

www.cypress.com Document No. 001-40459 Rev. *I 1

AN2015

PSoC® 1 – Getting Started with Flash & E2PROM

 Author: Praveen Kumar M
Associated Project: Yes

Associated Part Family: CY8C20x34, CY8C20xx6, CY8C21xxx, CY8C22x45, CY8C23x33,
CY8C24x23A, CY8C24x94, CY8C27x43,CY8C28xxx, CY8C29x66

Software Version: PSoC
®
 Designer™ 5.4 SP1

Related Application Notes: AN44168

AN2015 enables the reader to get started with the flash memory in PSoC
®
 1 by focusing on PSoC 1 flash architecture

Read, Write algorithm, Protection modes and their impact on user applications. The example projects demonstrates the

two methods for reading and writing to the flash memory within a user application, E2PROM User Module and Flash

block API library that is included in the PSoC Designer™ integrated development environment (IDE).

Contents

1 Introduction ... 1
2 PSoC Resources .. 2

2.1 PSoC Designer .. 2
2.2 Code Examples ... 3
2.3 Technical Support .. 4

3 Flash Architecture ... 5
3.1 Flash Write Algorithm 6
3.2 Selecting the Appropriate Temperature 6
3.3 Flash Protection ... 7

4 How to Write to Flash ... 8
4.1 E2PROM User Module 8
4.2 Flashblock API Library 9

5 Flashblock API Description 11
6 Example Projects .. 12

6.1 Hardware Setup / Demo 13

6.2 Example Project 1: E2PROM –
 CY8C29466-24PXI .. 14
6.3 Example Project 2: Flashblock –
 CY8C29466-24PXI .. 16
6.4 Example Project 3: Flashblock –
 CY8C27443-24PXI .. 18
6.5 Reading Data from Flash
 Using PSoC Programmer 18

7 Special Considerations ... 20
7.1 Interrupts and Timing 20
7.2 Voltage Stability ... 20
7.3 Placing Data in Flash 21

8 Summary .. 22
9 References ... 22
Document History .. 23
Worldwide Sales and Design Support 24

1 Introduction

Flash operations executed by user firmware are a key element of many embedded designs. The ability for a device to
update its own flash is useful in many applications including bootloaders and applications that need to store
nonvolatile information such as calibration data.

PSoC 1 devices provide the capability to easily read from and write to flash with either the E2PROM user module or a
Flashblock API library. Although the E2PROM user module is very briefly discussed, this application note focuses on
the Flashblock API library. The Flashblock API library is described in detail, demonstrating how to use the APIs.

In addition to the discussion of the Flashblock API library, an overview of the flash architecture, flash protection
settings, and flash write algorithm are provided in this application note. These elements, plus additional useful design
tips, are provided to help users easily design their project using flash writes and reads.

http://www.cypress.com/
http://www.cypress.com/?rID=2906

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 2

2 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design,
and quickly and effectively integrate the device into your design. In this document, PSoC refers to the PSoC 1 family
of devices. To learn more about PSoC 1, refer to the application note AN75320 - Getting Started with PSoC 1.

The following is an abbreviated list for PSoC 1:

 Overview: PSoC Portfolio, PSoC Roadmap

 Product Selectors: PSoC 1, PSoC 3,
PSoC 4, or PSoC 5LP. In addition, PSoC
Designer includes a device selection tool.

 Datasheets: Describe and provide electrical
specifications for the PSoC 1 device family.

 Application Notes and Code Examples:
Cover a broad range of topics, from basic to
advanced level. Many of the application
notes include code examples.

 Technical Reference Manuals (TRM):
Provide detailed descriptions of the internal
architecture of the PSoC 1 devices.

 Development Kits:

 CY3215A-DK In-Circuit Emulation Lite
Development Kit includes an in-circuit emulator
(ICE). While the ICE-Cube is primarily used to
debug PSoC 1 devices, it can also program PSoC
1 devices using ISSP.

 CY3210-PSOCEVAL1 Kit enables you to evaluate
and experiment Cypress's PSoC 1 programmable
system-on-chip design methodology and
architecture.

 CY8CKIT-001 is a common development platform
for all PSoC family devices.

 The MiniProg1 and MiniProg3 devices provide an
interface for flash programming.

2.1 PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a
library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize
your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows.
Note: This is not the default view.

1. Global Resources – all device hardware settings.

2. Parameters – the parameters of the currently selected User Modules.

3. Pinout – information related to device pins.

4. Chip-Level Editor – a diagram of the resources available on the selected chip.

5. Datasheet – the datasheet for the currently selected UM

6. User Modules – all available User Modules for the selected device.

7. Device Resource Meter – device resource usage for the current project configuration.

8. Workspace – a tree level diagram of files associated with the project.

9. Output – output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC
®
 Designer > Help > Documentation >

Designer Specific Documents > IDE User Guide.

