BFP840ESD

Low Noise Amplifier for 5 to 6 GHz WLAN Application using BFP840ESD
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Application Note AN316
Revision History: 2013-05-20
Previous Revision: No previous revision

Page	Subjects (major changes since last revision)

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ™, TRENCHSTOP™, TriCore™.

Other Trademarks

Last Trademarks Update 2011-11-11
Table of Content

1 Introduction .. 5
 1.1 Wi-Fi® ... 5

2 BFP840ESD Overview .. 7
 2.1 Features ... 7
 2.2 Key Applications of BFP840ESD .. 7

3 Low Noise Amplifier for 5 to 6 GHz WLAN with BFP840ESD 8
 3.1 Description ... 8
 3.2 Performance Overview ... 10
 3.3 Schematics and Bill-of-Materials ... 11

4 Measured Graphs ... 12

5 Evaluation Board and Layout Information ... 19

6 Authors ... 21

7 Remark ... 21

List of Figures

Figure 1 5 – 6 GHz Wi-Fi® Wireless LAN (WLAN, IEEE802.11a/n) and WiMAX (IEEE802.16e) Front-End....5
Figure 2 BFP840ESD in SOT343..7
Figure 3 Package and pin connections of BFP840ESD in Topview ..8
Figure 4 Schematic Diagram of the used Circuit ... 11
Figure 5 Insertion Power Gain of the 5-6 GHz WLAN LNA with BFP840ESD 12
Figure 6 Wideband Insertion Power Gain of the 5-6 GHz WLAN LNA with BFP840ESD 12
Figure 7 Noise Figure of BFP840ESD LNA for 5100 - 5900 MHz 13
Figure 8 Reverse Isolation of the 5-6 GHz WLAN LNA with BFP840ESD 13
Figure 9 Input Matching of the 5-6 GHz WLAN LNA with BFP840ESD 14
Figure 10 Input Matching of the 5-6 GHz WLAN LNA with BFP840ESD (Smith Chart) 14
Figure 11 Output Matching of the 5-6 GHz WLAN LNA with BFP840ESD 15
Figure 12 Output Matching of the 5-6 GHz WLAN LNA with BFP840ESD (Smith Chart) ... 15
Figure 13 Wideband Stability k Factor of the 5-6 GHz WLAN LNA with BFP840ESD 16
Figure 14 Wideband Stability Mu Factor of the 5-6 GHz WLAN LNA with BFP840ESD 16
Figure 15 Input 1dB Compression Point of the BFP840ESD Circuit at 5500 MHz 17
Figure 16 Output 3rd Order Intercept Point of BFP840ESD at 5500 MHz (LNA input power = -30 dBm) 17
Figure 17 OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of the 5-6 GHz WLAN LNA with BFP840ESD 18
Figure 18 Photo of the BFP840ESD 5-6 GHz WLAN LNA Evaluation Board 19
Figure 19 Zoom-In Picture of the BFP840ESD 5-6 GHz WLAN LNA Evaluation Board 19
Figure 20 Layout Proposal for RF Grounding of the 5-6 GHz WLAN LNA with BFP840ESD 20
Figure 21 PCB Layer Information .. 20

List of Tables

Table 1 Summary of Measurement Results .. 10
Table 2 Bill-of-Materials .. 11
1 Introduction

1.1 Wi-Fi®

Wireless Fidelity (Wi-Fi®) plays a major role in today’s communications by enabling constant connection in the 2.4 GHz bands, 5 GHz bands and broadband Internet access for users with laptops or devices equipped with wireless network interface while roaming within the range of fixed access points (AP) or a public hotspot. Different applications like home entertainment with wireless high-quality multimedia signal transmission, home networking notebooks, mass data storages and printers implement 5–6 GHz Wi-Fi® into their system to offer high-speed wireless connectivity.

When wider coverage areas are needed and especially when a higher order modulation scheme is used such as in emerging very high throughput wireless specifications like 256 Quadrature Amplitude Modulation (QAM) in IEEE 802.11ac, the Signal-to-Noise Ratio (SNR) requirements for both the AP and the client are more stringent. For this kind of high-speed high data rate wireless communication standards, it is essential to ensure the quality of the link path. Major performance criteria of these equipments have to be fulfilled: sensitivity, strong signal capability and interference immunity. Below a general application diagram of a WLAN system is shown.

![Diagram of a WLAN system](image-url)
In order to increase the system sensitivity, an excellent Low Noise Amplifier (LNA) in front of the receiver is mandatory, especially in an environment with very weak signal strength and because of the insertion loss of the Single Pole, Double Throw (SPDT) switch and the Bandpass Filter (BPF) or diplexer. The typical allowed receiver chain Noise Figure (NF) of approx. 2 dB can only be achieved by using a high-gain low noise amplifier.

In addition, strong signal environment can exist when the equipment is next to a transmitter. In that case, the LNA must be linear enough, i.e. have high 1dB compression point. This avoids saturation, degradation of the gain and increased noise figure.

