BGA524N6

Low Noise Amplifier for Global Navigation Satellite Systems GPS/GLONASS/Galileo/COMPASS from 1550 MHz to 1615 MHz Applications, Low Q inductor
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
BGA524N6
BGA524N6 for GSNN LNA using low Q inductor

Application Note AN346
Revision History: 2013-09-30
Previous Revision: None

Page	Subjects (major changes since last revision)

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, euspec™, FCOS™, HITFET™, HybridPACK™, IRF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ™, TRENCHSTOP™, TriCore™.

Other Trademarks

Last Trademarks Update 2011-11-11
Table of Content

1 Introduction of Global Navigation Satellite Systems (GNSS) .. 5
2 BGA524N6 Overview ... 8
 2.1 Features .. 8
 2.2 Key Applications of BGA524N6 ... 8
 2.3 Description ... 8
3 Application Circuit and Performance Overview ... 10
 3.1 Summary of Measurement Results .. 10
 3.2 Summary BGA524N6 as 1550-1615 MHz LNA for GNSS ... 12
 3.3 Schematics and Bill-of-Materials .. 13
4 Measurement Graphs .. 14
5 Evaluation Board and Layout Information .. 22
6 Authors .. 23
7 Remark .. 23

List of Figures
Figure 1 BGA524N6 TSNP-6-2 leadless Package size .. 6
Figure 2 BGA524N6 in TSNP-6-2 ... 8
Figure 3 Equivalent Circuit Block diagram of BGA524N6 ... 9
Figure 4 Package and pin connections of BGA524N6 .. 9
Figure 5 Schematic of the BGA524N6 Application Circuit ... 13
Figure 6 Power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 14
Figure 7 Narrowband power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 14
Figure 8 Noise figure of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 15
Figure 9 Input matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 15
Figure 10 Input matching smith chart for COMPASS, Galileo, GPS and GLONASS bands 16
Figure 11 Output matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 16
Figure 12 Output matching smith chart for COMPASS, Galileo, GPS and GLONASS bands 17
Figure 13 Reverse isolation of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands 17
Figure 14 Stability factor k of BGA524N6 up to 10 GHz ... 18
Figure 15 Stability factor µ1 of BGA524N6 up to 10 GHz ... 18
Figure 16 Stability factor µ2 of BGA524N6 up to 10 GHz ... 19
Figure 17 Input 1 dB compression point of BGA524N6 at supply voltage of 1.8 V for COMPASS, Galileo, GPS and GLONASS bands ... 19
Figure 18 Input 1 dB compression point of BGA524N6 at supply voltage of 2.8 V for COMPASS, Galileo, GPS and GLONASS bands ... 20
Figure 19 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=1.8 V 20
Figure 20 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=2.8 V 21
Figure 21 Carrier and intermodulation products of BGA524N6 for GLONASS band at Vcc=2.8 V 21
Figure 22 Picture of Evaluation Board (overview) ... 22
Figure 23 Picture of Evaluation Board (detailed view) ... 22
Figure 24 PCB Layer Information .. 22

List of Tables
Table 1 Pin Assignment of BGA524N6 .. 9
Table 2 Mode Selection of BGA524N6 ... 9
Table 3 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 1.8 V 10
Table 4 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 2.8 V 11
Table 5 Bill-of-Materials ... 13
1 Introduction of Global Navigation Satellite Systems (GNSS)

The BGA524N6 is a front-end Low Noise Amplifier (LNA) for Global Navigation Satellite Systems (GNSS) application. It is based on Infineon Technologies’ B7HF Silicon-Germanium (SiGe) technology, enabling a cost-effective solution in a TSNP-6-2 leadless package with ultra low noise figure, high linearity, low current consumption and high gain, over a wide range of supply voltages from 1.5 V up to 3.3 V. All these features make BGA524N6 an excellent choice for GNSS LNA as it improves sensitivity, provide better immunity against out-of-band jammer signals, reduces filtering requirement and hence the overall cost of the GNSS receiver.