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/?rID=58639
http://www.cypress.com/psoc
http://www.cypress.com/?rid=95697&source=cexxxxx
http://www.cypress.com/?id=1573&source=cexxxxx
http://www.cypress.com/?id=5041&source=cexxxxx
http://www.cypress.com/?id=4976&source=cexxxxx
http://www.cypress.com/?id=5044&source=cexxxxx
http://www.cypress.com/?id=2522&rtID=117
http://www.cypress.com/?id=2522&rtID=117
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=1573&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=1573&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=5301&id=2232&id=4749&id=5284&id=4562&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=1573&applicationID=0&l=0
http://www.cypress.com/?rID=64120
http://www.cypress.com/?rID=64120
http://www.cypress.com/?rID=2541
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/?rID=37459
http://www.cypress.com/go/cy8ckit-002
http://www.cypress.com/?id=2522

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 3

Figure 1. PSoC Designer Layout

2.2 Code Examples

The following webpage lists the PSoC Designer based Code Examples. These Code Examples can speed up your
design process by starting you off with a complete design, instead of a blank page and also show how PSoC
Designer User modules can be used for various applications.

http://www.cypress.com/go/PSoC1Code Examples

To access the Code Examples integrated with PSoC Designer, follow the path Start Page > Design Catalog >
Launch Example Browser as shown in Figure 2.

Figure 2. Code Examples in PSoC Designer

In the Example Projects Browser shown in Figure 3, you have the following options.

http://www.cypress.com/
http://www.cypress.com/?rID=61168

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 4

 Keyword search to filter the projects.

 Listing the projects based on Category.

 Review the datasheet for the selection (on the Description tab).

 Review the code example for the selection. You can copy and paste code from this window to your project, which
can help speed up code development, or

 Create a new project (and a new workspace if needed) based on the selection. This can speed up your design
process by starting you off with a complete, basic design. You can then adapt that design to your application.

Figure 3. Code Example Projects, with Sample Codes

2.3 Technical Support

If you have any questions, our technical support team is happy to assist you. You can create a support request on the
Cypress Technical Support page.

You can also use the following support resources if you need quick assistance.

 Self-help

 Local Sales Office Locations

http://www.cypress.com/
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/?id=4
http://www.cypress.com/?id=1062

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 5

3 Flash Architecture

The flash within most PSoC 1 devices are organized in 64-byte blocks. The 4-kilobyte families have 64 blocks
numbered 0 through 63. The 8-kilobyte families have 128 blocks numbered 0 through 127. The 16-kilobyte families
have 256 blocks numbered 0 through 255. Finally, 32-kilobyte families have 512 blocks numbered 0 through 511. The
CY8C20xx6 devices are an exception in that they have 128-byte flash blocks. Therefore, a 32-kilobyte CY8C20xx6
device has 256 blocks numbered 0 through 255.

Figure 4 illustrates the flash layout for a standard PSoC 1 16-kilobyte device and a 32-kilobyte CY8C20xx6 device.

Figure 4. PSoC 1 Flash Architecture

User code can modify the data in these blocks. Writing to flash requires that an entire 64-byte (or 128-byte) block be
written, even if only one byte is to be modified. Block 0 (and block 1 for some devices) contains the reset and
interrupt vectors and the other blocks contain program code or data. By default, the ImageCraft Compiler will place
program code and data starting at the lowest memory addresses after the vector table and will fill towards higher
memory addresses.

This application note assumes that you are familiar with PSoC 1 device architecture and the PSoC Designer™ IDE. If
you are new to PSoC 1 device, refer to AN75320 – Getting Started with PSoC1 to explore the PSoC 1 architecture
and the development tools.

Table 1. Flash Blocks in PSoC 1

Product Family Flash (KB) Number of Blocks

CY8C21x23 / CY8C24x23A 4 64

CY8C21x34 / 45 /
CY8C23x33 / CY8C24x33

8 128

CY8C22x45 / CY8C24x94 /
CY8C27x43 / CY8C28xxx

16 256

CY8C29xxx 32 512

Block 0
(64 bytes)

0x0000

0x003F

0x0080

0x3FBF

Blocks

2 to 254
(64 bytes each)

Standard 16 kB Device

Block 1
(64 bytes)

0x0040

0x007F

Block 255
(64 bytes)

0x3FC0

0x3FFF

Block 0
(128 bytes)

0x0000

0x007F

0x0100

0x7FBF

Blocks

2 to 254
(128 bytes each)

32 kB CY8C20xx6

Block 1
(128 bytes)

0x0080

0x00FF

Block 255
(128 bytes)

0x7FC0

0x7FFF

http://www.cypress.com/
http://www.cypress.com/go/AN75320

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 6

3.1 Flash Write Algorithm

The PSoC 1 M8C processor interfaces to the flash through a set of Supervisory System Call (SSC) functions that
reside in Supervisory ROM (SROM). These SSC functions provide the functionality to read, write, and erase any
block of flash in the PSoC (assuming the block is unprotected).

