High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discrete

Validity of TRENCHSTOP™ 5 WR5 IGBT in high switching frequency operation in CCM (continuous conduction mode) PFC (power factor correction)

About this document

This application note demonstrates the performances of TRENCHSTOP™ 5 WR5 IGBT in high switching frequency and its application benefits CCM PFC for major home appliances.

Scope and purpose

This document aims to help PFC design engineers in home appliance applications who want to increase switching frequency to achieve the inductor on the board to minimize the system form factor and lower the system cost.

Intended audience

Design engineers of major home appliances power systems, application engineers, students

Table of contents

About this document.. 1
Table of contents... 1
1 Introduction .. 2
2 PFC for major home appliances.. 3
3 Power loss analysis of IGBT in CCM PFC.. 5
 3.1 Conduction loss calculation.. 5
 3.2 Switching loss calculation... 6
 3.3 Power loss analysis of Infineon’s TRENCHSTOP™ 5 WR5 IGBT... 6
 3.3.1 Electrical characteristics.. 7
 3.3.2 Power loss simulation... 11
4 Experimental results .. 13
 4.1 System description... 13
 4.2 Efficiency and thermal performance evaluation ... 14
 4.3 EMI performance evaluation... 15
 4.4 SC immunity of IKW40N65WR5... 17
5 Conclusion ... 20
6 References .. 21
Revision history... 22
1 Introduction

In modern society, as the energy consumed by home appliances is steadily increasing, it has become more and more important to maintain a high power factor (PF) when using these appliances. Air conditioners in particular are the most power-consuming home appliance; and for their design, a power factor correction (PFC) is mandatory. In general, air conditioner applications have a power rating of 1.8 kW or higher, thereby IGBTs are the most appropriate switching device considering the cost-performance ratio. Although IGBTs show much lower conduction loss than power MOSFETs, slower switching speed and tail current characteristics of IGBTs have been limited to increase in the switching frequency. In general, the proper switching frequency of IGBTs has been considered to be far below 60 kHz. In PFC systems, lower switching frequency increases the size of the boost inductor, which cannot then be placed on the main circuit board. In this case, the cost of the inductor is inevitably high, and the form factor of the system will be limited. Moreover, the high risk of short-circuit incidents that may occur during installation or maintenance processes requires short-circuit rated IGBTs for safety. In order to ensure the protection of IGBTs from short-circuit (SC) conditions, a SC rated IGBT is required. In this case, the IGBT has to cope with certain disadvantages in terms of $V_{ce(sat)}$ and switching performance in order to ensure short-circuit immunity. Thus, the demand for integrating the PFC inductor on the main board by increasing switching frequency continues to increase, to minimize the system form factor, to reduce the cost of inductor, and to use high performance IGBTs.
2 PFC for major home appliances

The boost converter in Figure 1 is the most common topology for active PFC circuits, as it can maintain continuous input current, which is most beneficial in terms of lower harmonics and less EMI filter requirements. For PFC in major home appliances especially, CCM (continuous conduction mode) is used because of easier EMI filter design owing to fewer harmonics, lower conduction loss due to lower RMS current, and lower turn-off loss.

![PFC circuit with boost converter topology](image)

The inductor current ripple reaches its maximum value when the instantaneous value of AC input is equal to $V_{out}/2$. However, at high power CCM PFC, the minimum AC input voltage, V_{ac-min}, is approximately at least 180V and its peak value is always higher than $V_{out}/2$. The required inductance, L, for CCM PFC is obtained by using the follow equations.

$$\Delta I_L = \frac{1}{L} \int_{0}^{D Ts} \sqrt{2} V_{ac-min}(t) dt = \frac{V_{out}}{L \cdot f_{sw}} \left(\frac{V_{out} - \sqrt{2} V_{ac-min}}{V_{out}} \right)$$

(1)

$$L \geq \frac{V_{ac-min}^2}{\%\text{ripple} \cdot P_{out} \cdot f_{sw}} \left(\frac{V_{out} - \sqrt{2} V_{ac-min}}{V_{out}} \right)$$

(2)

where, $\%\text{ripple} = \Delta I_L/I_{L-pk}$, and $I_{L-pk} = \sqrt{2} P_{out}/V_{ac-min}$.

