Assembly Instructions for the Easy-PressFIT Modules

About this document

Scope and purpose
This application note provides a guideline on how to use and implement Easy modules using PressFIT connectors. The values and recommendations provided in this document should not be considered as datasheet values.

Intended audience
This document is intended for all experts using Infineon Easy modules.

Table of contents

1 General information.. 2
1.1 General information on power module handling... 3
2 Requirements for printed circuit boards.. 4
3 The press-in process.. 6
 3.1 Press-in tools .. 6
 3.1.1 Press-in tools for Easy modules with thermal interface material ... 7
 3.2 Press-in forces and speed .. 9
4 The press-out process ... 10
 4.1 Press-out tools .. 10
 4.2 Press-out forces ... 11
5 Quality of PressFIT contacts... 12
6 Mounting a PCB to the module .. 14
7 Condition of the heat sink for module assembly ... 15
8 Applying the thermal grease ... 16
9 Assembling the module on heat sink.. 17
 9.1 Assembling Easy1B/2B module on heat sink ... 17
 9.2 Assembling Easy3B module on heat sink ... 19
10 System considerations ... 21
 10.1 Module is already pressed into the PCB before mounting ... 21
 10.2 Module is pressed into the PCB after mounting .. 21
11 Clearance and creepage distances .. 22
12 Multi-module and automotive application ... 24
 12.1 Modules’ press-in process on the PCB .. 24
 12.2 Modules and PCB mounting on the heat sink .. 26
 12.3 Press-in and mouting only Easy3B modules with PCB and heat sink ... 28
1 General information

PressFIT is an alternative method for connecting control and load current contacts on IGBT modules to a PCB (printed circuit board) that complies with the requirements for greater durability, the trend towards higher temperatures, RoHS and, of course, very simple handling.

This contact technology has already been employed for years in the automotive sector under the most difficult of conditions, and with medium-sized currents. The contacts have also been used in the telecommunications sector for some time now for signal transmissions. This type of contact is therefore ideal for use in IGBT modules for which the contacts have to meet the requirements for load, control and sense connections.

The PressFIT contact technology for power modules was initially developed in the EconoPIM™ and EconoPACK™ series.

The Easy PressFIT pin provides a solution for modules without a baseplate. It should be noted in the case of the Easy PressFIT geometry that it has been used for decades in a wide variety of applications, and has been adapted for use in the various modules.

The Easy PressFIT contact allows solderfree assembly of the EasyPIM™, EasyPACK and Easy Automotive modules in the EasyB series. In this assembly technology, the module can be mounted on either side of the circuit board.

The electrical and thermal contacts with the circuit board are implemented by means of cold welding. The contacts can be used in standard FR4 PCB with the typical tolerances of manufacturers.

Figure 1 Modules in the EasyB series featuring PressFIT contacts

Easy PressFIT contacts have an area of approximately 1.7 mm that adapts itself to the hole in the PCB during the press-in process. The plastic is deformed as a result. This deformation is intended to accommodate the tolerance, and provides the basis for the cold welding.

The forces resulting during the PressFIT process ensure that the welded materials on the PCB and pin exhibit a continuously consistent – and, unlike other contact technologies – very small electrical contact resistance (approximately 0.05 mΩ). Figure 2 shows various sections and REM images that provide a view of the gas-tight bonded materials resulting from the press-in force.

Figure 2 Easy PressFIT contact sections
1.1 General information on power module handling

This section describes forces on module housing – DCB push-out

The power module is not designed to withstand forces on the module housing as shown in the example of Figure 3. The module pins are located here on a flat table. Forces on the module housing (Fp) are pushing the DCB out of the housing. Therefore, **forces (Fp) on the module housing have to be avoided during handling.** Please note that this is a different case compared to the normal press-in process, where the DCB is fully supported in the press-tool, and the press-in forces affect the DCB, and not the housing.

