LED Driver for High Power LEDs

ILD4001
Step down LED Controller for high power LEDs

Data Sheet
Revision 2.0, 2011-06-09
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Revision History

<table>
<thead>
<tr>
<th>Page or Item</th>
<th>Subjects (major changes since previous revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 2.0, 2011-06-09</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Preliminary status removed</td>
</tr>
<tr>
<td>Table 4</td>
<td>DC characteristics updated</td>
</tr>
<tr>
<td>Table 5</td>
<td>Switching characteristics updated</td>
</tr>
<tr>
<td>Chapter 6.4</td>
<td>LED current vs T_S added</td>
</tr>
</tbody>
</table>

Revision 1.5, 2011-05-30

Table 2	ESD capability updated
Table 5	AC characteristics updated
Table 7	Analog dimming updated
Chapter 6.4	All figures updated

Trademarks of Infineon Technologies AG

AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, euzep™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRiC™, SIEGET™, SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ™, TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.

Other Trademarks

Last Trademarks Update 2010-10-26
Table of Contents

Table of Contents ... 4
List of Figures ... 5
List of Tables ... 6
1 Features .. 7
2 Product Brief ... 8
3 Maximum Ratings ... 10
4 Thermal Characteristics ... 11
5 Electrical Characteristics .. 12
 5.1 DC Characteristics ... 12
 5.2 Switching Characteristics .. 13
 5.3 Digital Signals ... 14
6 Basic Application Information ... 15
 6.1 External MOSFET ... 15
 6.2 Setting the Average LED Current 15
 6.3 Dimming of the LEDs ... 16
 6.4 Switching Parameters ... 18
7 Application Circuit .. 24
8 Evaluation Board ... 24
9 Package Information .. 25
List of Figures

Figure 1 Block Diagram .. 8
Figure 2 Total Power Dissipation vs. Soldering Point Temperature T_S .. 11
Figure 3 Analog Voltage Dimming (12V, 3 LEDs, $T_A=25^\circ$C) vs. R_{sense} .. 16
Figure 4 Analog Voltage Dimming (Relative) vs. R_{sense} ... 17
Figure 5 Analog Voltage Dimming vs. T_A (12V, 3 LEDs, 110 mΩ, 47 µH) .. 17
Figure 6 PWM Dimming: 3 dB Deviation of Contrast Ratio to Linear Dimming (12V, 68 µH, 3 LEDs) 18
Figure 7 Application Circuit .. 24
Figure 8 ILD4001 on Evaluation Board Using BSP318S .. 24
Figure 9 Package Outline SC74 .. 25
Figure 10 Recommended PCB Footprint for Reflow Soldering .. 25
Figure 11 Tape Loading .. 25
List of Tables

Table 1 Pin Definition and Function ... 9
Table 2 Maximum Ratings ... 10
Table 3 Maximum Thermal Resistance ... 11
Table 4 DC Characteristics ... 12
Table 5 Switching Characteristics ... 13
Table 6 Digital Control Parameter at Pin EN/PWM ... 14
Step down LED Controller for high power LEDs

1 Features

- Wide input voltage range: 4.5 V ... 42 V
- Capable to drive N-channel MOSFETs that provide up to 3 A output current and up to 98% efficiency
- Temperature shut down mechanism
- Switching frequency up to 500 kHz
- Analog and PWM dimming possible
- Typical 3 % output current accuracy
- Very low LED current drift over temperature
- Minimum external component required
- Small package: SC-74

RoHS

Applications

- LED controller for indoor and outdoor illumination
- LED replacement lamps, e.g. MR16 halogen replacement
- Retail, office and residential high power luminaires
- Architectural lighting
- Downlights and light engines
- Appliances, e.g. fridge / freezer

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Pin Configuration</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD4001</td>
<td>SC74-6-4</td>
<td>1 = V_S 2 = GND 3 = EN 4 = V_drive 5 = GND 6 = V_sense</td>
<td>01</td>
</tr>
</tbody>
</table>

Data Sheet 7 Revision 2.0, 2011-06-09
2 Product Brief

The ILD4001 is a hysteretic buck LED controller IC for driving high power LEDs in indoor and outdoor lighting applications.