The SROM code handles the low level steps required to read, write, and erase flash. Part of this process is
calculating the amount of time the flash should be pulsed in order to properly write or erase a block of flash. The
pulse width is determined based on several variables: internal calibration values stored in SROM, the CPU clock
rate, and temperature. Since the flash functions have access to the calibration values and use a known CPU
clock, the temperature is the only value of concern for the average user.

Typically the SSC functions do not need to be called by the user directly. The Flashblock API and E2PROM user
module API (both discussed later in this application note) handle the low level details for the user. For more
details regarding the low-level SSC functions, refer section 3 in PSoC 1 Technical reference manual.

3.2 Selecting the Appropriate Temperature

Temperatures play a large role in the calculation of the proper flash write and erase pulse widths, which are
calculated by the flash write function. Higher temperatures require a smaller duration pulse width and lower
temperatures require a larger than nominal duration pulse width.

The calculations for the erase and write pulse widths are shown below in Equation 1 and Equation 2. These clock
values are used by the SROM code to determine the number of clock cycles the flash should be erased and
written. The M and B values are the calibration values stored in the hidden rows of flash. T is the temperature, in
degree Celsius, that needs to be provided by the user. All necessary calculations are done by the flash write
function; the user is only responsible for passing an appropriate temperature value.

Equation 1: Erase Pulse Width Calculation

Equation 2: Write Pulse Width Calculation

Using the appropriate temperature value in the calculation of the pulse widths is vital to ensure the flash meets
the retention and endurance electrical specifications provided in the datasheet.

Table 2. Flash Electrical Specifications

Specification Details

FlashENPB Number of erase and write cycles, each flash block can withstand

FlashENT The total number of endurance cycles the entire flash array can withstand

FlashDR Amount of time a flash cell will retain its data

Longer retention can be achieved by “refreshing” a flash block, where the existing flash block data is read out
and reprogrammed into the block (which essentially resets the data retention timer).

If a device is going to be operating in a limited temperature range between 0 °C and 85 °C, the requirements on
using an accurate temperature for flash writes are relaxed. Any temperature range within a 50 °C span between
0 °C and 85 °C is considered constant with respect to endurance enhancements. For example, if a device is
limited to operating between 0 °C and 50 °C, then a constant temperature of 25 °C can be used for the
temperature parameter. In this case, a temperature sensor is not needed.

For the full industrial range (-40 °C to +85 °C), the user must employ a temperature sensing method (such as the
FlashTemp user module) and feed the result to the temperature argument before writing to flash. Flash
endurance and data retention specifications may not be met if the temperature is not properly provided to the
flash write algorithm. For more information on using the FlashTemp user module and its API’s, refer to the
FlashTemp user module datasheet within PSoC Designer.

The CY8C20xx6 family of devices is the only exception to this guidance. These devices use internal circuitry to
ensure writes to flash execute optimally to maximize flash endurance and data retention. These devices do not
require a temperature parameter to be passed by the user.

http://www.cypress.com/
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=1573&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=FlashTemp&rtID=116&id=1573&applicationID=0&l=0

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 7

3.3 Flash Protection

PSoC 1 devices have four available flash protection settings that can be configured on a block-by-block basis.
The available protection modes are shown in Table 3.

Table 3. Flash Protection Settings

P
ro

te
c
ti

o
n

 L
e
v
e

l

In
te

rn
a
l
R

e
a

d
s

E
x
te

rn
a
l
R

e
a
d

s

In
te

rn
a
l
W

ri
te

s

E
x
te

rn
a
l
W

ri
te

s

fl
a
s
h

s
e

c
u

ri
ty

.t
x

t

Unprotected 0 Y Y Y Y ‘U’

Factory Upgrade 1 Y N Y Y ‘F’

Field Upgrade 2 Y N Y N ‘R’

Full Protection 3 Y N N N ‘W’

Full Protection: Full protection is the default protection setting used by PSoC Designer on all blocks. Full
protection prevents all external reads and writes and does not allow internal writes. This is the preferred setting
for any blocks that do not need to be internally updated by firmware. This provides a high level of protection
against both external attacks and accidental flash corruption.