The GNSS satellites are at an orbit altitude of more than 20,000 km away from earth’s surface and transmit power in the range of +47 dBm. After taking losses (atmospheric, antenna etc.) into account, the received signal strength at the GNSS device input is very low in the range of -130 dBm. The ability of the GNSS device to receive such low signal strength and provide meaningful information to the end-user depends strongly on the noise figure of the GNSS receives chain. This ability which is called receiver sensitivity can be improved by using a low-noise amplifier with low noise figure and high gain at the input of the receiver chain. The improved sensitivity results in a shorter Time-To-First-Fix (TTFF), which is the time required for a GNSS receiver to acquire satellite signals and navigation data, and calculate a position. Noise figure of the LNA defines the overall noise figure of the GNSS receiver system. This is where BGA524N6 excels by providing noise figure as low as 0.55 dB and high gain of 19.6 dB, thereby improving the receiver sensitivity significantly.

The ever growing demand to integrate more and more functionality into one device leads to many challenges when transmitter/receiver has to work simultaneously without degrading the performance of each other. In today’s smart-phones a GNSS receiver simultaneously co-exists with transceivers in the GSM/EDGE/UMTS/LTE bands. These 3G/4G transceivers transmit high power in the range of +24 dBm which due to insufficient isolation couple to the GNSS receiver. The cellular signals can mix to produce Intermodulation products exactly in the GNSS receiver frequency band. For example, GSM 1712.7 MHz mixes with UMTS 1850 MHz to produce third-order-product exactly at GPS band. To quantify the effect, BGA524N6
shows out-of-band input IP3 at GPS band of -4 dBm, as a result of frequency mixing between GSM 1712.7 MHz and UMTS 1850 MHz with power levels of -20 dBm. Due to this high out-of-band input 3rd order intercept point (IIP3), BGA524N6 is especially suitable for the GPS function in mobile phones.

![Figure 1 BGA524N6 TSNP-6-2 leadless Package size](image)

As the industry inclines towards assembly miniaturization and also surface mount technology matures, there is a desire to have smaller and thinner components. This is especially the case with portable electronics where higher circuit density allows device design flexibility and also optimum use of the limited space available. BGA524N6 has a small package with dimensions of 0.70mm x 1.1mm x 0.375mm and it requires only one external component at its input, the inductor providing the input matching. The DC block at input is optional as it is usually provided by the pre-filter before the LNA in many GPS applications. All the device/phone manufacturers implement very good power supply filtering on their boards so that the RF bypass capacitor mentioned in this application circuit may not be needed in the end. The minimal number of external SMD components reduces the application bill of materials, assembly complexity and the PCB area thus making it an ideal solution for compact and cost-effective GNSS LNA. The output of the BGA524N6 is internally matched to 50 Ω, and a DC blocking capacitor is integrated on-chip, thus no external component is required at the output.
The device also integrates an on-chip ESD protection which can resist until 2 kV (referenced to human body model) in all pins. The integrated power on/off feature provides for low power consumption and increased stand-by time for GNSS handsets. Moreover, the low current consumption (2.5 mA) makes the device suitable for portable technology like GNSS receivers and mobiles phones.

The Internal circuit block diagram of the BGA524N6 is presented in Figure 3. Table 1 shows the pin assignment of BGA524N6. Table 2 shows the truth table to turn on/off BGA524N6 by applying different voltage to the PON pin.
2 BGA524N6 Overview

2.1 Features

- High insertion power gain: 19.6 dB
- Out-of-band input 3rd order intercept point: -4 dBm
- Input 1 dB compression point: -12 dBm
- Low noise figure: 0.55 dB
- Low current consumption: 2.5 mA
- Operating frequencies: 1550 - 1615 MHz
- Supply voltage: 1.5 V to 3.3 V
- Digital on/off switch (1 V logic high level)
- Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm²)
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- Only 1 external SMD component necessary
- 2 kV HBM ESD protection (including AI-pin)
- Pb-free (RoHS compliant) package

