Power Semiconductor Roadshow hosted by UBS
London, 10 – 11 December 2018

Dr. Peter Wawer
Division President Industrial Power Control

Andreas Urschitz
Division President Power Management & Multimarket
1. Infineon – the leading player in power semiconductors
2. Division Industrial Power Control (IPC)
3. Division Power Management & Multimarket (PMM)
Infineon's portfolio covers the entire range of power and frequency

What is a power switch?
- when turned on → current flows
- when turned off → current is blocked

What counts?
- losses in on-state \(R_{\text{DS(on)}} \)
- heat dissipation
- max. switching frequency
- die size
- package size (form factor)
IPC's and PMM's discrete power portfolio* is basically separated by voltage classes

IPC territory
- IGBT modules
- discrete IGBTs

PMM territory
- high-voltage MOSFETs (CoolMOS™)
- mid-voltage MOSFETs (OptiMOS™)
- low-voltage MOSFETs (OptiMOS™)

* excluding drivers and control ICs

SiC MOSFET today
- SiC MOSFET roadmap

GaN MOSFET today
- GaN MOSFET roadmap

silicon-based power semiconductors

compound semiconductors

- 6,500 V
- 4,500 V
- 3,300 V
- 1,700 V
- 1,200 V
- 900 V
- 600 V
- 400 V
- 150 V
- 100 V
- 80 V
- 40 V
- 20 V

Copyright © Infineon Technologies AG 2018. All rights reserved.
Infineon is outgrowing the power semi market since 15 years and holds #1 position.

Power discretes and modules

CAGR\(_{(03-17)}\): 11.5%

CAGR\(_{(03-17)}\): 5.1%

Consolidation of IRF

Source: Based on or includes content supplied by IHS Markit, Technology Group, several reports from 2004 through 2016 and 2018.

Note: No backward revision of market shares and market sizes; except for year 2016.

Power discretes and modules

Total market in 2017: $18.5bn

- Infineon: 18.6%
- ON Semi: 9.0%
- STMicro: 5.1%
- Mitsubishi: 4.9%
- Toshiba: 4.7%
- Vishay: 4.4%
- Renesas: 4.0%
- Fuji: 3.8%
- Rohm: 2.5%
- Semikron: 2.2%

Copyright © Infineon Technologies AG 2018. All rights reserved.
Unique position allows to fill a 300 mm module in a commercially viable timeframe

2017 revenues with products feasible for 300 mm manufacturing

- MOSFETs
- Discr. IGBTs
- IGBT modules**
- others

~$3,500m*

$2bn (revenue potential of a 300 mm fab)

~$1,700m

~$950m

~$925m

~$875m

Infineon | ON Semi | STMicro | Mitsubishi | Toshiba

<table>
<thead>
<tr>
<th>growth per annum</th>
<th>6%</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual rev in power semis</td>
<td>$4bn</td>
<td>7 yrs</td>
</tr>
<tr>
<td></td>
<td>$3bn</td>
<td>9 yrs</td>
</tr>
<tr>
<td></td>
<td>$2bn</td>
<td>12 yrs</td>
</tr>
<tr>
<td></td>
<td>$1bn</td>
<td>19 yrs</td>
</tr>
</tbody>
</table>

* rounded figures.
** including standard IGBT modules, IPMs (IGBT + MOSFET), PIM/CIBs.
Sources: Based on or includes content supplied by IHS Markit, Technology Group, "Power Semiconductor Market Share Database 2017", September 2018.
Power semis represent ~2/3 of Infineon sales; high synergies in R&D and manufacturing

Infineon FY18 revenues by product category

<table>
<thead>
<tr>
<th>[EUR m]</th>
<th>ATV</th>
<th>IPC</th>
<th>PMM</th>
<th>DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,284</td>
<td>1,323</td>
<td>2,318</td>
<td>664</td>
</tr>
</tbody>
</table>

* including drivers and control ICs
Three strategic levers to outgrow the power semi market: "core – adjacent – new"

② Adjacent
Controller
triggers low-power signal

① Core
Gate driver
translates signal into appropriate gate input
switch
application
e.g. motion control, power conversion

② Grow in adjacent fields
› Invest into products for digital control loop including algorithms for drives

① Strengthen core
› Complement leadership in today's discrete power and module portfolio with SiC and GaN

③ New

③ Broaden scope to new applications
› System understanding and strong R&D force allow us to enter emerging power applications
Clear #1 position in power allows driving four key areas of differentiation and innovation:

1. Unique 300 mm thin wafer power semiconductor manufacturing
2. Compound semiconductors SiC and GaN
3. Digitalization of the power control loop
4. Functional integration
Industrial Power Control
Increasing demand for electrical energy is driving our power business.

