Customer training workshop: Device configurator Communication

TRAVEO[™] T2G CYT4BF series Microcontroller Training V1.0.0 2022-12

Please read the Important notice and warnings at the end of this document

Scope of work

- This document helps application developers understand how to use the Device Configurator for Communication as part of creating a ModusToolbox[™] (MTB) application
 - The Device Configurator for Communication is part of a collection of tools included with the MTB software. It provides a GUI to configure the communication. This document describes use cases for CAN FD, UART, and SPI.
- → ModusToolbox[™] tools package version: 3.0.0
- > Device Configurator version: 4.0
- > Device:
 - TRAVEO[™] T2G CYT4BFBCH device is used in this code example
- > Board:
 - TRAVEO[™] T2G KIT_T2G-B-H_EVK board is used for testing

> The CAN FD controller has the following features:

- Flexible data-rate (FD) (ISO 11898-1: 2015)
 - Up to 64 data bytes per message
 - Maximum 8 Mbps supported
- Time-Triggered (TT) communication on CAN (ISO 11898-4: 2004)
 - TTCAN protocol level 1 and level 2 completely in hardware
- AUTOSAR support
- Acceptance filtering
- Two configurable receive FIFOs
- Up to 64 dedicated receive buffers
- Up to 32 dedicated transmit buffers
- Configurable transmit FIFO
- Configurable transmit queue
- Configurable transmit event FIFO
- Programmable loop-back test mode
- Power-down support
- Shared message RAM

Introduction (contd.)

> The CAN FD controller has the following features:

- ECC protection for message RAM
- Global fault structure to handle ECC errors
- Receive FIFO top pointer logic
 - Enables DMA access on FIFO
- DMA for debug message and received FIFOs
- Shared time stamp counter

> The SCB controller has the following features:

- Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols
- Standard UART functionality with SmartCard reader, local interconnect network (LIN), and IrDA protocols
 - Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance
 - The SCB has only standard LIN slave functionality.
- Standard I2C master and slave functionality
- EZ mode for SPI and I2C slaves; allows operation without CPU intervention
- CMD_RESP mode for SPI and I2C slaves; allows operation without CPU intervention and is available only on
- DeepSleep-capable SCB
- Low-power (DeepSleep) mode of operation for SPI and I2C slaves (using external clocking), available only on
- DeepSleep-capable SCB
- DeepSleep wakeup on I2C slave address match or SPI slave selection; available only on DeepSleep-capable SCB
- Trigger outputs for connection to DMA
- Multiple interrupt sources to indicate status of FIFOs and transfers
- Local loop-back control

Launch Device Configurator

> From Eclipse IDE

Launch the Device configurator by either of the following methods:

a) Right-click on the project in "Project Explorer" and select **ModusToolbox™** > **Device Configurator** <version>

b) Click the "Device Configurator" link in the Quick Panel

Project		New Go Into	>	
> 🥩 CAN_F		Open in New Window	Alt - Chift - M/ >	mpty application tem
> S mtb_sl		ModusToolbox™ Show in Local Terminal	AILTSHILTYY >	Tools BSP Assistant 1.0
		Copy Paste Delete	Ctrl+C Ctrl+V Delete	Device Firmware Update Host Tool 1.60 Library Manager 2.0 BSP Configurators
		Source Move Rename	F2	Device Configurator 4.0 COPF Configurator 4.0 Smart I/O Configurator 4.0
Quick P	20 23	Import Export		vide feedback on this code example.
Device i Library I BSP Cont	£	Clean Project Refresh Close Project	F5	equirements
QSPI Cc		Build Configurations Build Targets	>	ModusToolbox™ software v3.0 fown Source Preview nsole Problems Progress OMemory Terr
Core Lib Hardwa	0 †	Run As Debug As Restore from Local History	>	perations to display at this time.

Device Configurator view for communication config

> From Eclipse IDE

- Open the "Peripherals" tab in the Device Configurator

dow for selecting peripheral and			Window for setting the operating	
nnel number.		Channel 1 - Parameters	parameters of selected peripherals	
Peripherals Pigs Analog-Routing	System Peripher	Enter filter text	/ U 🖻 🖻	
Enter filter text	🔻 🖻 🖻 🖌 🗎 🛍	Name	Value	
Resource	Name(s)	 Overview 		
> Analog		⑦ Configuration Help	Open CAN FD Documentation	
 Communication 		 Callback Functions 		
Controller Area Network FD (CAN FD)) 0	⑦ TxCallback Function		
 Controller Area Network FD (CAN FD) 1	RxCallback Function		
Channel 0	canfd_1_chan_0	② ErrorCallback Function		
🗹 🧐 Channel 1	canfd_1_chan_1	✓ Mode		
🗌 Channel 2	canfd_1_chan_2	CAN FD Mode		
🗆 Channel 3	canfd_1_chan_3	 Connections 	v	
Channel 4	canfd 1 chan 4		· · ·	
<	,	Channel 1 - Parameters Code Preview		
Notice List			5 ×	
😢 0 Errors 🤺 0 Warnings 闫 1 Tas	k 🚺 1 Info			
Fix Description			Location ^	
The 'Clock Signal' parameter must no	ot be empty.		CYT4BFBCHE: Channel 1 [Clock Signal]	
The WCO is enabled. Chip startup wi	Il be slower because clock co	onfiguration cannot continue until the WCO is ready. See the	e v	
Ready				

Quick start

> To use the Device Configurator for communication setting

- Launch the Device Configurator.
- Use the various pull-down menus to configure signals.
- Save the file to generate source code.
- Device Configurator generates code into a "GeneratedSource" directory in your Eclipse IDE application, or in the same location you saved the *.modus file for non-IDE applications. That directory contains the necessary source (.c) and header (.h) files for the generated firmware, which uses the relevant driver APIs to configure the hardware.
- Use the generated structures as input parameters for communication functions in your application.

> Overview of configuration parameters for CAN FD:

- Mode
- : CAN FD
- CAN instance : CAN0_CH1
- Clock frequency : 40 MHz (Clock divider: Peri Clock Group 1 16-bit Divider 0)
- Used ports:
 - RX port = P0.3 (CYBSP_CAN_RX)
 - TX port = P0.2 (CYBSP_CAN_TX)
- Bitrate setting:
 - Nominal bitrate
 = 500 kbps
 - Sampling point = 75%
 - Prescaler = 10
 - Nominal time segment 1 = 5
 - Time segment 2 = 2
 - Synchronization jump width = 2
- See "CAN FD" application for operation

- Fast Bitrate Setting:
 Data Bitrate = 1000 kbps
 Sampling Point = 75 %
 Prescaler = 5
 Data Time segment 1 = 5
 Data Time segment 2 = 2
 - Data Synchronization Jump Width = 2

CAN FD configuration

> Create project

1) Click "New Application" in Quick Panel and open Choose Board Support Package (BSP) window

- 2) Select TRAVEO[™] BSPs and KIT_T2G-B-H_EVK
- 3) Click Next and open the Application window
- 4) In this use case, it changes to "CAN_FD_training"
- 5) Click Create and start application creation

