

Application Note Please read the Important Notice and Warnings at the end of this document V 1.0

www.infineon.com page 1 of 25 2020-11-24

AN2020-20

Power calculation and constant-power control

Implemented by iMOTION™ script language

About this document

Scope and purpose

This document provides the constant-power control algorithm based on the iMOTIONTM 2.0 script language and
the power calculation method.

Intended audience

This document is intended for those who would like to use the script language option to implement the power
calculation and the constant-power control.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 2

2 Motor power calculation ... 3

2.1 Introduction ... 3

2.2 Implementation... 3
2.3 Test results .. 5
2.3.1 No over-modulation condition .. 6

2.3.2 Over-modulation condition ... 8

3 Constant-power control ... 11

3.1 Introduction ... 11
3.2 Implementation... 12
3.2.1 Parameters/variables for power control ... 12

3.2.2 Implementation ... 13

3.3 Test result .. 20
3.4 Limitation .. 22

4 References ... 23

Revision history... 24

Application Note 2 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Introduction

1 Introduction

The latest software release of the iMOTIONTM motion control engine (MCE) includes script language support

offering users the possibility to customize system-level functionalities without affecting the motor and PFC
control algorithm. The script language option enables additional control loops along with the reading and

writing of the motor control and PFC parameters and variables, which allows users to take advantage of the
analog and digital resources that are not used by motor and/or PFC control. It is also scalable for any
functional extension in the future.

In this document (AN2020-20), motor power calculation and constant-power control implemented by script
code are introduced. Those functions are frequently used in the motor control application, especially fan,
pump, compressor and vacuum cleaner applications.

Fan/pump applications often require constant-flow control. When the motor output power is constant, the

motor speed reflects the air/flow resistance. One solution is to control the cubic volume of air flow by the
closed loop based on the power feedback, which is closely associated to the air flow mass.

The power feedback is provided by internal information of the d/q-axis voltage and current, and described in
detail in this application note.

All the functions in this document are implemented by the script language code, and tested with the EVAL-
C101-A evaluation board, in which the IMC101T-T038 device is embedded. For more information about script
language, please refer to the reference documents [2][5].

Application Note 3 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

2 Motor power calculation

There are several methods for calculating motor power (shaft power, inverter power, etc.) In this chapter, the

power calculation is done by the inverter power; details about principles, implementation and test results are
introduced.

2.1 Introduction

The basic scheme of power control in this example is based on the motor input power derived from the
estimate of the motor voltage and motor current. In terms of controlling the target physical flow of fluid or air
mass through the associated mechanical load (i.e. propeller, or impeller or blade) should be directly equivalent

to the motor shaft power, which is the product of motor shaft torque and speed. Thus, the difference between

the motor shaft power and motor input power, i.e., the permanent magnet motor loss, has to be considered for

more accurate control. However, this difference can be negligible or ignored if the control aim is to establish a
linear control of cubic volume of air/fluid mass, and not be concerned about the absolute value of power.

The formula below is the basic power calculation formula, which is derived by Ohm’s law and Joule’s law.

𝑃 = 𝑉𝐼

Where, 𝑃 is the power, 𝑉 is the voltage, and 𝐼 is the current.

Similarly, the power calculation formula of the motor driver is

𝑃 =
3

2
(𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞)

Where,

𝐼𝑑 , 𝐼𝑞: d-axis/q-axis stator current;

𝑉𝑑 , 𝑉𝑞: d-axis/q-axis stator voltage.

All the variables here are given in the rotor reference frame.

2.2 Implementation

In this section, the details on how to implement the formula by script language are introduced.

All the variables in the formula have been defined as registers in the MCE software; for further details, see

Reference [2]. The corresponding registers in the MCE software are Vd, Vq, IdFilt and IqFilt [2] (the Id/Iq after the
low pass filter).

Please note that the registers here do not represent real physical values, but have internal scaling. Therefore,

the coefficient is needed to transfer the result to real world values. The script language only supports 32-bit
integers, so all data in the floating-point format need to be transferred to fixed-point format.

It is recommended for users to learn some basic knowledge of the fixed-point number and Q format
representations, which will help them to understand the code.

There are two variables defined in the script code, PowerScl and PwrRslt. The variable PowerScl needs to be
calculated first, and the calculated power result is saved in the variable PwrRslt. The details are listed below.