Field Upgrade: Field Upgrade protection is the next step down in protection from Full protection. It disallows
external writes and reads, but allows internal writes and reads to occur. This is the safest setting for blocks that
need to be updated internally by firmware. Bootloaders typically use this setting for the bootloadable portion of
flash. Bootloaders requiring protection beyond what is provided by the Field Upgrade setting may want to
consider encryption or some other form of protecting the bootload interface, since an external attack can still
potentially occur if the bootload process is reverse engineered and initiated by an unwanted host.

Factory Upgrade: Factory Upgrade protection is rarely used, but is useful in an application where a device
needs to have individual blocks updated by an external programmer. The protection setting does not allow
external reads, but allows external writes, internal reads, and internal writes. This setting prevents someone from
being able to directly read a block externally, but if a particular block (or set of blocks) needs to be updated by an
external programmer without erasing the entire memory, this setting is ideal. Factory Upgrade protection is not
recommended for designs requiring a high level of security, as there is no protection against an external attacker
inserting their own code into a working system to either extract information from the device or otherwise alter the
operation of the design.

Unprotected: The Unprotected setting allows all external and internal writes and reads. This protection setting
provides a minimal level of protection and is not recommended for designs in production. Flash should only be
left unprotected during debug and development.

By default, PSoC Designer sets each block to protection level 3 - Full Protection. Firmware cannot change the
protection levels during runtime; they must be set during the compilation of the hex file and programmed into the
device using an external programmer. The protection level of each block can be configured in the PSoC
Designer Workspace Explorer by editing the flashsecurity.txt file with the appropriate flashsecurity.txt character.
An example flashsecurity.txt file is shown in Figure 5. Each character in the table represents the protection level
for one block of flash.

A running program is never prevented from performing internal reads. The romx and index assembly

instructions enable the M8C processor to read from flash for any protection level. Only reads by externally
connected testers or programmers may be prevented. In protection modes that prevent external writes, an
external programmer can still be used to write a new hex file to the device, but only after an EraseAll operation is
completed, which will erase the entire PSoC flash. External write protection will protect against writing individual
blocks externally.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 8

It is best to give each flash block the highest protection level allowable for the given application. Typically, Full
protection should be used for devices in production, unless the device needs to be able to reprogram its own
flash internally. In these cases, protection level 2, Field Upgrade should be used only on the blocks that need to
be reprogrammed by the PSoC internally. All other blocks can remain fully protected. Unprotected flash is
typically used only during debugging and development.

Figure 5. Example CY8C27xxx flashsecurity.txt File

4 How to Write to Flash

There are two primary predefined methods for writing to flash provided within PSoC Designer:

 E2PROM User Module

 The Flashblock API library

Each method, and their pros and cons, are discussed below.

4.1 E2PROM User Module

The E2PROM user module is available in the PSoC Designer User Module Catalog. The user module emulates
an E2PROM device within the flash memory of the PSoC. The primary advantage to this user module is that it
abstracts the block-oriented flash architecture into something that allows a user to specify 1 to N bytes to be
written at a time. Underneath, the E2PROM user module still writes one full block of flash at a time, since this is a
requirement of the flash architecture. The user module API handles the process of reading the original content
out of a block, changing the byte(s) requested by the user, and writing the new block back to flash. Each write
done by the E2PROM user module, even if the write is less than 1 block in length, will consume 1 endurance
cycle for the specified block(s) of flash. For more information on using the E2PROM user module and its API’s,
refer the E2PROM user module datasheet within PSoC Designer.

http://www.cypress.com/
http://www.cypress.com/?app=search&searchType=advanced&keyword=E2PROM&rtID=116&id=1573&applicationID=0&l=0

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 9

Figure 6. E2PROM User Module

4.2 Flashblock API Library

The Flashblock API library is available for inclusion in any PSoC 1 project simply by including flashblock.h

(for C projects) or flashblock.inc (for assembly projects) in your source file. These header files are found in

the External Headers sub-directory in the Workspace Explorer of a PSoC Designer project.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 10

Figure 7. Flashblock API Library

The Flashblock library is a lightweight set of functions that allow a user to easily read and write blocks of flash
within a PSoC 1 device. Just like the E2PROM user module, the API’s that are provided take care of the low level
details (such as calling the SSC functions). However, the Flashblock library will write full blocks at a time, and will
not allow partial block writes.

Table 4. Flashblock APIs vs. E2PROM UM

Flash Block API E2PROM User Module

Pros Cons Pros Cons

Lightweight (minimal RAM
and ROM usage). Only 2
functions, easy to use

Requires full blocks to be
updated

Abstracts flash writes to the
byte level to allow a user to
easily update data in flash
less than 1 block long.