As the value of inductance becomes larger, the switching ripple current will become smaller. However, a bulkier inductor is required and this can result in an increase in cost. Meanwhile, the PFC can maintain CCM operation as long as $\Delta I_L/2$ is less than I_{L-pk}; thereby, it is necessary to choose the optimal inductance in terms of cost and performance. The required inductance for CCM PFC in accordance with the switching frequency is indicated in Figure 2. Figure 2 shows that the required inductance becomes significantly smaller as switching frequency increases. When it exceeds 60 kHz, it will become small enough to be placed on the main board.

The capacitance of the PFC output capacitor is independent of the switching frequency, but needs to meet both hold-up time requirement (when brownout occurs) and low-frequency ripple voltage requirements as shown in Equation 2 and Equation 3.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5
WR5 IGBT discretes

PFC for major home appliances

\[
C_{out} \geq \frac{2P_{out} \cdot t_{hold-up}}{V_{out}^2 - V_{out_min}^2}
\]

\[
C_{out} \geq \frac{P_{out}}{2\pi \cdot f_{ac} \cdot \Delta V_{out} \cdot V_{out}}
\]

In general, the hold-up time is defined as one cycle of line frequency, thus it will be 10 msec for 50 Hz or 8.3 msec for 60 Hz respectively. Meanwhile, the ripple voltage requirement is defined by the customer, and is determined at the range approximately 10-20 V.

![Figure 2](image)

Figure 2 Inductance vs. switching frequency for \(P_{out}=2.5\ kW\), and \(V_{ac_min}=180\ V\)
3 Power loss analysis of IGBT in CCM PFC

In order to verify the validity of Infineon’s TRENCHSTOP™ 5 WR5 IGBT, power loss calculation methods are described as follows.

3.1 Conduction loss calculation

Figure 3 indicates the IGBT and FRD waveforms of PFC in CCM operation.

In CCM boost-converter operation, the voltage drops at IGBT, V_{ce,sat} and FRD, V_F can be indicated as follows:

\[V_{ce,sat}(t) = r_c I_c(t) + V_{ce0} \]
\[V_F(t) = r_f I_c(t) + V_{F0} \]

where, \(I_c(t) = I_a + \frac{I_b - I_a}{D T_s} \)

Therefore, the conduction loss of the IGBT for a single period can be calculated by

\[
P_{IGBT,CON} = \frac{1}{T_s} \int_0^{D T_s} V_{ce}(t) \times I_c(t) dt \\
= \frac{1}{T_s} \int_0^{D T_s} \left(V_{ce0} \left(I_a + \frac{I_b - I_a}{D T_s} t \right) + r_c \left(I_a + \frac{I_b - I_a}{D T_s} t \right)^2 \right) dt \\
= D \left\{ \frac{V_{ce0}}{2} \left(I_a + I_b \right) + \frac{r_c}{3} \left(I_a^2 + I_a I_b + I_b^2 \right) \right\}
\]

However, small amounts of ripple current do not contribute much to RMS (root mean square) value, as it makes the calculation more complicated. Thus, the ripple component can be neglected, and equation 7 can be simply expressed as

\[
P_{IGBT,CON} = D(t) \left(V_{ce0} i_L(t) + r_c i_L^2(t) \right)
\]

Meanwhile, since the input voltage is sinusoidal, \(D(t) \) and \(i_L(t) \) are expressed as

\[
D(t) = \frac{V_{out} - \sqrt{2} V_{ac} \sin \omega t}{V_{out}}
\]
\[
i_L(t) = \frac{\sqrt{2} I_{ac} \sin \omega t}{\sqrt{2} P_{out}} = \frac{V_{out}}{\eta V_{ac}} \sin \omega t
\]
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

