ITS41k0S-ME-N
Smart High-Side NMOS-Power Switch

Data Sheet
Rev 1.0, 2012-09-01
1 Overview

Features
- Current controlled input
- Capable of driving all kind of loads (inductive, capacitive and resistive)
- Negative voltage clamped at output with inductive loads
- Current limitation
- Very low standby current
- Thermal shutdown with restart
- Overload protection
- Short circuit protection
- Overvoltage protection (including load dump)
- Reverse battery protection
- Loss of GND and loss of Vbb protection
- ESD-Protection
- Improved electromagnetic compatibility (EMC)
- Green Product (RoHS compliant)

ITS41k0S-ME-N is not qualified and manufactured according to the requirements of Infineon Technologies with regards to automotive and/or transportation applications.

Description
The ITS41k0S-ME-N is a protected 1 Ω single channel Smart High-Side NMOS-Power Switch in a PG-SOT223-4 package with charge pump and current controlled input, monolithically integrated in a smart power technology.

Product Summary
Overvoltage protection $V_{SAZ\ min}=62\ V$
Operating voltage range $4.9\ V < V_S < 60\ V$
On-state resistance $R_{DSON\ typ}\ 800\ m\Omega$
Operating Temperature range $T_j = -40^\circ\ C\ to\ 125^\circ\ C$

Application
- All types of resistive, inductive and capacitive loads
- Current controlled power switch for 12V, 24V and 45V DC in industrial applications
- Driver for electromagnetic relays
- Signal amplifier

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS41k0S-ME-N</td>
<td>PG-SOT223-4</td>
<td>I1k0SN</td>
</tr>
</tbody>
</table>

Data Sheet 2

Rev 1.0, 2012-09-01
2 Block Diagram and Terms

Figure 1 Block diagram

Voltage- and Current-Definitions:

Switching Times and Slew Rate Definitions:

Figure 2 Terms - parameter definition
3 Pin Configuration

3.1 Pin Assignment

3.2 Pin Definitions and Functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input, activates the power switch in case of connection to GND</td>
</tr>
<tr>
<td>2</td>
<td>VS</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>3</td>
<td>OUT</td>
<td>Output to the load</td>
</tr>
<tr>
<td>4</td>
<td>VS</td>
<td>Supply voltage</td>
</tr>
</tbody>
</table>
4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 1 Absolute maximum ratings \(T_j = 25^\circ C \) all voltages with respect to ground.
Currents flowing into the device unless otherwise specified in chapter “Block Diagram and Terms”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V_s)</td>
<td>(V_s)</td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_s)</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Output stage OUT</td>
<td>(I_{OUT})</td>
<td>self limited</td>
<td>A</td>
</tr>
<tr>
<td>Input IN</td>
<td>(I_{IN})</td>
<td>-15</td>
<td>15</td>
</tr>
<tr>
<td>Temperatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_j)</td>
<td>-40</td>
<td>125</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-55</td>
<td>125</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>1.7</td>
<td>W</td>
</tr>
<tr>
<td>Inductive load switch-off energy dissipation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_j = 150^\circ C;) IL=0.15A; single pulse</td>
<td>(E_{AS})</td>
<td>1000</td>
<td>mJ</td>
</tr>
</tbody>
</table>

ESD Susceptibility

| ESD susceptibility (input pin) | \(V_{ESD} \) | -1 | 1 | kV | HBM(3) | 4.1.8 |
| ESD susceptibility (all other pins) | \(V_{ESD} \) | -5 | 5 | kV | HBM(3) | 4.1.9 |

1) Not subject to production test, specified by design
2) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70mm thick) copper area for Vbb connection. PCB is vertical without blown air
3) ESD susceptibility HBM according to EIA/JESD 22-A 114.

Note: Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” the normal operating range. Protection functions are not designed for continuous or repetitive operation.
4.2 Functional Range

Table 2 Functional Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Operating Voltage</td>
<td>(V_S)</td>
<td>4.9</td>
<td>–</td>
<td>60 (V) (V_S) increasing</td>
<td>4.2.1</td>
</tr>
</tbody>
</table>

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistance

This thermal data was generated in accordance with JEDEC JESD51 standards.