Uses more RAM and code
space than the Flashblock
API library

Flash writes are faster than
E2PROM UM (no overhead
to manage with partial block
writes)

 Can be added directly from
the user module catalog

Flash writes take longer, with
the additional API overhead
to manage partial block
writes

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 11

5 Flashblock API Description

This section describes the contents of the Flashblock API library. The Flashblock library is comprised of two API
functions and two structured data types. These elements do not need to be declared by the user; usage of these

elements is enabled by including flashblock.h (for C projects) or flashblock.inc (for assembly projects)

in your source file.

Code 1: Read Function Prototype

void FlashReadBlock(FLASH_READ_STRUCT *);

This function reads a specified flash block to a buffer in RAM. Nothing is returned from this function and a
FLASH_READ_STRUCT is passed to the function, which contains the information the function needs to perform
the read. The required read structure is shown below.

Code 2: Read Structure (FLASH_READ_STRUCT)

typedef struct

{

 // Block Number (0...N) to be read from:

 BYTE bARG_BlockId;

 // Flash buffer pointer - 2 bytes:

 BYTE * pARG_FlashBuffer;

 // BYTE Read count:

 BYTE bARG_ReadCount;

}

FLASH_READ_STRUCT;

The struct has 3 elements, each of which need to be filled out before passing the struct to the

bFlashReadBlock() function.

bARG_BlockId: This is the block number to read from. As described in the Flash Architecture section of this
document, the blocks of a PSoC 1 device are split into 64 or 128 byte blocks. For devices with 256 or fewer
blocks, the value will be 1 byte long and will be called bARG_BlockId. For devices with more than 256 blocks, the
value will be 2 bytes long and will be called wARG_BlockId.

pARG_FlashBuffer: 2 byte pointer to the buffer the read data will go into.

bARG_ReadCount: 1 byte value indicating the number of bytes to be read from the block specified in
bARG_BlockId. The specified number of bytes will be read starting at address 0 of the bARG_BlockId block. The
maximum number of bytes that can be read in a single read is 256. Unlike flash writes, flash reads are not
restricted to operating on one full flash block at a time.

Code 3: Write Function Prototype

BYTE bFlashWriteBlock(FLASH_WRITE_STRUCT *);

This function writes 1 block of data to a specified location in flash. The function returns a byte indicating the result
of the flash write. If successful, the returned value will be non-zero. A returned value of 0 indicates a failure
occurred. Possible causes for an error are:

1. Protection bits not set properly (full write protection will prevent all flash writes).

2. Voltage below minimum operating voltage of device.

3. Invalid temperature value.

A FLASH_WRITE_STRUCT is passed to bFlashWriteBlock(), which contains the information the function

needs to perform the write. The required write struct is shown below:

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 12

Code 4: Write Structure (FLASH_WRITE_STRUCT)

typedef struct

{

 // Block Number (0...N) to be written:

 BYTE bARG_BlockId;

 // Flash buffer pointer - 2 bytes

 BYTE * pARG_FlashBuffer;

 // Die Temperature, -40 to 100:

 CHAR cARG_Temperature;

 // Temporary storage (reserved):

 BYTE bDATA_PWErase;

 // Temporary storage (reserved):

 BYTE bDATA_PWProgram;

 // Temporary storage (reserved):

 BYTE bDATA_PWMultiplier;

}

FLASH_WRITE_STRUCT;

The struct has 6 elements, 3 of which need to be filled out by the user before passing the struct to the

bFlashWriteBlock() function:

bARG_BlockId: This is the block number that will be written to. As described in the Flash Architecture section of
this document, the blocks of a PSoC 1 device are split into 64 or 128 byte blocks. For devices with 256 or fewer

blocks, the value will be 1 byte long and will be called bARG_BlockId. For devices with more than 256 blocks,

the value will be 2 bytes long and will be called wARG_BlockId.

pARG_FlashBuffer: 2 byte pointer to the buffer holding the data to be written to flash. Regardless of the size of
the buffer, the write routine will always write one full block of data (either 64 or 128 bytes, depending on the
device). If the buffer is less than 1 block in length, then the rest of the block will be written with whatever data
follows the buffer in RAM.

cARG_Temperature: One byte value indicating the temperature, in degrees Celsius, of the PSoC dies during
the flash write. This value should be within the operational temperature range (available in the device datasheet)
of the device in use, or else a flash write failure could occur. See the Selecting the Appropriate Temperature
section of this document for additional information on setting this value.

bData_PWErase: Temporary storage variable; should not be set by the user.

bDATA_PWProgram: Temporary storage variable; should not be set by the user.

bDATA_PWMultiplier: Temporary storage variable; should not be set by the user.

6 Example Projects

This Application Note has 3 example projects for the user to jump start on the implementation.