Application Note 4 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

PowerScl

Scaling or notation
 𝐼𝑁𝑇 (

3

2
(𝐼𝑟𝑎𝑡𝑒𝑑 ∗ √2 ∗

2048∗4096

𝐷𝐶𝐵𝑢𝑠𝑆𝑐𝑙∗4307∗√3
∗ 100))

Type Variable, needs to be calculated offline.

Description PowerScl is the scaler to transfer the calculated results to the actual physical value.

Where,

𝐼𝑟𝑎𝑡𝑒𝑑: the rated current of the motor that is typed in the MCEWizard

𝐷𝐶𝐵𝑢𝑠𝑆𝑐𝑙: the DC bus feedback scaling whose unit is counts/V, which can be found

in the MCEWizard, as shown in Figure 1.

For example: if Irated = 1.09 A, DCBusScl = 112.81 counts/V, the PowerScl equals 2304.

More information about PowerScl is listed here. Id (or Iq)*Irated/4096 converts the Id(or Iq)’s unit to the real
physical unit A; Vd (or Vq)*2048 / 4307 converts the Vd (or Vq)’s unit to ADC counts, and dividing by DCBusScl
converts its unit to the real physical unit V; 4096 is the coefficient to compensate right shifting (line 001 and 002

in the Code Listing 1) ; 3 ∗ √2 (√3 ∗ 3)⁄ is the coefficient of the coordinate transformation; 100 magnifies the

result 100 times so that the resolution of PwrRslt is 0.01 W.

PwrRslt

Scaling or notation 1 = 0.01 W

Type Variable

Description This variable represents the calculated power results, whose resolution is 0.01 W. It

is calculated by the formula:

 𝑃𝑤𝑟𝑅𝑠𝑙𝑡 =
𝑃𝑜𝑤𝑒𝑟𝑆𝑐𝑙∗

(𝑉𝑑𝐼𝑑𝑓𝑖𝑙𝑡+𝑉𝑞𝐼𝑞𝑓𝑖𝑙𝑡)

212

212

Where :

𝑉𝑑 , 𝑉𝑞 : registers of d-axis/q-axis stator voltage in the MCE;

𝐼𝑑𝑓𝑖𝑙𝑡, 𝐼𝑞𝑓𝑖𝑙𝑡: registers of filtered d-axis/q-axis stator current in the MCE.

Scaling is often used, since the script only supports 32-bit signed integers. If you use

multiplication, you need to confirm that overflow will not occur. Scaling can be

changed if the range and accuracy do not meet requirements.

Note: If DC bus compensation is disabled in the MCEWizard, the PwrRslt needs to be compensated by

multiplying the coefficient
𝑉𝑑𝑐𝐹𝑖𝑙𝑡

2048
, where 𝑉𝑑𝑐𝐹𝑖𝑙𝑡 is an MCE register representing the Vdc voltage

after LPF.

Application Note 5 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

Figure 1 DC bus feedback scaling

The calculated script codes are shown in Code Listing 1 and Code Listing 2. The details on how to configure the

script code are introduced in Section 3.2.2 and Reference [2][5].

Code Listing 1 Power calculation code with DC bus compensation enabled

001 DPwr = (IdFilt*Vd)>>12; //Q12

002 QPwr = (IqFilt*Vq)>>12; //Q12

003

004 TempVar = (PowerScl * (QPwr+DPwr))>>12;

005 //LPF Ts 1 ms (2.5 Hz - 3 db)

006 PwrMultiDEN= PwrMultiDEN + (TempVar - PwrRslt);

007 PwrRslt = PwrMultiDEN >> 6;

Code Listing 2 Power calculation code with DC bus compensation disabled

001 DPwr = (IdFilt*Vd)>>12; //Q12

002 QPwr = (IqFilt*Vq)>>12; //Q12

003

004 TotalPwr = ((DPwr+QPwr)*VdcFilt)>>11;

005

006 TempVar = (PowerScl * TotalPwr)>>12;

007 //LPF Ts 1 ms (2.5 Hz -3 db)

008 PwrMultiDEN= PwrMultiDEN + (TempVar - PwrRslt);

009 PwrRslt = PwrMultiDEN >> 6;

2.3 Test results

In this test example, a DC 24 V fan is used. The related motor parameters are as follows:

 Maximum DC volatege: 36 V

 Rated motor current Irated: 1.2 A

 Rated motor speed: 3000 RPM

Application Note 6 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

The drive board is the internal evaluation board EVAL-C101T-A, which is the internal board, the DCBusScl of this
board:

 DCBusScl: 112.81 counts/V

PowerScl needs to be calculated offline, as in the following example for a motor.