Therefore, the average conduction loss of the IGBT can be derived by

\[
< P_{IGBT,\text{CON}} > = \frac{1}{\pi} \int_0^\pi \left(V_{out} - \sqrt{2} V_{ac} \sin\omega t \right) \left(\sqrt{2} V_{ce0} I_{ac} \sin\omega t + 2 r_{ce} I_{ac}^2 \sin^2\omega t \right) d\omega t
\]

\[
= V_{ce0} I_{ac} \left(\frac{2\sqrt{2}}{\pi} \frac{V_{ac}}{V_{out}} + r_{ce} I_{ac}^2 \left(1 - \frac{g_{v}\sqrt{V_{ac}}}{3V_{out}} \right) \right) [W]
\]

(11)

In the same way, the conduction loss of the diode is obtained by

\[
< P_{FRD,\text{CON}} > = \frac{1}{\pi} \int_0^\pi \left(V_{out} - \sqrt{2} V_{ac} \sin\omega t \right) \left(\sqrt{2} V_{fo} I_{ac} \sin\omega t + 2 r_{f} I_{ac}^2 \sin^2\omega t \right) d\omega t
\]

\[
= \frac{V_{ac}}{V_{out}} \left(V_{fo} I_{ac} + \frac{g_{v}\sqrt{2}}{\pi} r_{f} I_{ac}^2 \right) [W]
\]

(12)

3.2 Switching loss calculation

The conduction loss of IGBT can be obtained with relatively accurate values from a datasheet. On the other hand, it is impossible to derive the reliable switching loss of an IGBT with datasheet parameters alone. In particular, turn-on loss is significantly affected by the performance of rectifier diodes. However, if the switching energy at high temperatures (generally @ 100°C) is predefined in accordance with the gate resistance value and the level of switching current when combined with a certain diode, switching losses of IGBT can be easily calculated using the equation below.

\[
P_{on} = f_{sw} \cdot I_{on\text{-avg}} \cdot E_{on\text{-factor}} \cdot R_{g\text{-on\text{-factor}}}
\]

(13)

\[
P_{off} = f_{sw} \cdot I_{off\text{-avg}} \cdot E_{off\text{-factor}} \cdot R_{g\text{-off\text{-factor}}}
\]

(14)

Additionally, the switching loss of diode can be simplified by

\[
P_{D\text{-sw}} = \frac{1}{2} V_{out} \cdot Q_{C} \cdot f_{sw}
\]

(15)

3.3 Power loss analysis of Infineon’s TRENCHSTOP™ 5 WR5 IGBT

In the boost PFC circuit in Figure 1, the potential at the IGBT collector is always higher than the potential at the IGBT emitter under all conditions. Therefore, the anti-parallel diode of the switch device should not be conducted in normal operation, except for a very small resonant current when the PFC operates in CrCM (critical conduction mode). Therefore, the performance requirement of anti-parallel diodes is not that high, this diode needs to protect the IGBT only for abnormal conditions. Meanwhile, as the demand for higher switching frequency increases in major home appliances, the switching performance of IGBTs is becoming increasingly important.

Infineon’s TRENCHSTOP™ 5 WR5 IGBT with monolithic anti-parallel diodes, namely reverse conducting (RC) IGBTs, is shown in Figure 4. The RC IGBT concept is that N+ regions are partially implanted into the P-collector layer that forms intrinsic P-N diodes allowing the reverse current to flow without a co-pack diode. This IGBT concept is suitable for boost PFC applications, for which high-performance co-pack diode is not required. This IGBT family offers the best-in-class performance in terms of both conduction and switching behaviors when combined with a SiC diode, and it allows high switching frequency operation beyond 60 kHz.
3.3.1 Electrical characteristics

In order to verify the validity of TRENCHSTOP™ 5 WR5 IGBT in high switching frequency operation, the IKW40N65WR5 was chosen, and the electrical characteristics with CoolMOS™ P7 MOSFET of the equivalent rating were compared. Figure 5 shows the static characteristics’ comparison between IKW40N65WR5 and an 80 mΩ CoolMOS™ P7 MOSFET. As shown in Figure 5, at low current, the CoolMOS™ P7 MOSFET should be more advantageous than the IGBT. However, in the case of CoolMOS™ P7 MOSFET, the R\text{DS}_{\text{on}} increases rapidly as the junction temperature increases, while the variation in voltage drop of the IGBT in accordance with its junction temperature is insignificant. Therefore, as the output power increases and the junction temperature increases, the IGBT becomes more advantageous. Given the output characteristics in Figure 5 (b), IKW40N65WR5 under T\text{j}=100°C conditions has superior performance over the 80 mΩ CoolMOS™ P7 MOSFET when the current is 7-8 A or higher.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