Source Template		
Enter filter text		^ ^
Kit Name MCU/SOC/SIP Conn > AIROC [™] Bluetooth ® BSPs > AIROC [™] Connectivity BSPs > > PAGC [™] BLOG > SSC [™] 4 BSPs > > > PSoC [™] 4 BSPs > > > SGC [™] 6 BSPs ▼ TRAVEO [™] 0 BSPs	extivity 27 Select TTCG-B-H_EVK" "KIT_T2G-B-H_EVK" microcontroler, a M:2 memae connector for memacin modules based on AROC" Wi-Fi and Bluetoth® com not supported), SMIf dual header compatible with Digl interfacing HYPERBUS" memories (currently not suppo- headers compatible with Arduino for interfacing Arduit headers compatible with Arduin of interfacing Arduit (KitProg3), a 512-Mbit CSP INOR flash, CAN FD transcel Ethernet PHY transceiver with RAPS connector interface.	g radio bos (currently lent Pmod for rted), and io shields. In debugger ver, Gigabit a micro-B
	2) Click the "Next" button	
ISP: KIT_T2G-B-H_EVK Press "Next" to select application.		> <u>C</u> lose
Select Application - Project Creator 2.0 ettings Help pplication(s) Root Path: 4) Check the	e "Empty App" button	Browse
arget IDE: Eclipse IDE for ModusToolbo	You can change application na	me here
arget IDE: Eclipse IDE for ModusToolbo earch	Rowse You can change application nai New Application Name CAN_FD_training For more details, see the <u>README on GitHub</u> .	me here
arget IDE: Eclipse IDE for ModusToolbo earch	You can change application nai arowse New Application Name CAN_FD_training CAN_FD_training CIlick the "Create" button	me here generation

> Launch "Device configurator":

- 1) Select the "CAN_FD_training" project.
- 2) Click "Device configurator" in Quick Panel
- 3) Open the "Device configurator" window

> Configure Clock (System):

- 1) Click the System tab
- 2) Select PLL400M1
- 3) Set "Desired Frequency" to "200.000"
- 4) Ensure that the frequency is set to 200 MHz

> Configure Clock (System):

- 4) Select CLK_HF2
- 5) Select CLL_PATH2 as "Source Clock"
- 6) Set "Divider" to "1"
- 7) Ensure that the frequency is set to 200 MHz

CYT4BFBCHE						CLK_HF2 - Parameters		8 ×
Peripherals	Pins	Analog-Routing	System	Peripheral-Clocks	DMA	Enter filter text		🖉 🖸 🖻 🕀
Enter filter text.			æ	7 🖻 🖽 🖌 🕻	n s s x	Name	Value	
rce		Name(s)	^	340 MHz ± 1%		✓ Overview		5) Select CLK_PATH2
CLK_HF1		srss_0_clock_0_hf	clk_1		7) 200 MHz	? Configuration	Help <u>Open High-Frequen</u>	cy clocks Documentation
CLK_HF2	2	srss_0_clock_0_hf	clk_2	200 MHz ± 1% CLK PATH	H2 340 MHz ± 1%	General		
		srss_0_clock_0_hf	clk_3	PLLO		(?) Source Clock	CLK_PATH2	~
CLK_HF4		Lance O elegk_0_hf	clk_4		200 MHz ± 1%	Source Freque Divider	ency 200 MHz ± 1%	
CLK_HF5		4) Select k_0_hf	clk_5	PLL1 100 MHz ± 1% CLK. PATH	H4		200 Milita I 10/	· · ·
CLK_HF6	5	srss_0_clock_0_hf	clk_6		CLK_HF4 100 MHz ± 1%	(r) Frequency	200 WHZ ± 1%	6) Set to 1
CLK_HF7	,	srss_0_clock_0_hf	clk_7	CLK PATH	E MHz ± 1%			
	Μ	srss_0_clock_0_m	emclk_0	CLK PATH	CLK_HF6 8 MHz ± 1%			
<			>	<	>	CLK_HF2 - Parameters	Code Preview	

infineon

CAN FD configuration (contd.)

- > Configure Clock (Peripheral Clocks):
 - 1) Click the **Peripheral-Clocks** tab for peripheral clock divider configuration
 - 2) Select 16 bit Divider 0 in Peri Clock Group 1
 - 3) Set "Divider" to "5"
 - 4) You can see 40 MHz clock (200 MHz/5) as output frequency
 - 5) Select Channel 1 clock_can (CAN_FD) as "Peripherals" connection

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp		
1) Click "Peripheral-Clocks" tab		
CYT4BFBCHE	16 bit Divider 0 - Parameters 🖉 🗶	
Peripherals Pins Analog-Routing System Peripheral-Clocks DMA	Enter filter text 🦉 🖸 🖻	
Enter filter text	Name Value O: Dividem and the D	
Resource Name(s) Personality	Overview Overview Overview Overview	
✓ Peri Clock Group 0	⑦ Configuration Help Open Peripherals Clock Dividers Documentation	
> 8 bit	✓ General	
> 16 bit	Source Clock CLK AF2 (200 MHz ± 1%)	
> 24.5 bit	③ Divider 5 4) 200 MHz/5 = 40 MHz	Select signal(s) - Device Configurator 4.0 ×
V Peri Clock Group 1	⑦ Frequency △ 40 MHz ± 1%	Select any signal(s) to connect to 'Peripherals'.
> 8 bit	③ Start on Reset	Enter filter text
✓ 16 bit Divider 0 peri 0 group 1 div 16 Peripheral Clock-10 ×	Peripherals Channel 1 clock can (CANFD) [USED]	Channel 0 clock can
16 bit Divider 1 gori 0 group 1 div 16 1		Channel 0 clock_can
	I I I I I I I I I I I I I I I I I I I	Channel 1 clock can
		Channel 1 clock_can
		Channel 2 clock_can
	5) Select Channel 1 clock can as peripherals	Channel 3 clock_can
16 bit Divider 5 peri_0_group_1_div_16_5	,	Channel 3 clock_can
□ 16 bit Divider 6 peri_0_group_1_div_16_6	16 bit Divider 0 - Parameters Code Preview	OK Cancel

> Configure CAN FD (Clock and GPIO):

- 1) Make the following settings in the Peripherals tab
- 2) When you configure the peripheral clock connection in "Peripheral-Clocks", CAN FD0 Channel1 is already selected.
- 3) Enter CANFD as the name
- 4) Set the "CAN FD Mode"
- 5) When you configure the peripheral clock connection, **16 bit Divider 0 clk** is already selected as Clock Signal
- 6) Select P0_3 (CAN_RX) and P0_2 (CAN_TX) to "CAN Rx Pin" and the "CAN Tx Pin"

