Cooling concepts for CanPAK™* package

IMM PSD LV
Peinhopf Wolfgang

Published by Infineon Technologies AG
http://www.infineon.com

* CanPAK™ products use DirectFET® technology licensed from International Rectifier Corporation. DirectFET® is a trademark of International Rectifier Corporation.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the u
Cooling concepts for CanPAK™ package

1 Introduction .. 4
2 CanPAK™ package .. 4
3 Thermal resistance .. 5
4 CanPAK™ – Double sided cooling package .. 6
 4.1 Heatsink .. 7
 4.2 Thermal interface materials (TIM’s) .. 8
 4.3 Board attachment ... 9
5 Thermal measurements and simulation ... 9
6 Summary .. 14
7 Appendix .. 14
1 Introduction

Cooling capability is the major disadvantage for SMD based power electronics. However, SMD based systems can’t be avoided when it comes to high efficiency. The CanPAK™ package is a package with a very low thermal resistance to the top and bottom side of the package. This allows using efficient cooling concepts and thus solves the issue of limited cooling capability in SMD systems. This document gives an overview of different cooling concepts and also provides thermal measurement and simulation results to see the improvement in thermal performance by employing such new concepts.

2 CanPAK™ package

CanPAK™ is a surface mount semiconductor technology designed for board mounted power applications. It optimizes elements of packaging to improve the thermal performance. CanPAK™ devices no longer use bond wire or clip interconnect but use solder bumps for source and gate connections. The drain connection is formed by a plated copper can, which is bonded to the drain side of the silicon die. There are two can sizes available, medium can M and small can S (Fig. 1)

As the CanPAK™ uses a copper can it features a very low thermal resistance to the top side of the package and hence is very suitable for cooling through the top side of the package (‘double sided cooling’). The top side of the can dissipates heat to the ambient, which is maximized if a heatsink is used. In addition to the source and gate pads the can construction provides a parallel thermal path to the board via the edges of the can. The heat flow paths are shown in Fig. 2.
3 Thermal resistance

When a Power MosFET operates in a system under steady-state condition, the maximum power dissipation is determined by the maximum junction temperature rating, the ambient temperature, and the junction-to-ambient thermal resistance.

\[
P_{\text{max}} = \frac{T_{J,\text{max}} - T_A}{R_{\text{th,JA}}} \tag{1}
\]

\(T_J\) is the temperature of the device junction. The term junction refers to the point of thermal reference of the semiconductor device. \(T_A\) is the average temperature of the ambient environment. \(P\) is the power dissipated in the device which changes the junction temperature. \(R_{\text{th,JA}}\) is a function of the junction-to-case \(R_{\text{th,JC}}\) and case-to-ambient \(R_{\text{th,CA}}\) thermal resistance:

\[
R_{\text{th,JA}} = R_{\text{th,JC}} + R_{\text{th,CA}} \tag{2}
\]

For the CanPAK™ one has to distinguish between the \(R_{\text{th,JC}}\) – bottom (resistance to the PCB board) and the \(R_{\text{th,JC}}\) – top (resistance to the heatsink). \(R_{\text{th,JC}}\) can be controlled and measured by the component manufacturer independent of the application and mounting. The main influence factor on the \(R_{\text{th,JC}}\) is the chip size.

On the other hand, it is difficult to quantify \(R_{\text{th,CA}}\) due to strong dependence on the application. \(R_{\text{th,CA}}\) is influenced by many variables such as ambient temperature, board layout, and cooling method (Table 1). In the datasheet usually \(R_{\text{th,JA}}\) values are given for a device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection. The PCB is vertical in still air. Before using the data sheet thermal data, the user should always be aware of the test conditions and justify the compatibility in the application.
Table 1 Influence factors $R_{\text{thJC}}, R_{\text{thCA}}$

<table>
<thead>
<tr>
<th>R_{thJC} (product variables)</th>
<th>R_{thCA} (application variables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leadframe size & material</td>
<td>• Mounting pad size, shape and location</td>
</tr>
<tr>
<td>• Die size</td>
<td>• Placement of mounting pad</td>
</tr>
<tr>
<td>• Die attach material</td>
<td>• PCB size & material</td>
</tr>
<tr>
<td>• Mold compound size & material</td>
<td>• Use of heatsink</td>
</tr>
<tr>
<td></td>
<td>• Amount of thermal vias</td>
</tr>
<tr>
<td></td>
<td>• Traces length & width</td>
</tr>
<tr>
<td></td>
<td>• Adjacent heat sources</td>
</tr>
<tr>
<td></td>
<td>• Air flow rate and volume of air</td>
</tr>
<tr>
<td></td>
<td>• Ambient temperature, etc.</td>
</tr>
</tbody>
</table>

4 CanPAK™ – Double sided cooling package

The metal can provides a very low thermal resistance between junction and the package topside. With the use of heatsinks and cooling air flow, the CanPAK™ package can dissipate more heat out of the top of the package than regular molded packages, reducing the operating temperature of the device. Effective top-side cooling means that heat dissipated can be pulled away from the circuit board, increasing the currents that the device can safely carry.

With the CanPAK™ effective cooling can be achieved by:

- Regular SMD
- Top side sinking
- bottom side sinking
- dual sided sinking

Fig. 3 Different options for usage of a heatsink.
When using a heatsink three points have to be considered (Fig. 4)
- heatsink
- thermal interface material (TIM)
- board attachment of heatsink

Fig. 4 Using a heatsink (heatsink, thermal interface material (TIM) and board attachment)

4.1 Heatsink

The size/shape of the heatsink will depend on the customers requirement for R_{thCA} case - ambient and required thermal capacity. The heatsink can be designed to sink single or multiple devices.

A heat sink lowers the thermal resistance mainly by increasing the surface area that is in direct contact with the package. This allows more heat to be dissipated and/or lowers the device operating temperature. Several vendors publish performance graphs for heatsinks as shown in Fig. 5. One can use the performance graphs to identify the heat sink and, for forced convection applications, determine the minimum flow velocity that satisfy the thermal requirements.

Fig. 5 Typical performance graph of a heatsink
4.2 Thermal interface materials (TIM's)

Interface material provides two functions. It fills the gap between device and heatsink and so

1. improves the intimacy on the thermal contact of the CanPAK™ and the heatsink.
2. provides electrical isolation between the drain clip which is at drain potential and the heatsink (not required if only one device is to be heatsunk or all devices are running at the same potential and phase).

There are different types of thermal interface materials available (Table 2). One has to distinguish between liquid (like grease) and solid interface (like silicone pads) materials

There are two key factors that impact the performance of the TIM's
- Thermal conductivity of the material
- Surface wetting/conforming characteristics of the material

<table>
<thead>
<tr>
<th>Material class</th>
<th>Description</th>
<th>Benefits</th>
<th>Drawbacks</th>
<th>Thermal conductivity</th>
<th>surface wetting</th>
<th>surface conforming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>TIM filled with conductive particles of Al2O3, etc.</td>
<td>Can achieve very thin bondlines < 10 µm</td>
<td>Difficult to preapply to assemblies, messy, requires controlled dispensing, typically bumps out, affecting long term reliability, no electrical isolation</td>
<td>0.3 - 2 W/mK</td>
<td>very good</td>
<td>very good</td>
</tr>
<tr>
<td>Gel</td>
<td>Grease replacement that consolidates during cure to form a gel-like substance</td>
<td>Can achieve very thin bondlines < 10 µm, does not pump out</td>
<td>Can't be preapplied to assemblies, requires cure which can be from bump-in, messy, requires controlled dispensing</td>
<td>0.3 - 2 W/mK</td>
<td>very good</td>
<td>very good</td>
</tr>
<tr>
<td>Adhesive</td>
<td>Heat cured adhesives with conductive particles</td>
<td>Can achieve very thin bondlines < 10 µm</td>
<td>Can't be preapplied to assemblies, requires cure process over curing, messy, requires controlled dispensing</td>
<td>0.3 - 1.3 W/mK</td>
<td>very good</td>
<td>very good</td>
</tr>
<tr>
<td>Tape</td>
<td>Usually pressure sensitive adhesive filled with conductive particles on a fiberglass or plastic carrier</td>
<td>Mechatanical and thermal attach</td>
<td>Typically thick bondlines with low thermal conductivity</td>
<td>0.7 - 1.5 W/mK</td>
<td>moderate</td>
<td>poor</td>
</tr>
<tr>
<td>Phase Change</td>
<td>A very thin material that changes to a gel at approx. 150°C allowing it to conform to surface irregularities. Can be preapplied or supplied on a carrier</td>
<td>Can achieve very thin bondlines < 10 µm, can be cut and preapplied, clean and simple processing, - typically electrical isolating</td>
<td>Typically low thermal conductivity, the phase change material itself is usually very thin and does not conform to large irregularities</td>
<td>0.8 - 1.5 W/mK</td>
<td>moderate</td>
<td>poor</td>
</tr>
<tr>
<td>Pads</td>
<td>Typically thick materials 100 - 300 µm</td>
<td>Simple to use, can be cut and preapplied, clean process</td>
<td>Typically requires moderate to high pressure to achieve reasonable performance, typically does not conform well to small irregularities</td>
<td>0.8 - 4 W/mK</td>
<td>Poor</td>
<td>Very good for large irregularities, very poor for small</td>
</tr>
</tbody>
</table>

Testing of interface materials in the application is critical. Initial first material selection can be based on the data sheet, however to optimize performance, empirical testing must be performed.
4.3 Board attachment

In the majority of cases the method of attachment is a compression fit of the heatsink onto the device. This is either achieved by screw mounting of the heatsink or through the use of a clip to affix the heatsink to the board. In both cases the interface material is sandwiched between the heatsink and the board.

5 Thermal measurements and simulation

The thermal performance in the application depends on boundary conditions like copper area on PCB, air flow velocity, etc. To show the influence of these parameters a typical board configuration for computing applications was used for thermal measurements and simulations. The PCB design is shown in Fig. 7 and Fig. 14. The measurements were done with test boards in a wind tunnel with airflow between 0 and 3 m/s. To show the influence of a heatsink the CanPAK™ investigations were done with two different heatsinks (Fig. 6). The small heatsink HS1 has twice the footprint of the CanPAK™ and the big heatsink HS2 has 4 times the footprint of the CanPAK™. The surface area of HS2 is approximately twice the area of HS1 which results in double heat transfer performance.

The advantage of using a heatsink can be seen in Fig. 8. Depending on the heatsink size a decrease of R_{th} up to 30% was reached, which means that accordingly more power can be dissipated or a lower PCB temperature can be achieved (Fig. 11). The measurements also show a dramatic influence of forced convection which decreases the thermal resistance by approximately 50% compared to still air (Fig. 8, Fig. 9, Fig. 10). The investigations show a very good agreement of measurement and simulation results.

Comparing different heatsink arrangements the arrangement on top of the package is better than arrangement beneath the PCB. Arrangement on top and bottom side yields the best performance (Fig. 9, Fig. 10).

![Heatsinks used for measurement and simulation](image)

Fig. 6 Heatsinks used for measurement and simulation (left: heatsink HS1, right: Heatsink HS2, dimensions in mm)

Thermal interface material:
- Adhesive tape
- Thickness: 127 µm
- Thermal conductivity: 0.37 W/mK
Cooling concepts for CanPAK™ package

Fig. 7 Measurement boards (dimensions in mm)

Fig. 8 Measurement and simulation results R_{thJA} – CanPAK™ with and without heatsink
Fig. 9 Measurement and simulation results R_{thJA} – CanPAK™ with and without heatsink and different arrangements of the heatsink

Fig. 10 Simulation results R_{thJA} – CanPAK™ with and without heatsink and different arrangements of the heatsink
Cooling concepts for CanPAK™ package

Fig. 11 Simulation results for PCB temperature (Power dissipation 1 W, ambient temperature 25°C)

Fig. 12 Simulation results for PCB temperature (Power dissipation 1 W, ambient temperature 25°C)
Cooling concepts for CanPAK™ package

Fig. 13 Simulation results for PCB temperature (Power dissipation 1 W, ambient temperature 25°C, heatsink HS2)

Fig. 14 PCB board used for thermal measurement and simulation
6 Summary

This document outlines different cooling concepts for the CanPAK™ package. Measurements and simulations show a significant thermal improvement by using heatsinks and by forced convection. There is a good agreement between measurement and simulation results.

In the appendix a simple method for an analytic calculation of the thermal resistance is shown.

7 Appendix

Analytic calculation of the thermal resistance Rth_JA

The thermal resistance Rth_JA can be calculated using a one dimensional model. As heat is transferred via the top and bottom side the thermal resistance to the top and bottom side have to be considered. The Rth_JA can be calculated using the formula for parallel connection of thermal resistances:

\[
R_{th_JA} = \frac{R_{th_top} \times R_{th_bottom}}{R_{th_top} + R_{th_bottom}}
\]

(3)

\[R_{th_top} = \text{thermal resistance top - side}\]

\[R_{th_bottom} = \text{thermal resistance bottom side}\]

\[R_{th_JA} = \text{thermal resistance junction-ambient}\]

Case 1: Without heatsink

\[R_{th_top} = R_{th_JC_top} + R_{th_conv_rad_top}\]

(4)

\[R_{th_bottom} = R_{th_JC_bottom} + R_{th_PCB}\]

(5)

\[R_{th_JC_top} = \text{thermal package resistance bottom - side (datasheet)}\]

\[R_{th_conv_rad_top} = \text{convection and radiation resistance package top - side}\]

\[R_{th_JC_bottom} = \text{thermal package resistance bottom side (datasheet)}\]

\[R_{th_PCB} = \text{thermal resistance PCB}\]

Case 1: With heatsink

In case of using a heatsink the Rth_top resistance has to be calculated differently.

\[R_{th_top} = R_{th_JC_top} + R_{th_TIM} + R_{th_heatsink}\]

(6)

\[R_{th_JC_bottom} = \text{thermal resistance thermal interface material (TIM)}\]

\[R_{th_heatsink} = \text{thermal resistance heatsink}\]
Cooling concepts for CanPAK™ package

Calculation Example 1:

<table>
<thead>
<tr>
<th>package</th>
<th>CanPAK M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatsink</td>
<td>no</td>
</tr>
<tr>
<td>Boundary condition</td>
<td>Natural convection</td>
</tr>
</tbody>
</table>

\[R_{\text{th_top}} = R_{\text{th_JC_top}} + R_{\text{th_conv_rad_top}} \]

\[R_{\text{th_JC_top}} = 1.4 K/W \text{ (datasheet value)} \]

The \(R_{\text{th_conv_rad_top}} \) can be calculated using equation (8). As a rule of thumb the heat transfer coefficient for convection and radiation is about 10 W/m²K. The contact area is calculated by using the package drawing in the datasheet (~ 30.9 mm²)

\[R_{\text{th_conv_rad_top}} \approx \frac{1}{10 \frac{W}{m^2K} \times 30.9 \text{mm}^2} = 3239.4 K/W \]

\[R_{\text{th_top}} = 1.4 + 3239.4 = 3240.8 K/W \]

\[R_{\text{th_JC_bottom}} = 1.0 K/W \text{ (datasheet value)} \]

As the \(R_{\text{th_PCB}} \) is difficult to calculate with a one-dimensional model this value is estimated based on the measurement results.

\[R_{\text{th_PCB}} \approx 70 K/W \]

\[R_{\text{th_bottom}} = 1.0 + 70 = 71 K/W \]

The \(R_{\text{th_JA}} \) is calculated using equation (3)

\[R_{\text{th_JA}} = 69.5 K/W \]

The ratio of power dissipation top side and overall dissipation gives:

\[\frac{P_{\text{top_side}}}{P} \times 100 = \frac{R_{\text{th_JA}}}{R_{\text{th_top}}} \times 100 = \frac{69.5}{3240.8} \times 100 = 2\% \]

Calculation example 2:

<table>
<thead>
<tr>
<th>package</th>
<th>CanPAK M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatsink</td>
<td>HS1</td>
</tr>
<tr>
<td>TIM</td>
<td>WLFT 404</td>
</tr>
<tr>
<td></td>
<td>Thickness: 127 µm</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity: 0.37 W/mK</td>
</tr>
<tr>
<td>Boundary condition</td>
<td>Natural convection</td>
</tr>
</tbody>
</table>
Cooling concepts for CanPAK™ package

\[R_{th_JC_top} = 1.4 \text{K/W (datasheet value)} \]

The \(R_{th_JC_TIM} \) can be calculated with equation (7) for the thermal resistance.

\[R_{th_JC_TIM} = \frac{127 \mu m}{0.37 W/mK \times 21.45 \text{mm}^2} = 16.0 \text{K/W} \]

For the thermal resistance of the heatsink \(R_{th_heatsink} \) the conduction resistance is neglected as its contribution is small compared to the convection resistance. The convection resistance is calculated using equation (8). The contact area is roughly calculated as area of the fins and the area of the fillets between the fins (~ 280 mm²).

\[R_{th_heatsink} \approx \frac{1}{10 W/m^2 K \times 344 \text{mm}^2} = 290.7 \text{K/W} \]

\[R_{th_top} = 1.4 + 16.0 + 290.7 = 308.1 \text{K/W} \]

\[R_{th_bottom} = 71 \text{K/W} \]

\[R_{th_JA} = 57.7 \text{K/W} \]

The ratio of power dissipation top side and overall dissipation gives:

\[\frac{P_{top_side}}{P} \times 100 = \frac{R_{th_JA}}{R_{th_top}} \times 100 = \frac{57.7}{308.1} \times 100 = 19\% \]

Calculation example 3:

<table>
<thead>
<tr>
<th>package</th>
<th>CanPAK M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatsink</td>
<td>HS2</td>
</tr>
<tr>
<td>TIM</td>
<td>WLF 404</td>
</tr>
<tr>
<td></td>
<td>Thickness: 127 µm</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity: 0.37 W/mK</td>
</tr>
<tr>
<td>Boundary condition</td>
<td>Natural convection</td>
</tr>
</tbody>
</table>

The calculation is the same as for calculation example 2. The only difference is the contact area for the heatsink which gives roughly 500 mm².
Cooling concepts for CanPAK™ package

\[R_{th_{-}JC_{-}top} = 1.4K/W \text{ (datasheet value)} \]

\[R_{th_{-}JC_{-}TIM} = \frac{127\mu m}{0.37W/mK \times 21.45\ mm^2} = 16.0K/W \]

\[R_{th_{-}heatsink} \approx \frac{1}{10W/m^2K \times 610\ mm^2} = 163.9K/W \]

\[R_{th_{-}top} = 1.4 + 16.0 + 163.9 = 181.3K/W \]

\[R_{th_{-}bottom} = 71K/W \]

\[R_{th_{-}JA} = 51.0K/W \]

The ratio of power dissipation top side and overall dissipation gives:

\[\frac{P_{-}top_{-}side}{P} \times 100 = \frac{R_{th_{-}JA}}{R_{th_{-}top}} \times 100 = \frac{51.0}{181.3} \times 100 = 28\% \]

Calculation of thermal resistances

Conduction Resistance

\[R_{cond} = \frac{L}{\lambda \times A} \]

\[L = \text{material thickness} \]

\[\lambda = \text{thermal conductivity} \]

\[A = \text{contact area} \]

(7)

Convection and radiation resistance

\[R_{conv_{-}rad} = \frac{1}{\alpha \times A} \]

\[\alpha = \text{convection and radiation heat transfer coefficient } (\alpha = \alpha_{conv} + \alpha_{rad}) \]

\[A = \text{contact area} \]

(8)

Typical values for convection and radiation resistance

Cooling by free convection in air and radiation

\[\alpha \approx 10 \ W/(m^2*K) \]

Cooling by forced convection in air and radiation

\[\alpha \approx 20 - 50 \ W/(m^2*K) \]