Table 3 Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to Case, Exposed pad</td>
<td>(R_{thjc})</td>
<td>–</td>
<td>40.5</td>
<td>– (K/W)</td>
<td>4.3.1</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>(R_{thJA, 1s0p})</td>
<td>–</td>
<td>145.4</td>
<td>– (K/W)</td>
<td>4.3.2</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>(R_{thJA, 1s0p, 300mm})</td>
<td>–</td>
<td>77.2</td>
<td>– (K/W)</td>
<td>4.3.3</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>(R_{thJA, 1s0p, 600mm})</td>
<td>–</td>
<td>66.2</td>
<td>– (K/W)</td>
<td>4.3.4</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>(R_{thJA, 2s2p})</td>
<td>–</td>
<td>57.8</td>
<td>– (K/W)</td>
<td>4.3.5</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>(R_{thJA, 2s2p, via})</td>
<td>–</td>
<td>52.9</td>
<td>– (K/W)</td>
<td>4.3.6</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design

2) Specified \(R_{thJA} \) value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, footprint; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu.

3) Specified \(R_{thJA} \) value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, Cu, 300mm²; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu.

4) Specified \(R_{thJA} \) value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, 600mm²; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu.

5) Specified \(R_{thJA} \) value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).

6) Specified \(R_{thJA} \) value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board with two thermal vias; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu. The diameter of the two vias are equal 0.3mm and have a plating of 25um with a copper heatsink area of 3mm x 2mm). JEDEC51-7: The two plated-through hole vias should have a solder land of no less than 1.25 mm diameter with a drill hole of no less than 0.85 mm diameter.
5 Electrical Characteristics

Table 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symboll</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerstage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMOS ON Resistance</td>
<td>R_{DSON}</td>
<td>–</td>
<td>0.8</td>
<td>1.5</td>
<td>Ω</td>
</tr>
<tr>
<td>NMOS ON Resistance</td>
<td>R_{DSON}</td>
<td>–</td>
<td>1.5</td>
<td>3.0</td>
<td>Ω</td>
</tr>
<tr>
<td>NMOS ON Resistance</td>
<td>R_{DSON}</td>
<td>–</td>
<td>2</td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td>Nominal Load Current</td>
<td>I_{LNOM}</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>Timings of Power Stages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn ON Time</td>
<td>t_{ON}</td>
<td>–</td>
<td>–</td>
<td>125</td>
<td>μs</td>
</tr>
<tr>
<td>Turn OFF Time</td>
<td>t_{OFF}</td>
<td>–</td>
<td>–</td>
<td>175</td>
<td>μs</td>
</tr>
<tr>
<td>ON-Slew Rate</td>
<td>SR_{ON}</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>$V/\mu s$</td>
</tr>
<tr>
<td>OFF-Slew Rate</td>
<td>SR_{OFF}</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>$V/\mu s$</td>
</tr>
<tr>
<td>Standby current consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) device on PCB
2) V_s = 13.5V, T_j = 25°C
3) V_s to GND transition of V_{IN}
4) $R_L = 270\Omega$

Electrical Characteristics

Standby current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note / Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby current</td>
<td>I_{SOFF}</td>
<td>–</td>
<td>2</td>
<td>10</td>
<td>µA</td>
<td>IN open</td>
<td>5.0.13</td>
</tr>
</tbody>
</table>

Protection functions

1. **Initial peak short circuit current limit**
 - **IN connected to GND**
 - I_{LSCP} = –1.2 A; $T_j = -40°C$; $V_S = 13.5V$; $t_m = 100µs$
 - Number: 5.0.14
2. **Initial peak short circuit current limit**
 - **IN connected to GND**
 - I_{LSCP} = –0.9 A; $T_j = 25°C$; $V_S = 13.5V$; $t_m = 100µs$
 - Number: 5.0.15
3. **Initial peak short circuit current limit**
 - **IN connected to GND**
 - I_{LSCP} = 0.2 A; $T_j = 125°C$; $V_S = 13.5V$; $t_m = 100µs$
 - Number: 5.0.16

