BGS16MN14

SP6T Antenna Switch

Diversity RF Frontend Applications
LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Application Note AN368

Revision History: 2014-05-23

Previous Revision: prev. Rev. x.x

Subjects (major changes since last revision)

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, iRF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Last Trademarks Update 2011-11-11
Table of Content

1. Introduction ... 6
2. BGS16MN14 Features .. 6
 2.1 Main Features .. 6
 2.2 Functional Diagram .. 6
 2.3 Pin Configuration .. 7
 2.4 Pin Description ... 7
3. Application ... 8
 3.1 Application Board ... 8
4. Small Signal Characteristics ... 10
 4.1 Insertion Loss from Antenna to the respective RF port ... 10
 4.2 Return Loss from Antenna to the respective RF port .. 10
 4.3 Forward Transmission .. 11
 4.4 Reflection Antenna Port ... 11
 4.5 Port Reflection ... 12
 4.6 Antenna Isolation Neighbour Ports ... 12
 4.7 Port Isolation Neighbour Ports ... 13
5. Intermodulation .. 14
 5.1 Introduction .. 14
 5.2 IMD Test Set-up .. 14
 5.3 IMD Test Results for Band 1 and 5 ... 15
6. Harmonic Generation ... 15
7. Appendix: Switch Controller Unit ... 18
 7.1 Operating Guide ... 18
8. Authors .. 19
List of Figures

Figure 1 BGS16MN14 Functional Diagram ..6
Figure 2 BGS16MN14 Pin Configuration ...7
Figure 3 RF switch in mobile phone cellular frontend ...8
Figure 4 Layout of the application board ...9
Figure 5 Layout of de-embedding boards ..9
Figure 6 PCB layer information ...9
Figure 7 Application circuit ...10
Figure 8 Forward Transmission Curves for RF Ports ...11
Figure 9 Reflection Antenna Port ...11
Figure 10 Port Reflection ...12
Figure 11 Antenna Isolation Neighbour Ports ..12
Figure 12 Port Isolation of Neighbour Ports ...13
Figure 13 Block diagram of RF Switch intermodulation ..14
Figure 14 Test set-up for IMD Measurements ..14
Figure 15 Set-up for harmonics measurement ..15
Figure 16 2nd Harmonic at $f_c=824$ MHz ..16
Figure 17 3rd harmonic at $f_c=824$ MHz ..16
Figure 18 2nd Harmonic at $f_c=1800$ MHz ..17
Figure 19 3rd Harmonic at $f_c=1800$ MHz ...17
Figure 20 Switch Controller Unit Board ...18

List of Tables

Table 1 Pin Description (top view) ...7
Table 2 Insertion Loss from Antenna to the respective RF port with all other ports terminated with 50Ω10
Table 3 Antenna Return Loss with all other ports terminated with 50Ω ...10
Table 4 IMD Measurements ..15
1 Introduction

The BGS16MN14 is a Single Pole Six Throw (SP6T) Diversity Switch optimized for wireless applications up to 2.7 GHz. It is a perfect solution for multi-mode handsets based on quadband GSM, WCDMA and LTE. The switch configuration is shown in Fig. 1. The BGS16MN14 comes in a miniature TSNP package and comprises of a high power CMOS SP6T switch with integrated MIPI RFFE interface. No external DC blocking capacitors are required in typical applications as long as no DC is applied to any RF port.

2 BGS16MN14 Features

2.1 Main Features

- Suitable for multi-mode EDGE / C2K / WCDMA / LTE applications
- Ultra-low insertion loss and harmonics generation
- 6 high-linearity, interchangeable WCDMA RX ports
- 0.1 to 2.7 GHz coverage
- High port-to-port-isolation
- Direct to battery supply enabled by large supply voltage range from 2.5 V to 5.5 V
- Integrated MIPI RFFE interface supporting 1.2 and 1.8 V bus voltage
- Software programmable MIPI RFFE USID
- No decoupling capacitors required if no DC applied on RF lines
- Small form factor 2.0 mm x 2.0 mm
- 1 kV HBM ESD protection
- RoHS and WEEE compliant package