![Figure 3 Forces on the housing during module handling should be avoided to prevent a push-out of the DCB](image)

Some modules will have quite low DCB push-out forces (Fp), the minimum value of which is not a confirmed property of the power module. This is not critical for real applications, because the housing is fixed later on the cooling system by the integrated clamps. Thus, the housing cannot move in a critical way. Furthermore, the “sealing rope” between the module frame and the DCB only serves to seal the module when the isolating gel is filled during our production process. After the filling process, the liquid gel is heated and becomes soft but solid. The sealing has no gluing function in the final product.
2 Requirements for printed circuit boards

The PressFIT technology used in the Easy modules has been inspected and qualified by Infineon Technologies AG for standard FR4 PCBs with tin applied chemically (IEC 60352-5 + IEC60747-15). If other handling technologies are to be used in the production of PCBs, they have to be tested, inspected and qualified.

Requirements for the PCB material:

Double-sided PCB according to IEC 60249-2-4 or IEC 60249-2-5.

Multilayer PCB according to IEC 60249-2-11 or IEC 60249-2-12.

Table 1 Requirements for a PCB

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole drill diameter</td>
<td>1.12 mm</td>
<td>1.15 mm</td>
<td></td>
</tr>
<tr>
<td>Copper thickness in hole</td>
<td>> 25 µm</td>
<td></td>
<td>< 50 µm</td>
</tr>
<tr>
<td>Metallization in hole</td>
<td></td>
<td></td>
<td>< 15 µm</td>
</tr>
<tr>
<td>End hole diameter</td>
<td>0.99 mm</td>
<td>70 µm</td>
<td>1.09 mm</td>
</tr>
<tr>
<td>Copper thickness of conductors</td>
<td>35 µm</td>
<td>105 µm</td>
<td>400 µm</td>
</tr>
<tr>
<td>Metallization of circuit board</td>
<td></td>
<td>Tin (chemical) recommended</td>
<td></td>
</tr>
<tr>
<td>Metallization of pin</td>
<td></td>
<td>Tin (galvanic)</td>
<td></td>
</tr>
</tbody>
</table>

In order to ensure that the PressFIT contact sits securely in the PCB, the specification of the hole given in Table 1 must be adhered to.

If the specification of PressFIT holes is limited to only the finished dimension (i.e., the metallized hole), different drill sizes could be used depending on the PCB manufacturer and production philosophy, and also different metallization thicknesses could be provided. This would lead to results that would have to be rejected for quality assurance reasons. The end hole diameter is a function of the drill hole, the copper thickness and the metallization in the hole.

The recommendation still applies that the hole in the PCB is to be drilled during manufacture with a drill size of 1.15 mm, and should not be milled. Experience has shown that a final hole diameter between 1.12 mm and 1.15 mm is obtained under consideration of the runout tolerances of the spindles after drilling due to shrinking of the FR4 material.

With a copper thickness of 30 µm to 50 µm in the hole and a tin layer of about 1 µm for tin applied chemically, an end hole diameter is obtained as the test dimension. Due to the thinner tin layer thickness, this diameter is always higher than the value of 1 mm stated in the standard (IEC 60352-5). The final hole diameter, considering the drilling diameter, copper thickness and a chemical tin layer, is typically between 1.02 mm and 1.09 mm.
Assembly Instructions for the Easy-PressFIT Modules

The PressFIT technology is qualified for FR4 PCB material.

After a reflow soldering process is carried out on a PCB, the module can be pressed into the board without difficulty. The retention forces of the press-fitted pins are not diminished.

Depending on the applied press tools, a certain distance from the middle of the pins to other components must be observed. **A distance of 5 mm is recommended, similar to Infineon’s Econo PressFIT power modules.**

A PressFIT module can be replaced up to two times. This means that a PCB can be used in total three times. Correct handling of the components is essential.

A module that has been pressed in, and the contact pressed out again, can no longer be pressed back in again. Instead, the module can only be attached to a new PCB via soldering. The plastic deformation of the PressFIT area does not permit a further PressFIT process.

Tolerance of PCB hole pattern is suggested to be kept within:

![Tolerance symbol]_

Figure 4 Structure of a PCB

[Diagram of PCB structure with annotations]

A drill hole with dimensions of 1.15 ±0.03 mm is shown, along with the copper in the hole and the end hole diameter, which is min. 0.99 mm to max. 1.09 mm.
3 The press-in process

This section deals with the necessary press-in forces and tools for the modules.

