Ready for Mission Future
Consolidated Environmental Statement 2021
Infineon Technologies Austria, Villach Site
Since 1997, Infineon Austria has voluntarily had itself audited and certified annually according to the world’s most demanding environmental management system, the EMAS Eco-Management and Audit Scheme.
“Easier, safer and greener” – this is the guideline that shapes Infineon’s energy-efficient products as well as its corporate actions. For Infineon, sustainability means maintaining a balance between successful economic activities and caring for people and the environment – this shapes the entire corporate culture.

This updated Environmental Statement 2021 includes all guiding principles, data and measures related to environmental management at the Villach site. The reporting period covers the 2021 fiscal year – from 1 October 2020 to 30 September 2021.
Microchips are the key technology for an electrified and digitalized world and modern living as we know it today. Microchips are needed today more than ever. Energy efficiency is becoming ever more important – generating, managing and using energy sustainably and efficiently is a key enabler of decarbonization efforts. Semiconductor solutions offered by Infineon make an important contribution to this development. They allow for the generation of renewable energy and environmentally friendly mobility, while reducing energy consumption in electronic devices.

With power electronics from Infineon Austria, we can make a very tangible contribution to solving the climate crisis and driving forward the energy transition. By focusing on these energy-saving chips in the new chip factory in Villach, expanding into research & development of new, even more efficient semiconductor materials and creating highly qualified jobs, we are doing just that. This strengthens the site as well as the entire region in the long term.

We strive to achieve a balance between economic growth and harmony with the region, the people and the environment in the interest of a modern and future-proof supply of semiconductors. To this end, we invest in innovative cutting-edge technologies and aim to shape a sustainable future with both our products and our actions. In addition, we are involved in social and community-oriented initiatives and institutions that improve life in the region. Our employees make a particularly important contribution to all of these activities.

Infineon is listed in the Dow Jones Sustainability Index and has been ranked among the world’s most sustainable companies for the twelfth time in a row. The goal of becoming CO₂ neutral by 2030 reinforces this ambition, which we actively support from here in Austria. External assessments document our progress, but also show where we still need – and want – to improve.

In this Environmental Statement, you will find out more about our guiding principles, measures, past achievements and future plans – “Ready for Mission Future”.

Thomas Reisinger Sabine Herlitschka Oliver Heinrich

The Board of Infineon Technologies Austria AG:
Sabine Herlitschka, CEO and Technology Director
(Area of responsibility: Research & Development, Human Resources, Communications
Oliver Heinrich (right), CFO
(Area of responsibility: Finance, IT, Purchasing, business responsibility for product lines, Business Continuity and Compliance)
Thomas Reisinger (left), Operations Director
(Area of responsibility: Production, Technology, Quality Management, Infrastructure and Logistics)
“We connect the real world with the digital world and contribute to making life easier, safer and greener – with technology that achieves more, consumes less, and is accessible to everyone.”
As the largest private employer in Carinthia and a leading digital company in Austria, responsible development in terms of corporate social responsibility is a high priority for our company, the region and society as a whole. We would like to take this opportunity to shine a spotlight on a few projects and contributions that stand out. We are shaping the future – digitally and sustainably!
Expansion strengthens the site

The 300-millimeter thin-wafer plant opened in Villach in 2021 is one of the most advanced facilities in the world. Global demand for power semiconductors will be served even more effectively. The € 1.6 billion investment in manufacturing and research will secure the site’s competitiveness and strengthen the region for many years to come. As a “learning factory”, Infineon uses digitally networked systems and artificial intelligence to further improve resource and energy efficiency.

Tech for Green

Infineon’s semiconductors improve energy efficiency by efficiently converting energy and reducing CO₂ emissions in many electronic applications. With Villach focusing on power electronics and new semiconductor materials, concrete solutions are at hand to achieve climate and energy goals.

Highlights

Investments with added value

New chip factory: CO₂ reduction & sustainability

› Investment in air-conditioning and heat recovery systems for site supply and therefore future avoidance of CO₂ emissions of around 20,000 tons CO₂/year* (extrapolated)
› Use of state-of-the-art cooling technology
› Installation of state-of-the-art exhaust air purification systems for efficient emission reduction

* according to subsidy notice KPC (Kommunalkredit Public Consulting) Supported by funds from the Ministry of Climate Protection’s environmental promotion program.

We are ready for Mission Future
Inside the new high-tech chip factory

see Glossary, page 62
High-tech jobs in Austria

With the expansion in Villach, Infineon is creating another 750 new production and research jobs. The sites in Graz and Linz offer room for an additional 290 and 220 research positions, respectively. In the medium term, Infineon is offering around 1,260 new high-tech jobs in Austria. More than 50 percent of these have already been filled.

Cutting-edge research

With research expenses of €516 million, Infineon is one of Austria’s most research-focused companies.*

* According to “trend” magazine’s company ranking 2021.

Around 2,100 R&D employees

217 Initial patent applications

R&D competence in Austria

› Infineon Austria: Competencies for research & development, manufacturing and business responsibility for twelve product lines
› Graz: Competence center for contactless technologies
› Linz: Competence center for high-frequency technologies
› Villach: global competence centers for power electronics and new semiconductor materials
New R&D building with a digital twin
The R&D building in Villach, which was occupied in fall 2020, is a use case in the EU’s “Arrowhead Tools” project. A “digital twin” links all important control variables of the building technology such as heating, temperature, air conditioning, humidity or power consumption to current weather and usage data. The ongoing research will provide important insights for future building design, including through simulations that will provide insights into energy efficiency measures. The project will continue until the end of 2022.

Site infrastructure & mobility
› New plant fire department at the Villach site
› The City of Villach implemented the new Infineonstrasse with roundabouts and environmental protection measures.
› New 110/20 kV building for safe power supply
› Parking garage with space-efficient floors and 924 parking spaces
› Since 2016: Infineon mobility program “Green Way” (see “Environment and climate”)

Production & mobility: Green hydrogen used twice
An integral part of the new chip factory is the local generation of green hydrogen, which is used as a process medium in chip production. In line with the concept of intelligent closed loop recycling, the hydrogen is to be used to power public buses after being used in semiconductor production. The electrolysis plant required for this will go into operation in late summer 2022 in a cooperative effort involving industry and science and will be able to produce up to 800 kilograms of green hydrogen per day, eliminating the need for delivery by truck. This closes the circle – from sustainable hydrogen for industry to sustainable mobility for the region. With around 300 kilograms of purified green hydrogen per day, around 1.5 million public bus kilometers can be operated emission-free each year, an amount that is covered in the city of Villach in two years.
The larger, the more resource-efficient
Villach is a global pioneer in the production of power semiconductors on 300-millimeter thin wafers. This allows the production of approximately 2.25 times more chips per wafer, thereby optimizing the use of resources.

The thinner, the more energy-efficient
Infineon Austria has expertise that is unique in the world: it produces up to 40-micrometer (0.04 millimeters) thin silicon wafers in high volumes. This further improves energy control and increases energy efficiency.

Highlights
Our contribution to the environment and climate

Verified sustainability
› Since 2010, Infineon has been listed in the Dow Jones Sustainability Index as one of the world’s most sustainable companies
› Since 1997: EMAS – Eco Management and Audit Scheme of the European Union
› Infineon IMPRES program
› Environmental management standard ISO 4001:2015
› Occupational safety management ISO 45001:2018
› Energy management ISO 50001:2018

CO₂ neutrality by 2030
The Infineon Group has the goal of becoming CO₂-neutral by 2030. The approach:
› Avoidance of direct emissions and continuous improvement of energy efficiency
› Use of green electricity with guarantee of origin
› Combination of development aid and CO₂ avoidance through CO₂ certificates

Green upgrade
In coordination with the forestry inspectorate, Infineon has carried out high-quality reforestation on an area of 25,000 m² due to the site expansion. Biologically diverse mixed forests were planted in the region. Further reforestation as well as renaturation projects covering an area of approx. 23,000 m² are in the pipeline.

100 % Green electricity with guarantee of origin
Since 2013, Infineon Austria has been exclusively using electricity from renewable sources.

For the Infineon Group, less is more
-44% less electricity
-17% less water
-67% less waste
per cm² wafer produced, as compared to the global average

The assessment is based on the square centimeters of processed wafer area in front-end production and the consumption according to the WSC definition.
The figures have been audited by KPMG and relate to the fiscal year 2020/21.
Approximately 75% of the site’s heat requirements are covered by the intelligent recycling of exhaust heat from production and the infrastructure.

10.41 GWh
Energy savings in 2021 through efficiency measures
This corresponds roughly to the annual electricity consumption of 2,200 households*
* According to consumption data provided by E-Control

Industry 4.0 and energy efficiency
Energy efficiency measures have been in place at the Villach site since 2009. Digital networking of plants, processes and systems creates a self-learning factory that reduces energy consumption, increases efficiency and quality, and optimizes the use of resources. Existing buildings and infrastructure systems are equipped with smart sensors, control devices and smart meters to achieve a precise adjustment of energy consumption to the respective production capacity utilization. Energy-saving LED lighting as well as intelligent heat recovery contribute to energy efficiency and the conservation of resources. Since 2013, a total of around 62 GWh of heat and electricity have been saved through energy efficiency measures. This translates to savings of more than 10,000 tons of CO₂.*

* According to the calculation method used by the International Energy Agency.

IT recycling and upcycling
Since 2014, a cooperation has in place with AfB “Arbeit für Menschen mit Behinderung”, www.afb-group.at, to give used IT equipment a second life. In 2021, Infineon provided 3,533 IT devices (notebooks, PCs, screens, printers) and mobile devices, securing two jobs for people with disabilities. A total of 60% was recycled and marketed through a certified process. The results in terms of resource conservation show a savings potential of:
- Raw material savings – 147,647 kg iron equivalent
- Energy – 885,810 kWh
- CO₂ equivalent – 241,994 kg

Infineon “Green Way”
Corporate mobility program for employees involving:
- Promotion of the needs of our cyclists (e.g. cycle path network, parking spaces)
- Electric cars for site logistics
- Expansion of the e-charging infrastructure for private vehicles and company cars
- Jobticket” – free travel to work on public transport, in the future also for private use as “climate ticket”
High tech as a magnet

What began in 1970 with 24 employees as an extended workbench is today a leading company of worldwide renown: With over 4,800 employees from 72 nations, Infineon is a digital pioneer and the most research-focused company in Austria. This creates jobs and attracts other companies and suppliers. One job at Infineon creates three more in the surrounding area. Today, the Villach region has the highest proportion of high-tech employees in Austria.

Welcome2Villach

As part of a cooperation between industry and tourism, Infineon initiated a platform to make Villach attractive as a business and residential location for skilled workers from all over the world. Infineon also supports the Carinthian International Center (CIC). This is a service and contact point for people who have chosen Carinthia as their new home, which makes a valuable contribution to a living culture of welcome.

153 Research collaborations at regional, national and international levels

Knowledge and technology transfer

› Infineon Austria supports six endowed professorships in Austria.
› PhD Excellence Program: Support and funding for 81 doctoral theses in 2021.
› With the “Ihub”, Infineon offers a networking and working space for science, business and industry at the Vienna University of Technology.
› Infineon “Smart Learning Classes” combine digital skills with practical experience at five polytechnic colleges in Carinthia.

Inspiring a passion for technology

Infineon wants to inspire a passion for technology and uses initiatives such as Girls Day or the Women in Data Science Conference to raise awareness for the natural sciences and technology. Since 2014, more than 70,000 children, teenagers and students throughout Austria have been reached.
Education fund with Caritas Carinthia

Infineon supports the Caritas Carinthia education fund with € 78,000. This will finance two learning cafés in Carinthia and one in Graz. In the Infineon Learning Cafés, around 75 socially disadvantaged children and young people receive free learning support. Infineon employees are actively involved in supporting the young learners.

Value added

€ 804 million: Infineon’s total purchasing volume in 2021, of which € 310 million in Austria and € 176 million in Carinthia.

Ongoing dialog with the region

“Infineon News” provides up-to-date information to around 3,500 households in our neighborhood three times a year. The newsletter is available online around the clock: www.infineon.com/nachhaltig-austria

Regionally sourced

The company’s canteen also focuses on sustainability: About 70 percent of the food is purchased locally and seasonally, and the investment in state-of-the-art commercial kitchen appliances improves energy efficiency.

Did you know that...