Figure 2 BGA524N6 in TSNP-6-2

2.2 Key Applications of BGA524N6

- Ideal for all Global Navigation Satellite Systems (GNSS) like
 - GPS (Global Positioning System) working in the L1 band at 1575.42 MHz
 - GLONASS (Russian GNSS) working in the L1 band from 1598.06 MHz to 1605.38 MHz
 - Galileo (European GNSS) working in the E2-L1-E1 band from 1559 MHz to 1592 MHz
 - COMPASS (Chinese Beidou Navigation System) working in E2 band at 1561.10 MHz and E1 band at 1589.74 MHz

2.3 Description

The BGA524N6 is a front-end low noise amplifier for Global Navigation Satellite Systems (GNSS) from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 16.2 dB gain and 0.55 dB noise figure at a current consumption of 4.8 mA in the application configuration described in Chapter 3. The BGA524N6 is based upon Infineon Technologies B7HF Silicon Germanium technology. It operates from 1.5 V to 3.3 V supply voltage.
Figure 3 Equivalent Circuit Block diagram of BGA524N6

Figure 4 Package and pin connections of BGA524N6

Table 1 Pin Assignment of BGA524N6

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>DC supply</td>
</tr>
<tr>
<td>3</td>
<td>AO</td>
<td>LNA output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>AI</td>
<td>LNA input</td>
</tr>
<tr>
<td>6</td>
<td>PON</td>
<td>Power on control</td>
</tr>
</tbody>
</table>

Table 2 Mode Selection of BGA524N6

<table>
<thead>
<tr>
<th>LNA Mode</th>
<th>Symbol</th>
<th>ON/OFF Control Voltage at PON pin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>ON</td>
<td>PON, on</td>
<td>1.0 V</td>
</tr>
<tr>
<td>OFF</td>
<td>PON, off</td>
<td>0 V</td>
</tr>
</tbody>
</table>
3 Application Circuit and Performance Overview

Device: BGA524N6
Application: Low Noise Amplifier for Global Navigation Satellite Systems GPS/GLONASS/Galileo/COMPASS from 1550 MHz to 1615 MHz Applications, Low Q inductor

PCB Marking: BGA524N6

3.1 Summary of Measurement Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Comment/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>Vcc</td>
<td>1.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>Icc</td>
<td>2.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Navigation System</td>
<td>Sys</td>
<td>COMPASS/Galileo</td>
<td>GPS/GLONASS</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Freq</td>
<td>1559-1593 1575.42 1598-1606</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>19.3</td>
<td>19.2</td>
<td>19.2 dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>0.78</td>
<td>0.78</td>
<td>0.79 dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>11.3</td>
<td>11.4</td>
<td>11.3 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>ROut</td>
<td>17.4</td>
<td>21.7</td>
<td>23.7 dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>IRev</td>
<td>37.3</td>
<td>37.4</td>
<td>37.8 dB</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>IP1dB</td>
<td>-15.5</td>
<td>-15.6</td>
<td>-16 dBm</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>OP1dB</td>
<td>2.8</td>
<td>2.6</td>
<td>2.2 dBm</td>
</tr>
<tr>
<td>Input IP3 In-band</td>
<td>IIP3</td>
<td>-9.9</td>
<td>-9.7</td>
<td>-9.5 dBm</td>
</tr>
<tr>
<td>Output IP3 In-band</td>
<td>OIP3</td>
<td>9.4</td>
<td>9.5</td>
<td>9.7 dBm</td>
</tr>
<tr>
<td>LTE band-13 2nd Harmonic</td>
<td>H2-inp</td>
<td>-41.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input IP3 Out-of-band</td>
<td>IIP3_{OB}</td>
<td>-5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>>1</td>
<td></td>
<td>Unconditionally Stable from 0 to 10GHz</td>
</tr>
</tbody>
</table>

Parameter:
- DC Voltage
- DC Current
- Navigation System
- Frequency Range
- Gain
- Noise Figure
- Input Return Loss
- Output Return Loss
- Reverse Isolation
- Input P1dB
- Output P1dB
- Input IP3 In-band
- Output IP3 In-band
- LTE band-13 2nd Harmonic
- Input IP3 Out-of-band
- Stability

