BGA524N6
Silicon Germanium Low Noise Amplifier
for Global Navigation Satellite Systems (GNSS)

Data Sheet
Revision 3.5, 2021-08-31
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Revision History

<table>
<thead>
<tr>
<th>Page or Item</th>
<th>Subjects (major changes since previous revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 15</td>
<td>Carrier Tape Drawing updated</td>
</tr>
<tr>
<td>Page 7</td>
<td>Type code information updated</td>
</tr>
<tr>
<td>Page 15</td>
<td>Type code information updated</td>
</tr>
<tr>
<td>Page 3</td>
<td>Trademarks updated</td>
</tr>
<tr>
<td>Pages 7, 12</td>
<td>Package name TSNP-6-10 added</td>
</tr>
<tr>
<td>Page 9</td>
<td>Maximum ratings comment updated</td>
</tr>
<tr>
<td>Page 14</td>
<td>Package outline drawing for TSNP-6-10 added</td>
</tr>
<tr>
<td>Page 15</td>
<td>Marking layout drawing for TSNP-6-10 added</td>
</tr>
<tr>
<td>Page 16</td>
<td>Date code marking table added</td>
</tr>
<tr>
<td>Page 17</td>
<td>Tape & reel dimensions for TSNP-6-10 added</td>
</tr>
<tr>
<td>Pages 11-12</td>
<td>Footnotes 3 and 5 added</td>
</tr>
</tbody>
</table>

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>5</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>Features</td>
<td>7</td>
</tr>
<tr>
<td>1 Maximum Ratings</td>
<td>9</td>
</tr>
<tr>
<td>2 Electrical Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>3 Application Information</td>
<td>12</td>
</tr>
<tr>
<td>4 Package Information</td>
<td>14</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 Block Diagram ... 7
Figure 2 Application Schematic BGA524N6 ... 12
Figure 3 Drawing of Application Board .. 13
Figure 4 Application Board Cross-Section .. 13
Figure 5 TSNP-6-2 Package Outline (top, side and bottom views) 14
Figure 6 TSNP-6-10 Package Outline (top, side and bottom views) 14
Figure 7 Footprint Recommendation TSNP-6-2 and TSNP-6-10 15
Figure 8 Marking Layout TSNP-6-2 (top view) ... 15
Figure 9 Marking Layout TSNP-6-10 (top view) ... 15
Figure 10 Date Code Marking TSNP-6-2 and TSNP-6-10 16
Figure 11 Tape & Reel Dimensions TSNP-6-2 (reel diameter 180 mm, pieces/reel 15000) .. 16
Figure 12 Tape & Reel Dimensions TSNP-6-10 (reel diameter 180 mm, pieces/reel 12000) .. 17
List of Tables

Table 1 Pin Definition and Function ... 8
Table 2 Maximum Ratings ... 9
Table 3 Thermal Resistance ... 9
Table 4 Electrical Characteristics: $T_A = 25 \, ^\circ C, V_{CC} = 1.8 \, V, V_{PON,ON} = 1.8 \, V, V_{PON,OFF} = 0 \, V,$
 $f = 1550 - 1615 \, MHz$ (GPS / Glonass / Beidou / Galileo) 10
Table 5 Electrical Characteristics: $T_A = 25 \, ^\circ C, V_{CC} = 2.8 \, V, V_{PON,ON} = 2.8 \, V, V_{PON,OFF} = 0 \, V,$
 $f = 1550 - 1615 \, MHz$ (GPS / Glonass / Beidou / Galileo) 11
Table 6 Bill of Materials .. 12
Features

- High insertion power gain: 19.6 dB
- Out-of-band input 3rd order intercept point: -4dBm
- Input 1 dB compression point: -12 dBm
- Low noise figure: 0.55 dB
- Very low current consumption: 2.5 mA
- Operating frequencies: 1550 - 1615 MHz
- Supply voltage: 1.5 V to 3.3 V
- Digital on/off switch (1V logic high level)
- Ultra small TSNP-6-2 / TSNP-6-10 leadless package (footprint: 0.7 x 1.1 mm²)
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- Only 1 external SMD component necessary
- 2kV HBM ESD protection (including AI-pin)
- Pb-free (RoHS compliant) package

RoHS

Application

- Ideal for all Global Navigation Satellite Systems (GNSS) like GPS, GLONASS, Beidou, Galileo and others

Figure 1 Block Diagram
Description
The BGA524N6 is a front-end low noise amplifier for Global Navigation Satellite Systems (GNSS) from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 19.6 dB gain and 0.55 dB noise figure at a current consumption of 2.5 mA in the application configuration described in Chapter 3. The BGA524N6 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.5 V to 3.3 V supply voltage.