The LED controller is capable of driving an external MOSFET power transistor with the internal push-pull output stage to achieve LED currents of 350 mA up to 3 A and more depending on the dimensioning of the MOSFET, the thermal budget of the circuit board and the current sense resistor.

The ILD4001 is widely suitable for LED applications with supply voltages up to 42 V. A multifunctional enable pin allows dimming of the LEDs with DC voltage or a PWM signal. Furthermore the enable pin can be used to switch the LED controller on and off to minimize power consumption in standby.

The ILD4001 incorporates an integrated thermal shutdown function pulling low the \(V_{\text{drive}} \) output signal once the junction temperature exceeds the threshold temperature. Once the junction temperature drops below the threshold temperature the \(V_{\text{drive}} \) output is activated again.

To provide maximum design flexibility, the ILD4001 is housed in a small SC-74 package.

Figure 1 Block Diagram

ILD4001
Buck LED Controller

- \(V_S \): Supply Voltage
- \(V_{\text{stab}} \): Stabilized Voltage
- \(V_{\text{drive}} \): Drive Voltage
- \(V_{\text{sense}} \): Sense Voltage
- \(V_{\text{ref}} \): Reference Voltage
- \(\text{EN/PWM} \): Enable/PWM Pin
Pin Definition

Table 1 Pin Definition and Function

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Pin Type</th>
<th>Buffer Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_s</td>
<td>Input</td>
<td>–</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>GND</td>
<td>–</td>
<td>IC ground</td>
</tr>
<tr>
<td>3</td>
<td>EN / PWM</td>
<td>Input</td>
<td>–</td>
<td>Multifunctional pin:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Chip enable signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Analog dimming signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PWM dimming signal</td>
</tr>
<tr>
<td>4</td>
<td>V_{drive}</td>
<td>Output</td>
<td>–</td>
<td>Push-pull switch output pin</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>–</td>
<td>IC ground</td>
</tr>
<tr>
<td>6</td>
<td>V_{sense}</td>
<td>Input</td>
<td>–</td>
<td>LED current sense pin</td>
</tr>
</tbody>
</table>
Maximum Ratings

Table 2: Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>– – 45</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Peak output current</td>
<td>I_{drive}</td>
<td>– – 50</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>Total power dissipation, $T_s \leq 115{°}C$</td>
<td>P_{tot}</td>
<td>– – 500</td>
<td>mW</td>
<td>–</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>– – 150</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Solder temperature of GND pins</td>
<td>T_{SGND}</td>
<td>– – 125</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{STG}</td>
<td>-65 – 150</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>ESD capability at pin 4</td>
<td>$V_{ESD HBM}$</td>
<td>– – 1</td>
<td>kV</td>
<td>HBM acc. to JESD22-A114</td>
</tr>
<tr>
<td>at all other pins</td>
<td></td>
<td>– – 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
4 Thermal Characteristics

Table 3 Maximum Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Junction - soldering point</td>
<td>R_{thJS}</td>
<td>–</td>
<td>–</td>
<td>70</td>
</tr>
</tbody>
</table>

1) For calculation of R_{thJA} please refer to application note AN077, “Thermal Resistance Calculation”

Equation (1) is a first estimation to calculate the power dissipation of the IC:

$$P_{tot} = V_S \cdot I_S + f_{Switch} \cdot C_{drive} \cdot V_S \cdot 5V$$

(1)
5 Electrical Characteristics

5.1 DC Characteristics
All parameters at $T_A = 25 \, ^\circ\text{C}$, $V_S = 12 \, \text{V}$, $V_{EN} = 3 \, \text{V}$, unless otherwise specified.

