1EDI EiceDRIVER™ Compact

Separate output variant for MOSFET
Single Channel MOSFET Gate Driver IC

1EDI60N12AF

Data Sheet
Rev. 2.0, 2015-06-01
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Table of Contents

Table of Contents ... 4
List of Figures .. 5
List of Tables ... 6
1 Overview ... 7
2 Block Diagram .. 9
3 Pin Configuration and Functionality 10
 3.1 Pin Configuration .. 10
 3.2 Pin Functionality ... 10
4 Functional Description .. 12
 4.1 Introduction ... 12
 4.2 Supply ... 12
 4.3 Protection Features .. 13
 4.3.1 Undervoltage Lockout (UVLO) 13
 4.3.2 Active Shut-Down ... 13
 4.3.3 Short Circuit Clamping 13
 4.4 Non-Inverting and Inverting Inputs 13
 4.5 Driver Outputs ... 13
5 Electrical Parameters .. 14
 5.1 Absolute Maximum Ratings 14
 5.2 Operating Parameters ... 15
 5.3 Electrical Characteristics 15
 5.3.1 Voltage Supply ... 15
 5.3.2 Logic Input ... 16
 5.3.3 Gate Driver .. 16
 5.3.4 Short Circuit Clamping 17
 5.3.5 Dynamic Characteristics 17
 5.3.6 Active Shut Down .. 18
6 Timing Diagramms .. 19
7 Package Outlines ... 20
8 Application Notes ... 21
 8.1 Reference Layout for Thermal Data 21
 8.2 Printed Circuit Board Guidelines 21
List of Figures

Figure 1 Typical Application .. 8
Figure 2 Block Diagram 1EDI60N12AF ... 9
Figure 3 PG-DSO-8-51 (top view) .. 10
Figure 4 Application Example Bipolar Supply 12
Figure 5 Application Example Unipolar Supply 12
Figure 6 Propagation Delay, Rise and Fall Time 19
Figure 7 Typical Switching Behavior .. 19
Figure 8 UVLO Behavior ... 19
Figure 9 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package) 20
Figure 10 Reference Layout for Thermal Data (Copper thickness 35 μm) 21
List of Tables

Table 1 Pin Configuration ... 10
Table 2 Absolute Maximum Ratings .. 14
Table 3 Operating Parameters .. 15
Table 4 Voltage Supply ... 15
Table 5 Logic Input ... 16
Table 6 Gate Driver ... 16
Table 7 Short Circuit Clamping .. 17
Table 8 Dynamic Characteristics .. 17
Table 9 Active Shut Down ... 18
1 Overview

Main Features
- Single channel isolated MOSFET Driver
- Input to output isolation voltage up to 1200 V
- For high voltage power MOSFETs
- Up to 10 A typical peak current at rail-to-rail outputs
- Separate source and sink outputs

Product Highlights
- Galvanically isolated Coreless Transformer Driver
- Wide input voltage operating range
- Low input to output capacitive coupling
- Suitable for operation at high ambient temperature

Typical Application
- AC and Brushless DC Motor Drives
- High Voltage PFC, DC/DC-Converter and DC/AC-Inverter
- Induction Heating Resonant Application
- UPS-Systems
- Welding
- Solar MPPT boost converter

Description
The 1EDI60N12AF is a galvanically isolated single channel MOSFET driver in a PG-DSO-8-51 package that provides output currents of at least 6 A at separated output pins.

The input logic pins operate on a wide input voltage range from 3 V to 15 V using CMOS threshold levels to support even 3.3 V microcontroller.

Data transfer across the isolation barrier is realized by the Coreless Transformer Technology.

Every driver family member comes with logic input and driver output under voltage lockout (UVLO) and active shutdown.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Gate Drive Current (min)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1EDI60N12AF</td>
<td>±6.0 A MOSFET level optimized</td>
<td>PG-DSO-8-51</td>
</tr>
</tbody>
</table>
Figure 1 Typical Application
2 Block Diagram

