code 1. Keypad Scan Function

/*

This is the port mapping for the keypad

ports.

p0.0 ---1----2----3----A

 | | | |

p0.1 ---4----5----6----B

 | | | |

p0.2 ---7----8----9----C

 | | | |

p0.3 ---*----0----#----D

 | | | |

 p0.4 p0.5 p0.6 p0.7

*/

unsigned char keypad_scan(void)

{

 unsigned char rows;

 unsigned char cols;

 /* Drive rows, read columns */

 PRT0DR = 0x0F;

 cols = PRT0DR;

 /* Drive columns, read rows*/

 PRT0DR = 0xF0;

 rows = PRT0DR;

http://www.cypress.com/?id=2522
http://www.cypress.com/?id=2522&rtID=134&source=designerStartPage

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 3

 /* combine results */

 return (rows & cols);

}

Decoding a Key Press

The output of the keypad_scan() function is a single byte
that shows the row or column status of the keypad. It is
decoded as follows:

 No bits are set if no key is pressed

 A single bit in the upper nibble and a single bit in the
lower nibble are set for a single key press

 Any other condition is a multiple key closure and is
defined as not valid

You will usually need to translate the row or column bits
into a more useful form, for example an ASCII character
corresponding to the key press. The most speed efficient
way to do this is to use a lookup table (LUT) array. For a
size efficient implementation, use switch case statements.

In this project, the LUT method is used: the byte output of
the keypad_scan() function is used as an index to a
256-byte array. In the 4x4 keypad case, 16 elements in
the array contain codes corresponding to valid key
presses, and the remaining elements contain codes for
"no key press" or "undefined". See Appendix A: ‘C’ Code
for Matrix Keypad Scanning Using Interrupt Method for
details.

Debounce Mechanism

When any key is pressed or released, due to mechanical
structure, the contacts may make or break connection
multiple times. Due to this, an oscillating waveform can be
obtained at the row or column line as shown in Figure 4:

Figure 4. Key Bounce

Key is pressed Key is released

Stable state
time

Debounce

delay

A B C D

Debounce

delay

If the CPU reads the ports at a high rate, the bounce
oscillations may be wrongly detected as multiple key
presses. One way to handle this problem is to implement a
delay from when the first edge is detected (A or C) to
when the ports are read (B or D). This delay ensures that
the signal at the port pins is stable during the CPU read
operation. A delay of 10 ms is usually sufficient for most
types of switches.

A delay can be implemented using a firmware or a
hardware timer. The disadvantage of a firmware delay is
that it requires the CPU. In an application where the CPU
must do many tasks, it is better to generate the delay
using a hardware timer. PSoC 1’s configurable digital
blocks make it possible to create such a timer; it is
available in the form of a PSoC Designer user module
named Timer.

To add a debounce delay using a hardware timer, do the
following:

1. Place a Timer user module in the design, as shown in
Figure 5:

Figure 5. Timer User Module

2. Configure the timer clock input and period to generate
the required delay. As an example, a 16-bit timer is
configured with a 32 kHz internal low-speed oscillator
(ILO) input clock, with a period of 320 counts, to
generate a delay of 10 ms.

You can also use an 8-bit timer, which consumes one
less digital block, with a lower input clock frequency to
generate the same delay. The input clock to a timer
can be derived using internal clock dividers VC1, VC2,
and VC3.

3. The Timer user module can generate an interrupt, and
you can call the keypad scanning function from the
Timer interrupt service routine (ISR). This will cause
the CPU to read the ports after a debounce delay.

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 4

Making the Scanning Process Polled or
Interrupt Driven

The scanning algorithm in the keypad_scan() function can
be executed once the key press is detected. There are two
ways to call the function and detect key activity - polling
and interrupt.

With the polling method, the CPU periodically scans the
keypad to check if any key is pressed. The CPU can either
read the keypad in a while loop or can be interrupted at
regular intervals using a timer. The scan period must be
greater than the debounce delay and less than the
minimum key press time. The problem with this method is
that most of the time the keys are not pressed, and doing
a scan during those times is a waste of CPU cycles. A
better way is to do a scan only when a key press event is
detected.