The PressFIT module is inserted in a PCB by pressing it in. PressFIT can be performed using a toggle lever press or a machine. A press-in tool that records the necessary force and the travel distance is recommended. Consistent quality and reproducibility is assured in this way. The PressFIT speed should not be lower than 25 mm/min according to IEC 60352-5. A lower PressFIT speed can lead to increased press-in forces and to deformation of the pins, or a non gas-tight connection.

Note that during the press-in process, the placement area of the PCB and the pressing area of the pressure plate must be parallel to each other. The pressure plate should be mechanically fixed in position without any tolerance. The module is then pressed into the PCB in a regular motion.

The module pins should penetrate the PCB during press-in until the four stand-offs on the module, or optional distance keepers as described in Multi-module and automotive application, make contact with the board.

By adhering to the principles stated above, a smooth insertion process for the two components can be achieved.

The following illustrations show the press-in process as it is implemented in the laboratory.

![Press-in process of an Easy module](image)

Figure 5 Press-in process of an Easy module

Attention! It is recommended to protect the underside of the IGBT module against damage during the press-fitting process.

3.1 Press-in tools

The following tools that help pressing the modules in and out are recommended for the three Easy B Series modules. Figure 6 shows these pressing tools for the two housing types, Easy 1B and Easy 2B. The pressing tools for Easy3B housing are shown in Figure 7.
Each of the tools has two parts. The first part presses against the underside of the module, and the second part holds the PCB in place to be pressed against.

No components can be placed in the mounting areas of this special type of press-fitting tool. This prevents damage during the press-fitting process.

When press-fitting multiple modules onto a PCB, arrange the press-in tool in such a way that the modules are on the same level after pressing. In this way, the modules can be mounted on the heat sink with a good thermal connection.

Figure 6 Press-fitting tools for Easy1B (shown left), Easy2B (shown right)

Figure 7 Press-fitting tools for Easy3B from HARTING Electronics GmbH

The drawing can be adjusted according to different requirements (e.g. module pinning and top side assembly of other parts) and the tools produced by a manufacturer of choice.

3.1.1 Press-in tools for Easy modules with thermal interface material

If modules with pre-applied thermal interface material (TIM) are used, the press-in stamp has to be designed with respect to the position of the TIM material on the module’s base plate. Figure 8 shows the picture of an Easy2B module with TIM.
Assembly Instructions for the Easy-PressFIT Modules

Figure 8 Easy2B with TIM

The structure of the presented TIM surface is only exemplary and not fixed for all products within the Easy family.

The stamp should not touch the TIM material during press-in. That is why the stamp only touches the substrate areas without TIM. Figure 9 shows the geometries of the stamp for the press-in of Easy1B and Easy2B modules with TIM.

Figure 9 Press-in stamp of Easy1B (left) and Easy2B (right)
3.2 Press-in forces and speed

To press a module onto a PCB, a force of between approximately 60 N and 100 N must be applied for each pin in the module. The press-in forces vary according to the diameter of the hole and copper metallization in the PCB.

Table 2 shows the PressFIT speed and the maximum PressFIT force per pin.

<table>
<thead>
<tr>
<th>PressFIT speed</th>
<th>>25 mm/min according to IEC 60352-5 qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mm/min recommended</td>
</tr>
<tr>
<td>PressFIT forces per pin</td>
<td>Typ. 85 N</td>
</tr>
<tr>
<td></td>
<td><100 N max.</td>
</tr>
</tbody>
</table>

Table 2 PressFIT speed and forces per pin

Attention! The maximum applied force per module for Easy1B and Easy2B during pressing should not exceed 4 kN. For Easy3B the maximum applied force should not exceed 8 kN.

The press-fitting speed should not be lower than 25 mm/min according to IEC 60352-5. Infineon recommends a press-in speed of about 100 mm/min. The typical press-in speed for automated assembly lines is up to 450 mm/min.
4 The press-out process

This section deals with the necessary press-out forces and tools for the modules.