... Infineon employees joined Arge Naturschutz in planting organically certified trees as a voluntary commitment? By doing so, they foster both the surrounding forest and green areas, as well as the animal species that live there.

CO₂ sensors for air quality measurement at schools

Together with the MCI in Innsbruck, Infineon provides high-precision CO₂ sensor kits in Carinthia, Tyrol and Salzburg. The student teams use them to build CO₂ traffic lights that remind people to ventilate, thereby reducing the risk of COVID infections. Some 400 classrooms will be equipped with these devices. This creates a healthy, safe learning atmosphere and encourages young technical talents in their education.
Diversity as a success factor
Internationality, generational management and commitment to women in technology – Infineon harnesses the potential of diversity!

Approximately 28 % international employees

Highlights

Our contribution to the company and employees

It’s all about people!
Infineon offers an attractive working environment. This includes flexible working-time models, teleworking options, in-service training and further education, mentoring programs as well as a comprehensive health promotion program or support in settling down.

Combining career and family
› At the International Daycare Center (IDC) in Villach, Infineon cooperates with Sonnenstrahl GmbH to offer 190 daycare places for children aged one to six years at two locations. The special thing about them: few closed days, flexible and long opening hours, bilingualism and a focus on science experiments.
› Thanks to the initiation and support of the International School Carinthia (ISC) in Velden, more than 360 children from 42 nations can currently attend this private, English-language all-day school.

“berufundfamilie” (career and family) audit
The federal quality seal and the regular inspections confirm Infineon’s path as a family-friendly company.
Sustainable flashes of inspiration
As part of the company suggestion theme “Your Idea Pays” (YIP), a total of 313 ideas were submitted in 2021 on the topics of health, occupational safety & environmental protection, as well as energy and e-mobility. In terms of value, this resulted in a saving of approximately € 360,000.

Promoting health
With “Health & Care”, Infineon Austria offers competent contact persons for questions regarding health as well as occupational and preventive medical topics at all sites. The Medical Service Center in Villach is managed by two physicians and two qualified health care professionals. The “Health Team” is dedicated to occupational health management and offers preventive health care, fitness courses and training regarding stress management and burnout prevention. There is also the option of external psychological counseling – anonymously and free of charge.

Apprenticeship and integration
Infineon has trained more than 600 apprentices to become skilled workers. Currently, 85 young people are completing an apprenticeship; around a quarter of them are young women. In 2016, Infineon launched the “Lehre mit Asyl” (“Apprenticeship with Asylum”) project to promote integration and counteract the shortage of skilled workers. Nine apprentices are currently completing their apprenticeship under this model – five apprentices who had been granted asylum have already completed it.

Information from the very first day
From their very first day on the job, employees receive information on occupational safety, health and environmental protection and energy. Ongoing online training courses deepen their knowledge in these areas. Current information and campaigns are communicated via the intranet, information boards and screens. The Environmental Statement is available both on company sites and as an Internet and intranet download.

Did you know that...
... at Infineon Austria, a CSR Board regularly addresses sustainability issues and implements related measures?

Safety first
› Corporate Disaster Prevention Organization (DPO)
› Plant fire department (PFD)
› Company medical service (MSC)
› Ongoing training and safety-related training as well as targeted awareness raising
› Comprehensive training and development programs
The company

Infineon Technologies Austria

Infineon Technologies Austria AG is a subsidiary of Germany’s Infineon Technologies AG. The group is a world leader in semiconductor solutions that make life easier, safer and greener. In Austria, research & development, manufacturing and global business responsibility come together in an effective combination that makes the site unique.
Our more than 4,820 employees from 73 countries have established Infineon as a leading company in Austria. As the country’s most research-focused company, Infineon Austria has been a pioneer for the digital revolution.

The Austrian head office is in Villach, further branches are located in Graz, Linz, Klagenfurt (IT) and Vienna (Sales). Research, production and global responsibility for twelve product lines from three divisions are located at the main site in Villach. At the Graz and Linz sites, the main focus is on research & development. Graz is the global competence center for contactless technologies, while Linz serves as the global competence center for high-frequency technologies.
As a semiconductor company with global operations, Infineon works on technologies that achieve more, consume less and are accessible to everyone. Infineon wants to harness the opportunities offered by digitalization for a sustainable development of society: for efficient energy management, environmentally-friendly mobility, and safe operations in a networked world.

With its own “SMART Growth” strategy, Infineon Austria pursues the goals of contributing to the Group's success from Austria, being globally competitive, further developing the site and sustainably strengthening the region. The strategy of intelligent growth builds on technological strengths, as well as on innovation, creativity and the continuous pursuit of improvement.

By 2025, Infineon Austria will...
... have expanded its market leadership in power electronics through business success in the digital world.
... be the world’s leading competence center for power electronics in the areas of silicon and new semiconductor materials.
... drive innovation forward by offering a growing, well-connected R&D and manufacturing environment.
... utilize digitalization for faster learning, agility and competitiveness.
... globally attract and develop the best talents.

Responsible sustainability
Infineon’s sustainability strategy – Corporate Social Responsibility (CSR) – encompasses voluntary responsibility towards local and international communities and is based on the principle of sustainability – the combination of economy, ecology and social commitment. The measures are also defined and continuously expanded with regard to the fields of action outlined by the United Nations Sustainable Development Goals (SDGs). Together with the Infineon Group, our business model currently contributes to twelve of the 17 targets; Infineon Austria’s strategy has focused separately on seven targets for the time being.

Did you know that...
... Infineon signed the United Nations Global Compact in 2004 and that Infineon Austria was awarded the Mercer “Money 4 Change - Impact Award” for implementation in 2021?

https://www.mercer.at/newsroom/impact-award-2021.html
At the Villach site, activities focus on the development and production of power semiconductors, so-called energy-saving chips. Power semiconductors play a key role in electronic devices. They convert mains power to the requirements of the respective device. In this area, Infineon is the world market leader. In order to ensure that it stays that way, the team is working on ever more powerful and energy-efficient chips.

Infineon Austria employs more than 4,120 people in Carinthia (of whom about 3,900 are employed at Villach). This makes the company the largest private employer in the region. Infineon took up operations in Austria in 1970. What began back then as an extended workbench with some 24 employees has developed into the headquarters in Austria and a strong competence center within the Group. Today, the site combines production, research & development as well as global business responsibility.

Infineon Austria Villach

- Global group competence center for power electronics since 1997
- Since 2017, global competence center for new semiconductor materials (silicon-carbide and gallium nitride)
- Since 2021 “One Virtual Fab” – new chip factory in Villach as a virtual mega factory together with Dresden
Leading factory for innovative semiconductors
The Villach site serves as the front-end production network, with partner factories in Germany and Malaysia. In the fiscal year 2021, around 8.72 billion power semiconductors were produced on silicon discs called **wafers** in Villach. The wafers are manufactured and tested in about 1,000 individual steps involving various technologies and complexities. In total, the **clean room** produces approximately 2,000 basic product types simultaneously with ultimate precision and highest quality, around the clock and 365 days a year. The high-volume manufacturing innovations focus on the areas of single-process technology, equipment engineering, new materials, thin wafers and state-of-the-art automation, digitalization and production concepts.

Thin wafer technology – global leadership
The expertise to produce 40-micrometer (0.04 millimeters) thin wafers with a diameter of 300 millimeters in high volumes is unique throughout the world. These particularly thin energy-saving chips ensure even more efficient energy conversion in electronic systems. At the same time, mass production is made much more productive and resource-efficient. Compared to a 200-millimeter wafer, more than twice as many chips can be efficiently produced in one production run.

New high-tech chip factory
The demand for semiconductors for all areas of life is on the rise worldwide. High demand and chip shortages underscore the value of in-house manufacturing. Infineon invested with foresight early on and opened the new high-tech chip factory in 2021. With this, Infineon is setting an industrial policy landmark with regard to security of supply for European industry and the global market. The semiconductors produced here are used in numerous applications such as electric cars, computer centers or solar and wind energy. With its investments in energy efficiency, intelligent waste heat utilization, area-wide exhaust air purification systems and the dual use of hydrogen – both in production and for mobility – the site is making a major contribution to the Infineon Group’s goal of achieving climate neutrality by 2030.

Industry 4.0 and “One Virtual Fab”
Infineon in Villach is a frontrunner in Industry 4.0 and is seizing the opportunity to optimize processes along the entire value chain – from development to production. Suppliers and other sites will be increasingly integrated into the overall process. The new Villach innovation factory joins Infineon Dresden to form an identical production environment with standardized production and digitalization concepts as “One Virtual Fab”. Processes, operations and systems are networked to control manufacturing from both sites as if they were one single factory. The virtual megafactory is a new benchmark in 300-millimeter power semiconductor manufacturing and allows for further optimization of the environmental footprint through enhanced resource and energy efficiency.

Did you know that...

... the product mix of the new chip factory in Villach can save more than 13 million tons of CO₂? This is roughly equivalent to the emissions of more than 20 million people living in Europe.

Scan the QR code and discover how a chip is made.

1.55 million Silicon wafers

Wafer diameter 150 mm, 200 mm, 300 mm with approximately
600,000 wafer movements a day

8.72 billion chips produced (FY 2021)

approx. 1,682 items of equipment

Innovation Factory Villach
IMPRES

Our Environmental Management System

Infineon views sustainability as a combination of social, ecological and economic responsibilities. Cost-effective activities, health protection, workplace safety, environmental protection, energy efficiency, climate protection and social responsibility are mutually compatible principles and goals, which we implement and strive to fulfill.
Infineon’s global management system IMPRES integrates the topics of environmental protection, occupational safety, health, and energy into all Group processes and thereby aims at establishing a uniform global standard that is continuously optimized. IMPRES stands for “Infineon Integrated Management Program for Environment, Energy, Safety and Health” and was introduced in 2005.

This management program is based on the ISO standards ISO 14001 for environment, ISO 50001 for energy and ISO 45001 for workplace safety and health protection. These international standards are reviewed annually through both external and internal audits as part of a matrix certification process and confirm a uniform global standard.

The IMPRES Policy

Below, you will find the guidelines from the current IMPRES policy that serve as the basis for our actions:

People and the environment

› We assess and consider possible consequences for humans and the environment at the earliest possible stage of product and process planning.
› We ensure that our corporate policy on environmental protection, energy management, occupational safety and health protection is implemented effectively. The technical and organizational procedures necessary for this purpose are checked regularly and improved continuously.
› We implement targeted measures to prevent risks to people and the environment or, if this is not possible, to minimize them as far as possible.
› We inform the interested public and support an open information policy.
› We require our business partners to follow our guidelines. We work together with authorities, associations and non-governmental organizations.

Energy and resources

› Through our everyday actions, innovations and products, we support a sustainable global society and enable the production of energy-efficient end products and applications.
› We use energy conscientiously and efficiently, and consume resources sparingly.
› We strive to maintain our leadership within our industry in terms of energy efficiency, now and into the future.
› We contribute to climate protection in several areas, e.g. by minimizing our greenhouse gas emissions.
› We support the use of renewable energies where technically possible and economically feasible.
› We support the use of energy-efficient products and services.
› Our customers benefit from product features such as high performance or low energy consumption.
› We reduce costs through integrated recycling processes and the reuse of materials as well as through motivated, committed and involved employees who work in a safe environment.

Economy

› We continuously work to create an ecological net benefit now and for the future, both in our products and solutions and through efficient processes and production methods.
› We prefer a forward-looking assessment of long-term effects to an orientation towards short-term benefits.
› We see no contradiction between productivity and cost efficiency on the one hand and the protection of people and the environment on the other.

Legal compliance

› Beyond complying with legal regulations and other requirements, we are continuously working on minimizing risks and effects on people and the environment, as well as energy and resource consumption.

www.infineon.com/nachhaltigkeit
Organization of the Environmental Management System

Along with the high environmental standards detailed in ISO 14001, the Austrian production site in Villach has also committed to the European Union’s EMAS environmental management system (Eco Management and Audit Scheme). In addition to the sustainable use of resources, EMAS also strives to continuously improve environmental performance, taking sustainability aspects into account, and to report on this annually in the Environmental Statement.

The documentation of environmental protection, energy management, workplace safety and health protection at Infineon includes both the IMPRES manual and all IMPRES-relevant process descriptions, work instructions and other IMPRES-relevant documents, which are also produced specifically for individual sites. From an organizational point of view, the head of the Environmental Protection and Workplace Safety Division, as local coordinator of the IMPRES integrated management system, sits directly under the Managing Director under trade law. In practice, they report directly to the Group’s global “Head of Sustainability”.