CYT4BFBCHE		Channel 1 (CANFD) - Parameters		
Peripherals Pins Analog-Routing System	Peripheral-Clocks DMA	Enter filter text		-
Enter filter text 1) Click "Peripher Resource	ral-Clock" tab	Name > Overview	Value 4) Set CAN FD Mode box	
✓ Communication	3) Fill the Name to	> Callback Functions		
Controller Area Network FD (CAN FD) 0	"CANFD"	(7) CAN FD Mode	5) "16 bit Divider 0 clk" i	s automatically selected
	CANED CAN ED-30	✓ Connections		
hannel 2	icanid o chan 2	⑦ Clock Signal	8 🕒 16 bit Divider 0 clk [USED]	
		⑦ Clock Frequency		
Chan 2) CAN FD0 Channe	I1 is automatically selected	⑦ CAN Rx Pin	P0[3] digital_in (CYBSP_CAN_RX) [USED]	
> Controller Area Network FD (CAN FD) 1		⑦ CAN Tx Pin	P0[2] digital_out (CYBSP_CAN_TX) [USED]	
Inter-IC Sound Bus (I2S) 0	audioss_0_i2s_0			
Inter-IC Sound Bus (I2S) 1	audioss_1_i2s_0	⑦ DMA Rx FIFO 0 Trigger Output	<unassigned> 6) Select P0_3 as</unassigned>	CAN RX port, and
Inter-IC Sound Bus (I2S) 2	audioss_2_i2s_0	⑦ DMA Rx FIFO 1 Trigger Output	<unassigned></unassigned>	CAN IX port
Local Interconnect Network (LIN) 0	lin 0	S Shirtharni S F higger Satpat		

infineon

CAN FD configuration (contd.)

> Configure CAN FD (Bitrate Setting):

- 1) Set the value of each Bitrate Setting
- 2) Ensure that "Nominal Bit Rate" is "500 kbps" and "Nominal Sampling Point" is "75%"

CYT4BFBCHE			Channel 1 (CANFD) - Parameters			
Peripherals	Pins Analog-Routing Sys	stem 🔹 🕨	Enter filter text	U 🖻 🖻		
Enter filter text 🖉 🍸 🖻 🖽 🖡			Name	Value 1		
Resource		Name(s) ^	✓ Bitrate Setting			
> Analog			⑦ Nominal Prescaler	10		
 Communication 			⑦ Nominal Time Segment 1	5		
 Controller Area Network FD (CAN FD) 0 			⑦ Nominal Time Segment 2	2		
	Channel 0	canfd_0_c	⑦ Nominal Synchronization Jump Width	2		
	🗐 Channel 1	CANFD	⑦ Nominal Bit Rate	📋 500 kbps		
	Channel 2	canfd_0_(⑦ Nominal Sampling Point	<u> </u>		
Channel 3 canfd_0_c		canfd_0_c				
Channel 4 canfd_0_c			2			
< Control	ler Area Network ED (CAN ED) 1	>	Channel 1 (CANFD) - Parameters Code Preview			

> Configure CAN FD (Fast Bitrate Setting):

- 1) Set the value of each Fast Bitrate Setting
- 2) Ensure that "Data Bit Rate" is "1000 kbps" and "Data Sampling Point" is "75%"

CYT4BFBCHE			Channel 1 (CANFD) - Parameters				
Peripherals	Pins Analog-Routing Sys	stem 🔹 🕨	Enter filter text	U			
Enter filter text	2 🔻 🖻	* 🗈 🖻	Name	Value 1			
Resource		Name(s)	 Fast Bitrate Setting 				
> Analog			⑦ Data Prescaler	5			
 Communicat 	ion		⑦ Data Time Segment 1	5			
✓ Controlle	er Area Network FD (CAN FD) 0		⑦ Data Time Segment 2	2			
	nannel 0	canfd_0_‹	⑦ Data Synchronization Jump Width	2			
	Channel 1	CANFD	⑦ Data Bit Rate	🗎 1000 kbps			
	nannel 2	canfd_0_(Data Sampling Point 	 ☐ 75%			
🗌 🗆 Ch	nannel 3	canfd_0_c					
	nannel 4	canfd_0_(
Controlle	ar Area Network ED (CAN ED) 1	~		2			
<		>	Channel 1 (CANFD) - Parameters Code Preview				

> Confirm configuration result

- You can check the configuration result in the "Code Preview" tab of the Device Configurator

```
Code Preview
                                                                               8 ×
Enter search text..
   .mode = CY CANFD FIFO MODE BLOCKING,
   .watermark = 0U,
   .numberOfFIFOElements = 8U,
   .topPointerLogicEnabled = false,
};
cy stc canfd config t CANFD config =
   .txCallback = NULL.
   .rxCallback = canfd rx callback,
   .errorCallback = NULL,
   .canFDMode = true,
   .bitrate = &CANFD_nominalBitrateConfig,
   .fastBitrate = &CANFD dataBitrateConfig,
   .tdcConfig = &CANFD tdcConfig,
   .sidFilterConfig = &CANFD sidFiltersConfig,
   .extidFilterConfig = &CANFD extIdFiltersConfig,
   .globalFilterConfig = &CANFD globalFilterConfig,
   .rxBufferDataSize = CY CANFD BUFFER DATA SIZE 8,
   .rxFIF01DataSize = CY CANFD BUFFER DATA SIZE 8,
   .rxFIF00DataSize = CY_CANFD_BUFFER_DATA_SIZE_8,
   .txBufferDataSize = CY_CANFD_BUFFER_DATA_SIZE_8,
   .rxFIF00Config = &CANFD rxFifo0Config,
   .rxFIF01Config = &CANFD rxFifo1Config,
   .noOfRxBuffers = 1U.
   .noOfTxBuffers = 1U,
   .messageRAMaddress = CY CANOMRAM BASE + OU,
   .messageRAMsize = 8192U,
};
cy_stc_canfd_t0_t CANFD_T0RegisterBuffer_0 =
   .id = 0x22U,
   .rtr = CY CANFD RTR DATA FRAME.
   .xtd = CY CANFD XTD STANDARD ID,
   .esi = CY CANFD ESI ERROR ACTIVE,
};
cy_stc_canfd_t1_t CANFD_T1RegisterBuffer_0 =
                                                        Code preview tab
<
Channel 1 (CANFD) - Parameters
                            Code Preview
```


> Close Device configurator:

Click the "Save" button after completing all settings, then close the "Device configurator"

- If an Errors/Tasks message appears, it should be resolved according to the instructions

None ~	Notice List - Smart I/O Configurator 4.0				
None Y	😢 0 Errors 🛕 2 Warnings 📔 2 Tasks 🏮 0 Infos				
2 Errors/Tasks	Fix Description	Location			
X					
Click	Invalid DU connection. DU TR0 is sourced from LUT [6] but the LUT is not enabled to drive it.	CYT4BFBCHE: Smart I/O 13 (smart_io) 🗸			

> Configuration file:

 Close "Device configurator", it generates code into a "GeneratedSource" directory in your Eclipse IDE application, or in the same location you saved the *.modus file for non-IDE applications.

