

www.cypress.com Document No. 001-27960 Rev. *C 1

AN1089

Parallel Cyclic Redundancy Check (CRC) for Hotlink®

Associated Project: No

Associated Part Family: CY7B923 / CY7B933

Software Version: NA

Related Application Notes: AN1274

To get the latest version of this application note, or the associated project file, please visit
http://www.cypress.com/go/AN1089.

AN1089 discusses using CRC codes to insure data integrity over high-speed serial links, such as Fibre Channel,

ESCON and other standards supported by Cypress's CY7B923 and CY7B933 HOTLink devices. It also shows why

parity is not useful and then describes the most common CRC codes (CRC-16 and CRC-32) used in high-speed

communications systems.

Introduction

This application note discusses using CRC codes to
ensure data integrity over high-speed serial links, such as
Fibre Channel, ESCON™ and other interfaces supported
by Cypress’s CY7B923/CY7B933 HOTLink

®
 devices. It

also shows why parity and Hamming codes are not useful,
and describes common CRC codes used in high-speed
communications systems. Finally, algorithms for parallel
calculation of CRC–16 and CRC–32 are presented.

Why Not Parity (or Why Some Parallel
Interface Practices Don’t Apply in the
Serial World)?

Some systems go to great lengths to detect data errors.
Parity is often used with parallel forms of data, on buses or
memories, to detect some errors. It provides a small
measure of robustness by detecting certain bit errors with
minimal redundancy. However, while parity can detect
single-bit errors, it can detect only half of all multiple-bit
errors.

Other systems go further, employing Hamming codes to
not only detect, but in many instances correct, bit errors.
Both of these approaches are applied to data in its parallel
form. Unfortunately, the use of a Hamming code requires
many more bits of redundancy, per character or word,
than parity.

For transmission of data on high-speed serial channels,
the most prevalent errors are multi-bit bursts. These multi-
bit errors make parity worthless, and severely limit the
effectiveness of single-bit correcting Hamming codes.

The large amount of redundancy in a Hamming code (7
bits to protect a 32-bit word) also makes it a poor choice to
protect data across a serial link. Transmission of the
redundant bits in each word can easily consume a fifth of
the available link bandwidth, or require operation of the
link at a 20% faster transfer rate to carry the redundant
bits.

In reality, bit errors of any type are quite rare in these links
(<< 1 in 10

12
 bits). Since these errors cannot generally be

corrected by a Hamming code or detected by character
parity, the transmission overhead of these types of
detection/correction bits becomes a poor use of link
bandwidth. In systems where data is sent serially across a
link, the data integrity of the link can be much better
verified using Cyclic Redundancy Check (CRC) codes.

http://www.cypress.com/?rID=12740
http://www.cypress.com/?rID=12729&source=an1089

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 2

CRC Codes

CRC codes make use of a Linear Feedback Shift Register
(LFSR) to generate a signature based on the contents of
any data passed through it. This signature can be used to
detect the modification or corruption of bits in a serial
stream.

CRC–16 and CRC–32

In general CRC codes are able to detect:

 All single- and double-bit errors.

 All odd numbers of errors.

 All burst errors less than or equal to the degree of the
polynomial used.

 Most burst errors greater than the degree of the
polynomial used.

Figure 1. Linear Feedback Implementation of CRC–16

CRC codes have been used for years to detect data errors
on interfaces, and their operation and capabilities are well
understood. Two codes that have found wide use are
CRC–16 and CRC–32. As the names imply, CRC–16
makes use of a 16-bit LFSR, while CRC–32 uses a 32-bit
LFSR. Additional information on CRC codes can be found
in the references at the end of this application note.

The generator polynomial for CRC–16 is listed in Equation
1, and the polynomial for CRC–32 is listed in Equation 2.
These CRC codes are traditionally calculated on the serial
data stream using a Linear Feedback Shift Registers
(LFSR) built from flip-flops and XOR gates, as shown in
Figure 1. The structure for the CRC–32 polynomial is
similar to Figure 1, but with twice the number of flip-flops.