𝑃𝑜𝑤𝑒𝑟𝑆𝑐𝑙 = 𝐼𝑁𝑇 (
3

2
(𝐼𝑟𝑎𝑡𝑒𝑑 ∗ √2 ∗

2048 ∗ 4096

𝐷𝐶𝐵𝑢𝑠𝑆𝑐𝑙 ∗ 4307 ∗ √3
∗ 100)) = 2536

In a high-speed region, when over-modulation occurs, the output voltage and the modulation index are no
longer linearly correlated. An adjustment needs to be made. In this section, both test results are shown.

2.3.1 No over-modulation condition

Test results are shown in Table 1 to Table 3, and Figure 2 to Figure 4. The error is calculated by the formula
below.

𝐸𝑟𝑟𝑜𝑟 =
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟
× 100%

Table 1 Test results with DC bus at 20 V

Motor speed (RPM) Measured power (W) Calculated power (W) Error (%)

1000 0.92 0.91 -1.1%

2000 3.96 4.05 2.3%

2500 7.02 7.18 2.2%

3000 11.56 11.65 0.8%

Figure 2 Test results with DC bus at 20 V

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000 3500

P
o

w
er

 (
W

)

MotorSpeed (RPM)

Motor speed vs power with DC bus 20V

Measured Power Calculated power

Application Note 7 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

Table 2 Test results with DC bus at 25 V

Motor speed (RPM) Measured power (W) Calculated power (W) Error (%)

1000 0.98 0.95 3.5%

2000 4.09 4.13 -0.9%

2500 7.13 7.25 -1.7%

3000 11.60 11.75 -1.3%

Figure 3 Test results with DC bus at 25 V

Table 3 Test results with DC voltage at 30 V

Motor speed (RPM) Measured power (W) Calculated power (W) Error (%)

1000 0.96 0.95 -1.6%

2000 4.05 4.15 3.2%

2500 6.95 7.20 2.6%

3000 11.30 11.88 3.1%

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000 3500

P
o

w
er

 (
W

)

Motor speed (RPM)

Motor speed vs power with DC bus 25V

Measured Power Calculated power

Application Note 8 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

Figure 4 Test results with DC voltage at 30 V

2.3.2 Over-modulation condition

If over-modulation is enabled, the register VdqLim in the MCE will be set at 4974; otherwise its value is 4307. If

over-modulation occurs, it means that modulation exceeds the linear range of the space vector pulse width

modulation (SVPWM).

If the modulation index ranges from 4307 to 4974, the formula of Section 2.3 introduces an error, which is

caused by over-modulation. As shown in Table 4 and Figure 5, the introduced error is 11% when the

modulation index is 4974, so additional measures need to be implemented in this situation.

One method for adjusting the calculated power result is given here when over-modulation occurs. The method
is to multiply a coefficient to the power results if over-modulation occurs. The coefficient can be calculated by

the formula
4307

𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥
. Table 5 and Figure 6 are the results after the coefficient has been adjusted. The error

will be more acceptable.

There are different ways to calculate the modulation index in terms of DC compensation settings. If the DC bus

compensation is enabled, the modulation index can be obtained by
𝑀𝑜𝑡𝑜𝑟𝑉𝑜𝑙𝑡𝑎𝑔𝑒∗2048

𝑉𝑑𝑐𝐹𝑖𝑙𝑡
. If the DC bus

compensation is disabled, the modulation index is the same value as the 𝑀𝑜𝑡𝑜𝑟𝑉𝑜𝑙𝑡𝑎𝑔𝑒. Here 𝑀𝑜𝑡𝑜𝑟𝑉𝑜𝑙𝑡𝑎𝑔𝑒
and 𝑉𝑑𝑐𝐹𝑖𝑙𝑡 are the MCE registers [2] that represent the motor voltage and DC bus voltage, respectively.