PressFIT modules are removed with the appropriate tools as shown in Figure 10 and Figure 11. The PCB is placed with the PressFIT module on the device tray. Force is applied with the extrusion plate on the PressFIT pins that protrude from the PCB. The press-out tools must be aligned parallel to each other so that the individual components (such as the PCB and module) are not damaged. Once the PressFIT zone has been lifted from the PCB, the module falls onto the tray in the lower part of the tool, and is separated from the board.

![Figure 10 Extrusion of an Easy module](image)

4.1 Press-out tools

As already mentioned above, the press-out tools consist of two parts. The upper part of the tool presses directly downwards on the module pins. The lower part of the tool holds the module with the PCB, and serves as a base for the pressing operation.

The disassembly tools must be aligned parallel to each other in order to obtain an equally distributed extrusion process.

The dimensions of the press-out tool must be considered when designing the PCB so that the components positioned around the module will not be damaged.
4.2 Press-out forces

To press a module out of a PCB, a force of approximately >40 N has to be applied for each pin in the module. The extruding forces depend mainly on the diameter of the hole in the PCB.
5 Quality of PressFIT contacts

PressFIT is an alternative solution for connecting control and load current contacts on IGBT modules with a PCB.

The requirements for greater durability, the trend towards higher temperatures and absence of lead, and, of course, very simple handling, are continuously growing.

As an advanced technology on the market, the PressFIT makes it possible to improve reliability up to a factor of 100 compared to manually soldered contacts and other contact types. The results of the reliability analyses in the Siemens norm SN 29500-5 demonstrate the factor.

The assembly process is simple, and consequently saves time and money. The process is reliable, and system reparable is ensured.

An extract from the Siemens norm SN 29500-5 / Edition 2004-06 Part 5 shown in Table 3 illustrates the failure rates of different contact technologies.

<table>
<thead>
<tr>
<th>Process</th>
<th>Conductor diameter in mm²</th>
<th>Failure rate λ ref in FIT1)</th>
<th>Notes: Standards/guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder manual</td>
<td></td>
<td>0.5</td>
<td>IPC 6102), class 2</td>
</tr>
<tr>
<td>Automatic</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Wire bonding for hybrid circuits Al Au</td>
<td>0.1</td>
<td>0.1</td>
<td>28 μm / wedge bond</td>
</tr>
<tr>
<td>Winding</td>
<td>0.05 to 0.5</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Crimping manual Automatic</td>
<td>0.05 to 300</td>
<td>0.25</td>
<td>IEC 60352 – 2 /</td>
</tr>
<tr>
<td>Clips</td>
<td>0.1 to 0.5</td>
<td>0.02</td>
<td>IEC 60352 – 2 A 1+2</td>
</tr>
<tr>
<td>PressFIT</td>
<td>0.3 to 2</td>
<td>0.005</td>
<td>IEC 60352 – 5</td>
</tr>
<tr>
<td>Insulation piercing connectors</td>
<td>0.05 to 1</td>
<td>0.25</td>
<td>IEC 60352 – 3 / IEC 60352 – 4</td>
</tr>
<tr>
<td>Screws</td>
<td>0.5 to 16</td>
<td>0.5</td>
<td>DIN EN 60999 – 1</td>
</tr>
<tr>
<td>Terminals (spring force)</td>
<td>0.5 to 16</td>
<td>0.5</td>
<td>DIN EN 60999 – 1</td>
</tr>
</tbody>
</table>

1) 1 FIT = 1 x 10⁻⁹ 1/h; (one failure per 109 component hours)
2) Acceptance conditions for PCBs

The PressFIT contact has been qualified in accordance with the usual standards for IGBT modules at Infineon.