At the Villach site, IMPRES is regularly reviewed via both internal and external audits. The management system is regularly evaluated as part of a management review, in order to continuously improve and analyze activities. Companies such as Infineon are faced with an increasingly dynamic and complex environment. For ongoing development in areas such as environmental protection, a management system like our IMPRES is very relevant.

Compliance with Statutory Environmental Provisions

The company meets all applicable environmentally-relevant obligations. Specifically, these include:

› the legal provisions laid out in the approximately 160 relevant laws, as well as 1,320 resulting legal obligations or requirements,
› approximately 2,900 regulatory requirements resulting from official rulings, conditions and limit values associated with approvals and official orders,
› insurance law requirements
› other voluntary commitments (such as the goal of CO₂ neutrality).

Current statutory provisions relevant to workplace safety, health protection and environmental protection (including energy) are recorded in a legal directory. This also applies to voluntary commitments, requirements stipulated in official permits, etc. The legal directory as well as the measures resulting therefrom are reviewed on a regular basis and modified as necessary. This is done with proprietary software that can automatically extend the current status at any time. This type of reporting takes place not only as part of the annual management review (deadline for Legal Compliance Check on 05 April 2022), but also on an ongoing basis with the individual persons responsible.
Emergency Precautions and Emergency Management

As a Seveso facility, Infineon complies with the high legal standard of the Industrial Accidents Regulation and is subject to annual inspections by the authorities regarding this issue. We also monitor all of the key environment- and safety-related processes using process control technology as well as ongoing measurements. This means that even minimal deviations from standard operation and other faults are detected at the earliest possible stage.

Emergency response system, alarm and hazard prevention plans
In addition to Infineon’s plant fire department, our company medical service as well as shift workers and contingency personnel are available for any emergency. The plant fire department consists of four full-time employees and 134 volunteer members, distributed across eight firefighting teams, who are highly trained for any anticipated operational scenario. Four specially equipped vehicles are available and ready to go into action in the shortest possible time. The new fire station at the Villach site offers space for a modern control center, training and meeting rooms, men’s and women’s locker rooms, a mechanical workshop as well as a workshop for respiratory protection, five garage spaces for fire engines and various storage rooms.

In the event of serious damage incidents which cannot be rectified in the course of normal operations, the company’s Disaster Response Organization (DRO) will be deployed. Specially-trained crisis management team leaders with managerial authority can be contacted via the Security Control Center (SCC) at any time and can immediately take over the management of a response operation. Furthermore, as a part of the DRO, a specially-trained chemical response team is available to respond to emergencies in the area of chemicals and gases.

The Medical Service Center is supported by over 50 specially trained company paramedics and over 370 first responders at the Villach site, who are divided among the individual shift groups. In order to limit the impact that emergencies and accidents may cause off the premises, there are alarm and hazard prevention plans which are updated continuously, as well as regular training, education and exercises, including with external emergency forces, to ensure that we are prepared for emergencies.

During the COVID pandemic, Infineon, as a key digital industrial player, assumed its responsibility at an early stage. A COVID-19 focus team, consisting of divisional and site personnel, ensures ongoing adjustments to legal requirements as well as additional operational safety measures. Protecting our employees at all Infineon Austria sites is always a top priority. In 2020, an in-house testing service and contract tracing were introduced, which was complemented by an in-house vaccination service in 2021. The statutory 3G rule applies at the workplace. It is continuously adapted to the situation and implemented in combination with the comprehensive COVID measures, such as home office, FFP2 masks, and hygiene and distance regulations. The measures apply to all Infineon Employees, temporary workers and suppliers.

Production in the clean room at the Villach site has continued without interruption since the beginning of the pandemic. In clean rooms, the frequent air change rate, high filter effectiveness and protective clothing make it almost impossible for viruses to spread. Thanks to the excellent cooperation of all partners, the new chip factory was able to start up three months ahead of schedule, despite the pandemic conditions and in compliance with all safety requirements.

A summary of all essential emergency aspects and safety measures can be found at www.infineon.com/sicherheit-austria
Environmental Aspects

An environmental aspect and its associated environmental impact refer to any positive or negative change in the environment or an environmental medium which occurs wholly or partly as a result of an organization’s activities, products or services.
Infineon continuously evaluates the environmental aspects relevant to the site and updates this assessment on an annual basis. We differentiate between
› direct, e.g. energy use, waste, waste water, exhaust air, and
› indirect environmental aspects, such as e.g. responsible procurement, which have an impact not only on the environment, but also on the social and economic effects of Villach as a production location.

Evaluation of Environmental Aspects

Infineon re-evaluates its environmental aspects at least once a year and updates its environmental focus accordingly.
Infineon’s goal is to minimize the impact of the Villach site on the environment. This is done not only through targeted recycling and processing measures, but also by initiating individual small projects, conducting environmental training and raising awareness through environmental campaigns, including in the area of CSR.

Environmental aspects are assessed on the basis of a Group guideline that defines the categories of impact parameters.

Accordingly, we consider eight thematic blocks of environmental aspects:
› Energy consumption
› Air emissions
› Consumption of resources (e.g. chemicals and gases)
› Waste
› Land use and biodiversity
› Water consumption and waste water
› Release of energy (e.g. heat, radiation or noise)
› Transport (indirect environmental aspect)
In addition to environmental relevance, probability of occurrence, volume development and frequency, geographical impact and legal requirements are also taken into account.
The current assessment for the Villach production site was carried out by an interdisciplinary team including the Managing Director under trade law, the energy manager and experts in environmental protection.

The results are shown in the following table with the previous year’s assessment provided for comparison:

<table>
<thead>
<tr>
<th>Evaluation of Environmental Aspects</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust air pollutants</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Organic air pollutants</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Emissions of CMR substances</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Greenhouse gas emissions</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Inorganic air pollutants</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Water consumption and waste water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct discharge</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Indirect discharge (municipal sewage)</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Land use and biodiversity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil contamination</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sealing of areas</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Release of energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Radiation</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Noise</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Light</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Energy consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical energy</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Natural gas</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Diesel</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>District heating</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Consumption of resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw materials</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Chemicals</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Gases</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Water consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water consumption production (DI water)</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Water consumption cooling (cooling water)</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous waste for recycling</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Hazardous waste for disposal</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Non-hazardous waste for recycling</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Non-hazardous waste for disposal</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery and removal</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Employee trips to and from work</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Internal transport</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Business trips</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

The environmental aspects that are significant for Infineon Austria at the Villach site are C and D.

Below, our significant environmental aspects are presented according to relevance:

<table>
<thead>
<tr>
<th>low</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>high</th>
</tr>
</thead>
</table>

see Glossary, page 62
Noticeable changes in the evaluation of environmental aspects compared to previous years can be seen in the following aspects:

› Noise: The rating of B in 2020 was set to C in 2021. This is due to the expansion of production with its supply units, which bring the noise level at the property boundaries closer to the limit values. As a continuous control measure, a permanently registering noise measurement is being implemented at the property boundary (see projects). This topic is included in the planning of all new construction projects with a new emphasis.

› The aspect of water consumption and waste water was evaluated as very significant for both indirect and direct discharge due to the increased volumes. A concept aimed at reducing water consumption is being developed (see projects).

› The resource use of DI water was changed from C to A because the assessment aspects of geographic impact and legal requirements were determined to be not relevant.

› The greenhouse gas emissions rating was changed from D to C, as the cost reduction potential was reclassified from high to low.
Direct Environmental Aspects

Direct environmental aspects are directly related to the company’s activities, products and services and can be directly influenced by the company. These include, but are not limited to: emissions into the air and water, waste, and the consumption of resources (an overview of all assessed environmental aspects can be found on page 28).

The environmental impacts of our products are regarded as indirect environmental impacts and are described in the following section.
As a global player in the semiconductor industry, energy efficiency and energy savings are essential pillars of our corporate philosophy. This is also reflected in our energy management system, which is certified according to ISO 50001. A constantly-growing number of energy and material flows is systematically recorded and evaluated in order to optimally design and control individual processes. These measures and many other optimization activities allow us to improve our energy usage efficiency.

The manufacture of semiconductors uses primarily electrical energy. This energy is needed both to create a stable production environment with defined ambient conditions in the clean rooms and for the operation of the production facilities. The manufacture of semiconductors uses primarily electrical energy. This energy is needed both to create a stable production environment with defined ambient conditions in the clean rooms and for the operation of the production facilities.

Environmental Aspects

Energy consumption

<table>
<thead>
<tr>
<th>Main indicators</th>
<th>Energy consumption [GWh], savings [GWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most important measures</td>
<td>Heat recovery of approx. 75% of the total amount of heat energy used</td>
</tr>
<tr>
<td></td>
<td>Comprehensive energy reduction program ("Energy Efficiency Project")</td>
</tr>
<tr>
<td></td>
<td>Additional cooling system with heat recovery</td>
</tr>
<tr>
<td>Environmental impacts</td>
<td>CO₂ emissions and the associated contribution to global warming; indirect impacts due to fossil fuel extraction; operation of power generation plants.</td>
</tr>
<tr>
<td>Source</td>
<td>Cooling units, air compressors, onsite nitrogen units</td>
</tr>
</tbody>
</table>

Breakdown of energy requirements at the Infineon Villach site 2021

The chart shows: 81 % of the required energy is sourced from external suppliers, as 19 % is supplied by Infineon via on-site heat recovery.

Production, and in this context the clean room infrastructure, is responsible for the main part of energy consumption. The self-generated energy through photovoltaic systems for the charging station of the e-cars amounts to about 3.6 MWh annually.

Total energy consumption at Villach site 2021 (Legacy) Site (Legacy Fab)

Energy consumption in kWh/cm² silicon surface area normalized per fiscal year - 2021
The target for the fiscal year 2020/21 was not to exceed 284 GWh of electricity consumption while providing for growth at the site. With a total consumption of 272 GWh from the existing facilities, this goal was met. As the new chip factory was also ramped up in the past fiscal year, this additional electricity consumption of 34 GWh must now also be taken into account.

Total energy consumption in relation to production volume increased in fiscal year 2021 (see chart). This is due to the ramp-up of the new chip hall. The consumption of district heating has been further reduced in recent years through the optimized use of heat recovery systems. Here, the company was able to use around 50 GWh of energy in the fiscal year 2021. However, the ramp-up of the new chip factory will result in an overall increase in district heating and total energy consumption.

Did you know that...

... “Next Level of Productivity” is a cross-site project at Infineon to increase productivity, improve energy efficiency and save CO₂?

Illustration of heat recovery at the Villach site
Excluding the new chip factory

<table>
<thead>
<tr>
<th>Fiscal year</th>
<th>Total recovery (GWh)</th>
<th>Total district heating (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/17</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>2017/18</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>2018/19</td>
<td>49</td>
<td>69</td>
</tr>
<tr>
<td>2019/20</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>2020/21</td>
<td>57</td>
<td>82</td>
</tr>
</tbody>
</table>

[Image of a person in a lab coat and mask adjusting a control panel, with a note saying: "Did you know that... "Next Level of Productivity" is a cross-site project at Infineon to increase productivity, improve energy efficiency and save CO₂?"

Illustration of heat recovery at the Villach site
Excluding the new chip factory]
Greenhouse gas emissions

The greenhouse gas emissions generated at the site are largely made up of the gases used in production and, to a small extent, natural gas consumption for exhaust gas purification.

Greenhouse gases are used in the semiconductor industry for etching processes to structure wafers and for the cleaning of production facilities. These include the mentioned so-called perfluorinated compounds (PFCs), such as perfluorinated and polyfluorinated hydrocarbon compounds, sulfur hexafluoride (SF₆) and nitrogen trifluoride (NF₃). These greenhouse gases cannot be replaced by other groups of substances.

We minimize the use of these gases, firstly by means of ongoing process optimization via more efficient production methods, and secondly through the use of intelligent exhaust air purification concepts and alternative PFC group gases with higher conversion rates and lower greenhouse potential. However, the increasing complexity of our products is leading to a slightly increased need for greenhouse gases.