Symbol:
- Vcc
- Icc
- COMPASS/Galileo
- GPS
- GLONASS
- Freq
- G
- NF
- RLin
- ROut
- IRev
- IP1dB
- OP1dB
- IIP3
- OIP3
- H2-inp
- IIP3_{OB}
- k

Value:
- 1.8 (V)
- 2.5 (mA)
- 19.3 (19.2, 19.2) (dB)
- 0.78 (0.78, 0.79) (dB)
- 11.3 (11.4) (dB)
- 17.4 (21.7, 23.7) (dB)
- 37.3 (37.4, 37.8) (dB)
- -15.5 (-15.6, -16) (dBm)
- 2.8 (2.6, 2.2) (dBm)
- -9.9 (-9.7, -9.5) (dBm)
- 9.4 (9.5, 9.7) (dBm)
- -41.9 (dBm)
- -5.5 (dBm)
- >1 (Unconditionally Stable from 0 to 10GHz)

Value/Condition:
- $f_{gal} = 1559$ MHz
- $f_{gps} = 1575.42$ MHz
- $f_{GLONASS} = 1605$ MHz
- $f_{IN} = 787.76$ MHz, $P_{IN} = -25$ dBm; $f_{H2} = 1575.52$ MHz
- $f_1 = 1712.7$ MHz, $P_{1IN} = -25$ dBm; $f_2 = 1850$ MHz, $P_{2IN} = -65$ dBm; $f_{IP3} = 1575.4$ MHz

Comment/Test Condition:
- PCB and SMA losses 0.03 dB are deducted
Table 4 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 2.8 V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Unit</th>
<th>Comment/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>Vcc</td>
<td>2.8</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>Icc</td>
<td>2.6</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Navigation System</td>
<td>Sys</td>
<td>COMPASS/</td>
<td>GPS</td>
<td>GLONASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Freq</td>
<td>1559-1593</td>
<td>1575.42</td>
<td>1598-1606</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>19.3</td>
<td>19.3</td>
<td>19.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>0.79</td>
<td>0.79</td>
<td>0.8</td>
<td>dB</td>
<td>PCB and SMA losses 0.03dB are substracted</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>11.3</td>
<td>11.4</td>
<td>11.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>RLout</td>
<td>15.5</td>
<td>19.1</td>
<td>27.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>IRev</td>
<td>37.4</td>
<td>37.4</td>
<td>37.6</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input P1dB</td>
<td>IP1dB</td>
<td>-12</td>
<td>-12</td>
<td>-12.3</td>
<td>dBm</td>
<td>f<sub>gal</sub> = 1559 MHz, f<sub>gps</sub> = 1575.42 MHz, f<sub>GLONASS</sub> = 1605 MHz</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>OP1dB</td>
<td>6.3</td>
<td>6.3</td>
<td>5.9</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Input IP3 In-band</td>
<td>IIP3</td>
<td>-9.6</td>
<td>-9.4</td>
<td>-9.2</td>
<td>dBm</td>
<td>f<sub>gal</sub> = 1559 MHz, f<sub>gal</sub> = 1560 MHz, f<sub>gps</sub> = 1575.42 MHz, f<sub>gps</sub> = 1576.42 MHz, f<sub>GLONASS</sub> = 1602 MHz, f<sub>GLONASS</sub> = 1603 MHz</td>
</tr>
<tr>
<td>Output IP3 In-band</td>
<td>OIP3</td>
<td>9.7</td>
<td>9.9</td>
<td>10</td>
<td>dBm</td>
<td>Input power= -35 dBm</td>
</tr>
<tr>
<td>LTE band-13 2<sup>nd</sup> Harmonic</td>
<td>H2-input referred</td>
<td>-42.1</td>
<td></td>
<td></td>
<td>dBm</td>
<td>f<sub>N</sub> = 787.76 MHz, P<sub>IN</sub> = -25 dBm; f<sub>IN</sub> = 1575.52 MHz</td>
</tr>
<tr>
<td>Input IP3 Out-of-band</td>
<td>IIP3<sub>OB</sub></td>
<td>-5.4</td>
<td></td>
<td></td>
<td>dBm</td>
<td>f<sub>1</sub> = 1712.7 MHz, P<sub>1IN</sub> = -25 dBm; f<sub>2</sub> = 1850 MHz, P<sub>2IN</sub> = -65 dBm; f<sub>IP3</sub> = 1575.4 MHz</td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>>1</td>
<td></td>
<td></td>
<td>--</td>
<td>Unconditionnally Stable from 0 to 10GHz</td>
</tr>
</tbody>
</table>
3.2 Summary BGA524N6 as 1550-1615 MHz LNA for GNSS

This application note addresses the application circuit of high gain low current GNSS LNA using low Q inductor.