Figure 12 shows a small extract of the various tests. The extract shows that the conditions in the individual tests are to be regarded as considerably stricter than stated in the standards. For example, in a corrosive gas test, the temperatures in scope of individual test is 15 K higher than the condition in the standard. And the H2S...
concentration is five times higher than the conditions according to the norm. The green fields show the test conditions according to the norm, which is less critical than in the individual tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Boundary</th>
<th>Requirement</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>None-contacts</td>
<td>min. hole</td>
<td>No damage</td>
<td>6 contacts min hole</td>
</tr>
<tr>
<td>Press-in and push-out forces</td>
<td>max. hole</td>
<td>The minimum and maximum push-out force shall be as specified by the manufacturer</td>
<td>7 contacts max hole</td>
</tr>
<tr>
<td>Climatic sequence</td>
<td>Contact resistance after different stress tests</td>
<td>No relevant change of resistance</td>
<td>100 contacts min hole, 100 contacts max hole</td>
</tr>
<tr>
<td>TST</td>
<td>-40°C to +120°C, exposure time 30min, 10 cycles</td>
<td>Standard = 83°C</td>
<td></td>
</tr>
<tr>
<td>Camp cycling</td>
<td>16h dry heat 120°C, 6 cycles; damp heat (138°C, 65%) 16 cycles; 65%RH > 2h, 110°C 16 cycles</td>
<td>No relevant change of resistance</td>
<td></td>
</tr>
<tr>
<td>Dry heat</td>
<td>120°C, 1000h</td>
<td>No relevant change of resistance</td>
<td></td>
</tr>
<tr>
<td>Flawing mixed gas corrosion</td>
<td>0°C, 0°C, 0°C, 0°C</td>
<td>No relevant change of resistance</td>
<td></td>
</tr>
</tbody>
</table>

* Example of Easy-PressFIT

Figure 12 Extract from qualification test

Further details on the individual tests can be found in various publications, such as "Reliability of PressFIT connections" at www.infineon.com.
6 Mounting a PCB to the module

For mounting a PCB onto the module, additional screws can be used if desired. These screws will be tightened into the stand-offs of the module.

An electronically controlled, or a slowly turning electric screwdriver, with \(n \leq 300 \) rpm, is the preferred mounting tool.

Due to the lack of accuracy, we do not recommend the use of pneumatic screwdrivers or manual screwdrivers.

![Figure 13 Detailed view of the assembly insert](image)

The effective length of the thread in the stand-off should have a minimum of 4 mm and a maximum length of 8 mm.

The initial 1.5 mm of the mounting stand-off serves as guidance only and cannot take any force. The thread in the plastic will form during the screwing process.

For the choice of the screw length, the given PCB thickness has to be taken into account.

The following screws are tested to fix the PCB to the module:

- Ejot PT WN 1451 K25*10 A2K Mmax=0,45 Nm ±10%
- Ejot DELTA PT WN 5451 K25*8 Mmax=0,4 Nm ±10%
- Metric screws: M2.5*x – for example, M2.5*8 or M2.5*10 depending on the thickness of the PCB used

To avoid damage or splitting of the stand-off, straight insertion of the screw into the stand-off has to be observed during assembly.
7 Condition of the heat sink for module assembly

The power loss occurring in the module has to be dissipated via heat sink in order not to exceed the maximum permissible temperature T_{vjo} specified in the datasheets during operation.

The condition of the heat sink surface in the area where the module is mounted is of great importance, as this interface between heat sink and module is of decisive influence on the heat transfer of the entire system.

The contact surfaces, the surface below the module and the surface of the heat sink have to be free of degradation and contamination to prevent excess mechanical stress to the module as well as an increase in thermal resistance.

Heat sink requirements:

Roughness: ≤ 10 µm

Flatness based on a length of 100 mm: ≤ 50 µm

Note 1: The flatness of the heat sink should not exceed the values listed above. This area includes the entire module mounting area as well as that of the clamps.

Note 2: If the layer of thermal grease applied is too thick, e.g. as a consequence of cavities, the thermal resistance R_{th} between module and heat sink will increase.
8 Applying the thermal grease

Due to the individual surface shape (e.g. roughness and flatness) of the heat sink and the module, the lower surface of the module and the surface of heat sink do not touch across the entire area. Therefore a certain localized separation between the two components cannot be avoided.

To dissipate the losses occurring in the module and to achieve a good flow of heat into the heat sink, all localized cavities have to be filled with a thermal compound. When using a heat conductive paste, a homogenous application needs to be assured.

A well-applied layer will fill all cavities, and at the same time will still allow the metallic contact between module base and heat sink surface. A compound should be selected which shows permanently elastic features in order to assure a continuously favorable heat transfer resistance.

Before the module is mounted onto the heat sink, an even layer of thermal grease, 80 µm thick for Easy1B/2B, and 60 µm thick for Easy3B, is recommended be applied to the module base or to the heat sink according to the module size and the thermal grease used. This grease can be applied using either a spatula, a roller, or by silk screen printing. The quantity of thermal grease is sufficient if a small amount of grease is visible around the module after assembly to the heat sink.

The recommendation is to apply the thermal grease by means of a screen print process. Apart from an optimized and module-specific distribution of the heat conductive paste, a homogenous and reproducible layer thickness can be achieved with this procedure. If a screen print process is used, the layer thickness could be reduced to values under the above-mentioned numbers. The size of the module and the viscosity of the thermal grease are important factors in this case.

Further notes regarding the application of screen print templates for the application of thermal grease can be found in the application note AN2006-02 Application of silk screen.
9 Assembling the module on heat sink

9.1 Assembling Easy1B/2B module on heat sink

The module is mounted onto the heat sink using M4 screws. It is also possible to use an additional flat washer. The heat sink has to be provided with threaded holes as shown in Figure 14.

![Figure 14: Spacing of the threaded holes](image)

Note: If the module is first pressed in to the PCB, or if a later disassembling of the module is desired, the PCB must contain suitable through-holes. The hole size depends on the screwdriver size or the screw’s head diameter or washer.

The module should be positioned onto the heat sink in such a way that the holes of the screw clamps are exactly above the threaded holes of the heatsink. The mounting surface must be clean and free of contamination.

The module can be fastened by screwing in and tightening both screws at the same time (Figure 15a) or by holding down the module during the mounting process with a force of approximately 10 N so that the module cannot rise up (Figure 15b).
Assembly Instructions for the Easy-PressFIT Modules

Alternatively, one screw can be applied initially. It is important that the module does not lift up. To prevent this, tighten the first screw loosely to avoid a press force to the clamp (Figure 16a). Then, tighten the second screw completely (Figure 16b). Finally, tighten the first screw completely (Figure 16c).

Figure 15 Module fastening options

Figure 16 Fasten the module by tightening both screws at the same time
9.2 Assembling Easy3B module on heat sink

For the assembly of the Easy3B module to the heatsink, Infineon recommends the use of DIN M5 screws, in combination with a M5 washer.

Position the module correctly to the heat sink, so that the mounting area of the module is congruent with the threaded holes in the heat sink. Make sure that there are no foreign objects between the module and the heat sink.

The module can be fixed by screwing and tightening both screws at the same time (see Figure 17).

Alternatively, the module can be mounted to the heat sink in several steps (see Figure 18):

- **Step 1:** The first screw can be screwed in slightly. Do not fully tighten it, so that no pressure is exerted.
- **Step 2:** The second screw needs to be firmly screwed to the heat sink.
- **Step 3:** Finally, the first (loose) screw needs to be screwed on firmly to the heat sink.

Note: If the module is first pressed in to the PCB, or if a later disassembling of the module is desired, the PCB must contain suitable through-holes. The hole size depends on the screwdriver size or the screw’s head diameter or washer.
Assembly Instructions for the Easy-PressFIT Modules

Figure 18 Module fastening steps

The following values are recommended for the mounting process:

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting screw</td>
<td>M5</td>
</tr>
<tr>
<td>Recommended mounting torque</td>
<td>$M_{a_{\text{max}}} = 1.5 \text{ Nm}$</td>
</tr>
<tr>
<td>Recommended property class of bolt</td>
<td>4.6 - 5.6</td>
</tr>
<tr>
<td>Minimal thread length into the heatsink</td>
<td>$2 \times d = 10 \text{ mm}$</td>
</tr>
<tr>
<td>Pre-tightening torque</td>
<td>0.3 - 0.5 \text{ Nm}</td>
</tr>
<tr>
<td>Tightening torque Ma</td>
<td>1.3 - 1.5 \text{ Nm}</td>
</tr>
<tr>
<td>Screw velocity (pre-tightening)</td>
<td>$U \leq 250 \text{ U/min}$</td>
</tr>
<tr>
<td>Screw velocity (tightening)</td>
<td>$U \leq 20 \text{ U/min}$</td>
</tr>
<tr>
<td>Recommended washer</td>
<td>M5</td>
</tr>
</tbody>
</table>
10 System considerations