Because of its dielectric properties, SF₆ is used all over the world as an insulation gas in high-voltage technologies. Current state-of-the-art technologies offer no alternative to the use of SF₆ as a process gas for plasma etching in semiconductor component production. In recent years, targeted reduction programs have enabled a reduction of the use of SF₆ as an insulation gas when measuring and testing completed wafers in the wafer testing facility at the Villach site to a minimum. The remaining base load results from

Greenhouse gas emissions in kg/cm² silicon surface area normalized per fiscal year – 2017 to 2021
the special requirements of high-voltage measurement techniques as well as its use as a dielectric in implantation systems. The decrease in specific CO₂ emissions on a CO₂-equivalent PFC basis is mainly due to the lower use of PFC gases in production as a result of reduced capacity utilization and technological improvements.

In accordance with the EMAS Regulation, the emissions of CH₄ (methane) and CO₂ (carbon oxide) used or emitted with an impact on greenhouse gas emissions are also taken into account. The share of these process gases in total greenhouse gas emissions is very low (0.3 percent). The same applies to the share of CO₂-relevant hydrogen-fluorocarbons (HFCs) due to used refrigerants, at 1.8 percent in addition to the CO₂ emissions listed.

In pursuing the goal of CO₂ neutrality, Infineon in Villach is continuously implementing measures to reduce CO₂ emissions. The CO₂ balance for the fiscal year shows that the microchips manufactured in Villach can achieve 58 times more savings over their useful life than our emissions at the site (see “Sustainable products for energy and climate targets”).

Exhaust air flows

<table>
<thead>
<tr>
<th>Emissions into the air</th>
<th>Unit</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total exhaust air from the production areas</td>
<td>Nkm³</td>
<td>14.82</td>
<td>14.95</td>
<td>22.99</td>
</tr>
</tbody>
</table>

₁) Exhaust air volumes incl. new chip plant.

Our exhaust air is made up of different components:

On the one hand, there is the uncontaminated exhaust air from the clean room supply. For this, large amounts of ambient air are taken in, cleaned of particulate matter and, after being recirculated several times (multiple circulation routing), filtered and then discharged back into the environment. Process-related contamination of the exhaust air is addressed in treatment plants and reduced to a level well below the officially prescribed limits.

With regard to process exhaust air, for example, wet scrubbers are used for acidic/alkaline exhaust air streams, while organic components are purified by means of high-temperature incineration for volume flows containing VOCs, absorber systems are used in the implantation area, and perfluorinated compounds (PFCs) from the respective production areas are incinerated in a high-temperature process and cleaned using wet scrubbers. The emission levels at the individual emission points are generally well below the limits. The emission limit levels were therefore adjusted and lowered in cooperation with the applicable authorities in 2016.

Emissions of NOₓ (nitrogen oxide), SO₂ (sulfur dioxide) and dust

Thanks to optimized solvent combustion operation as well as further development of measurement technology, NOₓ emissions from production were reduced to 23.6 metric tons in fiscal year 2020/21. The NOₓ content from fossil fuels following the switch to district heating (approx. 4 kg NOₓ from approx. 2,700 m³ of fuel gas for the test operation of the boiler systems at the site) and the site's SO₂ emissions are negligible. Indirect emissions from district heating production are not recorded.

Dust emissions from our process exhaust stacks are inspected annually by an assessor as part of the company's internal control concept. Measurements are made on an ongoing basis, both internally and by external partners. The measurement concept is reviewed annually and further developed as required. All stacks are below the official
Did you know that...

... state-of-the-art exhaust air purification systems in the new Infineon chip plant clean up at least 97 percent* of emissions?

*according to subsidy notice KPC (Kommunalkredit Public Consulting)
The absolute figures are first listed in tabular form below. The interpretation of consumption in relation to production volume is shown in the graph below.

Chemicals and gases

Main indicators

- Use of relevant quantities of chemicals and gases (in addition to seveso-related substances, also substances with other environment-related properties)

Most important measures

- 68 % of solvents are recycled
- Use and safety measures to reduce the risk of an incident are taken into account in planning (e.g. by means of FMEA), update of risk assessments in the event of changes in substance quantities or substance type

Environmental impacts

- Impacts during normal operation due to exhaust air, waste and waste water
- Impacts in the event of an incident reduced to a minimum through technical and organizational measures (see brochure for site neighbors: www.infineon.com/nachhaltig-austria)

Source

- Production process
- Production supply (facilities)

Consumption of chemicals and gases as well as infrastructure chemicals, based on production volumes, increased slightly or remained the same. This is due to the site expansions (additional nitrogen tanks for the new research & development building and the new chip factory, for example).
Infineon Austria attaches great importance to consistent waste separation at the Villach site. All employees are therefore required by a clearly defined waste management concept to reduce residual waste volumes by collecting and sorting waste and reusable materials.

Environmental Aspects

Waste

<table>
<thead>
<tr>
<th>Main indicators</th>
<th>Total waste [t], amount of hazardous waste [t], amount of non-hazardous waste [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most important measures</td>
<td></td>
</tr>
</tbody>
</table>
 › Main components of non-hazardous waste are sent to recycling
 › Main components of hazardous waste are reclaimed or recycled
 › Continuation of optimized transport logistics through reusable shuttle packaging for wafer transport (six, eight, twelve inches)
 › Our wafer delivery boxes are processed at a regional recycling company so that the high-quality plastic can be reintroduced into a materials cycle |
| **Environmental impacts** |
 › Danger to people and the environment in the event of improper waste handling |
| **Source** |
 › Production: packaging, equipment, laboratory
 › Infrastructure: Kitchen, waste water plants, IT, other waste
 › Construction activities/construction site waste |

ILTineon Austria attaches great importance to consistent waste separation at the Villach site. All employees are therefore required by a clearly defined waste management concept to reduce residual waste volumes by collecting and sorting waste and reusable materials.

Environmental Aspects

Waste

In the case of non-hazardous waste, the increase can be explained by the significant rise in the waste component of construction site waste, which increased by 2.7 times, mainly due to the packaging of new equipment for the new chip factory, (wood waste pallets). The replacement of old equipment (iron waste) also contributed to an additional increase in the volume of waste.

Most hazardous and non-hazardous waste components that can be dealt with by licensed waste collectors and processors are recycled. For example, calcium fluoride sludge from the waste water plant is used as a secondary raw material in the building materials industry, while spent sulfuric acid is used for neutralization purposes. Some of the spent solvents are recycled, the rest are incinerated.

The following graph provides an overview of the development of the amount of waste in relation to the production volume produced at the site.

The increase in non-hazardous waste volumes is due, among other things, to the increased amount of construction site waste resulting from the construction activities as part of the site expansion during the past two years (new research building and new chip factory).

Nevertheless, the Group’s target value of 27.5 g/cm² wafer area was met.

In the case of non-hazardous waste, the increase can be explained by the significant rise in the waste component of construction site waste, which increased by 2.7 times, mainly due to the packaging of new equipment for the new chip factory, (wood waste pallets). The replacement of old equipment (iron waste) also contributed to an additional increase in the volume of waste.

Most hazardous and non-hazardous waste components that can be dealt with by licensed waste collectors and processors are recycled. For example, calcium fluoride sludge from the waste water plant is used as a secondary raw material in the building materials industry, while spent sulfuric acid is used for neutralization purposes. Some of the spent solvents are recycled, the rest are incinerated.

The following graph provides an overview of the development of the amount of waste in relation to the production volume produced at the site.

The increase in non-hazardous waste volumes is due, among other things, to the increased amount of construction site waste resulting from the construction activities as part of the site expansion during the past two years (new research building and new chip factory).

Nevertheless, the Group’s target value of 27.5 g/cm² wafer area was met.

![Graph showing waste in g/cm² silicon surface area normalized per fiscal year – 2021](image)

- Total waste
- Total waste (excluding wood, iron, construction site waste)
- Non-hazardous waste
- Non-hazardous waste (excluding wood, iron, construction site waste)
- Hazardous waste
Non-hazardous waste
In the fiscal years 2019, 2020 and 2021 the main non-hazardous waste components > 100 tons were:

<table>
<thead>
<tr>
<th>Non-hazardous waste</th>
<th>Code</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurries from waste water plant</td>
<td>31641</td>
<td>t</td>
<td>3,604.85</td>
<td>3,192.53</td>
<td>3,358.32</td>
</tr>
<tr>
<td>Household and commercial waste</td>
<td>91101</td>
<td>t</td>
<td>584.5</td>
<td>495.28</td>
<td>640.5</td>
</tr>
<tr>
<td>Contents of grease separators (kitchen)</td>
<td>94705</td>
<td>t</td>
<td>132.88</td>
<td>128.55</td>
<td>323.46</td>
</tr>
<tr>
<td>Iron and steel waste (commercial scrap metal)</td>
<td>35103</td>
<td>t</td>
<td>213.63</td>
<td>155.27</td>
<td>247.23</td>
</tr>
<tr>
<td>Waste paper</td>
<td>91201</td>
<td>t</td>
<td>171.78</td>
<td>151.64</td>
<td>182.55</td>
</tr>
<tr>
<td>Biogenic waste</td>
<td>91104</td>
<td>t</td>
<td>172</td>
<td>171.6</td>
<td>171.6</td>
</tr>
<tr>
<td>Wood waste</td>
<td>17201</td>
<td>t</td>
<td>262.35</td>
<td>211.02</td>
<td>771.34</td>
</tr>
<tr>
<td>Construction site waste</td>
<td>91206</td>
<td>t</td>
<td>17.39</td>
<td>125.7</td>
<td>131.13</td>
</tr>
</tbody>
</table>

The following overview of the main occurring components of non-hazardous waste in their recycling streams is intended to show the development of the division into thermal and material treatment. A breakdown reveals the following distribution:

<table>
<thead>
<tr>
<th>Waste from production</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total non-hazardous waste</td>
<td>t</td>
<td>3,201.75</td>
<td>3,567.29</td>
<td>3,832.56</td>
</tr>
<tr>
<td>of which recovered</td>
<td>t</td>
<td>294.86</td>
<td>231.84</td>
<td>325.36</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>159.06</td>
<td>130.9</td>
<td>139.28</td>
</tr>
<tr>
<td>of which disposed of</td>
<td>t</td>
<td>2,747.83</td>
<td>3,204.56</td>
<td>3,367.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste from areas outside production (e.g. peripherals, facilities, office space)</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total non-hazardous waste</td>
<td>t</td>
<td>995.62</td>
<td>988.58</td>
<td>1,365.77</td>
</tr>
<tr>
<td>of which recovered (not incinerated)</td>
<td>t</td>
<td>320.29</td>
<td>306.63</td>
<td>542.55</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>32.85</td>
<td>46.99</td>
<td>40.36</td>
</tr>
<tr>
<td>of which disposed of</td>
<td>t</td>
<td>642.48</td>
<td>634.96</td>
<td>782.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packaging</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total non-hazardous waste</td>
<td>t</td>
<td>435.80</td>
<td>363.66</td>
<td>955.03</td>
</tr>
<tr>
<td>of which recovered (not incinerated)</td>
<td>t</td>
<td>171.78</td>
<td>151.64</td>
<td>182.55</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>264.02</td>
<td>212.02</td>
<td>772.48</td>
</tr>
</tbody>
</table>
Hazardous waste
In the fiscal years 2019, 2020 and 2021 the main hazardous waste components > 100 tons were:

<table>
<thead>
<tr>
<th>Hazardous waste</th>
<th>Code</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent mixtures</td>
<td>55370</td>
<td>t</td>
<td>644.67</td>
<td>611.07</td>
<td>671.58</td>
</tr>
<tr>
<td>Spent acids (sulfuric acid)</td>
<td>52102</td>
<td>t</td>
<td>1,104.58</td>
<td>1,163.01</td>
<td>1,335.96</td>
</tr>
<tr>
<td>Other aqueous concentrates</td>
<td>52725</td>
<td>t</td>
<td>1,635.81</td>
<td>2,305.97</td>
<td>2,748.95</td>
</tr>
<tr>
<td>Residues from solvent recycling</td>
<td>140603</td>
<td>t</td>
<td>186</td>
<td>165.32</td>
<td>–</td>
</tr>
<tr>
<td>Calcium fluoride slurry</td>
<td>31641</td>
<td>t</td>
<td>870.38</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Excludes residues from solvent recycling.

In fiscal 2021, the generation of hazardous waste again resulted mainly from the fractions of other aqueous concentrates (increase in special waste water containing copper in ECD chemicals). Here, an extended purification plant for the treatment or reduction of these copper-bearing waters is being planned, which is to be put into operation by the end of the year.

Solvents have already been successfully distilled off-site since 2009. Now, four fractions (PGMEA, CP, NMP, and DMF) are sent for recycling, with typical recycling rates of about 70 %.

It should also be noted that our spent solvent mixtures are, as a result, not only sources of energy in terms of thermal treatment, but also valuable secondary raw materials. Thus, preference is clearly given to the recovery of materials rather than thermal treatment.

Below is a summary of the hazardous waste generated by the site, broken down into the main components and their respective recycling flows:

A breakdown reveals the following distribution:

<table>
<thead>
<tr>
<th>Waste from production</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hazardous waste</td>
<td>t</td>
<td>4,364.21</td>
<td>4,205.93</td>
<td>4,865.13</td>
</tr>
<tr>
<td>of which recovered (not incinerated) or recycled</td>
<td>t</td>
<td>1,189.93</td>
<td>1,268.89</td>
<td>1,373.65</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>665.84</td>
<td>630.16</td>
<td>741.74</td>
</tr>
<tr>
<td>of which disposed of</td>
<td>t</td>
<td>2,508.44</td>
<td>2,306.89</td>
<td>2,749.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste from areas outside production (e.g. peripherals, facilities, office space)</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hazardous waste</td>
<td>t</td>
<td>107.38</td>
<td>248.30</td>
<td>217.16</td>
</tr>
<tr>
<td>of which recovered (not incinerated)</td>
<td>t</td>
<td>49.87</td>
<td>46.25</td>
<td>85.70</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>1.08</td>
<td>3.72</td>
<td>8.68</td>
</tr>
<tr>
<td>of which disposed of</td>
<td>t</td>
<td>56.43</td>
<td>198.33</td>
<td>122.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packaging</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hazardous waste</td>
<td>t</td>
<td>16.86</td>
<td>47.26</td>
<td>45.33</td>
</tr>
<tr>
<td>of which recovered (not incinerated)</td>
<td>t</td>
<td>1.054</td>
<td>34.19</td>
<td>32.2</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>15.36</td>
<td>13.08</td>
<td>13.13</td>
</tr>
</tbody>
</table>

Did you know that...

... by using reusable transport boxes, Infineon has been saving not only packaging material but also a lot of money since 2015? Approximately € 300.000 annually at the Villach site alone.
Due to the consistent site development over the past 50 years, plant expansions are an important issue for our economic competitiveness. The land required for this purpose is made available in accordance with the relevant official procedures, with an eye on the environment and in consultation with the neighborhood.

The total area covered by the site during the 2021 reporting period, including roads and pathways, was approximately 260,000 m², with an additional 42,000 m² of leased space. The green space (lawns, vegetation) amounts to approx. 35,000 m². The total sealed area of the site, including the areas covered by buildings, amounts to around 176,000 m². The remaining approximately 58,000 m² consists mainly of parking areas with infiltration systems (grass pavers), drainage ditches and embankments and unpaved gravel surfaces (prepared sites).

Environmental Aspects

Land use and biodiversity

<table>
<thead>
<tr>
<th>Main indicators</th>
<th>Sealed areas [m²], Subsoil preparation [m²]</th>
</tr>
</thead>
</table>
| **Most important measures** | Inventory and site expansion
Reforestation projects |
| **Environmental impacts** | Impact on humans, flora and fauna (biodiversity) |
| **Source** | Site expansion |

Land use and reforestation

Owned areas:
- Sealed areas, incl. built-up areas 175,757 m²
 - Of which new buildings and additions 25,000 m²
- Infiltration areas (parking lots with infiltration systems, gravel, embankments ...) 58,099 m²
- Green areas (non-natural) 35,131 m²
- Emission protection strip 2,100 m²

Leased space:
- Leased space 42,260 m²

From Infineon Austria financed measures on external sites:
- Bio-diverse reforestation as compensation for the new buildings 25,000 m²
- Other bio-diverse reforestation 11,000 m²
- Biotope wet meadows / bio-diverse area 8,000 m²
- Biotope water surface 2,300 m²

This corresponds to 45.1 m² of sealing per employee (including temporary workers)

This corresponds to 11.9 m² of bio-diverse compensation measures per employee (including temporary workers)
The new buildings and additions (20,000 m² for the new chip factory and 4,000 m² for the R&D building) at the Villach site were largely built on existing parking areas. Bushes and woods were cleared to make way for new infrastructure buildings and the plant access road. These areas are being replaced by Infineon in several ways:

- Reforestation projects were carried out in coordination with the authorities to compensate for the additional sealed or built-up areas of 25,000 m² required as a result of the site expansion. Infineon financially supported the creation of new forest areas that focus on quality rather than square meters. The resulting cultivations are deemed to be of higher ecological value than the cleared forests, and a lot of effort has been put into protecting them from game browsing.

- In a compensation assessment, these areas correspond at least to the area cleared. The project mainly involved reforesting areas that had been affected by bark beetles, storms or heavy rainfall events. Bio-diverse mixed forests (larches, sycamores, silver firs, common oaks, mountain ash) were planted. In addition, one of these reforestation projects served as slope stabilization for a previously washed-out forest road.

- Furthermore, the greening of an emission protection strip (approx. 2,100 m²) as well as voluntary reforestation projects covering approx. 11,000 m² are being planned together with the District Forestry Inspectorate and Arge Naturschutz.

Bio-diverse natural habitat

In consultation with the Carinthian Provincial Government (Department for Environment, Energy and Nature Conservation) and the forestry authority, a so-called replacement habitat will also be created directly near Infineon, east of the kindergarten. A biotope (approx. 2,300 m² of water surface) as well as terrain and wet meadows of around 8,000 m² ensure a pure bio-diverse natural space, creating new habitats that were lost decades before Infineon settled due to river straightening.

Did you know that...

... Infineon promotes forest and green spaces in the surrounding area as a habitat rich in species through its cooperation with Arge Naturschutz?
The Villach site covers most of its water supply from its own wells. As a result of the expansion of operational facilities and shifts in technology, almost 50 percent of this self-supplied water is treated with the aid of special equipment, resulting in ultrapure water for production. The water used to cool these production and infrastructure facilities is also extracted onsite.

We source drinking water and water for sanitary installations from the local utility provider.

In the course of the ongoing plant expansions and the resulting additional demand for process and cooling water during commissioning and ramp-up of the new factory, there is close coordination with the authorities.

As the graph shows, specific water consumption and specific waste water generation have remained constant, while production output has increased.

The Group target of 8.5 l/cm² wafer area (calculated according to ESIA) was again met. To ensure that this remains the case in the future, a concept is being developed to reduce water consumption in relation to the wafer area produced.

Contaminated waste water from production is purified in our internal waste water treatment plant, which is equipped with state-of-the-art automatic online analysis functions and corresponding retention basins.

The required amount of water was approved within the scope of the regulatory requirements.

Waste water (direct and indirect discharge) is subject to a semi-annual inspection by an external expert. The limit values laid down in the official rulings and the measured values are observed.

<table>
<thead>
<tr>
<th>Waste water</th>
<th>Unit</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total waste water</td>
<td>m³</td>
<td>4,261,859</td>
<td>4,585,177</td>
<td>4,607,644</td>
</tr>
<tr>
<td>Waste water from production requiring treatment</td>
<td>m³</td>
<td>3,126,620</td>
<td>3,138,061</td>
<td>3,215,411</td>
</tr>
<tr>
<td>Cooling water</td>
<td>m³</td>
<td>978,389</td>
<td>1,316,702</td>
<td>1,430,221</td>
</tr>
</tbody>
</table>

Environmental Aspects

Water consumption and waste water

<table>
<thead>
<tr>
<th>Main indicators</th>
<th>Water withdrawal [m³], waste water quantity [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most important measures</td>
<td></td>
</tr>
<tr>
<td>› Adaptation and expansion of waste water plant to meet operational requirements and make use of latest technology</td>
<td></td>
</tr>
<tr>
<td>› Load monitoring of various ingredients carried out; integrated into water legislation procedures</td>
<td></td>
</tr>
<tr>
<td>› Extension of the retention basin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental impacts</th>
<th>Impacts on surface waters and groundwater bodies</th>
</tr>
</thead>
</table>

| Source | Production processes (wet chemical/etching, grinding/sawing) | Wet scrubbers/abatements | Component cleaning |

Water Consumption and Waste Water Volume from Production in l/cm² silicon surface area, normalized by fiscal year – 2017 to 2021
Infineon Austria maintains an up-to-date noise emissions log. Most noise-generating equipment (compressors, cooling units, heating equipment and vacuum pumps) is located in enclosed supply rooms.

Siemensstraße was opened to general traffic in 2020/21. The parking garage directs the employees’ arrivals and departures and relieves the surrounding area. These activities are embedded in an overall traffic concept that is coordinated with the authorities and local residents. It includes traffic control measures (e.g. roundabouts, Infineonstraße), environmental relief elements (e.g. parking garage instead of uncontrolled parking) as well as the design of noise-reducing measures with the involvement of local residents. In the course of the site expansion, additional noise measurement points were defined and included in the existing noise emissions log.

Noise levels at the site boundaries are within the officially stipulated levels and are controlled regularly.

Environmental Aspects

Noise

<table>
<thead>
<tr>
<th>Main indicators</th>
<th>Noise emission [dB], number of trips or deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most important measures</td>
<td>Regular noise measurements at the site and the site boundaries</td>
</tr>
<tr>
<td>Environmental impacts</td>
<td>Noise pollution of local residents due to production, construction sites, traffic, etc.</td>
</tr>
<tr>
<td>Source</td>
<td>Cooling towers, chimneys (silencers), fresh air intakes as well as emitters installed in buildings: Compressors, refrigeration systems, vacuum pumps etc.</td>
</tr>
</tbody>
</table>
Indirect Environmental Aspects

Our contribution to climate protection is based on two pillars: In addition to continuously reducing its own emissions, Infineon makes an active contribution to the energy transition and the achievement of climate targets with innovative products and system solutions.
Sustainable products for energy and climate targets

Microelectronics form the technological backbone of modern life as we know it today. Infineon’s semiconductor solutions and microchips contribute to energy efficiency in many applications: For example, they lower energy consumption in computer centers and allow for emission-free and secure mobility as well as the efficient generation of solar and wind energy. With a market share of 19.7 percent (source: Omdia, September 2021) the Infineon Group is the world market leader for these power semiconductors, also known as energy-saving chips.

Energy efficiency as a lever
In order to ensure global future viability and competitiveness, Infineon invests continuously in research and development. Villach has been pooling global expertise in power electronics since 1997, and since 2017 the global competence center for new semiconductor materials (silicon carbide and gallium nitride) has also been located in Villach. These materials can convert electricity even more efficiently and allow even smaller components. Current applications include charging stations for electric cars with significantly shorter charging times or the mobile infrastructure for 5G networks.

In this way, Infineon makes a valuable contribution to higher energy efficiency, the achievement of climate targets and the European Green Deal. Some product examples using Austrian know-how are highlighted below. The products and services might harm the environment during use and disposal. However, these effects are not, or only to a certain extent, under the control of the company.

More electricity from wind and the sun
As the demand for energy increases worldwide, the need to generate, transmit and use energy more efficiently also grows. Renewable forms of energy play an essential role in this – worldwide. Infineon semiconductors make it possible to reduce energy losses in the generation of solar and wind power, while increasing performance and allowing energy to flow efficiently into the grid. It is not without reason that Infineon is one of the top 10 suppliers of wind power and solar systems (Wood Mackenzie OEM market share, 2020). Power semiconductors based on silicon-carbide amplify these benefits. An example: The new hybrid solar inverters made by Fronius with Infineon SiC chips achieve an energy efficiency of over 98 percent and thanks to multiflow technology can also additionally prepare the energy generated for heating water, charging electric cars and connecting to third-party systems.

Did you know that...