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000 3500

P
o

w
er

 (
W

)

Motor speed (RPM)

Motor speed vs power with DC bus 30V

Measured Power Calculated power

Application Note 9 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

Table 4 Power calculation results under over-modulation conditions

Modulation index Motor speed (RPM) Measured power

(W)

Calculated power

(W)

 Error (%)

1476* 1000 0.80 0.82 -3.1%

2991* 2000 3.67 3.75 -2.2%

3820* 2500 6.52 6.75 -3.6%

4307* 2823 9.01 9.06 -0.6%

4400 2853 9.38 9.53 -1.6%

4500 2888 9.68 9.87 -1.9%

4600 2895 9.89 10.22 -3.4%

4700 2910 9.97 10.51 -5.4%

4974 2942 10.14 11.26 -11.0%

Note: * at this value, no over-modulation occurs

Figure 5 Power calculation results under over-modulation conditions

0.00

2.00

4.00

6.00

8.00

10.00

12.00

500 1000 1500 2000 2500 3000 3500

M
o

to
r

p
o

w
er

 (
W

)

Motor speed (RPM)

Motor speed vs motor power withDC bus = 17V

Measured Power Calculated power

Application Note 10 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Motor power calculation

Table 5 Power calculation results after adjusting under the over-modulation conditions

Modulation index MotorSpeed (RPM) Measured power

(W)

Adjusted power

(W)

 Error (%)

1476* 1000 0.80 0.82 -3.1%

2991* 2000 3.67 3.75 -2.2%

3820* 2500 6.52 6.75 -3.6%

4307* 2823 9.01 9.06 -0.6%

4400 2853 9.38 9.33 0.6%

4500 2888 9.68 9.45 2.4%

4600 2895 9.89 9.57 3.2%

4700 2910 9.97 9.63 3.4%

4974 2942 10.14 9.75 3.9%

Note: * at this value, no over-modulation occurs

Figure 6 Adjusted results under the over-modulation conditions

0.00

2.00

4.00

6.00

8.00

10.00

12.00

500 1000 1500 2000 2500 3000 3500

M
o

to
r

p
o

w
er

 (
W

)

Motor speed (RPM)

Motor speed vs motor power with DC bus = 17V

Measured Power Adjusted power

Application Note 11 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

3 Constant-power control

3.1 Introduction

Some of the applications such as pumps and fans require the constant-power control or the constant air/water
flow control algorithm. Instead of regulating speed or torque, it requires a control of the air flow or water flow

to the desired value. In such applications, the constant-power control is essential, and this chapter shows an
example of constant-power control which is implemented by the script language.

-
PI

PI

+

+ -

IdRef_Ext

Gate

IqRef_ExtTargetPower
PI

-+ Space
vector
PWM

𝑒𝑗𝜃

Rotor angle
estimator

3/2

Iu

Iv

Iw

Iα

Iβ

𝑒𝑗𝜃
Iq

Id

3-Phase
inverter

Existing iMOTIONTM firmwareScript language

LPF

LPF

IdFilt

Power
calculation

IqFilt

Vd

Vq

PowerRslt

Error
limitation

Torque
limitation

RotorAngle

Figure 7 Constant-power control block diagram

Figure 7 shows the block diagram of the constant-power control. It utilizes FOC (field-oriented control) of the

existing iMOTIONTM firmware except for speed control. The script-based task is added, and performs the major

control loop on top of the FOC, in lieu of the speed control loop, which regulates the power based on the power
feedback.

Application Note 12 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Start

Power calculation

Motor run
error calculation

and limitation

Power PI control

Vdc > StartLvl
for preset time

Y

N
Motor stop

reset registers
Return

Limit result and
set torque

Return

Figure 8 Power control flow chart

3.2 Implementation

3.2.1 Parameters/variables for power control

This section introduces the parameters and variables in the demo code. The explanation can help users to read
the demo code more easily.

Variable PowerRslt in Section 2.2 is taken as the power reference, and a typical PI controller is used to

implement the constant-power control algorithm. Five additional, defined variables are used in the algorithm,

which are listed and described below. These variables need to be set before the code is compiled according to
the user’s system configuration.

Note: If those parameters are defined as the global variables in the script code, they can be written/read
by MCEDesigner online when tuning the motor.

MaxPowerMulti100

Scaling or notation Motor’s maximum power (Watt)*100

Type Variable, needs to be calculated offline

Description This variable sets the maximum power of the motor, its value equals motor
maximum power (Watt)*100. For example, if the maximum power of the fan is 15 W,
this variable is set to 1500. To be easily read, the PwrRslt is set as the Power

(Watt)*100 format, but TargetPower is in Q12 format, so
𝑃𝑤𝑟𝑅𝑠𝑙𝑡𝑥∗212

𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟𝑀𝑢𝑙𝑡𝑖100
 will

transfer the PwrRslt to Q12 format.

