
AURIX™ TC3xx Microcontroller Training

V1.0.1

ADC_Single_Channel_1

for KIT_AURIX_TC375_LK
ADC single channel conversion

Please read the Important Notice and Warnings at the end of this document



Scope of work

The Enhanced Versatile Analog-to-Digital Converter (EVADC) is 

configured to measure an analog signal using queued request.

An analog input channel is continuously converted using the queued mode. 

The input value is determined by the potentiometer on the board. Two LEDs 

are used to indicate a voltage interval. Thus depending on the conversion 

value, one or both LEDs are on.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› The AURIX™ microcontrollers provide a series of analog input channels (up 
to 16 for each ADC) connected to a cluster of Analog/Digital Converters (up to 
12) using the Successive Approximation Register (SAR) principle. Each 
converter of the ADC cluster is represented as a group and can operate 
independently of the others

› Analog/Digital conversions can be requested by several request sources: 
– Queued request source, specific to a single group 
– Synchronization source, synchronized conversion request from another 

ADC master kernel

› A queued source can issue conversion requests for an arbitrary sequence of 
input channels. The channel numbers for this sequence can be freely 
programmed

› The trigger for the conversion via the queued source can be sent:
– Once (by another external module)
– On a regular time base (by an external timer)
– Permanently (by using the refill option)

Copyright © Infineon Technologies AG 2021. All rights reserved.



This code example has been developed 

for the board KIT_A2G_TC375_LITE.

In this example, the pin AN0, connected 

to the board’s potentiometer, is used.

Note: The channels can be HW filtered by the 

board, depending on which capacitor/resistors 

couples are soldered. Consult the AURIX™ 

TC375 lite Kit’s User Manual to check which 

channels are filtered by HW.

Note: The reference voltage (VAREF) of the 

EVADC on the board KIT_A2G_TC375_LITE 

is 3.3 V.

Hardware setup

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration of the EVADC

The configuration of the EVADC is done in the initEVADC() function in four different steps:

› Configuration of the EVADC module

› Configuration of the EVADC group

› Configuration of the EVADC channels

› Filling the queue

Configuration of the EVADC module with the function initEVADCModule()

The default configuration of the EVADC module, given by the iLLDs, can be used for this example.

This is done by initializing an instance of the IfxEvadc_Adc_Config structure and applying default values to 

its fields through the function IfxEvadc_Adc_initModuleConfig().

Then, the configuration can be applied to the EVADC module with the function IfxEvadc_Adc_initModule().

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration of the EVADC group with the function initEVADCGroup()

The configuration of the EVADC group is done by initializing an instance of the IfxEvadc_Adc_GroupConfig

structure with default values through the function IfxEvadc_Adc_initGroupConfig() and modifying the 

following fields:

› groupId – to select which converters to configure

› master – to indicate which converter is the master. In this example, only one converter is used, therefore it 

is also the master

› arbiter – a structure that represents the enabled request sources. In this example, it is set to 

arbiter.requestSlotQueue0Enabled

Then, the user configuration is applied through the function IfxEvadc_Adc_initGroup().

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Configuration of the EVADC channels with the function initEVADCChannels()

The configuration of each channel is done by initializing a separate instance of the 

IfxEvadc_Adc_ChannelConfig structure with default values through the function 

IfxEvadc_Adc_initChannelConfig() and modifying the following fields:

› channelId – to select the channel to configure

› resultRegister – to indicate the register where the A/D conversion value is stored

Then, the configuration is applied to the channel with the function IfxEvadc_Adc_initChannel(). 

Filling the queue

Each channel is added to the queue through the function IfxEvadc_Adc_addToQueue(). 

When the EVADC configuration is done and the queue is filled, the conversion is started with the function 

IfxEvadc_Adc_startQueue().

Finally, to read a conversion, the function IfxEvadc_Adc_getResult() from iLLDs is used inside the function 

readEVADC().

All the functions used for configuring the EVADC module, its groups and channels together with reading the 

conversion results can be found in the iLLD header IfxEvadc_Adc.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

The visualization with LEDs is done using the functions initializeLEDs(), readEVADC() and 

indicateConversionValue().

› The function initializeLEDs()

– initializes the port pins 00.5 and 00.6 as push-pull outputs using the function IfxPort_setPinMode()

– set the port pins 00.5 and 00.6 to high state in order to switch the LEDs off by calling the function 

IfxPort_setPinHigh()

› The function readEVADC()

– defines an object conversionResult of the type Ifx_EVADC_G_RES

– uses the function IfxEvadc_Adc_getResult() to continuously retrieve the result value until the valid 

flag of the object conversionResult turns to high signaling that a new measurement is available

– assigns the converted value to the global variable g_result

› The function indicateConversionValue() is continuously executed and depending on the value of 

g_result

– lights up the LED1 (P00.5) if the discrete converted value is smaller than 0x555

– lights up the LED2 (P00.6) if the discrete converted value is greater than 0xAAA

– lights up both LEDs if the discrete converted value is part of the interval [0x555, 0xAAA]

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, verify the behavior of the LEDs:

› Turn the potentiometer on the board 

and observe LED1 and LED2

Input Voltage X LED1 LED2

X < 1.1 V 

1.1 V <= X <= 2.2 V

X > 2.2 V

LED On LED Off

2

1

1 2

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.1 Fixed LED initialization description

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
ADC_Single_Channel_1_
KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