The circuit requires only one 0402 LQG type inductor for the application. It has in band gain of 19.3 dB. The circuit achieves input return loss better than 11.3 dB, as well as output return loss better than 15.5 dB for the whole frequency band of GNSS. At room temperature the noise figure is 0.78 dB (SMA and PCB losses are subtracted) for the GPS frequency and 0.79 dB for GLONASS frequency band. Furthermore, the circuit is unconditionally stable till 10 GHz.

At GPS frequency, using two tones spacing of 1 MHz, the output third order intercept point IIP3 reaches 9.9 dBm. And for the GLONASS frequency band, OIP3 reaches 10 dBm. Output P1dB of the GNSS LNA is about 6.3 dBm for the GPS frequency and 5.9 dBm for GLONASS frequency band. Out of band Input IP3 is -5.4 dBm for the GPS frequency.
3.3 Schematics and Bill-of-Materials

![Schematic of the BGA524N6 Application Circuit](image)

Figure 5 Schematic of the BGA524N6 Application Circuit

Table 5 Bill-of-Materials

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (optional)</td>
<td>1.8</td>
<td>nF</td>
<td>0402</td>
<td>Various</td>
<td>DC block</td>
</tr>
<tr>
<td>C2 (optional)</td>
<td>1</td>
<td>µF</td>
<td>0402</td>
<td>Various</td>
<td>RF bypass</td>
</tr>
<tr>
<td>L1</td>
<td>7.5</td>
<td>nH</td>
<td>0402</td>
<td>Murata LQG type</td>
<td>Input matching</td>
</tr>
<tr>
<td>N1 BGA524N6</td>
<td></td>
<td></td>
<td></td>
<td>Infineon</td>
<td>SiGe LNA</td>
</tr>
</tbody>
</table>
4 Measurement Graphs

Figure 6 Power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands

Figure 7 Narrowband power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands
Figure 8 Noise figure of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands

Figure 9 Input matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands
Figure 10 Input matching smith chart for COMPASS, Galileo, GPS and GLONASS bands

Figure 11 Output matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands
Figure 12 Output matching smith chart for COMPASS, Galileo, GPS and GLONASS bands

Figure 13 Reverse isolation of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands
Figure 14 Stability factor k of BGA524N6 upto 10 GHz

Figure 15 Stability factor μ_1 of BGA524N6 upto 10 GHz
Figure 16 Stability factor μ_2 of BGA524N6 upto 10 GHz

Figure 17 Input 1 dB compression point of BGA524N6 at supply voltage of 1.8 V for COMPASS, Galileo, GPS and GLONASS bands
Figure 18 Input 1 dB compression point of BGA524N6 at supply voltage of 2.8 V for COMPASS, Galileo, GPS and GLONASS bands

Figure 19 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=1.8 V
Figure 20 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=2.8 V

Figure 21 Carrier and intermodulation products of BGA524N6 for GLONASS band at Vcc=2.8 V
5 Evaluation Board and Layout Information

In this application note, the following PCB is used:

PCB material: Rogers

ε_r of PCB material: 3.4

Figure 22 Picture of Evaluation Board (overview)

Figure 23 Picture of Evaluation Board (detailed view)

Figure 24 PCB Layer Information
6 Authors
Moakhkhrul Islam, Application Engineer of Business Unit “RF and Protection Devices”.
Jagjit Singh Bal, Application Engineer of Business Unit “RF and Protection Devices”

7 Remark
The graphs are generated with the simulation program AWR Microwave Office®.