This application note is focusing on the LNA block, but Infineon does also support with RF-switches, TVS-diodes for ESD protection and RF Schottky diodes for power detection.
2 BFP840ESD Overview

2.1 Features

- Robust very low noise amplifier based on Infineon’s reliable, high volume SiGe:C technology
- Unique combination of high end RF performance and robustness: 20 dBm maximum RF input power, 1.5 kV HBM ESD hardness
- Very high transition frequency $f_T = 80$ GHz enables very low noise figure at high frequencies: $NF_{\text{min}} = 0.85$ dB at 5.5 GHz, 1.8 V, 6 mA
- High gain $|S21|^2 = 18.5$ dB at 5.5 GHz, 1.8 V, 10 mA
- $OIP3 = 23$ dBm at 5.5 GHz, 1.5 V, 6 mA
- Ideal for low voltage applications e.g. $V_{\text{CC}} = 1.2$ V and 1.8 V (2.85 V, 3.3 V, 3.6 V requires corresponding collector resistor)
- Low power consumption, ideal for mobile applications
- Easy to use Pb free (RoHS compliant) and halogen free industry standard package with visible leads

2.2 Key Applications of BFP840ESD

As Low Noise Amplifier (LNA) in

- Mobile and fixed connectivity applications: WLAN 802.11, WiMAX and UWB
- Satellite communication systems: satellite radio (SDARs, DAB), navigation systems (e.g. GPS, GLONASS) and C-band LNB (1st and 2nd stage LNA)
- Ku-band LNB front-end (2nd stage or 3rd stage LNA and active mixer)
- Ka-band oscillators (DROs)
3 Low Noise Amplifier for 5 to 6 GHz WLAN with BFP840ESD

3.1 Description

BFP840ESD is a discrete hetero-junction bipolar transistor (HBT) specifically designed for high performance 5 GHz band low noise amplifier (LNA) solutions for Wi-Fi connectivity applications. It combines the 80 GHz f_T silicon-germanium:carbide (SiGe:C) B9HFM process with special device geometry technique to reduce the parasitic capacitance between substrate and transistor that degrades high-frequency characteristics, resulting in an inherent input matching and a major improvement in power gain in 5 GHz band together with a low noise figure performance.

The BFP840ESD has an integrated 1.5 kV HBM ESD protection which makes the device robust against electrostatic discharge and extreme RF input power. The device offers its high performance at low current and voltage and is especially well-suited for portable battery powered applications in which low energy consumption is a key requirement.

The BFP840ESD is housed in the industry standard SOT343 package with visible leads. Further variants are available in flat-lead TSFP-4-1 package (BFP840FESD) and in the low-height 0.31mm TSLP-3-9 package (BFR840L3RHESD) specially fitting into modules.

Figure 3 shows the pin assignment of package of BFP840ESD in the top view:
This application note presents the measurement results of the LNA using BFP840ESD for 5100 MHz to 5900 MHz WLAN applications. Proper RF grounding on PCB has to be ensured in order to achieve stability k-factor ≥ 1 above 8.5 GHz (Figure 20).

The application circuit requires 10 passive 0402 Surface Mounted Device (SMD) components and achieves the gain from 16 dB to 15 dB over the frequency band. The NF varies from 1.09 dB to 1.18 dB (SMA and PCB losses are subtracted) over the frequency band. The circuit achieves an input and output return loss better than 13.8 dB. Furthermore, the circuit is unconditionally stable from 10 MHz to 15 GHz.

At 5.5 GHz, -10.8 dBm input compression point (IP1dB) is achieved, together with the 14.6 dBm output third intercept point (OIP3) measured with 1MHz tone spacing.
3.2 Performance Overview

Device: BFP840ESD
Application: Low Noise Amplifier for 5 to 6 GHz WLAN Application
PCB Marking: M130121 BFP840ESD SOT343 (0.4mm x 2)

Table 1 Summary of Measurement Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>V_{CC}</td>
<td>3.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>I_{CC}</td>
<td>9.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>F_{req}</td>
<td>5100 5500 5900</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>ON-Mode Gain</td>
<td>G_{ON}</td>
<td>16 15.5 15</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>OFF-Mode Gain</td>
<td>G_{OFF}</td>
<td>-26.2 -26.8 -27.7</td>
<td>dB</td>
<td>$V_{cc} = 0 , V, , I_{cc} = 0 , mA$</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>1.09 1.13 1.18</td>
<td>dB</td>
<td>SMA and PCB losses (~0.12 dB) are subtracted</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$R_{L_{in}}$</td>
<td>13.8 17.1 19.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$R_{L_{out}}$</td>
<td>22.1 23.5 17.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>$I_{R_{ev}}$</td>
<td>26.3 25.4 24.7</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>ON-Mode Input P1dB</td>
<td>$I_{P1dB_{ON}}$</td>
<td>-10.8</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>OFF-Mode Input P1dB</td>
<td>$I_{P1dB_{OFF}}$</td>
<td>>10</td>
<td>dBm</td>
<td>$V_{cc} = 0 , V, , I_{cc} = 0 , mA$</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>OP1dB</td>
<td>3.6</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Input IP3</td>
<td>I_{IP3}</td>
<td>-1</td>
<td>dBm</td>
<td>Power @ Input: -30 dBm $f_1=5500 , MHz, , f_2=5501 , MHz$</td>
</tr>
<tr>
<td>Output IP3</td>
<td>OIP3</td>
<td>14.6</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>≥ 1.0</td>
<td>--</td>
<td>Stability measured from 10 MHz to 15 GHz</td>
</tr>
</tbody>
</table>
3.3 Schematics and Bill-of-Materials

A proper RF grounding is required to ensure the LNA performance. Please refer to Chapter 5 for the layout proposal.