2.2 Functional Diagram

![BGS16MN14 Functional Diagram](image)
2.3 Pin Configuration

![Diagram of BGS16MN14 Pin Configuration]

Figure 2 BGS16MN14 Pin Configuration

2.4 Pin Description

<table>
<thead>
<tr>
<th>Pin NO</th>
<th>Name</th>
<th>Pin Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GND</td>
<td>GND</td>
<td>RF ground; die pad</td>
</tr>
<tr>
<td>1</td>
<td>RX03</td>
<td>I/O</td>
<td>RX port 3</td>
</tr>
<tr>
<td>2</td>
<td>RX02</td>
<td>I/O</td>
<td>RX port 2</td>
</tr>
<tr>
<td>3</td>
<td>RX01</td>
<td>I/O</td>
<td>RX port 1</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>PWR</td>
<td>(V_{DD}) Supply Voltage</td>
</tr>
<tr>
<td>5</td>
<td>VIO</td>
<td>PWR</td>
<td>MIPI RFFE Supply</td>
</tr>
<tr>
<td>6</td>
<td>SDATA</td>
<td>I/O</td>
<td>MIPI RFFE data</td>
</tr>
<tr>
<td>7</td>
<td>SCLK</td>
<td>I</td>
<td>MIPI RFFE clock</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>9</td>
<td>RX06</td>
<td>I/O</td>
<td>RX port 6</td>
</tr>
<tr>
<td>10</td>
<td>RX05</td>
<td>I/O</td>
<td>RX port 5</td>
</tr>
<tr>
<td>11</td>
<td>RX04</td>
<td>I/O</td>
<td>RX port 4</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>ANT</td>
<td>I/O</td>
<td>Antenna port</td>
</tr>
<tr>
<td>14</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
</tbody>
</table>
3 Application

A typical application of the BGS16MN14 RF switch in a mobile phone application is shown in Figure 3. In the diversity path of the RF frontend the BGS16MN14 switches the different receive bands to the inputs of the transceiver. Infineon offers also a broad portfolio of Low Noise Amplifiers and Antenna Switch Modules.

![RF switch in mobile phone cellular frontend](image)

3.1 Application Board

Below is a picture of the evaluation board used for the measurements (Figure 4). The board is designed so that all connecting 50 Ohm lines have the same length.

In order to get accurate values for the insertion loss of the BGS16MN14 all influences and losses of the evaluation board, lines and connectors have to be eliminated. Therefore a separate de-embedding board, representing the line length is necessary (Figure 5).

The calibration of the network analyser (NWA) is done in several steps:
- Perform full calibration on all NWA ports.
- Attach empty SMA connector at port 2 and perform “open” port extension. Turn port extensions on.
- Connect the “half” de-embedding board (Figure 5 left board) between port1 and port2, store this as a s-parameter (.s2p) file.
- Turn all port extensions off.
- Load the stored s-parameter file as de-embedding file for all used NWA ports
- Switch all port extensions on
- Check insertion loss with the de-embedding through board (Figure 5 right board)

Figure 4 Layout of the application board

Figure 5 Layout of de-embedding boards

The construction of the PCB is shown in Figure 6.

Figure 6 PCB layer information
4 Small Signal Characteristics

The small signal characteristics are measured at 25 °C with a Network analyzer in an application circuit shown in figure 7.

![Application Circuit](image)

Table 2 Insertion Loss from Antenna to the respective RF port with all other ports terminated with 50Ω

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>740</th>
<th>751</th>
<th>881</th>
<th>942</th>
<th>1842</th>
<th>1960</th>
<th>2017</th>
<th>2140</th>
<th>2350</th>
<th>2593</th>
<th>3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX1</td>
<td>0.43</td>
<td>0.42</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td>RX2</td>
<td>0.41</td>
<td>0.41</td>
<td>0.36</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>0.38</td>
<td>0.41</td>
<td>0.56</td>
</tr>
<tr>
<td>RX3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.34</td>
<td>0.32</td>
<td>0.29</td>
<td>0.3</td>
<td>0.31</td>
<td>0.33</td>
<td>0.36</td>
<td>0.4</td>
<td>0.61</td>
</tr>
<tr>
<td>RX4</td>
<td>0.42</td>
<td>0.41</td>
<td>0.36</td>
<td>0.34</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.39</td>
<td>0.43</td>
<td>0.65</td>
</tr>
<tr>
<td>RX5</td>
<td>0.41</td>
<td>0.4</td>
<td>0.34</td>
<td>0.32</td>
<td>0.3</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.36</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>RX6</td>
<td>0.44</td>
<td>0.44</td>
<td>0.38</td>
<td>0.36</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.37</td>
<td>0.4</td>
<td>0.54</td>
</tr>
</tbody>
</table>