With the interrupt method, the CPU can be interrupted on
a key press. The ISR then starts the timer for a debounce
delay and a keypad scan is done at the timer interrupt.

To configure PSoC for an interrupt-based method, do the
following:

 Configure the four lower (row) pins (see Figure 3) as
inputs, with resistive pull-down

 Drive the four upper (column) pins high

 Write a GPIO interrupt handler that enables the timer,
for a debounce delay

 Enable the GPIO interrupt

The row pins stay low when no key is pressed. On a key
press, the rising edge signal is produced on one of the row
lines which trigger an interrupt. The GPIO ISR enables the
timer for a debounce delay. After the delay, the Timer ISR
does the scan. See Figure 6 for more details.

Figure 6. Interrupt and Debounce Action

Key is pressed Key is released

Stable state
time

Debounce

delay

A B C D

Debounce

delay

A Key is pressed. Rising edge signal interrupts CPU. CPU

starts the timer for debounce delay

B Debounce delay elapsed. Timer triggers interrupt to the

CPU to read the ports to identify the key pressed.

C Key is released. Rising edge signal interrupts CPU once

again. CPU starts the timer for debounce delay

D Debounce delay elapsed. Timer triggers interrupt to the

CPU to read port once again. As key is released, no key

press will be detected.

* Note that switch may not bounce during switch release and C and

D events may not occur.

The interrupt method also helps to reduce the power
consumption by allowing the device to be put in sleep
mode. When any key is pressed, the resulting interrupt
can wake the device.

Note that the PSoC 1 interrupt system combines the
interrupt signals from all of the pins in the device to
generate a single interrupt. Thus, any key press will trigger
a common interrupt. However, any other external event
will also trigger the same interrupt. To handle this you may
need to have the ISR read other ports to determine the
cause of the interrupt.

Example Project

The PSoC Designer project “MatrixKeypad”, based on
PSoC 1 CY8C27443, is provided. The project uses the
interrupt method and is configured for the external
connections shown in

Figure 7. In the project, the closed key is displayed on a
Hitachi-compatible 2x16 character LCD. The number of
times any key is pressed is also displayed to evaluate the
debounce logic. If the debounce logic is working correctly,
you will notice that the count increments only once on
each key press. See Appendix A: ‘C’ Code for Matrix
Keypad Scanning Using Interrupt Method for the
application firmware.

http://www.cypress.com/?rID=3324

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 5

Figure 7. External Connections for Testing "MatrixKeypad"
Project

1 2

4 5

3 A

6 B

7 8

* 0

9 C

D

PSoC 1

Hitachi compatible

2x16 character

LCD module

Character LCD

P2[0]

P2[1]

P2[2]

P2[3]

P2[4]

P2[5]

P2[6]

Vdd

GND

P0[0]

P0[1]

P0[2]

P0[3]

P0[4]

P0[5]

P0[6]

P0[7]

Contrast

control

voltage

D0

D1

D2

D3

EN

RS

R/W

+5V

Common Bus Keypad

This section shows how to read an 8-key common bus
keypad using only one PSoC pin. The logic behind the
single pin solution is to generate a distinct analog voltage
on a key press and to decode it using the ADC. The block
diagram of the solution is given in Figure 8.

A switch-resistor network forms a voltage divider
connected between the power supply (VDD) and the
ground (VSS). The PSoC 1 ADC is configured to read the
input voltage from VDD to VSS. The resistor values are
chosen so that when a particular switch is pressed, the
input voltage to the ADC is within a certain range. A
simple algorithm can be created that compares the ADC
result with the predetermined codes to identify the key
pressed.

When multiple keys are pressed, the one which is closer
to the pin takes priority; the resistor network beyond the
closed key is bypassed. In Figure 8, S0 has the highest
priority and S7 has the lowest priority.

Figure 8. Block Diagram - Common Bus Keypad Interface to PSoC

S3 S4

R4

S5

R5

S6

R6

S7

R7

S0 S1

R1

S2

R2 R3

R0

ADC

PSoC 1

VDD

VSS

Keypad

PSoC 1 Implementation

PSoC Designer provides different types of ADCs that are
implemented using generic analog blocks in PSoC 1.