📩 cycfg_peripherals.c 🔀

- This example has the following code:

Implementation

- This section describes how to implement the configured CAN FD. This example will implement CAN FD configuration in the CAN_FD_training project.
 - Open main.c in the CAN_FD_training project

> Add include file

> Add CAN FD initialization

CAN FD initialization:

- > Call the <u>Cy_CANFD_Init()</u> function to configure CAN FD
 - Initializes the CAN FD

CAN FD message transmit:

- > Call the <u>Cy_CANFD_UpdateAndTransmitMsgBuffer()</u> function for CAN FD
 - Updates the Tx buffer element parameters in Message RAM, copies data to Message RAM, and then transmits the message.

Other functions:

> Check the following for more information

CYT4BFBCHE				Channel 1 (CANFD) - Parameters		8 ×
Peripherals Pins Analog-Routing System	Peripheral-Clocks DN	AN		Enter filter text		🖉 U 🖻 🕀
Enter filter text			🖉 🖲 🖲 🤸 🗎 🗅	Name	Value	<u> </u>
Resource	Name(s)	Personality	^	V Overview		Check here
✓ Analog				⑦ Configuration Help	Open CAN FD Documentation	
 Programmable Analog 				> Callback Functions		
12-bit SAR ADC 0	pass_0_saradc_0_sar_0			✓ Mode		
12-bit SAR ADC 1	pass_0_saradc_1_sar_0			⑦ CAN FD Mode	\checkmark	
12-bit SAR ADC 2	pass_0_saradc_2_sar_0			✓ Connections		
epassaref	pass 0 aref 0	-		⑦ Clock Signal	P 16 bit Divider 0 clk [USED]	~
✓ Communication				⑦ Clock Frequency	40 MHz	
 Controller Area Network FD (CAN FD) 0 				⑦ CAN Rx Pin	PO[3] digital_in (CYBSP_CAN_RX) [USED]	\sim
Channel 0	canfd_0_chan_0			() CAN Tx Pin	POI21 digital out (CYBSP CAN TX) (USED)	
Channel 1	CANFD	CAN FD-3.0 \vee		O OTTAC	efet eränszen (eren zen dirik tenen)	
Channel 2	canfd_0_chan_2			⑦ DMA Rx FIFO 0 Trigger Output	<unassigned></unassigned>	
Channel 3	canfd_0_chan_3			C DMA D- FIFO I Trianer Outert		
Channel 4	canfd_0_chan_4			C DMA RX FIEU 1 Ingger Output	<unassigned></unassigned>	
A REAL PROPERTY AND A REAL PROPERTY A				> Marraga PAM		

> Overview of configuration parameters for UART:

- Mode : Standard UART
- SCB instance : SCB3
- Clock frequency : 920.2 kHz (Clock divider: Peri Clock Group 1 8-bit Divider 0)
- Used ports:
 - -Tx : SCB3_TX (P13.1)
 - Rx : SCB3_RX (P13.0)
- Baud rate : 115,200 bps
- Data width : 8 bits
- Parity
 - : None
- Stop bits : 1
- Flow control : None
- See "SCB UART Transmit and Receive using DMA" application for operation

UART configuration

> Create project

1) Click **New Application** in Quick Panel and open the **Choose Board Support Package (BSP)** window

- 2) Select TRAVEO[™] BSPs and KIT_T2G-B-H_EVK
- 3) Click Next button and open the Application window
- 4) In this use case, it changes to "UART_training"
- 5) Click Create and start application creation

> Launch the "Device configurator":

- 1) Select the **UART_training** project.
- 2) Click "Device configurator" in the Quick Panel
- 3) Open the "Device configurator" window

CYT4BFBCHE	Parameters					
Peripherals Pins Analog-Routir						
Enter filte 🖉 🔻 🖻 🖪						
ResourceName(s)Personality>Analog>Communication>Digital>System	3) Open "Device configurator"					
	Parameters Code Preview					

infineon

UART configuration (contd.)

> Configure Clock (System):

- 1) Click the System tab
- 2) Select PLL400M1
- 3) Set "Desired Frequency" to "196.000"
- 4) Ensure that the frequency is set to 196 MHz

> Configure Clock (System):

- 4) Select CLK_HF2
- 5) Select CLL_PATH2 as "Source Clock"
- 6) Set "Divider" to "1"
- 7) Ensure that the frequency is set to 196 MHz

CYT4BFBCHE							CLK_HF2 - Parameters			۶×
Peripherals Pins Analog	g-Routing System Perip	oheral-Clocks	DMA				Enter filter text			
Enter filter text					<u>/</u> 🕈 🖻 🕀 🤸 🛛	an (4 4 2	Name	Value	5) Select CLK_PATH2	1
Resource	Name(s)	Person ^	PLL400M0	~	50 MHz ± 2.4%	50 MHz ± ^	✓ Overview			
CLK_FAST0	srss_0_clock_0_fastclk_0	CLK_FA	340 MHz ± 1%	CLK_PATH1		CLK_TI	⑦ Configuration Help	Open High-Frequency Clocks Do	ocumentation	
CLK_FAST1	srss_0_clock_0_fastclk_1					8 MHz :	✓ General	K		
CLK_HF0	srss_0_clock_0_hfclk_0	CLK_HI			*		⑦ Source Clock	CLK_PATH2		~
CLK_HF1	srss_0_clock_0_hfclk_1	CLK_HI	DLL 400141			Thur D	③ Source Frequency	196 MHz ± 1%		
CIK_HF2	srss_0_clock_0_hfclk_2	CLK_HI	196 MHz + 1%		7) 196 MHz	40 MHz	② Divider	1		~
CK HF3	srss_0_clock_0_hfclk_3	CLK_HI					(?) Frequency	196 MHz ± 1%		
CLK_HF4	srss_0_clock_0_hfclk_4	CLK_HI							6) Set to 1	
CLK_HF5	srss_0_clock_0_hfclk_5	CLK_HI	PLLO	_						
CLK_HF6	srss_0 4) Select	CLK_HI	144 MHz ± 1%		CLK_HF2					
CLK_HF7	srss_0_cl	CLK_HI			196 MHz ± 1%					
CLK_MEM	srss_0_clock_0_memclk_0				CLK HE3					
CLK_PERI	srss_0_clock_0_periclk_0	CLK_PE	PLL1		144 MHz ± 1%					
	srss_0_clock_0_slowclk_0	~	100 MHZ ± 1%	CLK_PATH4	CIK HF4	~				
<		> <	<u> </u>			>	CLK HF2 - Parameters C	ode Preview		

infineon

UART configuration (contd.)