1)(
21516
 xxxxG

 Equation 1

1)(
245781011121622232632

 xxG xxxxxxxxxxxxx Equation 2

In these equations, the superscripts identify the tap
location in the shift register. The order of the polynomial is
identified by the highest order term, and specifies the
number of flip-flops in the shift register. Since these
polynomials are for modulo-2 arithmetic, each bit-shift is
equivalent to a multiply by 2.

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 3

Development of a Parallel
Implementation

When used with high-speed serial data, especially data
which is encoded in the serial domain, it becomes quite
difficult to implement the CRC calculations using a shift
register. However, it is possible to convert a serial
implementation into a parallel form that accumulates
multiple bits in each clock cycle. The following paragraphs
and tables describe how the CRC–16 polynomial is
converted to calculate eight bits at a time (i.e., a byte
basis). The CRC–32 polynomial is converted using a
similar procedure, with the results calculated 16 bits at a
time (on a half-word basis). The results for CRC–32 are
presented in Table 5 and Table 6, but without the
intermediate calculations. The generation of these
intermediate equations are left as an exercise for the
reader.

Implementation

First, a few notes:

 Ri is the i th bit of the CRC register.

 Ci is the contents of i th bit of the initial CRC register,

before any shifts have taken place.

 R1 is the least significant bit (LSB).

 The entries under each CRC register bit indicate the
values to be XORed together to generate the content
of that bit in the CRC register.

 Di is the data input, with LSB input first.

 D8 is the MSB of the input byte, and D1 is the LSB.

 A substitution is made to reduce the table size, such
that Xi = Di XOR Ci.

The results of the CRC are calculated one bit at a time
and the resulting equations for each bit are examined. The
CRC register prior to any shifts is shown in Table 1. The
CRC register after a single bit shift is shown in Table 2.
The CRC register after two shifts is shown in Table 3.

This process continues until eight shifts have occurred.

Table 4 lists the CRC register contents after eight shifts. Xi
was substituted for the various Di XOR Ci combinations.
The following properties were used to simplify the
equations:

 Commutativity (A XOR B = B XOR A).

 Associativity (A XOR B XOR C = A XOR C XOR B).

 Involution (A XOR A = 0).

A study of Table 4 reveals two interesting facts:

The most-significant byte (bits R16–R9) of the CRC
register is only dependent on XOR combinations of the
initial low-order byte of the CRC register and the input
byte.

The least-significant byte (bits R8–R1) of the CRC register
is dependent on the XOR combination of the initial lower
eight bits of the CRC register, the input data byte, and the
initial contents of the high-order bits of the CRC register.

This allows the next value of the CRC register to be
calculated as an XOR of the input data character bits, and
a constant determined by the present contents of the CRC
register. For example, calculating a new value for R9 is
accomplished by calculating X3 and X2 and exclusive-
ORing them together.

Table 1. CRC–16 Register prior to any shifts

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

Table 2. CRC–16 Register after One Shift

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C1

D1

C16 C15

C1

D1

C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2

C1

D1

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 4

Table 3. CRC–16 Register after Two Shifts

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C2

D2

C1

D1

C1

D1

C16

C2

D2

C1

D1

C15

C1

D1

C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3

C2

D2

C1

D1

Table 4. CRC–16 Register after Eight Shifts

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

X8

X7

X6

X5

X4

X3

X2

X1

X7

X6

X5

X4

X3

X2

X1

X8

X7

X7

X6

X6

X5

X5

X4

X4

X3

X3

X2

C15

X2

X1

C15

X1

C14 C13 C12 C11 C10 C9

X8

X7

X6

X5

X4

X3

X2

X1

Description of CRC–32 Parallel
Algorithm

The parallel algorithm for CRC–32 is derived in the same
manner as CRC–16. The differences here are that data is
now handled 16 bits (a half-word) at a time, the CRC
register is now 32 bits in length, and a different polynomial
is used.