If the module is correctly mounted to the heat sink and to the PCB, the screw clamps will apply the necessary pressure. This pressure, together with the correct amount of thermal grease, will ensure a low thermal resistance and an optimal thermal flow between the module and the heat sink. Since the PCB is connected to the module by pressed-in pins only, suitable measures have to be taken to ensure that vibrations are kept at a minimum. Any possible movement between the terminals and the module case has to be avoided. Each single pin may only be subjected to a maximum press and pull force of 6 N vertical to the heat sink. The overall pulling force to the module of 20 N must not be exceeded. The compressive force could be 10 times higher than the possible pulling force. A low compressive load to the module is preferred. Therefore, the circuit board should additionally be fixed to the heat sink at a position close to the module. Two options are possible:

![Diagram](image)

Figure 19 Fixing the PCB

10.1 Module is already pressed into the PCB before mounting

To minimize the forces that are applied to the pins of a module, it is recommended to keep a distance of at least $x = 5 \text{ cm}$ from the module's outer edges (Figure 19).

10.2 Module is pressed into the PCB after mounting

In this case, no mechanical stress will occur. Therefore it is allowed to place the distance keeper as close as possible $x \leq 5 \text{ cm}$ to the module.
11 Clearance and creepage distances

When defining the layout of the PCB, application specific standards, mainly regarding clearance and creepage distances, have to be considered. This is particularly important for the area of the screw clamp, which is located under the PCB. In order to meet the respective requirements regarding clearance and creepage distances, current-carrying devices or through-holes in this area should be avoided, or additional isolation measures like lacquering must be taken.

The minimum clearance distance between the screw and the PCB depends on the screw itself. For Easy1B and Easy2B packages, the distance will be 6.8 mm with a hexagon socket head M4 screw according to DIN 912, a washer according to DIN 125 and the clamp which can be seen in Figure 20. For Easy3B packages, the distance will be 2.95 mm with a hexagon socket head M5 screw according to DIN 912, and an M5 washer according to DIN 125. A detailed drawing can be seen in Figure 21.

The clearance and creepage distances specified in the datasheet are minimum values irrespective of other devices that would be mounted close to the module.

Figure 20 Air path between clip and PCB for Easy1B and Easy2B packages

Figure 21 Air path between clip and PCB for Easy3B package
In any case, the application-specific clearance and creepage distances have to be checked and compared to relevant standards and guaranteed by suitable constructive means, if required.
12 Multi-module and automotive application

An increasing number of applications require the mounting of several power modules on the PCB. Furthermore, new power module applications, like automotive hybrid electrical vehicles and full electric vehicles (H)EV, have high requirements on vibration and mechanical shock robustness. In such applications the height tolerance of the modules has to be considered in the mounting concept in order to avoid a mechanical deformation of the PCB or unwanted forces on the modules and PressFIT pins.

Please note that the following instructions shall be regarded as additional information to the general mounting instructions. The chapter focuses on mounting concepts of the module, taking into account the height tolerance. General recommendations like PCB requirements, press speed, heat sink requirements, etc. are unaffected by the following instructions.

12.1 Modules’ press-in process on the PCB

Figure 22 shows the press-in process of the power modules on the PCB. This process is quite similar to that of Chapter 3.

Figure 22a shows the bottom side of the press-tool with guiding domes, which are useful for pre-alignment. In Figure 22b, the PCB is placed into the press-tool, whereby the correct placement is obtained by the guiding domes of the press-tool.

Figure 22c shows the press-tool with the PCB ready for module assembly.

In Figure 22d the module is placed on the guiding elements. The module is released and the module pins are inserted into the PCB.

Figure 22e shows the state where the module pins are inserted into the PCB. The module is now placed flush with the press-tool, and the pin touches the PCB at the beginning of the active press zone, which starts at about 2.5 mm from the pin top. If the module is not flush with the press-tool or pins are not inserted (module about 2.5 mm higher than the normal case shown here), then mounting should be corrected before the pins are damaged in the later press-in process.

In Figure 22f, the top press-tool with the distance keeper is shown.