Figure 5 Output characteristics comparison

In order to validate the TRENCHSTOP™ 5 WR5 IGBT in high-switching frequency and high-power operation, a double-pulse test was carried out assuming operating conditions of input voltage 180 V, 2.5 kW CCM PFC, in which the switching current becomes 14.5 A.

Figure 6 Switching comparison between TRENCHSTOP™ 5 WR5 IGBT and competitor’s highest performing IGBT with 20 A SiC diode
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

Figure 7 Switching comparison between TRENCHSTOP™ 5 WR5 IGBT and CoolMOS™ P7 MOSFET with 30 A Rapid 1 diode

Figure 6 shows the switching performance comparison between IKW40N65WR5 and a competitor’s highest performing IGBT combined with 20A SiC diode. As shown in Figure 6, the competitor’s IGBT has 2.1 times higher E_{on} and 13.4% higher E_{off} than IKW40N65WR5. Considering the inferior switching performance as well as higher $V_{ce,sat}$ of the competitor, it is easy to predict that the competitor product will not be suitable for high switching frequency operation.

Figure 7 shows the switching test results of IKW40N65WR and 80 mΩ CoolMOS™ P7 MOSFET combined with 30 A Si diode. Since the reverse recovery current of the boost diode is extremely high when the devices are turned on instantly, it significantly affects the turn-on energies of both devices, which are much higher than their turn-off energies. The E_{on} of IKW40N65WR5 and 80 mΩ CoolMOS™ P7 MOSFET are 259 μJ and 255.3 μJ, respectively, while the E_{off} is 123.4 μJ and 74.1 μJ, respectively.

Meanwhile, it is remarkable that the turn-on energy of the TRENCHSTOP™ 5 WR5 IGBT was measured to be similar to the equivalent CoolMOS™ P7 MOSFET. Nevertheless, neither device is suitable for high-power and high switching frequency applications with Si diodes due to their extremely high switching energy.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

Figure 8 Switching comparison between TRENCHSTOP™ 5 WR5 IGBT and CoolMOS™ P7 MOSFET with 20 A SiC diode

Figure 9 Effect from SiC diode in CCM PFC

Figure 8 shows the switching performance comparison between IKW40N65WR and 80 mΩ CoolMOS™ P7 MOSFET combined with 20 A SiC diode, which well demonstrates the effectiveness of the SiC diode. At turn-on mode, the reverse-recovery current for both devices is much lower than when they are combined with a Si diode. As a result, the turn-on energy for both devices also become significantly smaller than the turn-on energy combined with the Si diode. The E_{on} of IKW40N65WR5, and 80 mΩ CoolMOS™ P7 MOSFET are 126.1 μJ and 120.2 μJ, respectively. The turn-off energies of both devices are not as significant as the turn-on energy improvement. The E_{off} of IKW40N60WR5 and 80 mΩ CoolMOS™ P7 MOSFET are 118.3 μJ and 89.9 μJ, respectively.

Figure 9 well demonstrates how much switching energy can be improved. By combining with a SiC diode, the turn-on energy of IKW40N65WR5 and 80 mΩ CoolMOS™ P7 MOSFET are improved by 51% and 53%,
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

respectively. On the other hand, the turn-off energy improvements of both IKW40N65WR5 and 80 mΩ CoolMOS™ P7 MOSFET are only 4% and 19%, respectively.

3.3.2 Power loss simulation

A power loss simulation was carried out to estimate the validity of TRENCHSTOP™ 5 WR5 IGBT in high switching frequency operations. Table 1 shows the key input parameters for the simulation and its corresponding calculated values, and the loss simulation results from them are given in Table 2 where the switching frequency of 60 kHz is applied.