Table 5 contains the XOR information for the least-
significant half-word (LSHW) of the CRC–32 register after
16 shifts, and Table 6 contains the XOR information for
the most-significant half-word (MSHW) of the CRC–32
register after 16 shifts. Again, note that the MSHW only
depends on XOR combinations of the initial lower-order
bits of the CRC–32 register and the input data. The LSHW
depends on XOR combinations of the initial lower-order
bits of the CRC–32 register, the input data, and the initial
MSHW of the CRC–32 register.

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 5

Table 5. CRC–32 Register (LSW) after 16 Shifts with Xi Substitution

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C32

X1

X3

X8

X10

X11

X12

X16

C31

X2

X7

X9

X10

X11

X15

C30

X1

X6

X8

X9

X10

X14

C29

X5

X7

X8

X9

X13

C28

X4

X6

X7

X8

X12

C27

X3

X5

X6

X7

X11

C26

X2

X5

X7

X16

C25

X1

X7

X10

X15

X16

C24

X6

X9

X14

X15

C23

X5

X8

X13

X14

C22

X6

X10

X12

X13

X16

C21

X5

X9

X11

X12

X15

C20

X4

X8

X10

X11

X14

C19

X3

X7

X9

X10

X13

C18

X2

X6

X8

X9

X12

C17

X1

X5

X7

X8

X11

Table 6. CRC–32 Register (MSW) after 16 Shifts

R32 R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17

X4

X6

X7

X10

X16

X3

X4

X5

X7

X9

X10

X15

X16

X2

X3

X7

X8

X9

X10

X14

X15

X16

X1

X2

X6

X7

X8

X9

X13

X14

X15

X1

X4

X5

X8

X10

X12

X13

X14

X16

X3

X6

X8

X10

X11

X12

X13

X15

X16

X2

X5

X8

X9

X10

X11

X12

X14

X15

X1

X6

X8

X9

X11

X13

X14

X16

X4

X5

X6

X8

X12

X13

X15

X16

X3

X4

X5

X7

X11

X12

X14

X15

X2

X3

X4

X6

X10

X11

X13

X14

X1

X2

X3

X4

X5

X6

X7

X9

X12

X13

X16

X1

X2

X3

X5

X7

X8

X10

X11

X12

X15

X16

X1

X2

X4

X6

X7

X9

X10

X11

X14

X15

X1

X3

X5

X6

X8

X9

X10

X13

X14

X2

X4

X5

X7

X8

X9

X12

X13

Summary

This application note shows how to calculate a parallel
implementation of any CRC polynomial, and the equations
for CRC–16 and CRC–32 are provided. Both designs
easily operate at the fastest character rate supported by
Cypress’s HOTLink devices.

Additional information on usage of CRC polynomials may
be found in the following references and in the Cypress
application note titled “Drive ESCON With HOTLink.”

References

A. Perez, “Byte-wise CRC Calculations,” IEEE MICRO,
June 1983, pp. 40-50.

A. K. Pandeya and T. J. Cassa, “Parallel CRC Lets Many
Lines Use One Circuit,” Computer Design, Sept. 1975, pp
87-91. R. Swanson, “

Understanding Cyclic Redundancy Codes,” Computer
Design, Nov. 1975, pp. 93-99.

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 6

Document History

Document Title: AN1089 - Parallel Cyclic Redundancy Check

(CRC) for HOTLink

®

Document Number: 001-27960

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1467003 FRE 10/11/2007 New application note.

*A 3396139 SAAC 10/05/2011 Updated Abstract.

Removed “Implementation Issues for CRC-16 Parallel Algorithm”.

Removed “Implementation Issues for CRC-32 Parallel Algorithm”.

Updated to new template.

*B 4573006 YLIU 11/18/2014 Updated to new template.

Completing Sunset Review.

*C 5879945 AESATMP9 09/11/2017 Updated logo and copyright.

Parallel Cyclic Redundancy Check (CRC) for HOTLink
®

www.cypress.com Document No. 001-27960 Rev. *C 7

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