PCB = M130121 BFP840ESD SOT343 (0.4mm x 2)
PCB Board Material = Standard FR4
Layer spacing (top RF to internal ground plane): 0.2 mm

Figure 4 Schematic Diagram of the used Circuit

Table 2 Bill-of-Materials

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.3</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>Input DC block, Noise & input matching</td>
</tr>
<tr>
<td>C2</td>
<td>10</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>Output DC block & output matching</td>
</tr>
<tr>
<td>C3, C4</td>
<td>39</td>
<td>pF</td>
<td>0402</td>
<td>Various</td>
<td>RF decoupling / blocking cap</td>
</tr>
<tr>
<td>L1</td>
<td>5.1</td>
<td>nH</td>
<td>0402</td>
<td>Murata LQG series</td>
<td>Noise & input matching</td>
</tr>
<tr>
<td>L2</td>
<td>2.2</td>
<td>nH</td>
<td>0402</td>
<td>Murata LQG series</td>
<td>Output matching & high frequency stability improvement</td>
</tr>
<tr>
<td>R1</td>
<td>39</td>
<td>kΩ</td>
<td>0402</td>
<td>Various</td>
<td>DC biasing</td>
</tr>
<tr>
<td>R2</td>
<td>43</td>
<td>Ω</td>
<td>0402</td>
<td>Various</td>
<td>DC biasing (provides DC negative feedback to stabilize DC operating point over temperature variation, transistor h_{FE} variation, etc.)</td>
</tr>
<tr>
<td>R3</td>
<td>82</td>
<td>Ω</td>
<td>0402</td>
<td>Various</td>
<td>Stability improvement & output matching</td>
</tr>
<tr>
<td>R4</td>
<td>10</td>
<td>Ω</td>
<td>0402</td>
<td>Various</td>
<td>High frequency stability improvement</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td>SOT343</td>
<td>Infineon Technologies</td>
<td>BFP840ESD SiGe:C HBT</td>
</tr>
</tbody>
</table>
4 Measured Graphs

Figure 5 Insertion Power Gain of the 5-6 GHz WLAN LNA with BFP840ESD

Figure 6 Wideband Insertion Power Gain of the 5-6 GHz WLAN LNA with BFP840ESD
Figure 7 Noise Figure of BFP840ESD LNA for 5100 - 5900 MHz

Figure 8 Reverse Isolation of the 5-6 GHz WLAN LNA with BFP840ESD
Figure 9 Input Matching of the 5-6 GHz WLAN LNA with BFP840ESD

Figure 10 Input Matching Smith of the 5-6 GHz WLAN LNA with BFP840ESD (Smith Chart)
Figure 11 Output Matching of the 5-6 GHz WLAN LNA with BFP840ESD

Figure 12 Output Matching of the 5-6 GHz WLAN LNA with BFP840ESD (Smith Chart)
Figure 13 Wideband Stability k Factor of the 5-6 GHz WLAN LNA with BFP840ESD

Figure 14 Wideband Stability Mu Factor of the 5-6 GHz WLAN LNA with BFP840ESD
Figure 15 Input 1dB Compression Point of the LNA with BFP840ESD at 5500 MHz

Figure 16 Output 3rd Order Intercept Point of LNA with BFP840ESD at 5500 MHz (LNA input power = -30 dBm)
Figure 17 OFF-Mode (Vcc = 0V, Icc = 0mA) S21 of the 5-6 GHz WLAN LNA with BFP840ESD
5 Evaluation Board and Layout Information

Figure 18 Photo of the BFP840ESD 5-6 GHz WLAN LNA Evaluation Board

Figure 19 Zoom-In Picture of the BFP840ESD 5-6 GHz WLAN LNA Evaluation Board
Figure 20 Layout Proposal for RF Grounding of the 5-6 GHz WLAN LNA with BFP840ESD

Figure 21 PCB Layer Information
6 Authors

Shamsuddin Ahmed, Application Engineer of Business Unit “RF and Protection Devices”
Moakhkhrul Islam, Application Engineer of Business Unit “RF and Protection Devices”
Dr. Chih-I Lin, Senior Staff Engineer/Technical Marketing RF of Business Unit “RF and Protection Devices”

7 Remark

The graphs are generated with the simulation program AWR Microwave Office®.