... Infineon components in solar and wind power plants contributed to the generation of around 160 GW of clean energy in 2021 alone? That’s 375 million new solar panels or 16,700 wind turbines.

https://www.infineon.com/cms/de/about-infineon/energy-efficiency-technologies/electric-power-generation/
Environmentally friendly and emission-free mobility
Infineon’s power electronics are used in drive systems for above-ground and underground trains as well as in hybrid or e-cars, e-bikes or e-scooters. Infineon chips are incorporated in 17 of the world’s 25 best-selling hybrid and e-cars. The VW ID.4 contains more than 50 Infineon semiconductors, including the heart of the electric powertrain, a power module from the HybridPACK™, microcontrollers and driver ICs. In segments such as electric drive, charging, battery management and other electrified systems in vehicles, Infineon offers solutions that increase the efficiency of the overall system and contribute to emission-free mobility. The trend towards e-mobility requires corresponding capacities of batteries as well as the charging infrastructure. For example, Infineon semiconductors can improve the capacity, range and service life of batteries by more than ten percent through active battery management. The integration of Infineon’s “CoolSiC” technology in e-charging stations shortens charging times to around ten minutes (depending on the type of vehicle), while at the same time reducing switching losses. The charging stations are also about a third smaller because fewer components are needed for cooling. Depending on the system topology, different types of power semiconductors are used in the charging columns. SiC solutions are increasingly being used for ultra-fast e-car charging stations in the 150+ kilowatt range.

Smart Home & Smart Building
Energy-efficient appliances and smart buildings reduce energy consumption while improving occupant comfort. Infineon’s inverter technology reduces energy consumption in refrigerators by up to 40 percent. Inverter technology also ensures greater energy efficiency in induction stoves, air conditioners, power tools, fans and pumps, as well as LED lamps. With Infineon sensor technology, climate protection and efficiency improvements can also be implemented in the building sector. Presence sensors can, for example, determine whether and how many people are present in a room and automatically regulate lighting, ventilation and room temperature based on this information. This reduces energy requirements and at the same time increases the comfort of living, working and being in the respective areas.

Wireless charging
Infineon enables wireless charging with innovative chip solutions that transfer power from the charging station to the device as quickly and efficiently as possible. The majority of this technology is developed and produced in Villach. Furthermore, several devices can now be charged at the same time by a single charging station. These include smartphones, tablets and notebooks as well as wearables. Low-voltage devices such as power tools, domestic appliances, toys and medical equipment benefit from this trend. Infineon offers product solutions for charging stations and adapters which ensure optimum wireless power transfer to various receivers.

A holistic approach to sustainability – CO₂ balance of production in Villach 2021

In accordance with the GHG Protocol, Infineon’s carbon footprint takes into account production as well as internal and external logistics all the way to the customer. Semiconductors made by Infineon Austria enable energy savings in applications over their lifetime that are 58 times higher than our emissions. We are therefore facilitating a net ecological benefit of around seven million metric tons of CO₂. This corresponds to around 50 percent of all annual passenger car emissions in Austria.

<table>
<thead>
<tr>
<th>CO₂ burden: approx. 0.12 million tons CO₂ equivalent</th>
<th>Net ecological benefit: CO₂ reduction by approx. 7 million tons CO₂ equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of approx. 1:58</td>
<td>CO₂ savings: approx. 7 million tons CO₂ equivalent</td>
</tr>
</tbody>
</table>

¹ This figure factors in manufacturing, transportation, company vehicles, flights, raw, auxiliary and operational materials, chemicals, water/waste water, direct emissions, energy consumption, waste, etc. and is based on internally collected data and publicly available conversion factors. All data relate to the fiscal year 2021 at Infineon Technologies Austria AG.
² This figure is calculated using internally established criteria. It relates to the calendar year 2021 and is determined for the following areas: Automotive, LED, induction devices, servers, renewable energy (wind, photovoltaic), mobile phone chargers and drives. The CO₂ savings calculations are based on the savings potential of technologies in which semiconductors are used.
Did you know that...

... **Infineon silicon carbide chips** reduce the energy consumption of trams by ten percent and ensure that they run more quietly?

Energy efficiency in the “Internet of Things”

In the “Internet of Things”, devices and systems are also becoming increasingly networked. According to estimates, 75 billion devices will already be networked by 2025. In order to limit the expected increase in power demand from computer centers and transmission networks and to ensure a smooth flow of data, high-performance and yet extremely energy-efficient power supplies are essential. Infineon offers the semiconductor solutions needed to do this. At present, around 50 percent of the world’s servers use Infineon power semiconductors from Villach for efficient power conversion.
Did you know that...

... more than 50 percent of all computer centers worldwide contain energy-saving chips made by Infineon?
A long-term partnership between Infineon and its suppliers is a core element of the company’s philosophy. When evaluating existing suppliers and selecting future suppliers, compliance with our requirements in the areas of environmental protection, occupational safety and corporate social responsibility (CSR) is extremely important to us. Group-wide supplier management ensures a transparent and uniform procurement system which is re-evaluated annually with regard to the aforementioned topics in order to initiate corrective measures if necessary and to achieve the further development of suppliers.

Our purchasing agreements, which also include environmental and workplace safety aspects, further contribute to successful collaboration. Additional requirements are formulated in our “Technical Terms and Conditions of Delivery”. All activities undertaken are subject to regular external audits.

Supplier Code of Conduct

Our Supplier Code of Conduct is based on internationally recognized guidelines such as the Sustainable Development Goal Principles and the Fundamental Principles of the International Labor Organization, as well as our Business Conduct Guidelines.

Based on this, the Infineon Group annually reassesses about 400 existing suppliers, representing about 75 percent of the purchasing volume. At the Villach site, the majority of the main suppliers have a certified environmental management system in place. Procurement supports the regional site projects on the topic of sustainability, such as “Green Way”, the procurement of e-transporters or also the hydrogen research project in all procurement-related processing.

E-Procurement

All procurement processes, from the tendering tool to the purchase requisition and from approval to invoice verification, as well as the supplier management portal, are recorded and digitally processed via dedicated e-platforms or SAP. This allows for efficient and resource-saving paperless processing.

EcoVadis award

The Infineon Group was awarded a “Gold” supplier status by the independent procurement rating agency EcoVadis for the fifth time in a row. A total of around 85,000 companies from various industries were assessed according to their environmental, social and corporate governance performance.
The “Green Way” mobility project was launched in 2016 and has developed from operational activities into a holistic mobility scheme that takes into account interactions with the region as well as cooperation with external stakeholders. Accordingly, Infineon is very committed to improving public transportation and coordinates closely with the city regarding the expansion of the network of bicycle paths. Infineon is cooperating closely with companies, authorities and relevant networks (e.g. motor clubs) in joint projects to improve mobility offers and promote the overall attractiveness of the region.

This benefits not only the employees, but also suppliers, service providers and the entire residential and tourist region of Villach. Infineon Austria promotes environmentally friendly ways for employees to get to work. This includes comprehensive activities such as

- Promoting cycling through high-quality parking facilities and an increased number of bike cages immediately next to the entrances around the site
- E-mobility: Expansion of the e-charging infrastructure at the site for private and company vehicles
- Infineon „Jobticket“: free ticket for commuting to and from work by public transport, also including the new “climate ticket”
- Ongoing mobility analyses and involvement in networks relevant to the topic
- Support and coordination with city and state to improve public transport connections

Did you know that...

... Infineon enables employees to travel to work free of charge with the Jobticket and continues to do so with the "climate ticket"?
Dialog-oriented implementation
In addition to the goal of creating attractive and sustainable mobility options for employees, measures are also being taken to regulate traffic and reduce the burden on the surrounding area in the spirit of the “Green Way”, especially in the context of the expansion of the site. For this purpose, a task force consisting of experts from the federal government, the state and the city as well as from Infineon was established already during the preparation phase in order to take traffic measures into account at an early stage and within the scope of legal possibilities. The implemented concept includes traffic control measures (e.g. roundabouts, the new Infineonstraße, wide bicycle paths, the parking garage) as well as elements that relieve and protect the surrounding area (e.g. noise reduction measures with the active involvement of local residents or measures to protect animals and the environment, such as amphibian and small game passages).

Environmentally-friendly commuting
Approximately 800 Infineon employees already come to work by bike. With the “Jobticket”, Infineon offers all employees and temporary workers free travel to work on public transport: Since its introduction in March 2019, around 550 employees have been taking advantage of this offer. Now it is being extended even further with the changeover to the "climate ticket", so that our employees are also increasingly switching their private mobility to public transport.

E-transport
The expansion of electromobility for logistics marks another step toward climate neutrality. In addition, 52 charging points are now provided for private and company vehicles.

Best practice for more
Thanks to the close cooperation with the state and transport association and operators, there are three new regional bus connections that stop directly at Infineon. In urban bus transport, even more people were reached thanks to a good frequency and improved routing. This is supplemented by regular mobility analyses in order to be able to design future offers attractively. “Green Way” was presented in the UN Guide 2020 as a best-practice example and shows how regional cooperation and attractive company services can encourage the use of public transport or bicycles and the transition to environmentally-friendly mobility.
Environmental Program and Environmental Goals

Environmental Protection in Action

Already today, Infineon is actively contributing to climate protection on many levels. This is also evident in production: Per square centimeter of processed wafer area, Infineon requires 17 percent less water, 44 percent less electricity and generates 67 percent less waste than the global average of semiconductor companies organized in the World Semiconductor Council.\(^1\)

But one thing also holds true for us: We want to do even more.

\(^1\) The calculation is based on the square centimeters of processed wafer area in front-end production and the consumption according to the WSC definition. The figures are from the latest Infineon Group CSR report from the fiscal year 2020/21. www.infineon.com/nachhaltigkeit
Our Goal of CO\textsubscript{2} Neutrality

Infineon has set itself the goal of becoming CO\textsubscript{2}-neutral by 2030. The company plans to reduce emissions by 70 percent against 2019 levels by as early as 2025. The main focus will be on avoiding direct emissions, a further expansion of the energy efficiency program, and measures for intelligent exhaust air purification. In order to further reduce emissions, the Infineon Group plans to switch to 100 percent green electricity with a certificate of origin in the medium term. Infineon Austria in Villach is already a pioneer in this regard: Since 2013, 100 percent of the electricity used has come from renewable energy sources.

Our approach to achieving the goal of CO\textsubscript{2} neutrality is based on three levels:

› Purchase of green electricity with guarantee of origin for unavoidable emissions
› Reduction of PFC emissions through application of a global standard
› Internal CO\textsubscript{2} price (CO\textsubscript{2} pricing)

Climate protection is part of our DNA. This is demonstrated by our activities to date in the area of voluntary exhaust air purification to reduce direct emissions, which by far exceed the industry standard.

In recent years, the Infineon Group has continuously assessed potential opportunities for CO\textsubscript{2} reduction, which to date has already lowered direct emissions by more than 600,000 tons of CO\textsubscript{2} equivalents and thus to a quarter of the potential direct emissions. As a result, well over 100,000 metric tons of CO\textsubscript{2}e in direct emissions are avoided each year at the Villach site alone. Our new production hall in Villach was also already planned entirely with state-of-the-art exhaust air purification, which means that over 97 percent of potential emissions can be eliminated.

CO\textsubscript{2} pricing

In order to promote corresponding projects, an internal CO\textsubscript{2} price was introduced for the evaluation of measures, e.g. in the area of energy efficiency. It serves as an additional, internal incentive to increase our efficiency and will be further developed in the coming years, following initial findings on its implementation.

PFC

An analysis method (a so-called ABC analysis) has been developed and introduced throughout the entire Infineon Group that makes it possible, among other things, to calculate PFC gas emissions more precisely and thus also to find potentials in the entire exhaust gas chain where improved cleaning systems are necessary and useful. While the treatment of harmful gases has already reached a very high level at the sites in Europe, the focus for further investments is now primarily on the Kulim and Austin sites. At the same time, the existing plant parks in Villach, Regensburg and Dresden are also being subjected to a fresh assessment in order to further reduce direct emissions there as well.

IMPRES Goals

The integrated management system IMPRES ("Infineon Integrated Management Program for Environment, Energy, Safety and Health") sets concrete goals in the areas of environment, energy, as well as safety and health protection. The overarching goal of CO\textsubscript{2} neutrality in the area of environmentally relevant targets has already been explained. In addition, management has also set targets in the areas of water and waste. In the area of water consumption, for example, a concept is being developed to ensure that the Group’s target of 8.5 l/cm2 of wafer area is also met at the Villach site. In terms of waste, the Group’s target value of 27.5 g/cm2 wafer area is also achievable in the coming year, despite the increasing volume of construction site waste.
IMPRES Projects Implemented in 2021

At the Villach site, the workplace safety, health protection, environmental protection and energy programs are based on the objectives formulated in the Infineon Group’s policies on environmental protection, energy management, workplace safety and health protection. The catalog of goals and actions is reviewed, adjusted and defined once a year based on the corresponding input and output analyses and the environmental aspects of the site that have been identified as essential. The projects associated with the individual goals as well as the related measures, deadlines and responsible parties are also determined as part of the same process.