Repetitive short circuit current limit

- **IN connected to GND**
- I_{LSCR} = –0.7 A
- Number: 5.0.17

Output clamp

- **Output clamp at $V_{\text{OUT}} = V_S - V_{\text{DSCL}}$ (inductive load switch off)**
- V_{DSCL} = 60 V
- I_{S} = 4 mA
- Number: 5.0.18

Overvoltage protection

- I_{SAZ} = 62 V
- I_{S} = 1 mA
- Number: 5.0.19

Thermal overload trip temperature

- $T_{\text{J,trip}}$ = 150 °C
- Number: 5.0.20

Thermal hysteresis

- T_{HYS} = 10 °C
- Number: 5.0.21

Input interface

1. **Off state input current**
 - **IN connected to GND**
 - I_{INOFF} = –0.05 mA; $T_j = -25°C$; $R_l = 270Ω$; $V_{\text{OUT}} = \leq 0.1V$
 - Number: 5.0.22
2. **Off state input current**
 - **IN connected to GND**
 - I_{INOFF} = –0.04 mA; $T_j = 125°C$; $R_l = 270Ω$; $V_{\text{OUT}} = \leq 0.1V$
 - Number: 5.0.23
3. **On state input current**
 - **IN connected to GND**
 - I_{INON} = 0.3 mA
 - Number: 5.0.24
4. **Input resistance**
 - R_{IN} = 0.5 kΩ
 - Number: 5.0.25

Reverse Battery

1. **Continuous reverse drain current**
 - I_{DREV} = –0.2 A
 - Number: 5.0.26
2. **Forward voltage of the drain-source reverse diode**
 - V_{FDS} = 600 mV
 - I_{FDS} = 200 mA
 - $I_{\text{IN}} = \leq 0.05mA$
 - Number: 5.0.27

1) Nominal Load Current is limited by the current limitation; see protection function data
2) Device on 50mm x 50mm x 1,5mm epoxy FR4 PCB with 6cm² (one layer copper 70um thick) copper area for supply voltage connection. PCB in vertical position without blown air
3) Timing values only with high input slewrates ($t_{\text{IN}} = t_{\text{IN}} \leq 50\text{ ns}$); otherwise slower
4) Not tested in production
5) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
6) Driver circuit must be able to sink currents > 1mA
6 Application Information

6.1 Application Diagram

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty for a certain functionality, condition or quality of the device.

The **ITS41k0S-ME-N** can be connected directly to a supply network. It is recommended to place a ceramic capacitor (e.g. \(C_s = 220\text{nF}\)) between supply and GND to avoid line disturbances. Wire harness inductors/resistors are sketched in the application circuit above.

The complex load (resistive, capacitive or inductive) must be connected to the output pin OUT.

A built-in current limit protects the device against destruction.

The **ITS41k0S-ME-N** can be switched on and off with a low power levelshifter switch e.g. Infineon BCR1xx.

The IN pin must be pulled down to GND potential to switch the **ITS41k0S-ME-N** on. If no current is pulled down, the IN-node will float up to \(V_s\) potential by an internal pull up. In this mode the **ITS41k0S-ME-N** is deactivated with very low current consumption.

The output voltage slope is controlled during on and off transition to minimize emissions. Only a small Cercap \(C_{OUT} = 1\text{nF}\) is recommended to attenuate RF noise.

