TVS Diodes
Transient Voltage Suppressor Diodes

ESD103-B1-02 Series
Bi-directional Femto Farad Capacitance TVS Diode

ESD103-B1-02ELS
ESD103-B1-02EL

Data Sheet
Revision 1.3, 2014-06-12
Final
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com)

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
1 Bi-directional Femto Farad Capacitance TVS Diode

1.1 Features

- ESD/Transient protection of RF and ultra-high speed signal lines according to:
 - IEC61000-4-2: ±10 kV (contact)
- Extremely low capacitance $C_L = 0.09 \text{ pF}$ (typical) at $f = 1 \text{ GHz}$
- Maximum working voltage: $V_{RWM} = \pm 15 \text{ V}$
- Very low reverse current: $I_R < 0.1 \text{ nA}$ (typ.)
- Very low series inductance down to 0.2 nH typical (TSSLP-2-4)
- Extremely small form factor down to 0.62 x 0.32 x 0.31 mm2
- Pb-free package (RoHS compliant)

1.2 Application Examples [4]

- ESD protection in RF applications
- Tailored for connectivity applications
- WLAN, GPS antenna, DVB T/H, Bluetooth Class 1 and 2
- Automated Meter Reading

1.3 Product Description

![Pin configuration and Schematic diagram]

Figure 1 Pin configuration and Schematic diagram

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>ESD103-B1-02ELS</td>
<td>TSSLP-2-4</td>
</tr>
<tr>
<td>ESD103-B1-02EL</td>
<td>TSLP-2-20</td>
</tr>
</tbody>
</table>
2 Characteristics

Table 2 Maximum Ratings at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD contact discharge1)</td>
<td>V_{ESD}</td>
<td>-10</td>
<td>10 kV</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{OP}</td>
<td>-55</td>
<td>125 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65</td>
<td>150 °C</td>
</tr>
</tbody>
</table>

1) V_{ESD} according to IEC61000-4-2 ($R = 330 \, \Omega$, $C = 150 \, \text{pF}$ discharge network)

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

2.1 Electrical Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

Figure 2 Definitions of electrical characteristics
Table 3 DC Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse working voltage</td>
<td>V_{RWM}</td>
<td>-15 – 15 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger voltage</td>
<td>V_{Trig}</td>
<td>– 21 –</td>
<td>V</td>
<td>$I_{BR} = 1 , \text{mA}$, from Pin 1 to Pin 2</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>– <0.1 50 nA</td>
<td></td>
<td>$V_R = 15 , \text{V}$</td>
</tr>
</tbody>
</table>

Table 4 RF Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line capacitance</td>
<td>C_L</td>
<td>0.13 0.2 pF</td>
<td>pF</td>
<td>$V_R = 0 , \text{V}$, $f = 1 , \text{MHz}$</td>
</tr>
<tr>
<td>Series inductance</td>
<td>L_S</td>
<td>0.2 0.4 nH</td>
<td>nH</td>
<td>ESD103-B1-02ELS</td>
</tr>
</tbody>
</table>

Table 5 ESD Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage</td>
<td>V_{CL}</td>
<td>20 –</td>
<td>V</td>
<td>$I_{TLP} = 1 , \text{A}$</td>
</tr>
<tr>
<td>Dynamic resistance</td>
<td>R_{DYN}</td>
<td>1.8 –</td>
<td>Ω</td>
<td>$I_{TLP} = 16 , \text{A}$</td>
</tr>
</tbody>
</table>

1) ANSI/ESD STM5.5.1 - Electrostatic Discharge Sensitive Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_0 = 50 \, \Omega$, $t_p = 100 \, \text{ns}$, $t_r = 0.6 \, \text{ns}$, I_{TLP} and V_{TLP} averaging window: $t_1 = 30 \, \text{ns}$ to $t_2 = 60 \, \text{ns}$, extraction of dynamic resistance using least squares fit of TLP characteristic between $I_{TLP1} = 2 \, \text{A}$ and $I_{TLP2} = 14.1 \, \text{A}$. Please refer to Application Note AN210[1].
3 Typical Characteristics