4.2 Return Loss from Antenna to the respective RF port

Table 3 Antenna Return Loss with all other ports terminated with 50Ω

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>740</th>
<th>751</th>
<th>881</th>
<th>942</th>
<th>1842</th>
<th>1960</th>
<th>2017</th>
<th>2140</th>
<th>2350</th>
<th>2593</th>
<th>3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX1</td>
<td>15</td>
<td>15.1</td>
<td>16.9</td>
<td>17.7</td>
<td>33.7</td>
<td>32.6</td>
<td>31.7</td>
<td>30.4</td>
<td>28.6</td>
<td>27</td>
<td>20.2</td>
</tr>
<tr>
<td>RX2</td>
<td>15.5</td>
<td>15.6</td>
<td>17.5</td>
<td>18.4</td>
<td>29.6</td>
<td>29.3</td>
<td>29</td>
<td>28.7</td>
<td>27.6</td>
<td>25.3</td>
<td>18.2</td>
</tr>
<tr>
<td>RX3</td>
<td>15.3</td>
<td>15.5</td>
<td>17.4</td>
<td>18.2</td>
<td>33.6</td>
<td>29.6</td>
<td>28</td>
<td>25.6</td>
<td>22.9</td>
<td>20.5</td>
<td>15.2</td>
</tr>
<tr>
<td>RX4</td>
<td>15.5</td>
<td>15.6</td>
<td>17.7</td>
<td>18.6</td>
<td>31.6</td>
<td>29</td>
<td>27.7</td>
<td>25.9</td>
<td>23.4</td>
<td>20.9</td>
<td>15.1</td>
</tr>
<tr>
<td>RX5</td>
<td>15</td>
<td>15.2</td>
<td>17.7</td>
<td>18.8</td>
<td>24.4</td>
<td>22.7</td>
<td>22.1</td>
<td>21.1</td>
<td>19.7</td>
<td>19.2</td>
<td>19.5</td>
</tr>
<tr>
<td>RX6</td>
<td>14.7</td>
<td>14.9</td>
<td>16.6</td>
<td>17.5</td>
<td>37.7</td>
<td>32.8</td>
<td>30.9</td>
<td>28.8</td>
<td>27.1</td>
<td>26.2</td>
<td>20.9</td>
</tr>
</tbody>
</table>
4.3 Forward Transmission

Figure 8 Forward Transmission Curves for RF Ports

4.4 Reflection Antenna Port

Figure 9 Reflection Antenna Port
4.5 Port Reflection

Figure 10 Port Reflection

4.6 Antenna Isolation Neighbour Ports

Figure 11 Antenna Isolation Neighbour Ports
4.7 Port Isolation Neighbour Ports

![Port Isolation of Neighbour Ports](image)

![Figure 12 Port Isolation of Neighbour Ports](image)
5 Intermodulation

5.1 Introduction
Another very important parameter of a RF switch is the large signal capability. One of the possible
intermodulation scenarios is shown in Figure 13. The transmission (Tx) signal from the main antenna is coupled
into the diversity antenna with with high power. This signal (20 dBm) and a received Jammer signal (-15 dBm)
are entering the switch.

![Figure 13 Block diagram of RF Switch intermodulation](image)

Special combinations of TX and Jammer signal are producing intermodulation products 2nd and 3rd order, which fall in the RX band and disturb the wanted RX signal.