Table 4 DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>4.5 – 42</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>– 4.2 –</td>
<td>mA</td>
<td>$V_S = 4.5 , \text{V}$, $I_{LED} = 0 , \text{mA}$</td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>– 5.1 –</td>
<td>mA</td>
<td>$V_S = 40 , \text{V}$, $I_{LED} = 0 , \text{mA}$</td>
</tr>
<tr>
<td>Overall current consumption open load</td>
<td>I_S</td>
<td>– 5.3 –</td>
<td>mA</td>
<td>$V_S = 42 , \text{V}$, $I_{LED} = 0 , \text{mA}$</td>
</tr>
<tr>
<td>Overall standby current consumption</td>
<td>$I_{S,\text{standby}}$</td>
<td>– – 260</td>
<td>nA</td>
<td>$V_S = 4.5 , \text{V}$, $V_{EN} = 0.4 , \text{V}$</td>
</tr>
<tr>
<td>Overall standby current consumption</td>
<td>$I_{S,\text{standby}}$</td>
<td>– – 360</td>
<td>nA</td>
<td>$V_S = 40 , \text{V}$, $V_{EN} = 0.4 , \text{V}$</td>
</tr>
<tr>
<td>Enable voltage for standby mode1</td>
<td>V_{EN}</td>
<td>0 – 0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable voltage for analog dimming2</td>
<td>V_{EN}</td>
<td>1 – 42</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable voltage for linear analog dimming</td>
<td>V_{EN}</td>
<td>1 – 2</td>
<td>V</td>
<td>$V_{EN} = 3 , \text{V}$</td>
</tr>
<tr>
<td>Input current of multifunctional control pin</td>
<td>I_{EN}</td>
<td>– 150 – 270</td>
<td>μA</td>
<td>$V_{EN} = 3 , \text{V}$</td>
</tr>
<tr>
<td>Current of Sense input</td>
<td>I_{sense}</td>
<td>– 20 –</td>
<td>μA</td>
<td>At any LED current</td>
</tr>
<tr>
<td>Termperature shut down threshold</td>
<td>T_{SD}</td>
<td>– 120 –</td>
<td>‘C</td>
<td>V_{drive} gets pulled low, refers to T_J</td>
</tr>
</tbody>
</table>

1) In standby mode ILD4001 doesn’t pull low the V_{drive} signal. Depending on gate capacitance driven a 10 - 100 kΩ shunt resistor to GND is required to avoid a floating gate of the MOSFET. A discharge time of about 1 μs is recommended.

2) V_{drive} line requires a shunt resistor to GND to avoid a floating gate of the MOSFET for a V_{EN} voltage below the min. specified limit.
5.2 Switching Characteristics

All parameters at $T_A = 25$ °C, unless otherwise specified.

$V_S = 12$ V, $R_{sense} = 158$ mΩ ($I_{LED} = 730$ mA), $L = 68$ µH, $V_{EN} = 3$ V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>f_{Switch}</td>
<td>–</td>
<td>200</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum switching frequency</td>
<td>$f_{Switch, \text{max}}$</td>
<td>–</td>
<td>500</td>
<td>kHz</td>
</tr>
<tr>
<td>Output voltage in push-high condition</td>
<td>$V_{drive, \text{high}}$</td>
<td>–</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage in pull-low condition</td>
<td>$V_{drive, \text{low}}$</td>
<td>–</td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td>Voltage offset of V_{sense} input1</td>
<td>V_{sense}</td>
<td>–</td>
<td>116</td>
<td>mV</td>
</tr>
<tr>
<td>Sense threshold hysteresis</td>
<td>$V_{sense, \text{hys}}$</td>
<td>–</td>
<td>±15</td>
<td>%</td>
</tr>
<tr>
<td>Output current accuracy</td>
<td>$I_{out, \text{acc}}$</td>
<td>–</td>
<td>±3</td>
<td>%</td>
</tr>
<tr>
<td>Output current drift over supply voltage</td>
<td>$I_{out, \text{acc, Vs}}$</td>
<td>–</td>
<td>6</td>
<td>%</td>
</tr>
</tbody>
</table>

1) Voltage offset below supply voltage V_S
5.3 Digital Signals

All parameters at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified.