- > Configure Clock (Peripheral Clocks):
 - 1) Click the **Peripheral-Clocks** tab for the peripheral clock divider configuration
 - 2) Select 8 bit Divider 0 in Peri Clock Group 1
 - 3) Set "Divider" to "213"
 - 4) You can see 920.02 kHz clock (196 MHz/213) as output frequency
 - 5) Select Serial communication Block (SCB) 3 clock as "Peripherals" connection

> Configure UART:

- 1) Check Serial Communication Block (SCB) 3 in the Peripherals tab
- 2) Select Serial Communication Block (SCB) 3 and fill in KIT_UART as the name
- 3) Select UART-3.0 and click OK

- 4) Set "Value" of "General" parameters
 - Baud rate : 115,200 bps
 - Data width : 8 bits
 - Parity : None
 - Stop bits : 1
 - Flow control: None

CYT4BFBCHE				Ser	Serial Communication Block (SCB) 3 (KIT_UART) - Parameters				
Peripherals Pins Analog-Routing	System	Peripheral-Clo		Ent	Enter filter text				
Enter filter text		7 🖻 🗉 🤸 🗎	Ē.	Na	ime	Value	4) General par		
Resource		Name(s)	^	>	Overview				
Serial Communication Block (SCB)	1	scb 1		\sim	General				
Serial Communication Block (SCB)	2	sch 2	-		⑦ Com Mode	Standard			
Serial Communication Block (SCB)	3	KIT LIART	•		⑦ Baud Rate (bps)	115200			
Serial Communication Block (SCB)	4	ssb 4	•		⑦ Oversample	8			
Serial Communication Block (SCB)	4	SCD_4	-		③ Bit Order	LSB First			
Serial Communication Block (SCB)	5	scb_5	.		⑦ Data Width	8 bits			
Serial Communication Block (SCB)	6	scb_6	.		(2) Parity	Nono			
Serial Communication Block (SCB)	7	scb_7				None			
Serial Communication Block (SCB)	8	scb_8			③ Stop Bits	1 bit			
Serial Communication Block (SCB)	9	scb_9	\sim	<	(2) Epoble Digital Eilter	1			
<		>		Se	erial Communication Block (SCB) 3 (KIT UART) - Parameters	Code Preview		

- 5) Set "Value" of "Connections" parameters
 - Clock divider: 8-bit Divider 0
 - Used ports:
 - Tx : SCB3_TX (P13.1)
 - Rx : SCB3_RX (P13.0)

CYT4BFBCHE					Seria	al Communication Block (SCB)	3 (KIT_UART	") - Parameters		5) Conne	ection na	ram
Peripherals Pins	Analog-Routing	System	Peripheral-Clo	1	Enter	r filter text				0) 001110		
Enter filter text			7 ⊟ ⊞ ⊀ 🗎	ħ.	Nam	ie		value				、 、
Resource			Name(s)	^		⑦ Clock		8 of 8 bit Div	vider 0 clk [USED]			
Serial Comm	nunication Block (SCB)) 1	scb_1			⑦ RX		& 🕒 P13[0] d	ligital_inout (CYBSP_E	EBUG_UART_RX, CYBS	SP_D0) [USED]	
Serial Comm	nunication Block (SCB)) 2	scb_2			(?) TX		8 🕒 P13[1] d	ligital_inout (CYBSP_D	DEBUG_UART_TX, CYBS	SP_D1) [USED]	
Serial Comm	nunication Block (SCB)) 3	KIT_UART			(2) PX Trigger Output						
Serial Comm	nunication Block (SCB)) 4	scb_4			. Itx higger Output	-					
Serial Comm	nunication Block (SCB)) 5	scb_5			⑦ TX Trigger Output		<unassigned></unassigned>				
Serial Comm	nunication Block (SCB)) 6	scb_6		> A	Actual Baud Rate						
Serial Comm	nunication Block (SCB)) 7	scb_7		> T	rigger Level						
Serial Comm	nunication Block (SCB)	8 (scb_8		~ N	Aulti Processor Mode						
Serial Comm	nunication Block (SCB)	9 (scb_9	~	<						>	
<			>		Ser	ial Communication Block (SCB	3 (KIT_UA	RT) - Parameters	Code Preview			

6) Check the Actual Baud Rate and update it for your device

CYT4BFBCHE	Serial Communication Block (SCB) 3 (KIT_UART) - Parameters	₽ ×
Peripherals Pins Analog-Routing	Enter filter text	🖉 🖸 🖻 🕀
Enter filter text 🖉 🔻 🖻 🕀	Name Value	^
Resource		
Serial Communication Block (SCB) 2	 Actual Baud Rate 	
Serial Communication Block (SCB) 3	Actual Baud Rate (bps)	
Serial Communication Block (SCB) 4	Baud Rate Accuracy (%)	
Serial Communication Block (SCB) 5	? Clock Frequency 920.188 kHz	
Serial Communication Block (SCB) 6		
Serial Communication Block (SCB) 7		
Serial Communication Block (SCB) 8		
\Box Serial Communication Block (SCB) 9 \downarrow	<u> </u>	>
< >	Serial Communication Block (SCB) 3 (KIT_UART) - Parameters Code Preview	

> Confirm configuration result

- You can check the configuration result in the "Code Preview" tab of the Device Configurator

> Close Device Configurator:

- Click the "Save" button after completing all settings, and then close the "Device configurator"

📓 File Edit View Help		
CYT4BFBCHE	ve" button	2) Close "Device configurator"
Peripherals Pins Analog-Routing	Enter search text	٩,
Enter filter text 🖉 🔻 🖻 🖬	<pre>/* NOTE: This is a preview only. It combines e * cycfg peripherals.c and cycfg peripherals.t</pre>	lements of the ^
Resource	* C:/Users/Shusaku.Suzuki@infineon.com/mtw/SC	B_UART_Transmit_and_Receive_using_DMA/bsps/TAF
Quad Serial Memory Interface (QSPI)	,	
SD Host Controller (SDHC) 0	#include "cy_scb_uart.h"	
Serial Communication Block (SCB) 0	#if defined (CY USING HAL)	
Serial Communication Block (SCB) 1	#include "cyhal_hwmgr.h"	
Serial Communication Block (SCB) 2	#endir //defined (CY_USING_HAL)	
Serial Communication Block (SCB) 3	#define KIT_UART_HW SCB3	
Serial Communication Block (SCB) 4	#define KIT_OART_IRQ SCD_3_interrupt_IRQn	
Serial Communication Block (SCB) 5	const cv stc sch wart config t KTT HART config	
< >	Serial Communication Block (SCB) 3 (KIT_UART) - Parameters	Code Preview

- If an Errors/Tasks message appears, it should be resolved according to the instructions

None V	Notice List - Smart I/O Configurator 4.0	
None v	😢 0 Errors 🔥 2 Warnings 🧱 2 Tasks 🚺 0 Infos	
S 2 Errors/Tasks	Fix Description	Location
Click	Invalid DU connection. DU TRD is sourced from LUT [6] but the LUT is not enabled to drive it.	CYT4BFBCHE: Smart I/O 13 (smart_io)

> Configuration file:

- Close the "Device configurator". It generates code into a "GeneratedSource" directory in your Eclipse IDE application, or in the same location you saved the *.modus file for non-IDE applications.
- This example has the following code:

Implementation

- This section describes how to implement the configured UART. This example will implement UART configuration in the UART_training project.
 - Open main.c in the UART_training project

> Add include file

.c	*main.c 🛛				
	******	***************************************	*****	******	******
	#includ	e "cybsp.h"	Add in	clude file in the main.c	
(#includ	e "cy_retarget_io.h"			

> Add UART initialization and enable function

UART initialization:

- > Call the Cy SCB UART Init() function to configure UART
 - Initializes the SCB for UART operation

UART enable:

- > Call the Cy_SCB_UART_Enable() function to enable UART
 - Enables the SCB for UART operation

UART FIFO Control:

- > Call the Cy SCB UART PutString() function for UART TX FIFO
 - Places a NULL terminated string in the UART TX FIFO.
- > Call the Cy_SCB_UART_GetRxFifoStatus() function for UART RX FIFO
 - Returns the current status of the UART RX FIFO.
- > Call the Cy_SCB_UART_ClearRxFifoStatus() function for UART RX FIFO
 - Clears the selected statuses of the UART RX FIFO.

Other functions:

> Check the following for more information

<u>File Edit View H</u> elp							
🗋 🚰 🔚 🍋 🍋							
CYT4BFBCHE		Serial Communication Block (SCB) 3 (KI	T_UART) - Parameters	ē ×			
Peripherals Pins Analog-Routing System	Peripheral-Clo 🔹 🕨	Enter filter text		/ U 🖻 🕀			
Enter filter text	7 B B 🖌 B 🗅	Name	Value				
Resource	Name(s) ^	✓ Overview		Check here			
Serial Communication Block (SCB) 1	scb_1	Configuration Help	Open UART (SCB) Documentation				
Serial Communication Block (SCB) 2	scb_2	✓ General					
Serial Communication Block (SCB) 3	KIT_UART	⑦ Com Mode					
Serial Communication Block (SCB) 4	scb_4	⑦ Baud Rate (bps)	115200				
Serial Communication Block (SCB) 5	scb_5	⑦ Oversample	⑦ Oversample 8				
Serial Communication Block (SCB) 6	scb 6	⑦ Bit Order	⑦ Bit Order LSB First				
Serial Communication Block (SCB) 7	scb_7	⑦ Data Width	8 bits				
Serial Communication Block (SCB) 8	scb 8	? Parity	None	V			
Serial Communication Block (SCB) 9	scb_9	<	a con	>			
<	>	Serial Communication Block (SCB) 3 (k	(IT_UART) - Parameters Code Preview				
Notice List				8 ×			
😢 0 Errors 🦺 0 Warnings 🗐 0 Tasks 👔 1 Ir	nfo						

Use case

> Overview of configuration parameters for SPI:

- SCB mode = Motorola SPI Master mode
- SCB channels = 2
- Clock frequency: 16 MHz (Clock divider: Peri Clock Group 1 8-bit Divider 1)
- Bit rate = 1 Mbps
- Tx/Rx data width = 8 bits
- Used ports
 - SCLK : SCB2_CLK (P14.2)
 - MOSI : SCB2_MOSI (P14.1)
 - MISO : SCB2_MISO (P14.0)
 - SELECT : SCB2_SEL0 (P14.3), Active Low
- CPHA = 0, CPHL = 0
 - MOSI data is driven on a falling edge of SCLK
 - MISO data is captured on a falling edge of SCLK
- Trigger
 - Tx FIFO less than 63
- See "SCB_SPI_Master_DMA" application for operation

SPI configuration

> Create project

1) Click New Application in Quick Panel and open the Choose Board Support Package (BSP) window

- 2) Select TRAVEO[™] BSPs and KIT_T2G-B-H_EVK
- 3) Click Next and open the Application window
- 4) In this use cas?e, it changes to "SPI_training"
- 5) Click Create and start application creation

infineon

> Launch Device configurator:

- 1) Select the "SPI_training" project.
- 2) Click "Device configurator" in Quick Panel
- 3) Open the "Device configurator" window

CYT4BFBCHE	Parameters	Ð	×
Peripherals Pins Analog-Routir			
Enter filte 🖉 🔻 🖻 🖬			
Resource Name(s) Personality			
> Analog	Coloct on onebled resource to configure it.		
> Communication 3) Open "I	Device configurator"		
> Digital			
> System			
	Parameters Code Preview		

- Configure Clock (System):
 - 1) Click System tab
 - 2) Select "PLL400M1"
 - 3) Set "Desired Frequency" to "192.000"
 - 4) Ensure that the frequency is set to 192 MHz

infineon

SPI configuration (contd.)

> Configure Clock (System):

- 4) Select "CLK_HF2"
- 5) Select the "CLK_PATH2" as "Source Clock"
- 6) Set "Divider" to "1"
- 7) Ensure that the frequency is set to 192 MHz

- 1) Click "Peripheral-clock" tab for peripheral clock divider configuration
- 2) Select "8 bit Divider 1" in Peri Clock Group 1
- 3) Set "Divider" to "12"
- 4) You can see 16 MHz clock (192 MHz/12) as output frequency
- 5) Select "Serial communication Block (SCB) 2 clock" as "Peripherals" connection

infineon

- > Configure **SPI**:
 - 1) Check Serial Communication Block (SCB) 2 in the Peripheral tab
 - 2) Select "SPI-3.0"
 - 3) Click OK
 - 4) Fill the mSPI to name

- 5) Set "Value" of "General" parameters
 - SCB Mode = Motorola SPI Master mode
 - CPHA = 0, CPHL = 0

CYT4BFBCHE			Serial Communicat	ion Block (SCB) 2 (mSPI) - Parameters		₽ ×
Peripherals Pins Analog-Routing System	n Peripheral-Clocks	DMA	Enter filter text			<u>_</u> 0	∎ ⊞
Enter filter text		🖉 🔻 🖻 🗮 🦧 🗎 🛍	Name		ada ta "I	Astenale" and "CDI m	
Resource	Name(s)	Personality ^	✓ Overview	Set SCB ma	Dae lo T	violorola and SPI m	aster
Serial Communication Block (SCB) 1	scb_1		⑦ Configur	ration Help	Open SPI S	B Documentation	
Serial Communication Block (SCB) 2	mSPI	SPI-3.0 V	✓ General				_
Serial Communication Block (SCB) 3	scb_3		⑦ Mode		Master		
Serial Communication Block (SCB) 4	scb_4		② Sub Mod	de	Motorola		2
Serial Communication Block (SCB) 5	scb_5		⑦ SCLK Mo	ode	CPHA = 0, 0	CPOL = 0	
Serial Communication Block (SCB) 6	scb_6		⑦ Data Rat	te (kbps)	1000		
Serial Communication Block (SCB) 7	scb_7		? Oversam	ple	16		
Serial Communication Block (SCB) 8	scb_8		② Enable In	nput Glitch Filter			
Serial Communication Block (SCB) 9	scb_9		⑦ Enable N	AISO Late Sampling		Set SCLK Mode to	
Serial Communication Block (SCB) 10	scb 10		③ SCLK Fre	e Running			0"
> Digital	_		⑦ Parity		No Parity	$O \cap A = 0, O O O =$	0
 System 			<				>
	0	· · · · · · · · · · · · · · · · · · ·	Serial Communica	ation Block (SCB) 2 (mSF	PI) - Parameters	Code Preview	

- 6) Set "Value" of "Data Configuration" parameters
 - Tx/Rx data width = 8 bits

CYT4BFBCHE					Serial Communication Blo	ock (SCB)	2 (mSPI) - Parameters			Ξ×
Peripherals Pins Analog-Routing	System	Peripheral-Clocks	DMA	1	Enter filter text				<u>/</u> 0	₽ ₽
Enter filter text			🖉 🖲 🖻 🤸 🗎 🛍	ſ	Name	Value				
Resource		Name(s)	Personality ^		> Overview		Set RX/1X D	ata width to 8		
Serial Communication Block (SC	B) 1	scb_1			> General				-	
🖂 🗐 Serial Communication Block	(SCB) 2	mSPI	SPI-3.0 ~		Data Configuration Data Configuration		<u> </u>			
Serial Communication Block (SC	B) 3	scb_3			Bit Order BX Data Wide	0				
Serial Communication Block (SC	B) 4	scb_4			① TX Data Width	0	_			
Serial Communication Block (SC	B) 5	scb_5			 Slave Select 	0				
Serial Communication Block (SC	B) 6	scb_6			> Connections					
Serial Communication Block (SC	B) 7	scb_7			> Data Rate					
Serial Communication Block (SC	B) 8	scb_8			> Trigger Level					
Serial Communication Block (SC	B) 9	scb_9			> API Mode					
Serial Communication Block (SC	B) 10	scb_10			> Advanced					
✓ Digital			~		Serial Communication B	lock (SCE	3) 2 (mSPI) - Parameters	Code Preview		

- 7) Set "Value" of "Connection" parameters
 - Clock frequency: 16 MHz (Clock divider: Peri Clock Group 1 8-bit Divider 1)
 - Used ports
 - SCLK: SCB2_CLK (P14.2)
 - MOSI: SCB2_MOSI (P14.1)
 - MISO: SCB2_MISO (P14.0)
 - SELECT: SCB2_SEL0 (P14.3), Active Low

CYT4BFBCHE				Serial Communication Block (SCB) 2 (mSPI) - Parameters
Peripherals Pins Analog-Routing System	Peripheral-Clocks	DMA		Enter filter text
Enter filter text			/ ▼ ⊟ ⊞ ⊀ ⊟ ≞	Name Value
Resource	Name(s)	Personality	^	✓ Slave Select
Inter-IC Sound Bus (I2S) 0	audioss_0_i2s_0			Set SS0 polarity to Active Low
Inter-IC Sound Bus (I2S) 1	audioss_1_i2s_0			
Inter-IC Sound Bus (I2S) 2	audioss_2_i2s_0			(2) Hold Delay
Local Interconnect Network (LIN) 0	lin_0			(?) Inter-dataframe Delay 1.5 Cloc Cycles
Quad Serial Memory Interface (QSPI) 0	smif_0			SS0 Polarity Active Low
SD Host Controller (SDHC) 0	sdhc_0			Active Low
Serial Communication Block (SCB) 0	scb_0		Set Clock to	8 bit Divider 1 clk
Serial Communication Block (SCB) 1	scb_1			
Serial Communication Block (SCB) 2	mSPI	SPI-3.0 ~		(?) Clock
Serial Communication Block (SCB) 3	scb_3			Ø ● P14[2] digital_inout (CYBSP_A2) [USED]
Serial Communication Block (SCB) 4	scb_4			Set used port P14[1] digital_inout (CYBSP_A1) [USED]
Serial Communication Block (SCB) 5	scb_5			⑦ MISO Ø ● P14[0] digital_inout (CYBSP_A0) [USED]
Serial Communication Block (SCB) 6	scb_6			③ SS0 P14[3] digital inout (CYBSP_A3) [USED]
Serial Communication Block (SCB) 7	scb_7	-		③ SS1 <unassigned></unassigned>
Serial Communication Block (SCB) 8	scb_8			③ SS2 <unassigned></unassigned>
Serial Communication Block (SCB) 9	scb_9	-		2 RY Trigger Output
Serial Communication Block (SCB) 10	scb_10			C for higger output
> Digital				⑦ TX Trigger Output <unassigned></unassigned>
✓ System				✓ Data Rate
EVTGEN 0	evtgen_0			② Actual Data Rate (kbps)
Multi-Counter Watchdog Timer (MCWDT)	0 srss_0_mcwdt_0			⑦ Clock Frequency
Multi-Counter Watchdog Timer (MCWDT)	1 srss_0_mcwdt_1		~	Serial Communication Block (SCB) 2 (mSDI) - Parameters Code Preview
				Schar communication block (SCB) 2 (msh) Parameters Code newew

- 8) Set "Value" of "Trigger level" parameters
 - Trigger
 - Tx FIFO less than 63

CYT4BFBCHE			Serial Communication Block (SCB) 2 (mSPI) - Parameters	6 X
Peripherals Pins Analog-Routing System	Peripheral-Clocks DMA		Enter filter text	/ U 🖻 🕀
Enter filter text	<u>/</u> 7 E E	* 🖻 🛍	Name Value	^
Resource	Name(s)	Persona ^	> Overview	
Serial Communication Block (SCB) 1	scb_1		Seneral Data Configuration	
Serial Communication Block (SCB) 2	mSPI	SPI-3.0		
Serial Communication Block (SCB) 3	scb_3	6	3) Set Tx FIFO Trigger Level to 63	
Serial Communication Block (SCB) 4	scb_4		V Trigger Level	
Serial Communication Block (SCB) 5	scb_5		? RX FIFO Level 63	
Serial Communication Block (SCB) 6	scb_6		⑦ TX FIFO Level 63	
Serial Communication Block (SCB) 7	scb_7	v	V API Mode	
< _		>	Serial Communication Block (SCB) 2 (mSPI) - Parameters Code Preview	v

- 9) Check "Actual Data Rate (kbps)"
 - Bit rate: 1 Mbps

CYT4BFBCHE			Serial Communication Block (SCB) 2 (mSPI) - Parameters	ē ×
Peripherals Pins Analog-Routing System Pe	eripheral-Clocks DMA		Enter filter text	0 = =
Enter filter text	<u>/</u> 7 E E	* 🖻 🛍	Name Value	^
Resource	Name(s)	Persona ^	> Overview	
Serial Communication Block (SCB) 1	scb_1		Actual Data Data	
Serial Communication Block (SCB) 2	mSPI	_{SPI-3} 9)	Actual Date Rate	
Serial Communication Block (SCB) 3	scb_3		Connections	
Serial Communication Block (SCB) 4	scb_4		Actual Data Rate (KDIs) 1000,000	
Serial Communication Block (SCB) 5	scb_5		Clock Frequency	
Serial Communication Block (SCB) 6	scb_6		> Trigger Level	
Serial Communication Block (SCB) 7	scb_7		API Mode (7) API Mode High Level	~ ~

> Confirm configuration result

- You can check the configuration result in the "Code Preview" tab of Device configurator

```
8 ×
Code Preview
Enter search text
/* NOTE: This is a preview only. It combines elements of the
* cycfg peripherals.c and cycfg peripherals.h files located in the folder
* C:/Users/Koji.Mizumoto@infineon.com/mtw 20221207 ce test timer/SPI training/bsps/TARGET APP KIT T2G-B
*/
#include "cy scb spi.h"
#include "cy sysclk.h"
#if defined (CY USING HAL)
    #include "cyhal hwmgr.h"
#endif //defined (CY USING HAL)
#define mSPI HW SCB2
#define mSPI IRQ scb 2 interrupt IRQn
const cy stc scb spi config t mSPI config =
    .spiMode = CY SCB SPI MASTER,
    .subMode = CY SCB SPI MOTOROLA,
    .sclkMode = CY SCB SPI CPHA0 CPOL0,
    .parity = CY SCB SPI PARITY NONE,
    .dropOnParityError = false,
    .oversample = 16,
    .rxDataWidth = 8UL,
    .txDataWidth = 8UL.
    .enableMsbFirst = true,
    .enableInputFilter = false.
    .enableFreeRunSclk = false,
    .enableMisoLateSample = true,
    .enableTransferSeparation = false,
    .ssPolarity = ((CY SCB SPI ACTIVE LOW << CY SCB SPI SLAVE SELECTO) | \
                                          (CY SCB SPI ACTIVE LOW << CY SCB SPI SLAVE SELECT1) | \
                                          (CY SCB SPI ACTIVE LOW << CY SCB SPI SLAVE SELECT2) | \
                                          (CY_SCB_SPI_ACTIVE_LOW << CY_SCB_SPI_SLAVE_SELECT3)),
    .ssSetupDelay = false,
                                                                  Code preview tab
     ssHoldDelay = false
<
 Serial Communication Block (SCB) 2 (mSPI) - Parameters
                                              Code Preview
```


> Close Device Configurator:

- Click the "Save" button after completing all settings, then close "Device configurator"

DEV DEV				- - ×
<u>Eile Edit View H</u> elp		_		NOLARS "Device confirments"
🗋 🚅 🔚 👎 🤍 1) Click "Save	e" button		4	2) Close "Device configurator"
CYT4BFBCHE		Serial Communication Block (SCB) 2 (mSPI)	Parameters	8 ×
Peripherals Pins Analog-Routing System	Periphe 💶 🕨	Enter filter text		<u>/</u> U = E
Enter filter text 🦉 🖪	E 🖌 🗎 🛍	Name	Value	^
Resource	Name(s) ^	✓ Slave Select		
Inter-IC Sound Bus (I2S) 0	audioss_0_i	⑦ Deassert SS Between Data Eleme	nt 🗌	
Inter-IC Sound Bus (I2S) 1	audioss_1_i	③ Setup Delay	0.75 Clock Cycles	~
Inter-IC Sound Bus (I2S) 2	audioss_2_i	⑦ Hold Delay	0.75 Clock Cycles	~
Local Interconnect Network (LIN) 0	lin 0	Inter-dataframe Delay	1.5 Clock Cycles	~
Ouad Serial Memory Interface (OSPI) 0	smif 0	③ SS0 Polarity	Active Low	~
SD Host Controller (SDHC) 0	sdhc 0	③ SS1 Polarity	Active Low	~
Serial Communication Block (SCB) 0	scb 0	③ SS2 Polarity	Active Low	~
Serial Communication Block (SCB) 1	sch 1	✓ Connections		
Serial Communication Block (SCB) 2	mSPI	⑦ Clock	8 bit Divider 1 clk [USED]	~
Serial Communication Block (SCB) 2	scb_3	③ SCLK	P14[2] digital_inout (CYB	SP_A2) [USED] ~

- If an Errors/Tasks message appears, it should be resolved according to the instructions

None ~	Notice List - Smart I/O Configurator 4.0			
None	😢 0 Errors 🔥 2 Warnings 📔 2 Tasks 👔 0 Infos			
Click	Fix Description	Location		
	Invalid DU connection. DU TR0 is sourced from LUT [6] but the LUT is not enabled to drive it.	CYT4BFBCHE: Smart I/O 13 (smart_io) 🗸		

> Configuration file:

- Close "Device configurator"; it generates code into a "GeneratedSource" directory in your Eclipse IDE application, or in the same location where you saved the *.modus file for non-IDE applications.
- This example has the following code:

> Implementation:

This section describes how to implement the configured SPI. This example will implement SPI configuration in the SPI_training project.

Open main.c in SPI_training project

> Add SPI initialization and enable

SPI initialization:

- > Call the Cy SCB SPI Init() function to configure SCB
 - Initializes the SCB for SPI operation
 - Configure SCB with parameters in the *mSPI_config* structure

SPI enable:

- > Call the Cy_SCB_SPI_Enable() function to enable SCB
 - Enable the SCB for SPI
 - Initiate transmission by transferring data from DMA to TX FIFO

Other functions:

> Check the following for more information

CYT4BFBCHE			Serial Communication Block (SCB) 2 (mSPI)	- Parameters	5 ×
Peripherals Pins Analog-Routing System	Peripheral-Clocks	DMA	Enter filter text		🖉 O 😑 🖽
Enter filter text			Name	Value	
Resource	Name(s)	Personality ^	✓ Overview		Check here
Quad Serial Memory Interface (QSPI) 0	smif_0		② Configuration Help	Open SPI SCB Documentation	
SD Host Controller (SDHC) 0	sdhc_0		✓ General		
Serial Communication Block (SCB) 0	scb_0		③ Mode	Master	
Serial Communication Block (SCB) 1	scb_1		③ Sub Mode	Motorola	
Serial Communication Block (SCB) 2	mSPI	SPI-3.0 ~	③ SCLK Mode	CPHA = 0, CPOL = 0	
Serial Communication Block (SCB) 3	scb_3		⑦ Data Rate (kbps)	1000	
Serial Communication Block (SCB) 4	scb_4		⑦ Oversample	16	
Serial Communication Block (SCB) 5	scb 5		② Enable Input Glitch Filter		
Serial Communication Block (SCB) 6	scb 6		Enable MISO Late Sampling		Ň
Serial Communication Block (SCB) 7	scb_7	~	Sarial Communication Block (SCB) 2 (mSE	I) - Parameters Code Preview	,

Datasheet

- > <u>CYT4BF datasheet 32-bit Arm® Cortex®-M7 microcontroller TRAVEO™ T2G family</u>
- Architecture Technical reference manual
- > TRAVEO[™] T2G automotive body controller high family architecture technical reference manual

Registers Technical reference manual

> TRAVEO™ T2G Automotive body controller high registers technical reference manual

PDL/HAL

> PDL

> <u>HAL</u>

Training

> TRAVEO™ T2G Training

Revision History

Revision	ECN	Submission Date	Description of Change
**	7849954	12/19/2012	Initial release

Important notice and warnings

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-12 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Go to: www.infineon.com/support

Document reference 002-36744 Rev. **

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics

("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

WARNINGS

The data contained in this document is

exclusively intended for technically

trained staff. It is the responsibility of

customer's technical departments to

evaluate the suitability of the product for

the intended application and the

completeness of the product information

given in this document with respect to

For further information on the product,

conditions and prices please contact

your nearest Infineon Technologies

office (www.infineon.com).

terms

and

delivery

such application.

technology.

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Part of your life. Part of tomorrow.