Application Note 13 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

TargetPower

Scaling or notation 12-bit unsigned integer, 4095 = maximum motor power

Type Variable

Description This register is the power reference of the control loop, 0 to 4095 represents 0 to
100% maximum motor power. If you use a 100 W motor for example, the register
MaxPowerMulti100 needs to be set at 100*100 = 10000. The TargetPower is related

to the MaxPowerMulti100 setting. 4095 represents 100 W and 2048 represents 50 W.

KpPreg/KxPreg

Scaling or notation 32-bit unsigned integer, 4095 represents 1.0

Type Variable

Description These variables are a proportional-integral (PI) gain of the power controller. These
registers are defined as global variables in the script code so they can be written by

MCEDesigner online.

ErrLim

Scaling or notation Same scaling as variable TargetPower

Type Variable

Description This variable limits the maximum power error which is the input of the power PI

controller. Power control ramp slope can be adjusted by this variable.

The demo code uses some motor parameters defined in the MCE. Users can refer to them in the Chapter
“Register description” from Reference [2]. Here is a short description:

CtrlModeSelect

Description This parameter is used to select one of three control modes:

0: Open loop voltage control mode; voltage command is Vd_Ext and Vq_Ext

1: Current control mode; current command is IdRef_Ext and IqRef_Ext

2: Speed control mode; speed command is TargetSpeed

IdRef_Ext

Description This is the reference input of the current regulator on the D axis. In speed control
mode, this variable has no influence. In current control mode, this variable is used as
current input.

IqRef_Ext

Description This is the reference input of the current regulator on the Q axis. In speed control

mode, this variable has no influence. In current control mode, this variable is used as

current input.

3.2.2 Implementation

The script program consists of the following parts [2]:

 Set Commands: Defines script-user version and script-task execution period

 Functions: Script code should be written inside four predefined functions including Script_Task0_init (),
Script_Task0 (), Script_Task1_init () and Script_Task1 ()

 Variables and Parameters

 Statements and Expressions: Each individual statement must end with a semicolon

Application Note 14 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

 Comments: Starts with a slash asterisk /* and ends with an asterisk slash */ for multiple line comments,
starts with double slash // for single line comments.

The script engine supports 2 independent tasks, namely, Task 0 and Task 1, running concurrently. The user-

script program runs repeatedly on a configurable interval within Task 0 or Task 1 loop. The shortest possible
execution period is 1 ms for Task 0, and 10 ms for Task 1.The execution period for each task can be configured

to the multiples of 1 ms for Task 0 or 10 ms for Task 1 in the script code. Task 0 has higher priority than Task 1.
The task execution period can be configured using “SCRIPT_TASK0_EXECUTION_PERIOD” and
“SCRIPT_TASK1_EXECUTION_PERIOD” in the Set Commands section. Other parameters corresponding to the

task execution period that need to be configured include “SCRIPT_TASK0_EXECUTION_STEP” and
“SCRIPT_TASK1_EXECUTION_STEP.” These represent the number of lines to be executed for the shortest

possible period of each task, which are 1 ms and 10 ms respectively.

All the functions in this demo code run in Task 0. Since the minimum execution period of Task 1 is 10 ms, long
periods will cause too much delay. This will result in a poor dynamic response and even instability. In this demo

code, for example, “SCRIPT_TASK0_EXECUTION_PERIOD” sets 2 and “SCRIPT_TASK0_EXECUTION_STEP” sets
50, which means that the execution period for this task is 2 ms, and 50 lines of instructions are executed every 1
ms.

There are some factors that need to be considered in order to determine those 2 settings.

1. Function minimum loop time

Loop time ensures that the function runs normally. Using the LPF design, for example, according to the Nyquist

theorem, the sampling frequency needs to be at least twice as high as the frequency of interest to realize

effective attenuation. Therefore, choosing the sampling period of 1 ms (1 kHz) for the LPF would be effective for

the signal frequency ranging up to 500 Hz. If the sampling period is 2 ms, the effective frequency would be

down to 250 Hz.

In this demo for example, the function works normally when the “SCRIPT_TASK0_EXECUTION_PERIOD” is set to
1~5. However, the lower the period setting, the faster the dynamic response. The period is set to 2 ms in the
demo, whereas 1 ms will consume more CPU resources causing a higher CPU workload.