Table 6 Digital Control Parameter at Pin EN/PWM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage for power on</td>
<td>V_{On}</td>
<td>2.5</td>
<td>3</td>
<td>42 V</td>
</tr>
<tr>
<td>Input voltage for power off(^1)</td>
<td>V_{Off}</td>
<td>-0.3</td>
<td>–</td>
<td>0.4 V</td>
</tr>
<tr>
<td>Min. power on puls duration</td>
<td>I_{On}</td>
<td>10</td>
<td>–</td>
<td>– µs</td>
</tr>
</tbody>
</table>

\(^1\) During power off ILD4001 doesn’t pull low the V_{drive} signal. Depending on gate capacitance driven a 10 - 100 kΩ shunt resistor to GND is required to avoid a floating gate of the MOSFET. A discharge time of about 1 µs is recommended.
6 Basic Application Information

This section covers the basic information required for calculating the parameters for a certain LED application. For detailed application information please check the application note AN213 (Driving 2 - 5 W LEDs with ILD4001) or visit our web site http://www.infineon.com/lowcostleddrivers

6.1 External MOSFET

An external MOSFET is required to drive the LEDs in the ILD4001 application. There are a few factors to be considered while choosing the suitable external MOSFET. First, choose the correct voltage and current rating of the MOSFET. Please ensure the \(V_{DS} \) breakdown voltage and \(I_{DS} \) current capability is sufficient and ensure that the external MOSFET is working within the safe operating area region of DC mode. Second, the logic high level from ILD4001 is 5 V and the external MOSFET must be able to be driven with a 5 V gate voltage. Third, choose a low \(R_{DSON} \) MOSFET to improve the efficiency of the system.

The BSR302N is recommended for supply voltages up to 30 V and an output current up to 3.7 A. For higher supply voltages up to 42 V, the BSP318S is recommended with an output current of up to 2.6 A.

For an overview of all suitable MOSFETs please visit http://www.infineon.com/smallsignalmosfets

6.2 Setting the Average LED Current

The average output current for the LEDs is set by the external sense resistor \(R_{sense} \). To calculate the value of this resistor a first approximation can be calculated using Equation (2).

\[V_{sense} = \frac{V_s}{N} \]

\[R_{sense} = \frac{V_{sense}}{I_{LED}} \]

(2)

Example Calculation

\(V_s = 12 \text{ V, } I_{LED} = 730 \text{ mA, } L = 68 \text{ µH, } V_{ILED} = 3 \text{ V, 3 LEDs in series} \)

For this configuration \(V_{sense} \) will settle at 116 mV.

\[R_{sense} = 158 \text{ mΩ according to Equation (2)} \]

An easy way to achieve this resistor value is to connect several standard resistors in parallel.
6.3 Dimming of the LEDs

Analog Voltage Dimming

The voltage level of the EN/PWM pin can be used for analog dimming of the LED current. The analog dimming characteristic graph is shown in Figure 3. To achieve a linear change in LED current versus control voltage the recommended voltage range at the EN/PWM pin is 1 V to 2 V. The maximum achievable LED current is defined by resistor R_{sense}. The maximum LED current will be achieved for $V_{\text{EN}} \geq 2.5$ V as shown in Figure 4.

Below 0.4 V the ILD4001 is set to standby mode and the output is switched off. In standby mode ILD4001 doesn’t pull low the V_{drive} output signal driving the gate of the external MOSFET. Depending on gate capacitance driven a 10 - 100 kΩ shunt resistor to GND is required to avoid a floating gate of the MOSFET. Furthermore a gate discharge time of about 1 μs is recommended.