HW Requirements: CY3210- PSoC Eval1

SW Requirements: PSoC Designer 5.2 SP1 or later

PSoC 1 Device requirements: CY8C29466-24PXI, CY8C27443-24PXI

User Modules: E2PROM, LCD

API Library: Flashblock

Functions:

 Write (“AN2015 E2PROM RW” or “AN2015 FLASH RW”) to the last block of the flash based on the
methodology used in that example project.

 Read back the written values and display it on the LCD

http://www.cypress.com/
http://www.cypress.com/?rID=2541
http://www.cypress.com/?id=2522&source=header
http://www.cypress.com/?mpn=CY8C29466-24PXI
http://www.cypress.com/?mpn=CY8C27443-24PXI
http://www.cypress.com/?rID=35070
http://www.cypress.com/?rID=3043

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 13

 On button press, scramble the buffer (“RW E2PROM AN2015” or “RW FLASH AN2015”) based on the
methodology used in that example project and execute another write to the same block of flash.

 Read back the written values and display it on the LCD

Table 5. Example Projects Differences

Example
Project

Device Methodology Flash
(B)

RAM
(B)

Comments

1 CY8C29466-24PXI (512
blocks of flash)

E2PROM User Module 2263 37 Showcases E2PROM UM
usage

2 CY8C29466-24PXI (512
blocks of flash)

Flashblock API Library 1754 45 Showcases E2PROM UM
usage for 512 block flash
devices

3 CY8C27443-24PXI (256
blocks of flash)

Flashblock API Library 1451 43 Showcases Flashblock API
usage for 256 block flash
devices

6.1 Hardware Setup / Demo

 Connect a wire between SW and P0[2] in CY310-PSoC Eval1

 Place the right part number as per the example project

 The image of the HW setup is shown in Figure 8,

 Connect Miniprog 1 on Jumper J11 and program the target PSoC 1 device with the required hex file.

 Once programming is done, power the board from PSoC Programmer

 On power-up, a character array is written to the flash using E2PROM method and read back and displayed
on the LCD.

 If the switch ‘SW’ is pressed now, then the character array is scrambled and written again. Then it is read
back and displayed on the LCD.

 The snapshot is provided for the first example project where E2PROM is used. The demo procedure is same
for all the example projects.

Figure 8. Hardware Setup

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 14

Figure 9. Screenshot of the LCD Message after First Write

Figure 10. Snapshot of the LCD Screen after the Scrambled Second Write

6.2 Example Project 1: E2PROM – CY8C29466-24PXI

E2PROM User module is used in this project with the following parameters.

 FirstBlock is chosen as Block # 511 in this example project

 Length is chosen as 16 bytes for this example project.

Figure 11. E2PROM UM Parameters

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 15

Figure 12. Variable Initialization

*/

Figure 13. E2PROM Write and Read

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 16

6.3 Example Project 2: Flashblock – CY8C29466-24PXI

Figure 14. Flashblock API Variables

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 17

Figure 15. Flashblock Read and Write Function for 512 Block Flash Device

 For Flash Write, BlockId, pointer to the flash write buffer and Temperature are set and then bFlashWriteBlock()

function is called.

 For Flash Read, BlockId, pointer to the flash read buffer and ReadCount are set and then bFlashReadBlock()

function is called.

 BlockId parameter for Flash Write and Readcount parameter for Flash Read are declared as Word as the number of
flash blocks is 512 and cannot be accommodated in a BYTE variable.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 18

6.4 Example Project 3: Flashblock – CY8C27443-24PXI

Figure 16. Flash Read and Write for 256 Block Flash Device

 BlockId parameter for Flash Write and Readcount parameter for Flash Read are declared as BYTE as the
number of flash blocks is 256.

 CY8C28 family is an exception, where these variables are declared as WORD even though the device has only
256 blocks of flash.

6.5 Reading Data from Flash Using PSoC Programmer

To verify the flash contents for the example projects explained above, PSoC Programmer can be used.

 Launch PSoC Programmer 3.14 or later

 Connect Miniprog 1 between the PC and CY3210-Jumper J11.

 Make sure one of the three example projects are loaded into the right PSoC 1 device on board.

 Now, press F7 to read the flash contents

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 19

Figure 17. Flash Read Using PSoC Programmer for Example Project 1 After First Write

 Each flash block is 64 bytes in PSoC 1 device.

 There are a total of 512 blocks in CY8C29466-24PXI, which have 32KB of flash.

 E2PROM was configured for the last block ‘511’ and length as 16 bytes.

 511th block address in hex is ‘0x7FC0’, which is seen above in the snapshot.

Table 6. ASCII Table for Characters

Char ASCII in hex Char ASCII in hex Char ASCII in hex

A 41 E 45 F 46

N 4e 2 32 L 4c

2 32 P 50 A 41

0 30 R 52 S 53

1 31 O 4f H 48

5 35 M 4d R 52

Space 20 Space 20 W 57

 You can perform the read after the first write and second write and verify if the flash contents have changed
accordingly.