Figure 2 Block Diagram 1EDI60N12AF
3 Pin Configuration and Functionality

3.1 Pin Configuration

Table 1 Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC1</td>
<td>Positive Logic Supply</td>
</tr>
<tr>
<td>2</td>
<td>IN+</td>
<td>Non-Inverted Driver Input (active high)</td>
</tr>
<tr>
<td>3</td>
<td>IN-</td>
<td>Inverted Driver Input (active low)</td>
</tr>
<tr>
<td>4</td>
<td>GND1</td>
<td>Logic Ground</td>
</tr>
<tr>
<td>5</td>
<td>VCC2</td>
<td>Positive Power Supply Output Side</td>
</tr>
<tr>
<td>6</td>
<td>OUT+</td>
<td>Driver Source Output</td>
</tr>
<tr>
<td>7</td>
<td>OUT-</td>
<td>Driver Sink Output</td>
</tr>
<tr>
<td>8</td>
<td>GND2</td>
<td>Power Ground</td>
</tr>
</tbody>
</table>

Figure 3 PG-DSO-8-51 (top view)

3.2 Pin Functionality

VCC1
Logic input supply voltage of 3.3 V up to 15 V wide operating range.

IN+ Non Inverting Driver Input
IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and IN- = low)

Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal weak pull-down-resistor favors off-state.
IN- Inverting Driver Input
IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN+ = high)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal weak pull-up-resistor favors off-state.

GND1
Ground connection of input circuit.

VCC2
Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this supply pin.

OUT+ Driver Source Output
Driver source output pin to turn on external MOSFET. During on-state the driving output is switched to VCC2. Switching of this output is controlled by IN+ and IN-. This output will also be turned off at an UVLO event.
During turn off the OUT+ terminal is able to sink approx. 100 mA.

OUT- Driver Sink Output
Driver sink output pin to turn off external MOSFET. During off-state the driving output is switched to GND2. Switching of this output is controlled by IN+ and IN-. In case of UVLO an active shut down keeps the output voltage at a low level.

GND2 Reference Ground
Reference ground of the output driving circuit.
In case of a bipolar supply (positive and negative voltage in reference to the MOSFET source) this pin is connected to the negative supply voltage.
4 Functional Description

4.1 Introduction

The 1EDI EiceDRIVER™ Compact is a general purpose MOSFET gate driver. Basic control and protection features support fast and easy design of highly reliable systems.

The integrated galvanic isolation between control input logic and driving output stage grants additional safety. Its wide input voltage supply range support the direct connection of various signal sources like DSPs and microcontrollers.

The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass diode and enhance dV/dt control.

![Diagram of bipolar supply](image)

Figure 4 Application Example Bipolar Supply

4.2 Supply

The driver can operate over a wide supply voltage range, either unipolar or bipolar.

With bipolar supply the driver is typically operated with a positive voltage of 12 V at VCC2 and a negative voltage of -8V at GND2 relative to the source of the MOSFET as seen in Figure 4. Negative supply can help to prevent a dynamic turn on of the MOSFET.

For unipolar supply configuration the driver is typically supplied with a positive voltage of 12 V at VCC2. In this case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on (see Figure 5).

![Diagram of unipolar supply](image)

Figure 5 Application Example Unipolar Supply
4.3 Protection Features

4.3.1 Undervoltage Lockout (UVLO)
To ensure correct switching of MOSFETs the device is equipped with an undervoltage lockout for input and output independently. Operation starts only after both VCC levels have increased beyond the respective V_{UVLOH} levels (see also Figure 8).

If the power supply voltage V_{VCC1} of the input chip drops below V_{UVLOL1} a turn-off signal is sent to the output chip before power-down. The MOSFET is switched off and the signals at IN+ and IN- are ignored until V_{VCC1} reaches the power-up voltage V_{UVLOH1} again.

If the power supply voltage V_{VCC2} of the output chip goes down below V_{UVLOL2} the MOSFET is switched off and signals from the input chip are ignored until V_{VCC2} reaches the power-up voltage V_{UVLOH2} again.

Note: V_{VCC} is always referred to GND2 and does not differentiate between unipolar or bipolar supply.

4.3.2 Active Shut-Down
The Active Shut-Down feature ensures a safe MOSFET off-state if the output chip is not connected to the power supply, MOSFET gate is clamped at OUT- to GND2.

4.3.3 Short Circuit Clamping
During short circuit the MOSFET’s gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage. A maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher currents are expected or tighter clamping is desired external Schottky diodes may be added.

4.4 Non-Inverting and Inverting Inputs
There are two possible input modes to control the MOSFET. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, please see Figure 7. A minimum input pulse width is defined to filter occasional glitches.

4.5 Driver Outputs
The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the driver’s supply is stable. Due to the low internal voltage drop, switching behaviour of the MOSFET is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver.
5 Electrical Parameters

5.1 Absolute Maximum Ratings

Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1.