2. Numbers of instructions

The following table “Code Listing 3” shows a section of the compiled script object file (.ldf), in which the

number of instructions for Task 0 is 30 (line 008). Therefore, the “SCRIPT_TASK0_EXECUTION_STEP” should be

set to greater than 30 to ensure that the entire loop of Task 0 is completed during each minimum execution
period of 1 ms. Since the “SCRIPT_TASK0_EXECUTION_PERIOD” in this demo is 2 ms, the
“SCRIPT_TASK0_EXECUTION_STEP,” set to greater than half of 30, is feasible, which will enable the entire loop
of Task 0 to be completed during the execution period of 2 ms. First the 1 ms script engine executes the specific

lines of script, and the rest of the code is done in the next 1 ms. In the demo code,

“SCRIPT_TASK0_EXECUTION_STEP” is set at 20.

Code Listing 3 Section of compiled script object file for constant-power control

001 %---

002 % Script Object File

003 %---

004 % SCRIPT_USER_VERSION : 001.000

005 % DATE & TIME : 23.08.2019 14:50:03

006 % SIZE : 445 Bytes

007 % Total Number of Lines : 190

008 % Task0 - Number of Instructions : 30

009 % Task1 - Number of Instructions : 0

Application Note 15 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

3. CPU Load

The CPU resource is prioritized for the implementation of the motor and PFC control algorithm. The script
engine is designed to take advantage of the spare CPU resources for executing the script program. The priority

of executing the script program is lower than that of the motor and PFC control algorithm, so that the
performance of the control algorithm will not be affected. However, CPU usage needs to be carefully evaluated

before the script function is enabled. The “SCRIPT_TASK0_EXECUTION_PERIOD” should meet the time
requirement of the application/function. The setting should also ensure that the CPU load does not exceed
95%. If the CPU overload occurs, the script function will not work as expected.

There are two methods used to evaluate the CPU load. Details can be found in Section 3 of Reference [5], where
the most common method is introduced.

The CPU load status can be obtained by reading the system parameter ‘CPU Load’ using MCEDesigner [4]. Its

minimum resolution is 0.1% [2]. The following Figure 9 shows that the register CPU Load is 682, which means the
result is 68.2%. The more complicated the script code is, the higher the demanded CPU load. It is

recommended that the actual CPU load does not exceed 95% to guarantee the script execution.

Figure 9 Reading register CPU load in the MCEDesigner

The script engine supports two kinds of 32-bit unsigned integer variables, which are global variables and local

variables. The maximum number of global variables supported by the script engine is 30, and the maximum
number of local variables for each task is 24. The intercommunication between Task 0 and Task 1 can be
implemented by using global variables. Only global variables are accessible from the MCEDesigner or user
UART interface. It is recommended that users define a variable as a global type if they intend to read its value

during the running time using MCEDesigner [4].

The variables defined in lines 010-015 of the Code Listing 4 are global variables; instructions on how to import
them into the MCEDesigner are listed below. When the global variables are imported into the MCEDesigner,
they can be written/read online by users.

Application Note 16 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

a) After the MCEWizard compiles the script code, a map file will be generated in the same folder as script code
whose suffix is “.map”.

b) Open the MCEDesigner file whose suffix is “.irc” and import the map file by FileImport register map, as
shown in Figure 10.

c) The defined global variables can then be found in the default group of both Read/Write registers in the
motor1 window and source list of the trace setup in the system window. Detail are shown in Figure 11.

Note: The variables in the MCEDesigner are divided into two variables, which are low 16 bits with suffix
“_L” and high 16 bits with suffix “_H”, since the MCEDesigner only support 16-bit integers.

Figure 10 Import the register map by MCEDesigner

Application Note 17 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Figure 11 Global variables in the MCEDesigner

The variables defined in the initialized function are local variables, which can only be read/written by the

defined task itself. Lines 020– 043 in the demo code are local variable definitions, and lines 045– 061 are

variable initialization. Both global and local variables can be initialized here, and both functions

Script_Task0/1_init () are only called once after startup.

The function Script_Task0/1() are the script functions which are executed periodically by the setting period. In
this demo, lines 071– 078 are the power calculation with d/q axis voltage and current. The LPF in lines 076-077

are commented out, since the phase lag of LPF will affect the stability of the constant-power control if users
only use the power calculation without power control. LPF can be added here to make the power result more

constant. Lines 085-098 are the conditions that determine whether the motor starts or stops. DC bus voltage is

chosen here to set the flag. Users can set the different conditions based on their own application requirements.
Lines 099-145 are the codes of the constant-power control section. There are three sub-sections. The first
section is the error calculation and limitation; the variable ErrLim is used to limit the power error, so the power

can ramp up with the specific slope. The next section is the PI control of power controller; the integral value is
limited by the variable IntegralLim. The last section, the control output, is limited; the reference torque of the

current controller is set here.