Conceptually, Infineon Austria concentrates on highlighting its major strategic projects in the areas of waste water, exhaust air and recycling in its Environmental Statement. Below, we showcase examples of environmentally-relevant project activities that have provided, or will provide, a significant contribution to improving the site’s environmental performance.

The following are the projects derived and implemented for the most recent fiscal year 2020/21:

<table>
<thead>
<tr>
<th>Area</th>
<th>Target</th>
<th>Measure</th>
<th>Status</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust air</td>
<td>Use of new technologies</td>
<td>Renewal of EPI scrubbers</td>
<td>Ongoing new installation of EPI scrubbers</td>
<td>10/2024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Project will continue until FY 2023/24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Further reduction of emissions</td>
<td>Implementation of a wet scrubber in B14</td>
<td>Budgeted and approved Phase 1 completed (wet scrubber supplied)</td>
<td>09/2021</td>
</tr>
<tr>
<td>Waste water</td>
<td>Reduction of transportation</td>
<td>› Purchase of a copper treatment plant</td>
<td>Facility to be operational by the end of December</td>
<td>12/2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>› Reduction of IBC containers to be disposed of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saving of waste water quantities in the laboratory area incl. reduction of plant-internal traffic</td>
<td>Acquisition of a highly efficient PCB cleaning system</td>
<td>Unit ordered, delivered and assembled</td>
<td>12/2021</td>
</tr>
<tr>
<td></td>
<td>Energy efficiency</td>
<td>Performance of an evaluation of selected equipment (legacy stock) in the legacy fab</td>
<td>Evaluation phase 1 completed. Roll-out for new chip factory (B18)</td>
<td>09/2021</td>
</tr>
<tr>
<td></td>
<td>Savings of up to 9 GWh of energy – Green Heat</td>
<td>Additional cooling system with heat recovery</td>
<td>Completed</td>
<td>10/2021</td>
</tr>
</tbody>
</table>

Status indicators: Degree of implementation in % □ 25 % □ 50 % □ 75 % □ 100 %
<table>
<thead>
<tr>
<th>Area</th>
<th>Target</th>
<th>Measure</th>
<th>Status</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills, training and awareness</td>
<td>Increase awareness through training</td>
<td>Implementation of LC and Seveso training courses</td>
<td>Completed</td>
<td>03/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training of two waste managers and internal auditors</td>
<td>Completed</td>
<td>03/2021</td>
</tr>
<tr>
<td>Disaster prevention and Seveso aspects</td>
<td>Involvement of the authority in the crisis management exercise</td>
<td>Combination of a DRO exercise with the Seveso inspection</td>
<td>Completed</td>
<td>10/2021</td>
</tr>
<tr>
<td>Ongoing improvement of the alerting process</td>
<td></td>
<td>Introduction of a new electronic alerting tool for the safety auditors</td>
<td>Completed</td>
<td>09/2021</td>
</tr>
<tr>
<td>Communication</td>
<td>Target group and dialog-oriented information of local residents and interested stakeholders about Infineon Austria's ESH activities</td>
<td>› Update of brochure for site neighbors (04/21)</td>
<td>Ongoing publication in print and online format</td>
<td>10/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>› Environmental Statement 2021 (04/21)</td>
<td>www.infineon.com/austria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>› Neighborhood newsletter “Infineon News”, two issues/year</td>
<td>www.infineon.com/nachhaltig-austria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>› Communication of sustainability & CSR activities via the website and active media work</td>
<td>www.infineon.com/sicherheit-austria</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>No complaints from site neighbors</td>
<td>Evaluate additional measurement points to determine sound levels with the goal of continuous monitoring</td>
<td>Evaluation completed</td>
<td>10/2021</td>
</tr>
<tr>
<td>Area</td>
<td>Target</td>
<td>Measure</td>
<td>Status</td>
<td>End date</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Mobility | Continuation of the “Green Way” project | Measure: E-charging infrastructure | The e-charging stations will be further expanded as part of a cross-site concept. Goal:
› 52 charging points for the cross-site system by Q2/2022
› 19 charging points for company and logistics vehicles | Expansion of e-charging stations was suspended in 2020 due to COVID.
19 internal charging stations have already been installed.
52 additional charging points for private and company vehicles to follow in Q2/2022 | 05/2022 |
| Mobility | Communication and awareness | Measure: E-charging infrastructure | Mobility reduced due to Covid-19 – implementation of measures therefore slowed. “Green Way” initiative to be continued. Focus: re-establish awareness and take further action after lockowns | Ongoing Status 03/2022: From April 2022 onwards, Infineon Austria should return to a normal state with regard to presence. From then on, campaigns and measures are also useful again | 09/2022 |
| Mobility | Public transport | Measure: Significant improvement in public transportation services in recent years (three regional lines as well as two regular city lines directly to Infineon) | Ongoing Status 03/2022: The challenge now is to increase the use of public transportation. A campaign for this is planned in 2022 | 09/2022 |
| Mobility | Public transport | Measure: “Jobticket” to be reformed to reduce barriers to public transport access | Implemented | 02/2022 |
| Mobility | Public transport | Measure: "Climate ticket": Employees can have up to € 620 of their "climate ticket" (federal state or Austria) as well as a city ticket refunded. The ticket can be chosen freely. | Implemented as a medium-term replacement for the “Jobticket” | 05/2022 |
| Mobility | Bicycle infrastructure | Measure: Ongoing talks with the city of Villach regarding bicycle paths intensified | Status 03/2022: ongoing discussions. Another important gap in the bicycle path network (“Italiener Straße”) was closed last year | 08/2021 |
| Energy efficiency | Employee participation with regard to the CO₂ strategy | Measure: Contribution of ideas (“YIP” system) by employees worldwide | Completed | 02/2022 |

Status indicators: Degree of implementation in %
- 25%
- 50%
- 75%
- 100%
Did you know that...

... 17 of the world’s 25 best-selling e-cars and plug-in hybrids in 2020 will use power semiconductors from Infineon in their powertrains?

https://www.infineon.com/cms/de/about-infineon/energy-efficiency-technologies/electro-mobility/
The following is an overview of the projects derived for the current fiscal year 2021/22:

<table>
<thead>
<tr>
<th>Area</th>
<th>Measure</th>
<th>Status</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction of dust emissions</td>
<td>Additional dust collectors for legacy facilities</td>
<td>In progress – to be completed by the end of FY 2021/22.</td>
<td>10/2022</td>
</tr>
<tr>
<td>Extension redundancy of solvent combustion</td>
<td>Solvent combustion new B16/16a</td>
<td>Switching to B18 completed</td>
<td>10/2023</td>
</tr>
<tr>
<td>Reduction of input materials with optimization of duration and times of use (natural gas, nitrogen, electricity, oxygen, etc.)</td>
<td>Optimization of consumption through synchronization with production (SEM project)</td>
<td>Implementation phase B18</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Further reduction of emissions</td>
<td>Assembly of a redundant scrubber building 14</td>
<td>Project to be completed by the end of FY 2021/22.</td>
<td>10/2022</td>
</tr>
<tr>
<td>Waste water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further reduction of the fluoride load in indirect discharge</td>
<td>Expansion of treatment capacities B27. Furthermore, the construction of a treatment for rinse water is planned</td>
<td>Contract award by mid-2022, implementation by 2024</td>
<td>10/2024</td>
</tr>
<tr>
<td>Disaster prevention and Seveso aspects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employees know the dangers of and countermeasures against fire and incidents involving fire</td>
<td>Training given by means of “Fire Safety” video</td>
<td>Draft script created, first shooting was done in March</td>
<td>10/2022</td>
</tr>
<tr>
<td>Area</td>
<td>Target</td>
<td>Measure</td>
<td>Status</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Energy optimization for operations</td>
<td>Evaluation to identify optimal hardware components for cooling towers</td>
<td>On hold</td>
</tr>
<tr>
<td></td>
<td>Onsite production of green hydrogen</td>
<td>Installation of an onsite hydrogen generation system using electrolysis by Linde</td>
<td>Construction of the facility 08/2022, Trial operation 10-12/2022</td>
</tr>
<tr>
<td></td>
<td>Optimization of the energy consumption of supply facilities</td>
<td>Installation of a control and steering system</td>
<td>Rollout B18 started, systems installed with ramp-up phases of production</td>
</tr>
</tbody>
</table>
| **Communication** | Dialog-oriented information of residents and relevant target groups about Infineon Austria’s ESH activities. | › Update of brochure for site neighbors (04/2022)
› Personal visits from neighbors/institutions
› Update of Environmental Statement 2021 (04/2022)
› regular “Infineon News”
› “Expo” event for site neighbors (10/2022)
› Internal & external Seveso information
› Press conference on hydrogen plant and subsequent use with project partner (10/2022)
› (Crisis) hotline in cooperation with BC (10/2022)
› Tree planting project (10/2022) | › Print and online updates
› www.infineon.com/nachhaltig-austria
› www.infineon.com/sicherheit-austria | 11/2022 |
| **Noise** | Compliance with all legal requirements | Additional measuring points for sound level determination after completion of construction activity GP300 | In preparation | 05/2022 | |
| | No complaints from site neighbors | Evaluation of a stationary continuous sound level measurement at the property boundaries. | External measurement report in the summer | 05/2022 |
| **Mobility** | Continuation of the “Green Way” project | Measure: Public transport | Ongoing talks with the city of Villach regarding city lines intensified | Ongoing talks. Further improvements as a holistic quality reform were announced | 09/2022 |
| | Measure: Promotion of cycling | “Job bike” is being considered | Status 03/2022: still under review. Tax opportunities to be reassessed since February 2022 according to initial information | 09/2022 |

Status indicators: Degree of implementation in %
- 10 %
- 25 %
- 50 %
- 75 %
- 100 %
Energy consumption

Infineon continuously strives to become more energy-efficient with smart and individual solutions:

- A low-temperature coil was retrofitted to the ventilation systems, making it possible to take them off the district heating supply. This means that the ventilation systems are supplied via the heat recovered from the cooling units and compressors. In addition, a better utilization of the potential of installed heat pumps is made possible.
- The need for a new cooling unit was solved cleverly by using an existing cooling unit from another building to make room for a modern one with heat recovery.
- FFUs (Filter Fan Units) have been replaced for about eight years – around 120 units per year out of a total of approx. 1,500 units. The new FFUs are significantly more energy-efficient.
- Our fans are designed for a certain volume flow. However, in combination with many fans, usually not quite as much power is needed. Therefore, we regulate the speed of our motors with frequency converters. This allows them, for example, to be regulated to 20 percent instead of 100 percent power, i.e. they are operated at the optimum operating point, at perfect efficiency. This applies to all kinds of motors, from cooling units to fans. Especially in the case of large motors, considerable savings are possible. The fans achieve both an energy reduction and an extension of their service life.

Air emissions

- Ongoing investment in environmental technology (dust filters)
- Validation of exhaust air measurement technology
- Expansion of the exhaust air register
- Separation of acidic and alkaline exhaust air to reduce dust emissions

Consumption of resources

- Large volumes of solvents continue to be recycled.
- On-site production of low-concentration chemicals and solutions from concentrates
- DMF is now routinely recycled and PGMEA consumption has been further reduced as a result of optimization measures
- A large proportion of the processed precious metals (gold, silver, platinum) do not remain directly on the product, but end up in process chambers, metal parts, broken wafers, cleaning cloths, etc. Nevertheless, it was possible to collect and recycle them at a rate of about 95 percent. This way, the pure precious metals end up back in the cycle.

Waste

- Main components of non-hazardous waste are sent to recycling.
- Continuation of optimized transport logistics by means of reusable shuttle packaging for the transport of sawn wafers (six, eight and twelve inches)

Land use

- In the course of the site expansion, reforestation projects, wet meadows and a biotope that also add value in terms of biodiversity are supported as an alternative to land use.