Pin Definition and Function

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>DC supply</td>
</tr>
<tr>
<td>3</td>
<td>AO</td>
<td>LNA output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>AI</td>
<td>LNA input</td>
</tr>
<tr>
<td>6</td>
<td>PON</td>
<td>Power on control</td>
</tr>
</tbody>
</table>
1 Maximum Ratings

Table 2 Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage at pin VCC</td>
<td>V_{CC}</td>
<td>-0.3 – 3.6 V</td>
<td>V</td>
<td>1)</td>
</tr>
<tr>
<td>Voltage at pin AI</td>
<td>V_{AI}</td>
<td>-0.3 – 0.9 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Voltage at pin AO</td>
<td>V_{AO}</td>
<td>-0.3 – $V_{CC} + 0.3$ V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Voltage at pin PON</td>
<td>V_{PON}</td>
<td>-0.3 – $V_{CC} + 0.3$ V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Voltage at pin GNDRF</td>
<td>V_{GNDRF}</td>
<td>-0.3 – 0.3 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current into pin VCC</td>
<td>I_{CC}</td>
<td>– 16 mA</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>RF input power</td>
<td>P_{IN}</td>
<td>– 0 dBm</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation, $T_S < 148 \degree C$</td>
<td>P_{tot}</td>
<td>– 60 mW</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>– 150 \degree C</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>T_A</td>
<td>– 85 \degree C</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{STG}</td>
<td>– 150 \degree C</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>ESD capability all pins</td>
<td>$V_{ESD, HBM}$</td>
<td>– 2000 V</td>
<td>V</td>
<td>according to JESD22A-114</td>
</tr>
</tbody>
</table>

1) All voltages refer to GND-Node unless otherwise noted
2) T_S is measured on the ground lead at the soldering point

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Table 3 Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction - soldering point1</td>
<td>R_{thJA}</td>
<td>25</td>
<td>K/W</td>
</tr>
</tbody>
</table>

1) For calculation of R_{thJA} please refer to Application Note Thermal Resistance
2 Electrical Characteristics

Table 4 Electrical Characteristics:
1) $T_A = 25 \, ^\circ C$, $V_{CC} = 1.8 \, V$, $V_{PON,ON} = 1.8 \, V$, $V_{PON,OFF} = 0 \, V$,
 $f = 1550 - 1615 \, MHz$ (GPS / Glonass / Beidou / Galileo)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>1.5</td>
<td>–</td>
<td>3.3</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{CC}</td>
<td>–</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>2.5</td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Power On voltage</td>
<td>V_{pon}</td>
<td>1.0</td>
<td>–</td>
<td>Vcc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>–</td>
<td>0.4</td>
</tr>
<tr>
<td>Power On current</td>
<td>I_{pon}</td>
<td>–</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Insertion power gain</td>
<td>$\left</td>
<td>S_{21}\right</td>
<td>^2$</td>
<td>18.4</td>
</tr>
<tr>
<td>Noise figure2</td>
<td>NF</td>
<td>–</td>
<td>0.55</td>
<td>1.0</td>
</tr>
<tr>
<td>Input return loss3</td>
<td>RL_{in}</td>
<td>8</td>
<td>11</td>
<td>–</td>
</tr>
<tr>
<td>Output return loss3</td>
<td>RL_{out}</td>
<td>12</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Reverse isolation3</td>
<td>$1/\left</td>
<td>S_{12}\right</td>
<td>^2$</td>
<td>32</td>
</tr>
<tr>
<td>Power gain settling time$^{(4,5)}$</td>
<td>t_S</td>
<td>–</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Inband input 1dB-compression point3</td>
<td>IP_{1dB}</td>
<td>-19</td>
<td>-16</td>
<td>–</td>
</tr>
<tr>
<td>Inband input 3'^rd'-order intercept point$^{(3)}$</td>
<td>IIP_3</td>
<td>-12</td>
<td>-9</td>
<td>–</td>
</tr>
<tr>
<td>Out-of-band input 3'^rd'-order intercept point$^{(7,5)}$</td>
<td>IIP_{3oob}</td>
<td>-8</td>
<td>-5</td>
<td>–</td>
</tr>
<tr>
<td>Stability5</td>
<td>k</td>
<td>> 2</td>
<td>> 3</td>
<td>–</td>
</tr>
</tbody>
</table>

1) Based on the application described in chapter 3
2) PCB losses are subtracted
3) Verification based on AQL; not 100% tested in production
4) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
5) Guaranteed by device design; not tested in production
6) Input power = -30 dBm for each tone
7) Input power = -20 dBm for each tone
Electrical Characteristics