The resolution of the ADC is an important parameter for
this application as it determines the number of switches
that can be interfaced. Ideally, with an N-bit ADC 2

N

switches can be read. But due to the tolerances of the
resistors, it is significantly lower.

To read an 8-switch keypad, a 6-bit SAR ADC is sufficient.
The SAR ADC is available in the form of a user module in
PSoC Designer. This user module has the following
features:

 Consumes one PSoC 1 switched capacitor (SC)
analog block

 Produces a 1 byte 2’s complement output, ranging
from -32 to +31

Table 1. SAR ADC Input to Output Mapping

Input Voltage (VIN) Digital Output Comments

AGND (analog ground) 00h RefMux setting in
Global resources
tab of PSoC
Designer decides
VH and VL and
AGND.

AGND < VIN < VH 00h to 1Fh

VL < VIN < AGND E0 to FFh

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 6

The input impedance of the SAR ADC is in the kΩ range; it

depends on the frequency of the clock to the SC block. To
avoid errors due to low input impedance, place a
programmable gain amplifier (PGA) module between the
SAR ADC and the external network. The PGA uses a
PSoC 1 continuous time (CT) analog block which has high
input impedance.

Using PSoC Designer, configure the PSoC 1 as follows:

 Place the PGA and SAR ADC user modules on the
design

 Route the PGA input to a pin connected to the
external switch-resistor network, as shown in Figure 9.

Figure 9. User Modules Placement and Routing

 Route the PGA output to the SAR ADC input

 Set the PGA gain to 1 in the PGA module properties

 Set the analog column clock to VC2, with the
frequency between 128 kHz and 1.33 MHz in the
global resource settings. This clock controls the
switching frequency of the SC block.

 In the global resources tab, set the VC2 frequency to
1 MHz by setting the VC1 divider to 12 and the VC2
divider to 2, as shown in Figure 10. Note that the
system clock (SysClk) of the PSoC 1 device is
24 MHz.

 Also in the global resources tab, set the RefMux
option to (VDD/2) +/- (VDD/2). This sets the SAR ADC
measurement range as 0 to VDD, and the AGND
voltage to VDD/2.

Figure 10. Global Resource Settings

SAR ADC Input Voltages

When mapped uniformly for a VDD of 5.0 V, each switch
produces a nominal increase of 5.0 V / 8 = 0.625 V, or a
12.5 percent change in the ADC input voltage. Table 2
provides the input voltage range for the ADC for each
switch. The midpoint of each range is the theoretical ADC
input voltage neglecting all error sources such as resistor
tolerances, ADC error, noise, and so on.

Table 2. Mapping Switch Press to the Voltage Generated

Switch Voltage Range at
Input

Byte
Range

Resistor
Value

S0 0 V – 0.3125 V [E0 – E4] -

S1 0.3125 V – 0.9375 V [E4 – EC] R1 = 1.5 kΩ

S2 0.9375 V – 1.5625 V [EC – F4] R2 = 1.8 kΩ

S3 1.5625 V – 2.1875 V [F4 – FC] R3 = 2.7 kΩ

S4 2.1875 V – 2.8125 V [FC – 04] R4 = 4.3 kΩ

S5 2.8125 V – 3.4375 V [04 – 0C] R5 = 6.8 kΩ

S6 3.4375 V – 4.0625 V [0C – 14] R6 = 13 kΩ

S7 4.0625 V – 4.6875 V [14 – 1A] R7 = 33 kΩ

No
Switch

5.0 V 1F -

If none of the switches are closed, the input to the ADC is
equal to VDD. When S0 is closed, current flows from VDD to
VSS through R0 and S0. A value of 10 kΩ was chosen for
R0 to limit the maximum supply current to 0.5 mA. The
remaining resistors are calculated based on VDD = 5 V,
R0 = 10 kΩ, and a nominal step size of 0.625 V for each
switch. The following section explains how to select the
resistors.