Table 1 Loss simulation parameters 1

<table>
<thead>
<tr>
<th>Input parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Calculated value</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{out}</td>
<td>2500</td>
<td>W</td>
<td>P_{in}</td>
<td>2577.3</td>
<td>W</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>60</td>
<td>kHz</td>
<td>D_{avg}</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>$V_{in,\min}$</td>
<td>180</td>
<td>Vac</td>
<td>$V_{in,\avg}$</td>
<td>162.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>400</td>
<td>Vdc</td>
<td>$I_{in,rms}$</td>
<td>14.3</td>
<td>A</td>
</tr>
<tr>
<td>Eff.</td>
<td>0.97</td>
<td></td>
<td>$I_{in,\avg}$</td>
<td>12.9</td>
<td>A</td>
</tr>
<tr>
<td>$R_{g,\text{on}}$</td>
<td>15</td>
<td>Ω</td>
<td>$I_{in,\text{pk}}$</td>
<td>20.2</td>
<td>A</td>
</tr>
<tr>
<td>$R_{g,\text{off}}$</td>
<td>10</td>
<td>Ω</td>
<td>$I_{a,\avg}$</td>
<td>11.6</td>
<td>A</td>
</tr>
<tr>
<td>Delta I</td>
<td>0.2</td>
<td></td>
<td>$I_{b,\avg}$</td>
<td>14.2</td>
<td>A</td>
</tr>
</tbody>
</table>

Table 2 Loss simulation parameters 2

<table>
<thead>
<tr>
<th>Device</th>
<th>$V_{\text{diss}1}$</th>
<th>$R_{\text{diss}1}$</th>
<th>$E_{\text{on, factor}}$</th>
<th>$E_{\text{off, factor}}$</th>
<th>$R_{g,\text{on, factor}}$</th>
<th>$R_{g,\text{off, factor}}$</th>
<th>P_{on}</th>
<th>P_{on}</th>
<th>P_{off}</th>
<th>P_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKW40N65WR5</td>
<td>0.67</td>
<td>0.028</td>
<td>9.7E-06*I_{\text{on}}</td>
<td>5.9E-06*I_{\text{off}}</td>
<td>0.035R_g + 0.71</td>
<td>0.020R_g + 0.801</td>
<td>9.18</td>
<td>9.34</td>
<td>7.77</td>
<td>26.29</td>
</tr>
<tr>
<td>80 mΩ CoolMOS P7</td>
<td>0</td>
<td>0.13</td>
<td>8.6E-06*I_{\text{on}}</td>
<td>4.3E-06*I_{\text{off}}</td>
<td>0.045R_g + 0.533</td>
<td>0.075R_g + 0.239</td>
<td>17.53</td>
<td>8.70</td>
<td>3.93</td>
<td>30.16</td>
</tr>
</tbody>
</table>

The summarized loss analysis results are described in Figure 10. The simulation result shows that IKW40N65WR5 will perform superior to 80 mΩ CoolMOS™ P7 MOSFET at the switching frequency of 60 kHz, a frequency high enough to have the boost inductor installed on the main board. In the case of IKW40N65WR5, its conduction loss at high power (2.5 kW) & high switching frequency is expected to be only about 30%-35%; the remaining 65%-70% is expected to be switching losses. In the case of 80 mΩ CoolMOS™ P7 MOSFET on the other hand, the conduction loss is expected to be about twice that of IKW40N65WR5, while its switching loss is smaller than that of IKW40N65WR5.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Power loss analysis of IGBT in CCM PFC

Figure 10 Loss calculation result at 60 kHz
4 Experimental results

4.1 System description

In order to validate the devices for high switching frequency operation, an experiment using 2.5 kW CCM PFC in Figure 11 was carried out. The system conditions and tested devices are as follows:

- \(P_{\text{out}} \): 250 W-2500 W
- \(V_{\text{in}} \): AC 180/230 V-50 Hz
- \(V_{\text{out}} \): 400 V