Table 5 Electrical Characteristics: ¹) $T_A = 25 \, ^\circ\text{C}$, $V_{\text{CC}} = 2.8 \, \text{V}$, $V_{\text{PON,ON}} = 2.8 \, \text{V}$, $V_{\text{PON,OFF}} = 0 \, \text{V}$, $f = 1550 \sim 1615 \, \text{MHz}$ (GPS / Glonass / Beidou / Galileo)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>1.5 – 3.3</td>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{CC}</td>
<td>– 2.6 3.3</td>
<td>mA</td>
<td>ON-mode, $f_{\text{IN}} = 1575 , \text{MHz}$, $P_{\text{IN}} \leq -40 , \text{dBm}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 2.6 3.6 ⁵)</td>
<td>mA</td>
<td>–</td>
</tr>
<tr>
<td>Power On voltage</td>
<td>V_{pon}</td>
<td>1.0 – Vcc</td>
<td>V</td>
<td>ON-mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 – 0.4</td>
<td>V</td>
<td>OFF-mode</td>
</tr>
<tr>
<td>Power On current</td>
<td>I_{pon}</td>
<td>– 10 15</td>
<td>μ A</td>
<td>ON-mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 1</td>
<td>μ A</td>
<td>OFF-mode</td>
</tr>
<tr>
<td>Insertion power gain</td>
<td>$</td>
<td>S_{21}</td>
<td>^2$</td>
<td>18.4 19.6 20.8</td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td>– 0.55 1.0</td>
<td>dB</td>
<td>$Z_S = 50 , \Omega$</td>
</tr>
<tr>
<td>Input return loss</td>
<td>RL_{in}</td>
<td>8 11</td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>Output return loss</td>
<td>RL_{out}</td>
<td>12 18</td>
<td>dB</td>
<td>–</td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>$1/</td>
<td>S_{12}</td>
<td>^2$</td>
<td>32 37</td>
</tr>
<tr>
<td>Power gain settling time</td>
<td>t_S</td>
<td>– 5 8</td>
<td>μs</td>
<td>OFF- to ON-mode</td>
</tr>
<tr>
<td>Inband input 1dB-compression point</td>
<td>$IP_{1\text{dB}}$</td>
<td>-15 -12</td>
<td>dBm</td>
<td>–</td>
</tr>
<tr>
<td>Inband input 3rd-order intercept point</td>
<td>IIP_3</td>
<td>-11 -8</td>
<td>dBm</td>
<td>$f_1 = 1575 , \text{MHz}$, $f_2 = f_1 \pm 1 , \text{MHz}$</td>
</tr>
<tr>
<td>Out-of-band input 3rd-order intercept point</td>
<td>$IIP_{3\text{oo}}$</td>
<td>-7 -4</td>
<td>dBm</td>
<td>$f_1 = 1712.7 , \text{MHz}$, $f_2 = 1850 , \text{MHz}$</td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>> 2 > 3</td>
<td>–</td>
<td>$f = 20 , \text{MHz} \sim 10 , \text{GHz}$</td>
</tr>
</tbody>
</table>

¹) Based on the application described in chapter 3
²) PCB losses are subtracted
³) Verification based on AQL; not 100% tested in production
⁴) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
⁵) Guaranteed by device design; not tested in production
⁶) Input power = -30 dBm for each tone
⁷) Input power = -20 dBm for each tone
3 Application Information

Application Board Configuration

![Application Schematic BGA524N6](BGA524N6_Schematic.vsd)

Table 6 Bill of Materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (optional)</td>
<td>1nF</td>
<td>0402</td>
<td>Various</td>
<td>DC block<sup>1)</sup></td>
</tr>
<tr>
<td>C2 (optional)</td>
<td>> 10nF<sup>2)</sup></td>
<td>0402</td>
<td>Various</td>
<td>RF bypass<sup>3)</sup></td>
</tr>
<tr>
<td>L1</td>
<td>8.2nH</td>
<td>0402</td>
<td>Murata LQW type</td>
<td>Input matching</td>
</tr>
<tr>
<td>N1</td>
<td>BGA524N6</td>
<td>TSNP-6-2 / TSNP-6-10</td>
<td>Infineon</td>
<td>SiGe LNA</td>
</tr>
</tbody>
</table>

¹⁾ DC block might be realized with pre-filter in GNSS applications
²⁾ For data sheet characteristics 1µF used
³⁾ RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes.
Figure 3 Drawing of Application Board

Figure 4 Application Board Cross-Section
Package Information

Figure 5 TSNP-6-2 Package Outline (top, side and bottom views)

Figure 6 TSNP-6-10 Package Outline (top, side and bottom views)
Figure 7 Footprint Recommendation TSNP-6-2 and TSNP-6-10

Figure 8 Marking Layout TSNP-6-2 (top view, product type code see Page 7)

Figure 9 Marking Layout TSNP-6-10 (top view, product type code see Page 7)
Package Information

Figure 10 Date Code Marking TSNP-6-2 and TSNP-6-10

Figure 11 Tape & Reel Dimensions TSNP-6-2 (reel diameter 180 mm, pieces/reel 15000)
Figure 12 Tape & Reel Dimensions TSNP-6-10 (reel diameter 180 mm, pieces/reel 12000)