 Figure 18 has the snapshot after the second write to the flash.

 In flashsecurity.txt file in the example project, only the last block’s protection mode is modified as ‘U’ which
means it is unprotected. So, it can be read and written from external as well as internal. The rest of all the blocks
are ‘W’, which means fully protected. So, it cannot be read and, hence, is ‘xx’ in the previous blocks.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 20

Figure 18. Flash Read Using PSoC Programmer for Example Project 1 After Second Write

7 Special Considerations

This section describes a few additional considerations that often come up when designing a project that incorporates
flash writes. Things to consider include interrupts, voltage stability and placing data in flash. Additional information on
many of the topics discussed in this section can be found in the Technical Reference Manual and device datasheet.

7.1 Interrupts and Timing

Calling bFlashWriteBlock() globally disables interrupts while erasing and writing the specified block. This is

done within the hard-coded SROM code within each PSoC device. This ensures the write process is not interrupted,
guaranteeing proper timing of the erase/write pulse widths and preventing any accesses to partially written flash.
Also, during the execution of the actual flash write, the CPU clock will be changed to a known rate (either 12 MHz or
6 MHz, depending on the SLIMO setting). This allows the flash write function to generate proper pulse width timing,
no matter what the user CPU speed is.

For additional information on the nominal erase and write timing for a particular PSoC device, see the AC
Programming Specifications section of the device datasheet. Note the timing specified in the datasheet is the typical
timing of the pulse widths used to erase and write a block of flash and do not include the overhead required to
execute the full flash write function.

7.2 Voltage Stability

The supply voltage (VDD) must be within the valid operating region during a bFlashWriteBlock() operation. It is

best to properly use the power-on reset (POR) circuit so that a write operation does not occur if VDD decreases below
minimum operating voltage. The code located in boot.asm (an automatically generated file) properly sets the correct
POR level based on the CPU’s operating frequency. It is best not to change the POR level in user code. If the voltage
supply is not properly maintained during a write operation, a reset may occur, and the data within the block may not
be written correctly and there is no indication of the write failure.

PSoC offers a low-voltage detect (LVD) interrupt that will allow an interrupt to occur if the voltage ever falls below the
POR level. Since interrupts are disabled during the actual flash write, this interrupt will not detect any power issues
while the write is in progress, but can still be useful in detecting any low voltage issues before or after a flash write
occurs.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 21

7.3 Placing Data in Flash

Placing data at a specific location in flash serves several useful purposes when reading from and writing to flash:

 Allows predefined values to be loaded into the flash during compilation and programming, if needed.

 Reserves the flash sections to prevent the compiler from being able to place user code or other data in the same
portion of flash memory.

 Allows flash data to be read by accessing declared names rather than using the flash read function.

Code 5 shows an example of how to place a piece of data in flash memory at a specific address using C. This allows
the data to be read by referencing the variable name and allows the data to be updated by using the flash write API to
write the block of data where the data is stored. In this example address 0x3FC0, or block 255, is used:

Code 5: C Data at Fixed Location in Flash

#pragma abs_address: 0x3FC0

const BYTE myArray[64] = {0};

#pragma end_abs_address

Once this declaration is made, this data can easily be accessed by referencing myArray[x]. When the data needs

to be updated, the bFlashWriteBlock() routine can be used to update block 255. This technique is also useful

because it prevents any code or other user data from being placed in the region of flash, preventing data corruption.

The same functionality can be achieved using assembly, but requires a little bit more work. First, each declared piece
of data must be placed in its own linker area. In the example shown in Code 6, data is added to a new linker area
called ‘myArea’. Any custom area name can be used, but the flags (REL, CON, ROM) shown in the example should
remain the same to ensure the area is added to flash.

Code 6: Adding Data to an AREA in Flash (Assembly)

;Declare new area in ROM

AREA myArea (REL,CON,ROM)

;Add data to AREA

myArray:: blk 64

;Switch back to default area (text)

AREA text

Once the desired data has been declared in a user defined area, the active area should be switched back to the
default (text) area. This ensures the rest of the code in the project goes into the correct memory areas.

Lastly, when the data has been declared in the new user defined area, a custom linker option must be used to place
the new area at a specific location in flash. This is done by adding a file called custom.lkp to the main project folder
(the folder containing main and any other user created source files). Within custom.lkp, the following command
should be used:

Syntax:

-b<area name>:<start address>.<end address>

Example:

-bmyArea:0x3FC0.0x3FFF

In this example, the user defined area called ‘myArea’ is placed at address 0x3FC0, or block number 255, in flash.
Similar to the C example, this data can easily be accessed by referencing myArray instead of using the flash read

function. When the data within myArray needs to be updated, the bFlashWriteBlock() routine can be used to

update block 255.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 22

For additional information on the #pragma and other linker directives, refer the C Language Compiler User Guide
available in the PSoC Designer Documentation folder.