At $T_A = 25 \, ^\circ C$, unless otherwise specified

Figure 3 Reverse current $I_R = f(V_R)$

Figure 4 Line capacitance $C_L = f(V_R), f = 1 \, MHz$
Figure 5 Line capacitance: $C_L = f(f)$, $V_R = 0$ V
Figure 6 Clamping voltage (TLP): $I_{\text{TLP}} = f(V_{\text{TLP}})$ according ANSI/ESDSTM5.5.1-Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_0 = 50 \, \Omega$, $t_0 = 100 \, \text{ns}$, $t_f = 0.6 \, \text{ns}$, I_{TLP} and V_{TLP} average window: $t_1 = 30 \, \text{ns}$ to $t_2 = 60 \, \text{ns}$, extraction of dynamic resistance using squares fit to TLP characteristics between $I_{\text{TLP1}} = 2 \, \text{A}$ and $I_{\text{TLP2}} = 14.1 \, \text{A}$. Please refer to Application Note AN210[1]
ESD103-B1-02 Series

Typical Characteristics

Figure 7 Clamping voltage at +8 kV discharge according IEC61000-4-2 \((R = 330 \, \Omega, \ C = 150 \, \text{pF})\)

![Figure 7](image)

Scope: 6 GHz, 20 GS/s

\[V_{CL\text{-max-peak}} = 319 \, \text{V} \]

\[V_{CL\text{-30ns-peak}} = 43 \, \text{V} \]

Figure 8 Clamping voltage at -8 kV discharge according IEC61000-4-2 \((R = 330 \, \Omega, \ C = 150 \, \text{pF})\)

![Figure 8](image)

Scope: 6 GHz, 20 GS/s

\[V_{CL\text{-max-peak}} = -319 \, \text{V} \]

\[V_{CL\text{-30ns-peak}} = -41 \, \text{V} \]
4 Package Information

4.1 TSSLP-2-4 [2]

![TSSLP-2-4 Package outline](image)

Figure 9 TSSLP-2-4 Package outline

![TSSLP-2-4 Footprint](image)

Figure 10 TSSLP-2-4 Footprint

![TSSLP-2-4 Packing](image)

Figure 11 TSSLP-2-4 Packing

![TSSLP-2-4 Marking (example)](image)

Figure 12 TSSLP-2-4 Marking (example)
4.2 TSLP-2-20 [2]

Figure 13 TSLP-2-20 Package outline

Figure 14 TSLP-2-20 Footprint

Figure 15 TSLP-2-20 Packing

Figure 16 TSLP-2-20 Marking (example)
References

[1] Infineon AG - Application Note AN210: Effective ESD Protection Design at System Level using VF-TLP Characterization Methodology

[2] Infineon AG - Recommendations for PCB Assembly of Infineon TSLP and TSSLP Packages

[3] Tero, Ranta, Juha Ellä, Helena Pohjonen: Antenna Switch Linearity Requirements for GSM/WCDMA Mobile Phone Front-Ends. Nokia Technology Platforms, P.O.Box 86, FIN-24101 SALO.

Revision History: Revision 1.2, 2013-07-22

Page or Item	Subjects (major changes since previous revision)
Revision 1.3, 2014-06-12
6 | Table 5) updated

Trademarks of Infineon Technologies AG

AURIX™, BlueMoon™, COMNEON™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CORECONTROL™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, EUPEC™, FCOS™, HITFET™, HybridPACK™, IsoFACE™, I²RF™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PROFET™, PRO-SIL™, PRIMARION™, PrimePACK™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SMARTi™, SmartLEWIS™, TEMPFET™, thinQ!™, TriCore™, TRENCHSTOP™, X-GOLD™, XMM™, X-PMU™, XPOSYS™.

Other Trademarks

Last Trademarks Update 2010-06-09