Waste water

- Adaptation and expansion of waste water treatment system to meet operational requirements and make use of state-of-the-art technology
Environmental aspects and long-standing measures

Noise

› Noise emissions log
› Measures to reduce traffic volumes (e.g. Infineonstraße)

Transport/mobility

› Implementation of a site-specific traffic concept to optimize internal transport logistics and increase traffic safety
› New bus connections to the city center and the main railway station at 15-minute intervals
› New bus connections directly to Infineon from surrounding regions
› Ongoing cooperation with the City of Villach and the State of Carinthia regarding the further expansion of public transport
› Infineon “Jobticket” – free annual public transport pass for employees and temporary workers – extension to the "climate ticket" that can also be used privately
› E-mobility: Expansion of e-charging stations as part of a cross-site concept

Other measures with an additional cross-divisional impact:

Legal compliance

› Maintenance of a legal database
› Continued consolidation
› Enhanced safety concepts (VEXAT, ADR, radiation/laser protection, Seveso)

HR Measures

› Virtual training and hence fewer business trips
› Expansion of virtual job interviews and increased use for the future (after COVID crisis)
› Green merchandise: sustainable and target group-oriented giveaways (e.g. beeswax towels, vegetable chips, etc.)
› E-HR: digital job descriptions and promotion letters, as well as a digital personnel file in the future
› Infineon New Work: Group-wide project for modern and flexible work design that takes organizational and individual needs into account.

IT Measures

› Toner savings (default b/w)
› Paper consumption reduced: Default setting “double-sided” reduced the share of single-sided print jobs from around 70 percent to 30 percent. This saves an average of 10,000 sheets of paper per week.

Next Level of Productivity

Is a cross-site project with the aim of continuously increasing productivity.
› The original purpose of evaluating all issues in terms of cost efficiency was extended to include energy efficiency and CO₂ savings.
Glossary

Explanation of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit</td>
<td>Systematic and documented verification process within the company to identify and evaluate data and processes.</td>
</tr>
<tr>
<td>Back-end production</td>
<td>This is where chip separation, testing and encapsulation take place.</td>
</tr>
<tr>
<td>Class 1 clean room</td>
<td>Class 1 is the highest grade of clean room; i.e. with the lowest maximum permitted particle concentration. Maximum permissible concentration (particles/m³) is equal to or lower than 10 (≥ 0,1 µm).</td>
</tr>
<tr>
<td>Clean room</td>
<td>Used for the production and inspection of micro-mechanical and electronic components and systems subject to particular requirements, e.g. particle-free environments.</td>
</tr>
<tr>
<td>Climate ticket</td>
<td>In Austria, the "Klimaticket" makes it possible to use all scheduled transport services (public and private rail transport, city transport and transport associations) in a given area: regional, national and Austria-wide.</td>
</tr>
<tr>
<td>CMP</td>
<td>Chemical-Mechanical Polishing.</td>
</tr>
<tr>
<td>CO₂ equivalent (CO₂e)</td>
<td>CO₂ = the chemical formula for carbon dioxide; as different greenhouse gases have different climatic impacts, a common unit is needed to compare them. This unit is referred to as a CO₂ equivalent and is calculated based on the amount of emissions of a particular gas multiplied by its climatic impact factor.</td>
</tr>
<tr>
<td>Cyclopentanone</td>
<td>An organic solvent.</td>
</tr>
<tr>
<td>DI Water</td>
<td>Deionized water, ultrapure water.</td>
</tr>
<tr>
<td>DMF</td>
<td>The solvent dimethyl formamide.</td>
</tr>
<tr>
<td>DRO</td>
<td>Disaster Response Organization.</td>
</tr>
<tr>
<td>ECD production line</td>
<td>Electro Chemical Deposition (electrochemical metallization), production line for wafer processing.</td>
</tr>
<tr>
<td>EMAS</td>
<td>“Eco Management and Audit Scheme” (eco-auditing system of the European Union).</td>
</tr>
<tr>
<td>EMAS-III-VO</td>
<td>Legally binding regulation for EMAS organizations, which was extended in 2018 to include Annexes 1–3 – Annexes I–III of which were updated in 2017 and Annex IV in 2018.</td>
</tr>
<tr>
<td>E-mobility</td>
<td>Promotion of energy-efficient electric and hybrid vehicles and expansion of the electric charging infrastructure.</td>
</tr>
<tr>
<td>Environment (according to ISO 14001)</td>
<td>The surroundings in which the company or parts thereof are active; including among others: air, water, land and other natural resources, people and nature as well as their mutual interactions.</td>
</tr>
<tr>
<td>Environmental Aspects</td>
<td>The elements of a company’s activities, products or services etc. or its sub-areas, which interact or might interact with the environment.</td>
</tr>
<tr>
<td>Environmental statement</td>
<td>A document by which a company’s sites certified under Regulation (EC) No. 1221/2009 communicate the activities performed, environmentally-relevant objectives, environment-related services, environmental impacts, etc. to the public on a regular basis.</td>
</tr>
<tr>
<td>Environmental management system (according to ISO 14001)</td>
<td>Part of the company’s management system. The environmental management system includes the organization, planning activities, methods, procedures, processes and resources which are necessary for the development, implementation and fulfillment of the environmental policy, as well as for its evaluation and continued maintenance</td>
</tr>
<tr>
<td>ES</td>
<td>Environment & Safety</td>
</tr>
<tr>
<td>ESIA</td>
<td>European Semiconductor Industry Association</td>
</tr>
<tr>
<td>Front-end production</td>
<td>Processing of wafers carried out in the clean room. The main processing steps include exposure, ion implantation and the application of metallization layers</td>
</tr>
<tr>
<td>Hazardous material</td>
<td>Materials or mixtures with one or more of the following hazardous properties: risk of explosion, oxidizing, highly or easily flammable, combustible, toxic, very toxic, detrimental to health, caustic, irritating, sensitizing, carcinogenic, toxic to reproduction, mutagenic or chronically harmful in some other way, pathogenic, hazardous to the environment</td>
</tr>
<tr>
<td>IMPRES</td>
<td>Infineon Integrated Management Program for Environment, Energy, Safety and Health</td>
</tr>
<tr>
<td>ISO 14001:2015</td>
<td>To support companies in establishing and expanding in-house environmental management systems, the International Organization for Standardization (ISO) developed the ISO 14001 standard, which is recognized worldwide. It was most recently updated in 2015. The ISO 45001 replaces the Occupational Health and Safety Assessment Series (OHSAS 18001)</td>
</tr>
<tr>
<td>ISO 50001:2018</td>
<td>A globally recognized standard published by the International Organization for Standardization (ISO), which is intended to help organizations and companies establish comprehensive energy management systems; certification can also serve as proof that an energy management system complies with the standard</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology – comprises all the methods, concepts and technologies for the processing, storage, transmission and provision of access to information and data</td>
</tr>
<tr>
<td>LC</td>
<td>Ensuring legal certainty</td>
</tr>
<tr>
<td>Matrix certification</td>
<td>Certificate listing all units/sites of a company which have been certified by an assessor</td>
</tr>
<tr>
<td>MSC</td>
<td>Medical Service Center at Infineon</td>
</tr>
<tr>
<td>NMP</td>
<td>The solvent N-methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>PFC</td>
<td>Perfluorinated compounds</td>
</tr>
<tr>
<td>PFD</td>
<td>Infineon’s plant fire department in Villach</td>
</tr>
<tr>
<td>PGMEA</td>
<td>The solvent propylene glycol monomethyl ether acetate</td>
</tr>
<tr>
<td>Power semiconductors</td>
<td>Are semiconductor components specially designed for switching and controlling high currents and voltages (more than 1 ampere and voltages of more than approx. 24 volts)</td>
</tr>
<tr>
<td>Production volume</td>
<td>Produced wafer area in cm² silicon surface area</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>A crystalline material which displays electronic conductivity between that of “conductors” and “non-conductors”. A semiconductor's electronic conductivity increases at higher temperatures. Some examples of semiconductors are silicon and germanium; the term is also used for integrated circuits made with these materials</td>
</tr>
<tr>
<td>Seveso III Directive</td>
<td>EU Directive 2012/18/EU for the prevention of industrial accidents</td>
</tr>
<tr>
<td>Slurries</td>
<td>Suspensions of solids, sometimes with chemical additives, used in the CMP process</td>
</tr>
</tbody>
</table>
State-of-the-art
The development status of advanced procedures, facilities or modes of operation which ensures the practical suitability of a measure for the protection of health, safeguarding the employee and limiting environmental damage. When determining the state of the art, particular attention should be paid to comparable procedures, facilities and modes of operation that have been successfully tested in practical operations.

Vendor Performance Review (VPR)
Regular interaction with business partners regarding quality, purchasing and ES topics.

Wafers
A disk made of a semiconductor material (e.g. silicon) with a diameter of up to 300 millimeters; in integrated circuit production, the wafer is sliced from a single crystal boule and serves as the carrier material for integrated circuits.

WSC
World Semiconductor Council

YIP
“Your Idea Pays”; internal company scheme for suggestions for improvement.

Did you know that...

... Infineon employees can contribute ideas on energy savings, health and environmental protection via the company platform “YIP”? In 2021, 313 ideas were submitted.
Measurement Units

- **g, mg**: Grams, milligrams
- **GJ**: Gigajoule
- **GWh**: Gigawatt hours
- **kg**: Kilograms
- **kg/d**: Kilograms per day
- **kWh**: Kilowatt hours
- **kWh/cm²**: Kilowatt hour (consumption) per square centimeter (silicon surface area)
- **l**: Liters
- **l/cm²**: Liters (consumption) per square centimeter (silicon surface area)
- **m², cm²**: Square meter, square centimeter
- **m³**: Cubic meter
- **mg/l**: Milligrams per liter
- **MWh**: Megawatt-hours
- **Nkm³**: Standard cubic kilometer
 (1 Nkm³ = 10 to the power of 9 Nm³)
- **Nm³**: Standard cubic meter
- **nm**: Nanometer
- **t**: Ton

Date of the Next Environmental Statement

The next Environmental Statement will be an updated Environmental Statement and will be published in May 2023.
Contacts

General information
info-austria@infineon.com
www.infineon.com/austria
Tel.: +43 (0) 517 77-0

The following persons are available for further information on the topics of workplace safety, health protection, energy and environmental protection:

Contact for Corporate Environmental Protection and Occupational Safety
› Natalie Kuchling
 Director Environment & Safety
 Email: natalie.kuchling@infineon.com

› Adolf Biedermann
 Director Industrial Regulations
 Email: adolf.biedermann@infineon.com

Contact for Energy Management
› Josef Obiltschnig
 Energy Manager
 Email: josef.obiltschnig@infineon.com

Contact for Sustainability
› Matthias Felsberger
 Corporate Social Responsibility
 Email: matthias.felsberger@infineon.com

Contact for Corporate Communications
› Birgit Rader-Brunner
 Communications & Public Policy
 Email: birgit.rader-brunner@infineon.com

Publication Information
Issued by: Infineon Technologies Austria AG
in cooperation with Infineon Technologies AG,
Corporate Sustainability & Continuity Planning

Responsible for the content: Natalie Kuchling, Matthias Felsberger, Birgit Rader-Brunner
Concept and design: KANZIAN ENGINEERING & CONSULTING GmbH/Barbara Koncz
Graphic design and layout: designation – Strategie | Kommunikation | Design
Paper: The Environmental Statement has been printed on environmentally-friendly paper.
No liability is accepted for typographical or layout errors.
Responsibility for our sustainable future
We stand behind it.

Special thanks go to all our employees who contribute to the future viability and sustainability of Infineon. As representatives for so many, the photo shows from left to right: Natalie Kuchling (Director Environment & Safety) • Johann Lunner (Senior Director Facility Management) • Florian Haas (Senior Director Business Continuity & Compliance) • Petra Darnhofer (Senior Director Procurement) • Horst Mitterberger (Director Real Estate Management) • Matthias Felsberger (Corporate Social Responsibility) • Monika Kowald (Manager Direct Production Support) • Christian Kandutsch (Manager Vacuum Abatement) • Michael Eder (Director Facility Planning) • Rainer Czetina (Manager Heating Ventilation Air Condition) •
Richard Kienberger (Head of Occupational Safety) • Josef Sticker (Commander Company Fire Brigade/Fire Safety Officer) • Sabine Mory (Manager Facility Engineering) • Josef Samonik (Director Facility Management) • Josef Obiltschnig (Manager Energy) • Michael Lamprecht (Manager Electricity & Controls) • Karin Nagelseder-Köck (Staff Engineer) • Stefan Rainer (Project Director) • Birgit Rader-Brunner (Communications & Public Policy)
Part of your life. Part of tomorrow.
A world leader in semiconductor solutions