8 Summary

This application note describes the basic flash architecture present in PSoC 1 and covers the various techniques
available for reading from and writing to flash. Using the information presented in this application note, users will be
able to store nonvolatile data in flash with minimal effort.

9 References

 Section 3.12 through 3.14 of PSoC Programmer User Guide documents the procedure to read the flash contents,
verify checksum and erase all or selective blocks of Flash.

 PSoC
®
 1 ISSP Programming Specifications - CY8C21x23, CY8C21x34, CY8C23x33, CY8C24x23A, CY8C27x43,

CY8CTMG110, CY8CTST110

 PSoC
®
 1 ISSP Programming Specifications - CY8C21x45, CY8C22x45, CY8C24x94, CY8C28xxx, CY8C29x66,

CY8CTST120, CY8CTMA120, CY8CTMG120, CY7C64215

About the Author
Name: Praveen Kumar M

Title: Applications Engineer Sr

http://www.cypress.com/
http://www.cypress.com/?rID=35428
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2907
http://www.cypress.com/?rID=2908
http://www.cypress.com/?rID=2908

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 23

Document History

Document Title: AN2015 – PSoC
®
 1 – Getting Started with Flash & E2PROM

Document Number: 001-40459

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1532004 VED 10/02/2007 New publication of existing application note.

*A 2625181 BTK 12/19/2008 Modified title.

Updated content to include devices with more than 16 kB of flash. Modified
content to point to flash endurance specifications in data sheets.

Corrected and added more information regarding flash protection information.

Updated content with minor formatting and grammatical improvements.

*B 2978865 RLRM 07/12/2010 Updated the example code in the Appendix.

*C 3190554 DRSW 03/08/2011 Updated title to read “AN2015 - PSoC
®
 1 - Reading and Writing Flash”.

Updated Software Version in page 1 to PSoC
®
 Designer™ 5.1.

*D 3308489 DRSW 07/11/2011 Updated flash write time information in the Flash Write Algorithm section.

Updated Table 1 to include the characters used in flashsecurity.txt

Noted that some PSoC devices will have a 1 byte block ID parameter instead
of a 2 byte word.

*E 3405282 DRSW 10/13/2011 Full rewrite.

Added information on E2PROM UM

Many sections given their own heading and expanded (architecture,
temperature, flash protection, algorithm, Flashblock API examples, and special
considerations).

Updated template.

*F 3421756 DRSW 10/25/2011 Minor changes - page header fixed

*G 3673054 PRKU 07/23/2012 Updated title to read as “PSoC
®
 1 – Getting started with Flash & E2PROM”.

Updated Software Version to “PSoC
®
 Designer™ 5.2 SP1”.

Updated Abstract.

Updated Introduction (Updated Flash Architecture (Added Table 1), updated
Flash Write Algorithm (Updated description), updated Selecting the
Appropriate Temperature (Updated description, added Table 2), updated Flash
Protection (Updated description)).

Updated How to Write to Flash (Updated E2PROM User Module (Updated
description, added Figure 6), updated Flashblock API Library (Updated
description, added Figure 7), added Table 4).

Removed the section “Flashblock API Usage”.

Added Example Projects.

Tested both the example code with PD 5.2

Added References

Updated in new template.

Completing sunset review.

*H 4764479 ASRI 05/13/2015 Updated template

*I 5687791 AESATMP8 04/19/2017 Updated logo and Copyright.

http://www.cypress.com/

PSoC
®
 1 – Getting Started with Flash & E2PROM

www.cypress.com Document No. 001-40459 Rev. *I 24

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 PSoC Resources
	2.1 PSoC Designer
	2.2 Code Examples
	2.3 Technical Support

	3 Flash Architecture
	3.1 Flash Write Algorithm
	3.2 Selecting the Appropriate Temperature
	3.3 Flash Protection

	4 How to Write to Flash
	4.1 E2PROM User Module
	4.2 Flashblock API Library

	5 Flashblock API Description
	6 Example Projects
	6.1 Hardware Setup / Demo
	6.2 Example Project 1: E2PROM – CY8C29466-24PXI
	6.3 Example Project 2: Flashblock – CY8C29466-24PXI
	6.4 Example Project 3: Flashblock – CY8C27443-24PXI
	6.5 Reading Data from Flash Using PSoC Programmer

	7 Special Considerations
	7.1 Interrupts and Timing
	7.2 Voltage Stability
	7.3 Placing Data in Flash

	8 Summary
	9 References
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