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 7

Determining Resistor Values

Basic resistor voltage divider analysis can be used to
determine the resistor values. Consider the case when
switch S1 is pressed (see Figure 8)

Solving for R1 and inserting nominal values for VDD and
R0 gives

The closest ±5% standard value resistor is 1.5 kΩ. With
R1 = 1.5 kΩ and R0 = 10 kΩ, the typical ADC input
voltage with S1 closed is 0.652 V. This error is acceptable
since it falls within the allowed voltage range for SW1, that
is, 0.3125 V to 0.9375 V. Moreover, with the worst case
resistor tolerances (R0 = 10 kΩ – 5% and R1 = 1.5 kΩ +

5%, or R0 = 10 kΩ + 5% and R1 = 1.5 kΩ – 5%), the input

voltage deviates by just 0.059 V from the ideal value.

The same type of analysis can be used to determine the
remaining resistor values, which are provided in Table 2.

Interrupt Driven Keypad Reading

As seen in the section Making the Scanning Process
Polled or Interrupt Driven, it is better to read the ADC on
an interrupt when any key is pressed rather than reading
the ADC continuously. This saves CPU bandwidth as well
as device power consumption if sleep mode is used. To
make the process interrupt driven, one more pin must be
used for generating an interrupt signal. See Figure 11 for
external connections.

Figure 11. Interrupt Driven Scanning Process

Sn

Rn

S0 S1

R1

S2

R2

R0

ADC

PSoC1

Vdd

Vss

Keypad

R

Interrupt signal

The interrupt pin is pulled low using a resistor (R). When
any key is pressed, the rising edge signal is developed
across R causing an interrupt to the device. The value of
the resistor R must be high enough so that the voltage
developed across it, on any key press, is greater than the
VIH specification for a GPIO (minimum 2.1 V).

After an interrupt is generated, the interrupt pin is
grounded by writing a ‘0’ to the port data register. This
causes the resistor R to be bypassed while reading the
voltage using the ADC. Note that the lower end of the
switches is not exactly 0 V - it is lifted above the ground by
a few millivolts depending on the sink current value. Using
the higher value of resistor R0 limits the sink current and
thus the voltage lift. For this application, use R0 of 10 kΩ

or higher.

Debouncing

It is possible for a switch press or release to occur during
an ADC conversion, which would result in an erroneous
output. To avoid these errors, you can implement a
debounce mechanism similar to that for the matrix keypad:

 Configure the timer user module to generate a delay
of at least 10 ms

 If an interrupt method is used, start the timer when the
GPIO interrupt is detected. For the polling method,
start the timer when the ADC reads a value different
from the "no keys pressed" value.

 At the timer interrupt, read the ADC. If the ADC
reading is same as the previous reading, a key can be
assumed to be pressed and stable.

Example Project

The project "CommonBusKeypad", based on the
CY8C27443 PSoC 1 device, uses the polling method. The
complete code is also provided in Appendix B: ‘C’ Code
for Common Bus Keypad Using Polling Method. The
project can be tested with the external connections shown
in Figure 12. In the project, key presses are displayed on a
Hitachi-compatible 2x16 character LCD.

http://www.cypress.com/?rID=3324

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 8

Figure 12. External Connections for Testing “CommonBusKeypad” Project

PSoC1

Hitachi compatible

2x16 character

LCD module

Character LCD

P2[0]

P2[1]

P2[2]

P2[3]

P2[4]

P2[5]

P2[6]

Vdd

GND

P0[2]

Contrast

control

voltage

D0

D1

D2

D3

EN

RS

R/W

+5V

S3 S4

R4

S5

R5

S6

R6

S7

R7

S0 S1

R1

S2

R2 R3

R

Keypad

Vdd=+5V

Use the resistor values R and R1 to R7 as shown in Table 2.

Summary

This application note shows easy methods to read matrix
type and a common bus type keypads using PSoC 1. It
also explains the polling and the interrupt mechanisms for
keypad scanning as well as debounce logic.