Code Listing 4 Demo of the constant-power control

001 #SET SCRIPT_USER_VERSION (1.00) /*Script version value should

be 255.255*/

002 #SET SCRIPT_TASK0_EXECUTION_PERIOD (2) /*Script execution

time for Task0 in ms, maximum value 65535*/

003 #SET SCRIPT_TASK1_EXECUTION_PERIOD (1) /*Script execution

time for Task1 in 10mS, maximum value 65535*/

004 #SET SCRIPT_START_COMMAND (0x3) /* Start command, Task0 :

Bit0, Task1 : Bit1; if bit is set, script executes after init */

005 #SET SCRIPT_TASK0_EXECUTION_STEP (20) /* Script Task0 step,

This defines number of lines to be executed every 1 ms*/

Application Note 18 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Code Listing 4 Demo of the constant-power control

006 #SET SCRIPT_TASK1_EXECUTION_STEP (30) /* Script Task1 step,

This defines number of lines to be executed every 10 ms*/

007 */

008 /***

**/

009 /*Global Variable Definition*/

010 int IqLPF,IdLPF;

011 int PowerRslt;//1 = 0.01 W

012 int TargetPower;//Q14,16384 means max power

013 int PowerCtrlModeEn;

014 int KpPreg,KxPreg;//Q12

015 int ViewVar;

016 /***

**/

017 /*Task0 init function*/

018 Script_Task0_init()

019 {

020 /*Local Variable definition*/

021 /*Power Calculation variable*/

022 int IqMultiDEN,PwrMultiDEN;

023 int TempVar;

024 int DPwr,QPwr;

025 int PowerScl;

026 /*Power Calculation variable initialize*/

027 //3/2*Irated*sqrt(2)*2048/4307/DC feedback scale*4096*100

028 PowerScl =2536;

029

030 // GA-1.09A-2304 FAN-1.2A-2536

031 // take GA for example, PowerScl =

INT(1.5*1.09*1.414*2048/4307*4096/sqrt(3)/112.81*100)=2304

032 // 112.81 means DC bus feedback scale is 112.81 counts/V

033 // *100 so the Power result resolution is 0.01 W

034 // you can adjust this parameter to get the correct power

result

035 /* Constant-power Control Variable */

036 int TargetTrqTemp,TrqLimit;

037 int Power_Integral;

038 int MaxPowerMulti100;

039 int PowerQ12;

040 int PowerErr;

041 int IntegralLim;

042 int ErrLim;

043 int TimeCnt;

044

045 /*Constant-power Control Variable intializing*/

046 MaxPowerMulti100 = 1500;

047 ErrLim = 50;

048

049 TargetPower = 2048;

050 KpPreg = 3200;

051 KxPreg = 800;

052

053 PowerCtrlModeEn = 0;

054 CtrlModeSelect = 1; //1- current mode 2- speed mode

Application Note 19 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Code Listing 4 Demo of the constant-power control

055 TrqLimit = 4500; //4096 means 100% Torque

056

057 //set zero

058 IdRef_Ext = 0;

059 TimeCnt = 0;

060 Power_Integral = 0;

061 PwrMultiDEN = 0;

062

063 }

064 /***

***/

065 /*Task0 script function*/

066 Script_Task0()

067 {

068 //=======================================

069 // P = 3/2*(VdId+VqIq)

070 //=======================================

071 DPwr = (IdFilt*Vd)>>12; //Q12

072 QPwr = (IqFilt*Vq)>>12; //Q12

073

074 TempVar = (PowerScl * (QPwr+DPwr))>>12;

075 //LPF Ts 1ms (2.5Hz -3db)

076 // PwrMultiDEN= PwrMultiDEN + (TempVar - PowerRslt);

077 // PowerRslt = PwrMultiDEN >> 6;

078 PowerRslt = TempVar;

079

080 /*Constant-power Control*/

081 //monitor the DC bus voltage, if it is higher than the

level, motor will start.