Table 2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply output side</td>
<td>V_{VCC2}</td>
<td>-0.3 to 40 V</td>
<td>V</td>
<td>1)</td>
</tr>
<tr>
<td>Gate driver output</td>
<td>V_{OUT}</td>
<td>V_{GND2}-0.3 to V_{VCC2}+0.3 V</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Positive power supply input side</td>
<td>V_{VCC1}</td>
<td>-0.3 to 18.0 V</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Logic input voltages (IN+,IN-)</td>
<td>$V_{LogicIN}$</td>
<td>-0.3 to 18.0 V</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Input to output isolation voltage (GND2)</td>
<td>V_{ISO}</td>
<td>-1200 to 1200 V</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>-40 to 150 °C</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_S</td>
<td>-55 to 150 °C</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Power dissipation (Input side)</td>
<td>$P_{D, IN}$</td>
<td>– to 25 mW</td>
<td>mW</td>
<td>2) @ $T_A = 25^\circ$C</td>
</tr>
<tr>
<td>Power dissipation (Output side)</td>
<td>$P_{D, OUT}$</td>
<td>– to 400 mW</td>
<td>mW</td>
<td>2) @ $T_A = 25^\circ$C</td>
</tr>
<tr>
<td>Thermal resistance (Input side)</td>
<td>$R_{THJA,IN}$</td>
<td>– to 145 K/W</td>
<td>K/W</td>
<td>2) @ $T_A = 85^\circ$C</td>
</tr>
<tr>
<td>Thermal resistance (Output side)</td>
<td>$R_{THJA,OUT}$</td>
<td>– to 165 K/W</td>
<td>K/W</td>
<td>2) @ $T_A = 85^\circ$C</td>
</tr>
<tr>
<td>ESD capability</td>
<td>$V_{ESD,HBM}$</td>
<td>– to 2 kV</td>
<td>kV</td>
<td>Human Body Model 3)</td>
</tr>
</tbody>
</table>

1) With respect to GND2.
2) See Figure 10 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity.
3) According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
5.2 Operating Parameters

Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1.

Table 3 Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply output side</td>
<td>V_{CC2}</td>
<td>10</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>Power supply input side</td>
<td>V_{CC1}</td>
<td>3.1</td>
<td>17</td>
<td>V</td>
</tr>
<tr>
<td>Logic input voltages (IN+,IN-)</td>
<td>V_{LogicN}</td>
<td>-0.3</td>
<td>17</td>
<td>V</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_{sw}</td>
<td>–</td>
<td>4.0</td>
<td>Hz</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>T_A</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal coefficient, junction-top</td>
<td>$\Psi_{th,jt}$</td>
<td>–</td>
<td>4.8</td>
<td>K/W</td>
</tr>
<tr>
<td>Common mode transient immunity (CMTI)</td>
<td>$</td>
<td>dV_{ISO}/dt</td>
<td>$</td>
<td>–</td>
</tr>
</tbody>
</table>

1) With respect to GND2.
2) do not exceed max. power dissipation
3) Parameter is not subject to production test - verified by design/characterization

5.3 Electrical Characteristics

Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at $T_A = 25°C$. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5 to 7).

5.3.1 Voltage Supply

Table 4 Voltage Supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVLO threshold input chip</td>
<td>V_{UVLOH1}</td>
<td>–</td>
<td>2.85</td>
<td>3.1 V</td>
</tr>
<tr>
<td></td>
<td>V_{UVLOL1}</td>
<td>2.55</td>
<td>2.75</td>
<td>– V</td>
</tr>
<tr>
<td>UVLO hysteresis input chip ($V_{UVLOH1} - V_{UVLOL1}$)</td>
<td>V_{HYS1}</td>
<td>90</td>
<td>100</td>
<td>– mV</td>
</tr>
<tr>
<td>UVLO threshold output chip (MOSFET Supply)</td>
<td>V_{UVLOH2}</td>
<td>–</td>
<td>9.1</td>
<td>10.0 V</td>
</tr>
<tr>
<td></td>
<td>V_{UVLOL2}</td>
<td>8.0</td>
<td>8.5</td>
<td>– V</td>
</tr>
<tr>
<td>UVLO hysteresis output chip ($V_{UVLOH2} - V_{UVLOL2}$)</td>
<td>V_{HYS2}</td>
<td>550</td>
<td>600</td>
<td>– mV</td>
</tr>
</tbody>
</table>
5.3.2 Logic Input