About the Author

Name: Rajiv Badiger

Title: Applications Engineer

Background: BE Electronics and Telecommunication

Contact: rjvb@cypress.com

mailto:rjvb@cypress.com

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 9

Appendix A: ‘C’ Code for Matrix Keypad Scanning Using Interrupt Method

#include <m8c.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/*****************Variables***************************/

/* LUT for storing keys. The size of the LUT should be equal to 2 ^ (NUMBER OF ROWS +

COLUMNS). Row and column information from the scanning function is used as index to this LUT

for finding the key. Value 0x20 indicates invalid key. */

static const keypad_LUT[256] =

{/* 0 1 2 3 4 5 6 7

 8 9 A B C D E F */

/*0*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*1*/0x20, '1', '4', 0x20, '7', 0x20, 0x20, 0x20,

 '*', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*2*/0x20, '2', '5', 0x20, '8', 0x20, 0x20, 0x20,

 '0', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*3*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*4*/0x20, '3', '6', 0x20, '9', 0x20, 0x20, 0x20,

 '#', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*5*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*6*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*7*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*8*/0x20, 'A', 'B', 0x20, 'C', 0x20, 0x20, 0x20,

 'D', 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*9*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*A*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*B*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*C*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*D*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*E*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

/*F*/0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20

};

/* These two variables are used to store the row number and the column number */

BYTE rows,cols;

/* This variable holds the count for number of key press */

BYTE InterruptCounter = 0;

/* This variable keeps the scanning process disabled till previously decoded key is read */

unsigned char processing = 0;

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 10

/* These variable stores the key number */

unsigned char key = 0x20;

/***/

/****************Functions****************************/

/* Handles keypad function- Checks the key pressed and debounces key */

void KeyPadHandler(void);

/* Keypad scanning routine */

unsigned char keypad_scan(void);

/* Initializes user modules used in the design */

void InitModules(void);

/* Interrupt handler for GPIO interrupt */

void GPIOInterrupt(void);

/**/

void main(void)

{

 /* Initialize variables and user modules */

 InitModules();

 /* Enable Global Interrupt */

 M8C_EnableGInt;

 while(1)

 {

 /* Check the Keypad status and update LCD on valid key press */

 if(key != 0x20)

 {

 /* Valid key- display the result on LCD */

 /* Set LCD cursor position */

 LCD_1_Position(0, 7);

 /* Display pressed keypad button */

 LCD_1_WriteData(key);

 /* Set LCD cursor position */

 LCD_1_Position(1, 12);

 /* Display nuymber of times key is pressed so far */

 LCD_1_PrHexByte(InterruptCounter);

 /* Reset key to default value */

 key = 0x20;

 /* Enable keypad scanning process */

 processing = 0;

 }

 /* Do other tasks */

 }

}

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 11

/* This function initializes all the user modules used in the design */

void InitModules(void)

{

 /* Initialize LCD */

 LCD_1_Start();

 LCD_1_Position(0,0);

 LCD_1_PrCString("Switch:");

 LCD_1_Position(1,0);

 LCD_1_PrCString("Interrupts:");

 /* Initilize timer- 10ms delay */

 Timer16_1_WritePeriod(320);

 Timer16_1_EnableInt();

 /* Enable GPIO interrupt */

 INT_MSK0 |= 0x20;

 /* Write 1's at column lines */

 PRT0DR |= 0xF0;

}

/*

This is the port mapping for the keypad ports.

 p0.4 p0.5 p0.6 p0.7

 | | | |

p0.0 ---1----2----3----A

 | | | |

p0.1 ---4----5----6----B

 | | | |

p0.2 ---7----8----9----C

 | | | |

p0.3 ---*----0----#----D

*/

/* This function scan the keypad and identifies the key pressed */

unsigned char keypad_scan(void)

{

 BYTE key_result;

 /* Drive rows */

 PRT0DR = 0x0F;

 /* Read columns */

 cols = PRT0DR;

 /* Drive columns */

 PRT0DR = 0xF0;

 /* Read rows */

 rows = PRT0DR;

 /* Combine results */

 key_result = rows & cols;

 /* Get the key number from LUT */

 return(keypad_LUT[key_result]);

}

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 12

/* This is the handler for GPIO interrupt. Debounce timer is started on GPIO interrupt */

#pragma interrupt_handler GPIOInterrupt

void GPIOInterrupt(void)

{

/* Check if previous key is read. If yes, start the timer for debounce delay */

 if(processing == 0)

 {

 /* Avoid enabling timer next time when previous key is not read */

 processing = 1;

 /* Disable GPIO interrupt */

 INT_MSK0 &=~ 0x20;

 /* Start Timer */

 Timer16_1_Start();

 }

}

/* This is the handler for the timer interrupt. This ISR calls the scanning algorithm */

void TimerInterrupt(void)

{

 /* Stop the timer */

 Timer16_1_Stop();

 /* Get the key */

 key = keypad_scan();

 /* Check for valid key press */

 if(key != 0x20)

 {

 /***/

 /* Add code here to take immediate action within the ISR */

 /**/

 /* Increment interrupt counter */

 InterruptCounter ++;

 }

 else

 {

 /* Enable starting the timer on GPIO interrupt */

 processing = 0;

 }

 /* Clear GPIO posted interrupt */

 INT_CLR0 &=~ 0x20;

 /* Enable GPIO interrupt */

 INT_MSK0 |= 0x20;

}

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 13

Add LJMP instruction in PSoC_GPIO_ISR function in PSoCGPIOINT.asm file as shown in the following code.

PSoC_GPIO_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)

 ;---

 ; Insert your custom code below this banner

 ;---

 ljmp _GPIOInterrupt

 ;---

 ; Insert your custom code above this banner

 ;---

 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

Add LCALL instruction in Timer16_1_ISR function in Timer16_1NT.asm file as shown below.

_Timer16_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)

 ;---

 ; Insert your custom assembly code below this banner

 ;---

 ; NOTE: interrupt service routines must preserve

 ; the values of the A and X CPU registers.

 ;---

 ; Insert your custom assembly code above this banner

 ;---

 ;---

 ; Insert a lcall to a C function below this banner

 ; and un-comment the lines between these banners

 ;---

 PRESERVE_CPU_CONTEXT

 lcall _TimerInterrupt

 RESTORE_CPU_CONTEXT

 ;---

 ; Insert a lcall to a C function above this banner

 ; and un-comment the lines between these banners

 ;---

 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 14

Appendix B: ‘C’ Code for Common Bus Keypad Using Polling Method

#include <m8c.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/* Timer State */

#define ON 0x1

#define OFF 0x0

/* Invalid Key identifier */

#define INVALID_KEY 0x20

/* Functions */

char Get_ADC_Data(void);

void GetKeyNumber(void);

/* Variables */

BYTE Key = INVALID_KEY, TimerState = OFF;

char ADC_Data,New_ADC_Data;

void main(void)

{

 /* Enable Timer Interrupt */

 Timer16_1_EnableInt();

 /* Enable Global Interrupt */

 M8C_EnableGInt ;

 /* Start PGA operation in high power mode */

 PGA_1_Start(PGA_1_HIGHPOWER);

 /* Start ADC operation */

 SAR6_1_Start(SAR6_1_HIGHPOWER);

 /* Start LCD and Initialize Display */

 LCD_1_Start();

 LCD_1_Position(0,0);

 LCD_1_PrCString("Switch:");

 while(1)

 {

 /* If timer is OFF (debounce is not in process), check the "key" */

 if(TimerState == OFF)

 {

 /* If "Key" contains valid value, then display on LCD */

 if(Key != INVALID_KEY)

 {

 LCD_1_Position(0,7);

 LCD_1_PrHexByte(Key);

 /* Invalidate Key */

 Key = INVALID_KEY;

 }

 else /* No Key Pressed */

 {

 LCD_1_Position(0,7);

 LCD_1_PrCString("--");

 }

 /* Get ADC data */

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 15

 ADC_Data = SAR6_1_cGetSample();

 /* Check if any key is pressed */

 if(ADC_Data < 0x1C || ADC_Data > 0xE0)

 {

 /* Start Timer */

 Timer16_1_Start();

 TimerState = ON;

 }

 }

 /* Do other tasks */

 }

}

/* Interrupt Handler for Timer Interrupt */

void TimerInt(void)

{

 BYTE Delta = 0;

 /* Take a second sample, compare with the first to test

 data validity in the presence of possible switch bounce */

 New_ADC_Data = SAR6_1_cGetSample();

 /* Compare the ADC values and get the difference */

 if(ADC_Data > New_ADC_Data)

 {

 Delta = ADC_Data - New_ADC_Data;

 }

 else

 Delta = New_ADC_Data - ADC_Data;

 /* If difference in readings is less than 2, then decode the key */

 if(Delta < 2)

 {

 /* If closely matched, decode the key */

 GetKeyNumber();

 }

 /* Stop the timer */

 Timer16_1_Stop();

 TimerState = OFF;

}

/* This function decodes the key. See Table 2 of application note for ADC result to Key

mapping information */

void GetKeyNumber(void)

{

 if((New_ADC_Data > 0xE0) && (New_ADC_Data <= 0xE4))

 Key = 0;

 else if((New_ADC_Data > 0xE4) && (New_ADC_Data <= 0xEC))

 Key = 1;

 else if((New_ADC_Data > 0xEC) && (New_ADC_Data <= 0xF4))

 Key = 2;

 else if((New_ADC_Data > 0xF4) && (New_ADC_Data <= 0xFC))

 Key = 3;

 else if((New_ADC_Data > 0xFC) && (New_ADC_Data <= 0xFF))

 Key = 4;

 else if((New_ADC_Data >= 0x0) && (New_ADC_Data <= 0x04))

 Key = 4;

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 16

 else if((New_ADC_Data > 0x04) && (New_ADC_Data <= 0x0C))

 Key = 5;

 else if((New_ADC_Data > 0x0C) && (New_ADC_Data <= 0x14))

 Key = 6;

 else if((New_ADC_Data > 0x14) && (New_ADC_Data <= 0x1A))

 Key = 7;

 else

 Key = INVALID_KEY;

}

Add LCALL instruction in Timer16_1_ISR function in Timer16_1NT.asm file as shown in the following code.

_Timer16_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)

 ;---

 ; Insert your custom assembly code below this banner

 ;---

 ; NOTE: interrupt service routines must preserve

 ; the values of the A and X CPU registers.

 ;---

 ; Insert your custom assembly code above this banner

 ;---

 ;---

 ; Insert a lcall to a C function below this banner

 ; and un-comment the lines between these banners

 ;---

 PRESERVE_CPU_CONTEXT

 lcall _TimerInt

 RESTORE_CPU_CONTEXT

 ;---

 ; Insert a lcall to a C function above this banner

 ; and un-comment the lines between these banners

 ;---

 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 17

Document History

Document Title: AN2034 – PSoC
®
 1 - Reading Matrix and Common Bus Keypads

Document Number: 001-40409

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1532004 OGNE 10/02/2007 New publication of existing application note.

*A 2640952 JVY 01/20/2009 Updated content.

Added part numbers CY8C20x34, CY8C21x23, CY8C21x34, CY8C23x33,
CY8C24x23A, CY8C24x94, CY8C27x43, and CY8C29x66.

*B 3312765 OWEN 07/19/2011 Added section about LED display, converted code to C from assembly, updated
associated project similarly.

*C 3416292 RJVB 10/24/2011 Added common bus keypad interface details, introduced debounce logic and
interrupt mechanism.

Updated template

*D 3433993 RJVB 11/09/2011 Modified title and updated project code in Appendix A and B

*E 4463001 ARVI 08/01/2014 Updated example projects to PSoC Designer v5.4

*F 5708837 AESATMP9 04/26/2017 Updated logo and copyright.

PSoC
®
 1 – Reading Matrix and Common Bus Keypads

www.cypress.com Document No. 001-40409 Rev. *F 18

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Contents
	Introduction
	Matrix Keypad
	Algorithm
	C Function
	Decoding a Key Press
	Debounce Mechanism
	Making the Scanning Process Polled or Interrupt Driven
	Example Project

	Common Bus Keypad
	PSoC 1 Implementation
	SAR ADC Input Voltages
	Determining Resistor Values
	Interrupt Driven Keypad Reading
	Debouncing
	Example Project

	Summary
	About the Author
	Appendix A: ‘C’ Code for Matrix Keypad Scanning Using Interrupt Method
	Appendix B: ‘C’ Code for Common Bus Keypad Using Polling Method
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

