1 Introduction
The occasion might arise in which a customer has a packaged Semiconductor IC product that will be, or has been in storage in excess of 12-18 months. This document provides some information to help our customers make more informed decisions on how best to store these products and what issues might arise. Also see Section 7, Frequently Asked Questions on page 3 for more details.

2 General
Receiving, storing, packing, and shipping procedures should prevent mechanical or electrical damage or degradation of the Semiconductor IC device when subjected to normal handling, shipping, and storage. All packing materials should be either conductive or antistatic, including tubes, trays, reels, bags, and fillers (see EIA-583). Appropriate ESD precautions must be taken (see JESD625). Dry bagging or vacuum bagging of product at any point up to and including shipment to the end user should follow industry standard specifications. This includes rebaking and rebagging of parts when necessary. The distributor or user is responsible for verifying conformance to all of the receiving, storing, packing, and shipping requirements prior to use by the end customer.

3 Inventory Control
When several lots of the same part number and package type exist in inventory, product should be used based upon the first-in, first-out (FIFO) inventory method (i.e., delivery or use based upon the oldest date code first).

4 Main Concerns

4.1 Moisture Barrier Bag Penetration
It is possible that while in storage, moisture might have permeated the sealed moisture barrier bag (MBB) that encloses the product and protects it from moisture. If, after opening the MBB, the humidity indicator card has changed color showing that moisture has penetrated the MBB and bake is required, the parts must be baked per the recommended conditions shown on the label adhered at the MBB bag before they are used. If possible, the baked parts should be placed in a sealed bag as well before use.

4.2 Oxidation/Discoloration on Leadframe-based Packages
In rare instances, while in extended storage, the leads on leadframe-based packages such as TSOP or SOIC products might discolor and/or oxidize. Cleaning fluxes should be employed to ensure proper cleaning and best adhesion to the board. Solderability testing should be performed in order to ensure good solder wetting. Cypress also recommends a limited trial-run or assembly evaluation to guarantee favorable results before the product is placed into mass-production.

4.3 Oxidation/Discoloration on Substrate-based Packages (BGA)
In the same way that leadframe-based packages can oxidize and/or discolor, in rare circumstances the solder spheres attached to the underside of substrate-based packages might also discolor and/or oxidize. As with leadframe packages, BGA packages should be treated in a similar fashion to ensure good results with assembly.
4.4 Difficulty with Packaged Parts Shipped in Tape and Reel
When packaged parts are shipped in tape and reel, it is more difficult to ensure long term reliability because of the nature of the transport medium. Tape and reels, although packaged in a moisture barrier bag, might still experience some moisture ingress, and as a result, the parts inside might need to be baked. However, reels cannot withstand the higher temperatures required for dry bake, and the parts must be placed into trays, which can withstand baking temperatures. For very long term storage, it is recommended that products be purchased in trays so that any necessary bake can be performed easily.

4.5 ESDS Considerations
The system for electrostatic discharge sensitive (ESDS) protection should be in compliance with JESD625. When removing devices from reels, the cover tape should be removed at a rate of 10 mm/second or less, and at an angle of between 165° and 180° from the carrier tape to minimize electrostatic generation.

5 Conclusion
In general, the quality and reliability of long term stored Semiconductor IC product should be acceptable and comparable to newer product. However, to ensure that no issue will be observed in assembly (board mounting), Cypress recommends an evaluation of long term stored product before mass production is initiated.

6 References
- JEDEC Standard JESD31, *General Requirements for Distributors of Commercial and Military Semiconductor Devices*
- JEDEC Standard JESD625, *Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices*
- EIA Standard EIA-541, *Packaging Material Standards for ESD-Sensitive Items*
- EIA Standard EIA-583, *Packaging Material Standards for Moisture-Sensitive Items*
7 Frequently Asked Questions

Q: I have Cypress product that has been in storage for an extended amount of time. What should I do to ensure that the parts would work in my application?

A: Examination of the vacuum sealed bag and Humidity Indicator Card must first be done to determine if moisture has penetrated the barrier bag. Additionally, preliminary testing such as solderability and a limited trial run with the old material is recommended.

Q: What kinds of indication will I have if there is a risk for this older material?

A: It is possible for an issue to arise even if there is no visual indication of a problem. However, solder leads can appear tarnished or even copper in color as opposed to the normal silvery appearance. Solder spheres can also appear tarnished which might indicate a concern. But with proper testing performed up front, any potential for risk can be minimized.

Q: What are Cypress’s storage recommendations?

A: Cypress always recommends that packaged parts be kept in an environmentally controlled area (<40°C and 90% RH), as indicated on the label adhered to the MBB bag, and in proper containers and vacuum sealed, if possible. Because most Cypress parts have a warranty for 12 months, product that exceeds that time frame will have limited support. However, Cypress is dedicated to its customers and will work to help assist in any way possible.

Q: What kind of reliability issues should I expect from these parts?

A: The functionality and reliability of the product should be unaffected. However, it is possible that because of moisture ingress and subsequent corrosion or contamination, package leads or solder spheres might not fully wet to the solder paste, resulting in unformed or incomplete bonds to the printed wiring board. This is why Cypress recommends solderability testing and a board mounting evaluation prior to full production.
Document History Page

Document Title: AN201106 - Long Term Storage of Packaged Semiconductor IC Products
Document Number: 002-01106

<table>
<thead>
<tr>
<th>Rev.</th>
<th>ECN No.</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>–</td>
<td>–</td>
<td>09/02/2011</td>
<td>Initial version</td>
</tr>
<tr>
<td>*A</td>
<td>5008916</td>
<td>MSWI</td>
<td>11/10/2015</td>
<td>Updated in Cypress template</td>
</tr>
<tr>
<td>*B</td>
<td>5822990</td>
<td>AESATMP8</td>
<td>07/18/2017</td>
<td>Updated logo and Copyright</td>
</tr>
</tbody>
</table>
Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products
- ARM® Cortex® Microcontrollers: cypress.com/arm
- Automotive: cypress.com/automotive
- Clocks & Buffers: cypress.com/clocks
- Interface: cypress.com/iot
- Internet of Things: cypress.com/iot
- Memory: cypress.com/memory
- Microcontrollers: cypress.com/mcu
- PSoC: cypress.com/psoc
- Power Management ICs: cypress.com/pmic
- Touch Sensing: cypress.com/touch
- USB Controllers: cypress.com/usb
- Wireless Connectivity: cypress.com/wireless

PSoC® Solutions
- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community
- Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support
- cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.