Table 3 Test devices and conditions

<table>
<thead>
<tr>
<th>Diode</th>
<th>IGBT</th>
<th>30kHz</th>
<th>60kHz</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDW30C65D1 (30 A Si Rapid 1 diode)</td>
<td>IKW40N60H3</td>
<td>○</td>
<td></td>
<td>(R_g = 20 \Omega)</td>
</tr>
<tr>
<td></td>
<td>IKW40N65WR5</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20A SiC Diode IDW20G65C2 (20 A SiC diode)</td>
<td>IKW40N65WR5</td>
<td>○</td>
<td></td>
<td>(R_g = 10 \Omega)</td>
</tr>
<tr>
<td></td>
<td>Competitor’s highest performing part</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 mΩ CoolMOS™ P7 MOSFET</td>
<td>○</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11 Test setup: 2.5 kW CCM PFC
4.2 Efficiency and thermal performance evaluation

Figure 12 shows the results of measuring the efficiency and thermal performance of IKW40N65WR5 and a conventional SC rated IGBT, IKW40N60H3 at 30 kHz switching frequency conditions. The TRENCHSTOP™ 5 WR5 IGBT is a device that maximizes performance instead of guaranteeing a SCWT (short-circuit withstand time), and is far superior to IKW40N60H3 that has a SCWT of 5 µsec. The efficiency difference between the two devices is up to 0.33 %, and the temperature difference at the front side of package is about 25°C respectively, which means the conventional SC rated IGBT cannot be considered for high switching frequency operation despite its high reliability.

In Figure 13, IKW40N65WR5, 80 mΩ CoolMOS™ P7 MOSFET, and a competitor’s highest performing IGBT are compared in terms of efficiency and thermal performance under the switching frequency of 60 kHz. The results show that IKW40N65WR5 overwhelms the competitor’s IGBT, both in terms of efficiency and thermal performance over the entire load condition. Between IKW40N65WR5 and the competitor, the maximum temperature gap is more than 23°C and the efficiency gap is about 0.3 % at the maximum load. In addition, IKW40N65WR5 shows better thermal and efficiency performance than the equivalent CoolMOS™ P7 MOSFET at approximately 2 kW and above, while the equivalent CoolMOS™ P7 MOSFET shows slightly better performance in the low to mid-load range.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Experimental results

IKW40N65WR5 vs. Competitor’s best performing 40 A IGBT & 80 mΩ CoolMOS™ P7

Figure 13 Efficiency & thermal performance test result @ f_{sw}=60 kHz

The above experimental results are relatively good as seen in the loss simulation results in 2.3.2. From the results in Fig. 13, CoolMOS™ P7 MOSFET would be ideal for light load conditions, on the other hand, for major appliances such as air conditioners where full load conditions are very important, TRENCHSTOP™ 5 WR5 IGBT is clearly the best choice considering cost as well as performance.

4.3 EMI performance evaluation

Figure 14 Conduction EMI test set-up and conditions
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

Experimental results

Besides the efficiency and the thermal performance, EMI characteristics are also considered a very important factor in switching devices for MHA applications. EMI performance is determined by various factors such as \(\frac{dv}{dt} \), \(\frac{di}{dt} \), gate resistance, EMI filter design and so on, thereby its improvement can vary from system to system. However, EMI characteristics of each device can be compared by means of testing under the exact same conditions. The experimental set-up and conditions for comparing EMI performance of devices is displayed in Figure 14. Figure 15 shows the EMI characteristics of IKW40N65WR5 and 80 mΩ CoolMOS™ P7 MOSFET combined with 20 A SiC diode. The result shows that the EMI level of IKW40N65WR5 is lower than that of the CoolMOS™ P7 MOSFET.