![Figure 3: Analog Voltage Dimming (12V, 3 LEDs, $T_a=25^\circ$C) vs. R_{sense}](image)

- 75 mΩ, 47 μH
- 110 mΩ, 68 μH
- 158 mΩ, 68 μH
Figure 4 Analog Voltage Dimming (Relative) vs. R_{sense}

Figure 5 Analog Voltage Dimming vs. T_{j} (12V, 3 LEDs, 110 mΩ, 47 µH)
PWM Dimming

Besides the analog dimming functionality the EN/PWM pin acts as input for a pulse width modulated (PWM) signal to control the dimming of the LED string. For PWM dimming the signal’s logic high level should be at least 2.5 V and the PWM frequency should be lower than 5 kHz. For the ILD4035/4001 demo board a dimming frequency less than 330 Hz is recommended to maintain a maximum contrast ratio of 100:1. The achievable contrast ratio is shown on Figure 6 based on the measured average LED current deviating 3 dB from the linear reference. The maximum contrast ratio depends mainly on the rise time of the inductor current and is thus dependent on supply voltage, inductor size and LED string forward voltage.

![Figure 6 PWM Dimming: 3 dB Deviation of Contrast Ratio to Linear Dimming (12 V, 68 µH, 3 LEDs)](image)

During the low state of the PWM signal ILD4001 doesn’t pull low the \(V_{\text{drive}} \) signal. Depending on gate capacitance driven and intended gate discharge time (about 1 µs is recommended) a 10 - 100 kΩ shunt resistor to GND is required to avoid a floating gate of the MOSFET.

6.4 Switching Parameters

For all shown switching parameters ILD4001 has been measured on evaluation board ILD4035/4001 using a BSP318S N-channel MOSFET at \(T_A = 25 \) °C. Used LEDs have a typical \(V_{\text{fLED}} \) of 3 V. See application note AN213 for further details.
Performance vs. supply voltage and number of LEDs: $R_{\text{sense}} = 75 \, \text{m} \Omega$, $L = 33 \, \mu \text{H}$, $V_{\text{fLED}} = 3 \, \text{V}$

I_{LED} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
Performance vs. supply voltage and number of LEDs: $R_{\text{sense}} = 75 \text{ m\Omega}$, $L = 47 \mu\text{H}$, $V_{\text{LED}} = 3 \text{ V}$

I_{LED} versus V_{S} and Number of LEDs

f_{Switch} versus V_{S} and Number of LEDs

Efficiency versus V_{S} and Number of LEDs

Duty Cycle versus V_{S} and Number of LEDs
Performance vs. supply voltage and number of LEDs: $R_{\text{sense}} = 158 \text{ m}\Omega$, $L = 47 \text{ }\mu\text{H}$, $V_{\text{fLED}} = 3 \text{ V}$

I_{LED} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
Performance vs. supply voltage and number of LEDs: $R_{\text{sense}} = 158 \, \text{m}\Omega$, $L = 68 \, \mu\text{H}$, $V_{\text{LED}} = 3 \, \text{V}$

I_{LED} versus V_S and Number of LEDs

f_{Switch} versus V_S and Number of LEDs

Efficiency versus V_S and Number of LEDs

Duty Cycle versus V_S and Number of LEDs
LED current vs. soldering point temperature T_S ($V_S = 12V$, $V_{\text{fLED}} = 3V$, 3 LEDs)

I_{LED} versus T_S ($R_{\text{sense}} = 75 \text{ m}\Omega$, $L = 47 \text{ µH}$)

I_{LED} versus T_S ($R_{\text{sense}} = 110 \text{ mOhm}$, $L = 68 \text{ µH}$)

I_{LED} versus T_S ($R_{\text{sense}} = 158 \text{ m}\Omega$, $L = 68 \text{ µH}$)
7 Application Circuit

For detailed application information please check the Application Note AN213 (Driving 2 - 5 W LEDs with ILD4001) or visit our web site http://www.infineon.com/lowcostleddrivers

Figure 7 Application Circuit

8 Evaluation Board

Figure 8 ILD4001 on Evaluation Board Using BSP318S
9 Package Information

Figure 9 Package Outline SC74

Figure 10 Recommended PCB Footprint for Reflow Soldering

Figure 11 Tape Loading