Figure 22g shows the controlled path-force press-in process. The press process stops by the increasing force between the PCB and this distance keeper. It is correct if the press-in process is stopped before the PCB is on the module housing. Thus, the distance of the module backside to the PCB is independent of the module height.

Please note: It is possible to press the module tighter to the PCB than the maximum 12.45 mm. This will increase the overlapping zone in the active press zone (contact area: pin to PCB). Please do not forget to lower the fixing elements of the cooling system (Figure 23b) accordingly if the modules are pressed tighter to the PCB! The value (H) of Figure 23b must not be higher than the module-to-PCB height of Figure 23a! A force of the PCB on the module in the direction to the cooling system is uncritical and is desired, as it improves the thermal contact.
Assembly Instructions for the Easy-PressFIT Modules

a)

b)

c)

d)

The pins are inserted into the PCB.

e)

Assembly Instructions for the Easy-PressFIT Modules

12.2 Modules and PCB mounting on the heat sink

After the power module is pressed into the PCB (see Figure 23a), the PCB with the module has to be mounted to the cooling system. Please see Chapter 7 and 8 for more information on heat sink and thermal grease requirements, and how the grease should be applied to the system. Figure 23b-d show the mounting process with an example of three power modules pressed into the PCB. However, the illustrated concept can also be applied with a different number of modules or a single-module application. Figure 23b shows the process where the PCB with the pre-assembled modules is placed on the cooling system and the modules are fixed with screws via the spring clamp of the Easy module. Please refer to Chapter 9 for detailed information on assembly of the modules on the heat sink. It is important to mount the modules before the PCB is fixed to the cooler!

Figure 23c shows fixing of the PCB to the heatsink. As the height tolerance of the module is quasi compensated in the press process, the fixing points for the PCB can be close to the power modules. This is an advantage compared to the concept in section 10.1 where >=5 cm distances have to be maintained between module and distance keepers.

The position of the distance keepers should be designed symmetrically around the power module(s).

Figure 23d shows the final system assembly.

Figure 22 Press-in of the power modules (drawing not true to scale)
Assembly Instructions for the Easy-PressFIT Modules

Figure 23 Mounting example of the PCB and module to the cooling system (drawing not true to scale)

The Figure 24 shows a zoom of the final system assembly. Depending on the height of the module, a small air gap remains between module and PCB.

As the value (H) of Figure 23b must not be higher than the module-to-PCB height of Figure 23a, it is ensured that no pull forces are applied to the power modules, which would be critical in consideration of the thermal contact between module and heat sink.
Please note that using this press concept with a remaining air gap does not allow the PCB to be screwed down to the stand-offs (guiding holes) as shown in chapter 6.

12.3 Press-in and mounting only Easy3B modules with PCB and heat sink

If only Easy3B modules are used in the system, in principle a shorter distance keeper can be applied. The general principle should be kept as described in Chapters 12.1 and 12.2.
In Figure 26a, the Easy3B module(s) is pressed into the PCB.

Figure 26b shows the process where the PCB with the pre-assembled modules is placed on the cooling system, and the modules are fixed with screws. Please refer to Chapter 9.2 for detailed information on assembly of the Easy3B modules on the heat sink. It is important to mount the modules before the PCB is fixed to the cooler!

Figure 26c shows the fixing of the PCB to the heatsink. As the height tolerance of the module is quasi compensated in the press process, the fixing points for the PCB can be close to the power modules. This is an advantage compared to the concept in Section 10.1 where >=5 cm distances have to be maintained between module and distance keepers.

The position of the distance keepers should be designed symmetrically around the power module(s).

Figure 26d shows the final system assembly.

![Figure 26](image-url)

Figure 26 Mounting example of the PCB and module to the cooling system with only Easy3B modules (drawing not true to scale)
Revision History

Major changes since the last revision

<table>
<thead>
<tr>
<th>Page or reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3.1</td>
<td>Insertion of illustration about press-in tools for Easy3B</td>
</tr>
<tr>
<td>Chapter 9.2</td>
<td>Insertion of assembling Easy3B module on heatsink</td>
</tr>
<tr>
<td>Chapter 12.3</td>
<td>Insertion of multi-modules mounting with Easy3B</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE
The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.