![Full Spectrum with Rg=300ohm](image)

\[V_{\text{in}} : 230 \, \text{V}_{\text{ac}}/50 \, \text{Hz} (L, N, \& \text{PE}), \text{and } P_{\text{out}} : 2.5 \, \text{kW} (400 \, \text{V}_{\text{DC}}, 6.25 \, \text{A}) \]

Figure 15 EMI characteristics of IKW40N65WR5 and 80 mΩ CoolMOS™ P7 MOSFET with 20 A SiC diode combination @ \(f_{\text{sw}}=60 \, \text{kHz} \)
4.4 SC immunity of IKW40N65WR5

The TRENCHSTOP™ 5 WR5 IGBT does not guarantee SCWT, but it can withstand the SC condition for a short period of time in practice because there is parasitic inductance around 1 ~ 2 μH existing in the PCB of PFC circuit. SC test waveforms of a conventional IGBT guaranteeing SCWT and IKW40N65WR5 are compared in Figure 16. As a result, IKW40N65WR5 withstands SC condition for 1.9 μsec, which can be sufficient to protect the IGBT when a proper over current protection circuit is applied.

![Figure 16: SC immunity of IKW40N65WR5 vs. a conventional SC rated IGBT, IKW40N60H3](image-url)
Experimental results

Figure 17 Example of an overcurrent protection by gate drive IC, 1ED44175N01B

Figure 17 indicates an example of an overcurrent protection circuit by gate drive IC (integrated circuit), 1ED44175N. In CCM PFC, a shunt resistor is generally required for average current mode control, and can also be used for overcurrent protection using the gate drive IC as shown in this Figure.
High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discrete

Experimental results

Figure 18 Cycle-by-cycle overcurrent protection by 1ED44175

- $R_{g_{on}} = 27 \, \Omega$, $R_{g_{off}} = 22 \, \Omega$
- External RC filter of OCP pin (330 Ω/1 nF)
- OCP delay time: $T_{delay} < 500$ nsec

Figure 19 PFC inductor SC test

Figure 18 shows a cycle-by-cycle OCP (overcurrent protection) test result using 1ED44175N in CCM PFC. The collect current of IGBT is limited to the certain OCP level, thereby the IGBT can be protected from overcurrent conditions. Figure 19 indicates a boost inductor SC test result that clearly shows the IGBT is protected within 1 μsec under the SC condition.
5 Conclusion

The validity of TRENCHSTOP™ 5 WR5 IGBT at CCM PFC circuit for major home appliances with high switching frequency up to 60 kHz was investigated and the performance comparison with a competitor’s highest performing part and the equivalent CoolMOS™ P7 MOSFET was carried out. The results showed that the TRENCHSTOP™ 5 WR5 IGBT has far superior efficiency and thermal performance in high-frequency operation compared to the competitor’s best performing part. At 60 kHz switching frequency, the TRENCHSTOP™ 5 WR5 IGBT showed 23°C lower temperature on the front side of PKG, and 0.34 % higher efficiency than the competitor’s part. Compared to the equivalent CoolMOS™ P7 MOSFET, IKW40N65WR5 fared better in both efficiency and temperature characteristics at approximately 2 kW and above. In addition, the PKG temperature of TRENCHSTOP™ 5 WR5 IGBT at the switching frequency 60 kHz was 7°C lower than that of CoolMOS™ P7 MOSFET at the maximum power, 2.5 kW. TRENCHSTOP™ 5 WR5 IGBT also showed lower EMI levels than CoolMOS™ P7 MOSFET, which can be an additional merit. Lastly, even though TRENCHSTOP™ 5 WR5 IGBT is not a SC rated IGBT, it withstands SC conditions of more than 1 μsec. Therefore, this IGBT can be protected from the SC condition if the OCP response is fast enough. An OCP circuit using a fast-responding gate drive IC, 1ED44175N is proposed, and the validation results are also presented. Through the analysis results, it has been confirmed that TRENCHSTOP™ 5 WR5 IGBT is very suitable for PFC circuits for home-appliance applications where the performance of anti-parallel diodes is not important.
6 References

High switching frequency CCM PFC operation with TRENCHSTOP™ 5 WR5 IGBT discretes

References

Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>2020-10-14</td>
<td>Initial version</td>
</tr>
<tr>
<td>V1.1</td>
<td>2020-12-09</td>
<td>Added complement description in Page 3</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE
The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof could reasonably be expected to result in personal injury.