5.2 IMD Test Set-up
The test setup for the IMD measurements has to provide a very high isolation between RX and TX signals.
(Figure 14). For the RX / TX separation a professional duplexer with 80 dB isolation is used.

Please find the results for high and low band in table 5 below. For each distortion scenario there is a min and a
max value given. This variation is caused by a phase shifter connected between switch and duplexer. In the test
set-up the phase shifter represents a no ideal matching of the switch to 50 Ohm.

![Figure 14 Test set-up for IMD Measurements](image)
Harmonic Generation

5.3 IMD Test Results for Band 1 and 5

Table 4 IMD Measurements

<table>
<thead>
<tr>
<th>Band 1</th>
<th>TX</th>
<th>Interferer</th>
<th>Intermodulation Products UMTS Band 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testcase</td>
<td>F<sub>In</sub> (MHz)</td>
<td>P<sub>In</sub> (dBm)</td>
<td>F<sub>In</sub> (MHz)</td>
</tr>
<tr>
<td>IMD3</td>
<td>1950</td>
<td>20</td>
<td>1760</td>
</tr>
<tr>
<td>IMD2 low</td>
<td>1950</td>
<td>20</td>
<td>190</td>
</tr>
<tr>
<td>IMD2 high</td>
<td>1950</td>
<td>20</td>
<td>4090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band 5</th>
<th>TX</th>
<th>Interferer</th>
<th>Intermodulation Products UMTS Band 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testcase</td>
<td>F<sub>In</sub> (MHz)</td>
<td>P<sub>In</sub> (dBm)</td>
<td>F<sub>In</sub> (MHz)</td>
</tr>
<tr>
<td>IMD3</td>
<td>835</td>
<td>20</td>
<td>790</td>
</tr>
<tr>
<td>IMD2 low</td>
<td>835</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>IMD2 high</td>
<td>835</td>
<td>20</td>
<td>1715</td>
</tr>
</tbody>
</table>

6 Harmonic Generation

Harmonic generation is another important parameter for the characterization of a RF switch. RF switches have to deal with high RF levels, up to 27 dBm. With this high RF power at the input of the switch harmonics are generated. This harmonics (2nd and 3rd) can disturb the other reception bands or cause distortion in other RF applications (GPS, WLAN) within the mobile phone.

Figure 15 Set-up for harmonics measurement
The results for the harmonic generation at 830 MHz are shown in Figure 16 (2nd harmonic) and Figure 17 (3rd harmonic) for all RF ports.

At the x-axis the input power is plotted and at the y-axis the generated harmonics in dBm.

Figure 16 2nd Harmonic at $f_c=824$ MHz

Figure 17 3rd harmonic at $f_c=824$ MHz
Figure 18 2nd Harmonic at $f_c=1800$ MHz

Figure 19 3rd Harmonic at $f_c=1800$ MHz
Appendix: Switch Controller Unit

The BGS18MN14 is controlled via MIPI interface and Infineon offers a MIPI controller unit to ease the evaluation of its BGS18MN14 on application board. The unit is very simple to use with a few buttons to select the right device and different states.

This section helps as a short user guide for the controller unit shown in Figure 20. The controller unit requires a DC supply of 5.5V with a current capability of 50mA.

Please observe the following steps to use the controller unit:

7.1 Operating Guide

1. Connect evalboard and control unit via controller cable
2. Connect control unit to power supply
3. Version number “S.0” is displayed
4. Press P1 and P3 simultaneously until desired switch type is displayed
 - “0D” for BGS110MN20
 - “8D” for BGS18MN14
 - “6D” for BGS16MN14
5. Press P1 or P3 to enable active mode “PU” is displayed
6. Press P1 or P3 to alter switch state
 - IS … Isolation Mode (all channels off)
 - PD … Power Down Mode (low current consumption)
 - PU … Power Up Mode (active mode)
 - R1 – R0 … RX1 – RX10 enabled

Figure 20 Switch Controller Unit Board

Please observe the following steps to use the controller unit:
Authors
Ralph Kuhn, Senior Staff Application Engineer of the Business Unit “RF and Protection Devices”
Andre Dewai, Senior Application Engineer of the Business Unit “RF and Protection Devices”