Note: Unless stated otherwise VCC1 = 5.0V

Table 5 Logic Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN+, IN- low input voltage</td>
<td>V_{IN+L}, V_{IN-L}</td>
<td>–</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>IN+, IN- high input voltage</td>
<td>V_{IN+H}, V_{IN-H}</td>
<td>70</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IN+, IN- low input voltage</td>
<td>V_{IN+L}, V_{IN-L}</td>
<td>–</td>
<td>–</td>
<td>1.5</td>
</tr>
<tr>
<td>IN+, IN- high input voltage</td>
<td>V_{IN+H}, V_{IN-H}</td>
<td>3.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IN- input current</td>
<td>I_{IN-}</td>
<td>–</td>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td>IN+ input current</td>
<td>I_{IN+}</td>
<td>–</td>
<td>70</td>
<td>200</td>
</tr>
</tbody>
</table>

5.3.3 Gate Driver

Table 6 Gate Driver

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level output peak current 1EDI60N12AF</td>
<td>$I_{OUT+, PEAK}$</td>
<td>6.0</td>
<td>10.0</td>
<td>–</td>
</tr>
<tr>
<td>Low level output peak current 1EDI60N12AF</td>
<td>$I_{OUT-, PEAK}$</td>
<td>6.0</td>
<td>9.4</td>
<td>–</td>
</tr>
</tbody>
</table>

1) $V_{VCC2 - OUT+}$ or $V_{OUT- - GND2} < V_{VCC2}$.
5.3.4 Short Circuit Clamping

Table 7 Short Circuit Clamping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage (OUT+)</td>
<td>V_{CLPout}</td>
<td>(-)</td>
<td>0.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>

5.3.5 Dynamic Characteristics

Dynamic characteristics are measured with $V_{VCC1} = 5$ V and $V_{VCC2} = 15$ V.

Table 8 Dynamic Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input IN to output propagation delay ON</td>
<td>T_{PDON}</td>
<td>95</td>
<td>120</td>
<td>142</td>
</tr>
<tr>
<td>Input IN to output propagation delay OFF</td>
<td>T_{PDOFF}</td>
<td>105</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Input IN to output propagation delay distortion ($T_{PDOFF} - T_{PDON}$)</td>
<td>T_{PDISTO}</td>
<td>-15</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Input pulse suppression IN+, IN-</td>
<td>T_{MININ+}</td>
<td>30</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>IN input to output propagation delay ON variation due to temp</td>
<td>T_{PDONi}</td>
<td>–</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>IN input to output propagation delay OFF variation due to temp</td>
<td>T_{PDOFFi}</td>
<td>–</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>IN input to output propagation delay distortion variation due to temp ($T_{PDOFF} - T_{PDON}$)</td>
<td>$T_{PDISTOi}$</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>Rise time</td>
<td>T_{RISE}</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Fall time</td>
<td>T_{FALL}</td>
<td>4</td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>

1) The parameter is not subject to production test - verified by design/characterization
5.3.6 Active Shut Down

Table 9 Active Shut Down

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active shut down voltage</td>
<td>V_{ACTSD} 1)</td>
<td>Min. 2.2 Typ. 2.5 Max.</td>
<td>V</td>
<td>$I_{\text{OUT}}/I_{\text{OUT-PEAK}}=0.1$, V_{CC2} open</td>
</tr>
</tbody>
</table>

1) Referred to GND2
6 Timing Diagramms

Figure 6 Propagation Delay, Rise and Fall Time

Figure 7 Typical Switching Behavior

Figure 8 UVLO Behavior
7 Package Outlines

Figure 9 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package)
8 Application Notes

8.1 Reference Layout for Thermal Data
The PCB layout shown in Figure 10 represents the reference layout used for the thermal characterisation. Pin 4 (GND1) and pin 8 (GND2) require each a ground plane of 100 mm² for achieving maximum power dissipation. The Separate output variant for MOSFET is conceived to dissipate most of the heat generated through these pins.

The thermal coefficient junction-top \(\Psi_{\text{th,jt}} \) can be used to calculate the junction temperature at a given top case temperature and driver power dissipation:

\[
T_j = \Psi_{\text{th,jt}} \cdot P_D + T_{\text{top}}
\]

![Figure 10 Reference Layout for Thermal Data (Copper thickness 35 μm)](image)

8.2 Printed Circuit Board Guidelines
The following factors should be taken into account for an optimum PCB layout.

- Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
- The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and to reduce parasitic coupling.
- In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible.