
1

Customer training workshop:

I2C_Master_EZI2C_Slave

for KIT_T2G-B-H_EVK

TRAVEO™ T2G CYT4BF series Microcontroller Training

V1.0.1 2022-11

Please read the Important notice and warnings at the end of this document

2Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Scope of work

› This code example demonstrates the use of the I2C (HAL) resource in master mode with an

EZI2C slave. The I2C master is configured to send command packets to control a user LED on the

slave. Both the slave and the master can be configured on the same kit.

› Device

– The TRAVEO™ T2G CYT4BFBCH device is used in this code example.

› Board

– The TRAVEO™ T2G KIT_T2G-B-H_EVK board is used for testing.

3Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Introduction

› I2C has the following features:

– Master, slave, and master/slave mode

– Standard-mode (100 kbps), fast-mode (400 kbps), and fast-mode plus (1000 kbps) data-rates

– 7-bit slave addressing

– Clock stretching

– Collision detection

– Programmable oversampling of the I2C clock signal (SCL)

– Auto ACK when RX FIFO is not full, including address

– General address detection

– FIFO mode

– EZ and CMD_RESP modes

– Interrupts or polling CPU interface

– Analog glitch filter

– Local loop-back control

4Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Hardware setup

› This code example has been developed for the KIT-T2G-B-H-EVK board.

› Connect your PC to the board using the provided USB cable through the KitProg3 USB connector.

Power

KitProg3 USB

connector

Reset button

CAN FD interface

connector

RJ 45 Gigabit

Ethernet connector

TRAVEO™ T2G

CYT4BFBCH

User button

User LED

Potentiometer

5Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Hardware setup (contd.)

› This code example is configured to work in the “Master only” mode.

Therefore, use jumper wires to establish a connection between the master and the slave on the kit.

– Connect mI2C_SCL (master) to sI2C_SCL (slave)

– Connect mI2C_SDA (master) to sI2C_SDA (slave)

› By default, the code example is configured to work in the 'Master only' mode. In the resource_map.h file, it

can change the value of the I2C_MODE macro to I2C_MODE_BOTH.

Code setting (I2C_MODE) Master side Slave side

mI2C_SDA mI2C_SCL sI2C_SDA sI2C_SCL

I2C_MODE_BOTH P12.1 P12.2 P15.1 P15.2

I2C_MODE_MASTER P15.1 P15.2 N/A N/A

I2C_MODE_SLAVE N/A N/A P15.1 P15.2

P12.1

P15.1

P12.2

P15.2

6Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Implementation

This code example demonstrates the use of the I2C (HAL) resource in master mode with an EZI2C slave.

After I2C master initialization is complete, it will start to send the command packet to the slave. The

command packets are used to control a user LED on the slave. The I2C master reads the response from

the slave and generates the next command.

Follow these steps to configure this code example:

› STDOUT setting

› GPIO port pin initialization1

› EZI2C slave initialization1

› I2C master initialization

› Send command packet to the slave

› Read the response from the slave

1Only execute when I2C_MODE_BOTH or I2C_MODE_SLAVE is defined.

7Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Implementation (contd.)

STDOUT setting:

› Call the cy_retarget_io_init() function to use UART as STDOUT

– Initialize P13.1 as UART TX and P13.0 as UART RX (these pins are connected to the KitProg3 COM port)

– The serial port parameters change to 8N1 and 115200 baud

GPIO port pin initialization:

› The cyhal_gpio_init() function initializes the GPIO port pin.

– Initialize P16.1 as output (initial level = H, LED turns off)

– This is done when the code is configured as I2C slave (I2C_MODE_BOTH or I2C_MODE_SLAVE is defined)

EZI2C slave initialization:

› The cyhal_ezi2c_init() function initializes the I2C peripheral
(This can only be done when I2C_MODE_BOTH or I2C_MODE_SLAVE is defined).

– Initializes an I2C resource as a slave and selects pins for SDA and SCL, clock = 400 KHz.

– Register callback function using cyhal_ezi2c_register_callback(); the function will be called when one of the events

that configured using the cyhal_ezi2c_enable_event() (CYHAL_EZI2C_STATUS_ERR or

CYHAL_EZI2C_STATUS_WRITE1 or CYHAL_EZI2C_STATUS_READ1) occurs.

https://infineon.github.io/retarget-io/html/group__group__board__libs.html#ga21265301bf6e9239845227c2aead9293
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__gpio.html#gab93322030909d3af6a9fc1a3b2eccbaa
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#ga0418a0231369904a03c9b19a734a920f
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#gac3a9fbfa0ae4b433f830af7c0130f2f3
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#gac81d408ff91899f328b51c4ba3254536
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#gga43af4b9cfed6e50bd96e4f2434678620a3960bfaec07aae51a3886d36e99d0989
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#gga43af4b9cfed6e50bd96e4f2434678620a45906f2579b75a3ce2ca81d9e3cfa6ea
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__ezi2c.html#gga43af4b9cfed6e50bd96e4f2434678620a974cc49bec7a7e8e46a0494e548de1a0

8Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Implementation (contd.)

I2C master initialization:

› The cyhal_i2c_init() function initializes the I2C peripheral

– Initializes an I2C resource as a master and assigns the mI2C_SDA and mI2C_SCL pins

– The cyhal_i2c_configure() function configures the I2C block to set it as master

Send command packet to the slave:

› I2C master sends command packet to the slave using the cyhal_i2c_master_write() function

Read the response from the slave:

› I2C master reads the response packet to generate the next command

– After the I2C master sends the command packet to the slave successfully, it will read the response from the slave using

the cyhal_i2c_master_read() function

– After the I2C master reads the command packet from the slave successfully, it will generate the next command after 1[s]

delayed using the cyhal_system_delay_ms() function

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__i2c.html#gac2885a21905af9d1d48aae34a6032a61
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__i2c.html#ga37a35abcb9bf2d0ecf2a52b2fa5bce64
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__i2c.html#gaf100c21cd95409c70e1ba0463c23e3f8
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__i2c.html#ga0652a883293c83ebd0612fddbd8ff64d
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__system.html#ga5f450769c1207d98134a9ced39adfdda

9Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

1. Connect to power and USB cable

2. Use Eclipse IDE for ModusToolbox™ software

for compiling and programming

3. Compile

a) Select the target application project in the Project Explorer

b) In the Quick Panel, scroll down and click

“Build I2C_Master_EzI2C_Slave Application”

in I2C Master EzI2C Slave (KIT-T2G-B-H-EVK)

4. Open a terminal program and select the KitProg3 COM port.

Set the serial port parameters to 8N1 and 115200 baud.

5. Programming

a) Select the target application project in the Project Explorer

b) In the Quick Panel, scroll down and click “I2C_Master_EzI2C_Slave Program

(KitProg3_MiniProg4)” in Launches

Compiling and programming

Power

KitProg3 USB

connector

10Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Run and test

1. After successful programming, the application starts automatically. Confirm that the UART terminal

displays the following:

2. Observe that the kit user LED blinks at 1 Hz.

User LED

11Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

References

Datasheet

› CYT4BF datasheet 32-bit Arm® Cortex ® -M7 microcontroller TRAVEO™ T2G family

Architecture technical reference manual

› TRAVEO™ T2G automotive body controller high family architecture technical reference manual

Registers technical reference manual

› TRAVEO™ T2G automotive body controller high registers technical reference manual

PDL/HAL

› PDL

› HAL

Training

› TRAVEO™ T2G training

https://www.cypress.com/documentation/datasheets/cyt4bf-datasheet-32-bit-arm-cortex-m7-microcontroller-traveo-ii-family
https://www.cypress.com/documentation/technical-reference-manuals/traveo-ii-automotive-body-controller-high-family
https://www.cypress.com/documentation/technical-reference-manuals/traveo-t2g-tvii-b-h-8m-registers-body-controller-high
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__gpio__functions__init.html#gaf57c501727276013d3e8974a9fb7d0a7
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__gpio.html#gab93322030909d3af6a9fc1a3b2eccbaa
https://www.infineon.com/cms/en/product/microcontroller/#!trainings

12Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Revision history

Revision ECN Submission date Description of change

** 7782644 2022/07/06 Initial release

*A 7837066 2022/11/08 Added comments on page 6 and page 7

13Copyright © Infineon Technologies AG 2022. All rights reserved.002-35573 *A, 2022-11-08

Edition 2022-11

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies

AG.

All Rights Reserved.

Do you have a question about

this

document?

www.infineon.com/support

Document reference

002-35573 Rev. *A

IMPORTANT NOTICE

The information given in this document

shall in no event be regarded as a

guarantee of conditions or

characteristics

(“Beschaffenheitsgarantie”) .

With respect to any examples, hints or

any typical values stated herein and/or

any information regarding the

application of the product, Infineon

Technologies hereby disclaims any and

all warranties and liabilities of any kind,

including without limitation warranties of

non-infringement of intellectual property

rights of any third party.

In addition, any information given in this

document is subject to customer’s

compliance with its obligations stated in

this document and any applicable legal

requirements, norms and standards

concerning customer’s products and any

use of the product of Infineon

Technologies in customer’s applications.

WARNINGS

Due to technical requirements products

may contain dangerous substances. For

information on the types in question

please contact your nearest Infineon

Technologies office.

Except as otherwise explicitly approved

by Infineon Technologies in a written

document signed by authorized

representatives of Infineon

Technologies, Infineon Technologies’

products may not be used in any

applications where a failure of the

product or any consequences of the use

thereof can reasonably be expected to

result in personal injury.

The data contained in this document is

exclusively intended for technically

trained staff. It is the responsibility of

customer’s technical departments to

evaluate the suitability of the product for

the intended application and the

completeness of the product information

given in this document with respect to

such application.

For further information on the product,

technology, delivery terms and

conditions and prices please contact

your nearest Infineon Technologies

office (www.infineon.com).

Important notice and warnings
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/support
http://www.infineon.com/