082 if (VdcFilt > 1500)

083 {

084 TimeCnt = TimeCnt + 1;

085 if(TimeCnt > 500)

086 {

087 Command = 1 ; //start the motor

088 PowerCtrlModeEn = 1; //

089 TimeCnt = 501;

090 }

091 }

092 else

093 {

094 Command = 0;

095 TimeCnt = 0;

096 PowerCtrlModeEn=0;

097 Power_Integral=0;

098 }

099 if(PowerCtrlModeEn == 1)

100 {

101 //calculate the power error

102 PowerQ12 = (PowerRslt<<12)/MaxPowerMulti100; //to

Q12

103 PowerErr = TargetPower-PowerQ12;//Q12

104 //limit error input

105 if(PowerErr>ErrLim)

Application Note 20 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Code Listing 4 Demo of the constant-power control

106 {

107 PowerErr = ErrLim;

108 }

109 else

110 {

111 if(PowerErr < (0-ErrLim))

112 {

113 PowerErr = 0-ErrLim;

114 }

115 }

116 //PI

117 IntegralLim = 1<<24;//limit 2^24

118 Power_Integral = Power_Integral + PowerErr*KxPreg;

119

120 if(Power_Integral > IntegralLim)

121 {

122 Power_Integral = IntegralLim;

123 }

124 else

125 {

126 if (Power_Integral < 0)

127 {

128 Power_Integral = 0;

129 }

130 }

131 TargetTrqTemp =

(PowerErr*KpPreg+Power_Integral)>>12;//convert to Q12

132 //Limit trqref,you could also limit it by motorlim

133 if (TargetTrqTemp > TrqLimit)

134 {

135 TargetTrqTemp = TrqLimit;

136 }

137 else

138 {

139 if(TargetTrqTemp<0)

140 {

141 TargetTrqTemp = 0;

142 }

143 }

144 IqRef_Ext = TargetTrqTemp;

145 }

146 }

3.3 Test result

The function of the constant-power control algorithm is verified by the setup, which is the same as in Section

2.3. The step response from 7.5 W to 15 W by constant-power control is tested, and the waveform is shown in
Figure 12 and Figure 13.

In these two figures, yellow is for the variable TargetPower, which represents the power reference; and green is

the filtered result of the variable PowerRslt. The period of execution of the task is 2 ms.

Application Note 21 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

Figure 12 Step response with KpPreg = 1000 and KxPreg = 100 (transition time is 1.35 s)

Figure 13 Step response with KpPreg = 3200 and KxPreg = 800 (transition time is 0.4 s)

Application Note 22 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Constant-power control

3.4 Limitation

The following items need to be considered when applying the power control.

1. There is a limit in the applicable speed range. In general, it is inaccurate to measure power at a speed which
is less than 5% of the maximum speed.

2. The type of power measurement and control needs to be understood and properly applied for each
application, i.e, whether motor shaft power, input inverter power or output inverter power are to be

controlled. If input power needs to be calculated or controlled, compensation is required by taking into

account the inverter loss, the auxiliary power loss, the loss of passive components, etc. A motor loss needs
to be considered if more accurate motor shaft power information is required. Motor efficiency could vary
depending on the motor magnet type, structure of motor, etc. However, a percent loss can be incorporated

if the absolute value becomes necessary.

Application Note 23 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

References

4 References

[1] Infineon Technologies AG. Datasheet of Infineon IMC101T-T038 (2019). V1.4 www.infineon.com

[2] Infineon Technologies AG. iMOTION™ Motion Control Engine Software Reference Manual (2020) V1.3
www.infineon.com

[3] Infineon Technologies AG. MCEWizard_V2.3.0.0 User Guide (2019) www.infineon.com

[4] Infineon Technologies AG. MCEDesigner_V2.3.0.0 Application Guide (2019) www.infineon.com

[5] Infineon Technologies AG. How to use iMOTIOMTM script language.(2018) V1.0 http://www.infineon.com

http://www.infineon.com/
http://www.infineon.com/
http://www.infineon.com/
http://www.infineon.com/
http://www.infineon.com/

Application Note 24 of 25 V 1.0

2020-11-24

Power calculation and constant-power control
Implemented by iMOTION™ script language

Revision history

Revision history

Document

version
Date of release Description of changes

V 1.0 2020-11-24 Initial release

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-11-24

AN2020-20

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2020 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	2 Motor power calculation
	2.1 Introduction
	2.2 Implementation
	2.3 Test results
	2.3.1 No over-modulation condition
	2.3.2 Over-modulation condition

	3 Constant-power control
	3.1 Introduction
	3.2 Implementation
	3.2.1 Parameters/variables for power control
	3.2.2 Implementation

	3.3 Test result
	3.4 Limitation

	4 References
	Revision history