In the following chapters the main features, some typical waveforms and the protection behaviour of the **ITS41k0S-ME-N** is shown. For further details please refer to application notes on the Infineon homepage.
6.2 Special features

Energy stored in the load inductance is given by:

\[E_L = \frac{I_L^2 \cdot L}{2} \]

While demagnetizing the load inductance the energy dissipated by the Power-DMOS is:

\[E_{AS} = E_S + E_L - E_R \]

With an approximate solution for \(R_L > 0 \Omega \):

\[E_{AS} = \left(I_L \cdot L \right) \left(2 \cdot R_L \right) \left(V_S + V_{DSCL} \right) \ln \left(1 + \left(I_L \cdot R_L \right) / V_{DSCL} \right) \]
6.3 Typical Application Waveforms

General Input Output waveforms:

- I_{IN}
- V_S
- V_{OUT}
- I_L

Waveforms switching a resistive load:

- V_{OUT}
- V_{DS}
- I_{IN}
- I_L

Waveforms switching a capacitive load:

- V_{OUT}
- $\sim V_S$
- I_{IN}
- I_L

Waveforms switching an inductive load:

- V_{OUT}
- $\sim V_S$
- I_{IN}
- I_L

Figure 6 Typical application waveforms
6.4 Protection behavior

Overtemperature concept:

Overtemperature behavior

Waveforms turn on into a short circuit:

Waveforms short circuit during on state:

Figure 7 Protective behaviour waveforms of the ITS41k0S-ME-N
7 Typical Performance Graphs

Typical Performance Characteristics

Transient Thermal Impedance Z_{thJA} **versus**
- **Pulse Time** t_p @ 6cm2 heatsink area ($D = t_p/T$)

![Graph 1: Transient Thermal Impedance Z_{thJA} versus Pulse Time t_p @ 6cm2 heatsink area ($D = t_p/T$)](image)

On-Resistance $R_{DS(ON)}$ **versus**
- **Junction Temperature** $T_J = V_S = 9V; I_L = 150mA$

![Graph 2: On-Resistance $R_{DS(ON)}$ versus Junction Temperature T_J](image)

Transient Thermal Impedance Z_{thJA} **versus**
- **Pulse Time** t_p @ min. footprint ($D = t_p/T$)

![Graph 3: Transient Thermal Impedance Z_{thJA} versus Pulse Time t_p @ min. footprint ($D = t_p/T$)](image)

On-Resistance $R_{DS(ON)}$ **versus**
- **Supply Voltage** $V_S = V_{bs} @ I_L = 150mA$ $T_j =$par.

![Graph 4: On-Resistance $R_{DS(ON)}$ versus Supply Voltage V_S](image)
Typical Performance Characteristics

Switch ON Time t_{ON} versus Junction Temperature $T_J @ R_L = 270 \, \Omega; V_S = \text{par.}$

Switch OFF Time t_{OFF} versus Junction Temperature $T_J @ R_L = 270 \, \Omega; V_S = \text{par.}$

ON Slewrate SR_{ON} versus Junction Temperature $T_J @ R_L = 270 \, \Omega; V_S = \text{par.}$

OFF Slewrate SR_{OFF} versus Junction Temperature $T_J @ R_L = 270 \, \Omega; V_S = \text{par.}$
Typical Performance Characteristics

Initial Peak Short Circuit Current Limit I_{LSCP} versus Junction Temperature T_J @ $V_S=13.5V$; $t_m=100\mu s$

Current Limitation Characteristic I_{LSC} versus Drain Source Voltage Drop V_{DS} @ $V_S=13.5V$

Initial Short Circuit Shutdown Time $t_{OFF\,SC}$ versus Junction Start-Temperature $T_{J\,START}$; $V_S=\text{parameter}$
Typical Performance Characteristics

Stand By Current Consumption I_{SOFF} versus Junction Temperature T_J @ pin IN open

![Graph showing Stand By Current Consumption I_{SOFF} versus Junction Temperature T_J @ pin IN open.](image)
Figure 8 PG-SOT223-4 (Plastic Dual Small Outline Package, RoHS-Compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020)
9 Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2012-09-01</td>
<td>Datasheet release</td>
</tr>
</tbody>
</table>

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HIFET™, HybridPACK™, PRF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Last Trademarks Update 2011-11-11
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.