Shaping the electrical energy chain

1) Source: BP 2018 Energy Outlook
IPC at a glance: market leader in discrete IGBTs, IGBT modules and Driver ICs

IPC revenue and Segment Result margin

<table>
<thead>
<tr>
<th>Year</th>
<th>IPC revenue [EUR m]</th>
<th>IPC Segment Result margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY13</td>
<td>652</td>
<td>6%</td>
</tr>
<tr>
<td>FY14</td>
<td>783</td>
<td>18%</td>
</tr>
<tr>
<td>FY15</td>
<td>971</td>
<td>12%</td>
</tr>
<tr>
<td>FY16</td>
<td>1073</td>
<td>12%</td>
</tr>
<tr>
<td>FY17</td>
<td>1206</td>
<td>15%</td>
</tr>
<tr>
<td>FY18</td>
<td>1323</td>
<td>19%</td>
</tr>
</tbody>
</table>

CAGR\(_{(FY13-FY18)}\): +15.2%

Split by major segments

- Discretes (incl. bare die)
- Modules
- IPM/ Driver ICs

Key customers

Distribution and EMS partners

- ABB
- ALSTOM
- Midea
- Schneider Electric
- Nidec
- Rockwell Automation
- SUNGROW
- Rockwell Automation
- Siemens
- Inovance
- Vestas
- Goldwind
- Yaskawa
- TOSHIBA
IPC at a glance: well-balanced portfolio of applications; China represents ~1/3 of sales

IPC FY18 revenue by application

- Drives
- Home appliances
- Renewable energies
- Traction
- Others

Distribution share: ~40%

IPC FY18 revenue by region

- EMEA
- Americas
- Japan
- APAC
- China

US$ exposure: ~30%

Copyright © Infineon Technologies AG 2018. All rights reserved.
IPC business in China rather robust due to considerable amount of infrastructure projects

FY18 revenue by application

- **100%**
 - Others
- **Home appliances**
- **Industrial power supplies**
- **Industrial drives**
 - PV
 - CAV
 - Wind
 - Traction
 - T&D

Key insights

- Inverterization trend ongoing – backed by regional regulations
- As follower in IPMs we gain sockets from competition
- "Made in China 2025" causes stable demand for industrial drives to upgrade factory automation
- PV is a key instrument for China to balance increasing electricity demand with environmental pollution
- China with strong industry in PV
- eBus deployment in cities is a key measure to limit pollution levels
- Growth expected on moderate level for onshore, offshore accelerating
- Governmental decisions focus on large projects
- Chinese top OEM increasingly grow outside of China
Clear leader in discrete IGBTs and IGBT modules; IPMs improved from #4 to #3

Discrete IGBTs

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infineon</td>
<td>38.5%</td>
</tr>
<tr>
<td>Fuji Electric</td>
<td>12.0%</td>
</tr>
<tr>
<td>ON Semi</td>
<td>11.6%</td>
</tr>
<tr>
<td>STMicro</td>
<td>5.2%</td>
</tr>
<tr>
<td>MagnaChip</td>
<td>4.1%</td>
</tr>
<tr>
<td>Renesas</td>
<td>3.7%</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>3.6%</td>
</tr>
<tr>
<td>Toshiba</td>
<td>3.4%</td>
</tr>
<tr>
<td>Littelfuse</td>
<td>2.6%</td>
</tr>
<tr>
<td>IXYS</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Total market in 2017: $1.10bn

IPMs

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi</td>
<td>36.4%</td>
</tr>
<tr>
<td>ON Semi</td>
<td>18.7%</td>
</tr>
<tr>
<td>Infineon</td>
<td>10.3%</td>
</tr>
<tr>
<td>Fuji Electric</td>
<td>9.9%</td>
</tr>
<tr>
<td>Semikron</td>
<td>4.9%</td>
</tr>
<tr>
<td>Sanken</td>
<td>3.2%</td>
</tr>
<tr>
<td>STMicro</td>
<td>1.7%</td>
</tr>
<tr>
<td>Rohm</td>
<td>1.2%</td>
</tr>
<tr>
<td>Microchip**</td>
<td>0.6%</td>
</tr>
<tr>
<td>Starpower</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Total market in 2017: $1.57bn

IGBT modules*

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infineon</td>
<td>32.6%</td>
</tr>
<tr>
<td>Fuji Electric</td>
<td>10.5%</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>9.6%</td>
</tr>
<tr>
<td>Semikron</td>
<td>8.3%</td>
</tr>
<tr>
<td>Vincotech</td>
<td>5.9%</td>
</tr>
<tr>
<td>Hitachi</td>
<td>3.8%</td>
</tr>
<tr>
<td>Danfoss</td>
<td>3.2%</td>
</tr>
<tr>
<td>Toshiba</td>
<td>2.4%</td>
</tr>
<tr>
<td>Bosch</td>
<td>2.0%</td>
</tr>
<tr>
<td>Starpower</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

* Including standard (non-integrated) IGBT modules and power integrated modules (PIMs) / converter inverter brake (CIB) modules.

** On 29 May 2018, Microchip closed the acquisition of Microsemi. The 2017 revenue depicted here was contributed entirely by Microsemi.

Source: Based on or includes content supplied by IHS Markit, Technology Group, "Power Semiconductor Market Share Database 2017", September 2018.
IPC's mid-term growth is based on a broad range of applications.

- **Industrial automation, cobots**: inverterization; cobots: acceptance to accelerate due to ever higher safety levels and ease of use.

- **Renewable energies**: grid parity reached; higher growth from China, India, RoW.

- **Home appliances**: inverterization; growth in China; strong market success with IPMs.

- **Others**: energy storage; electric buses; electric delivery vehicles; EV infrastructure.

5-year planning horizon

CAGR: ~8%
Three strategic levers to outgrow the power semiconductor market

Strengthen core
- Complement technology leadership and #1 position in IGBT standard modules with next-generation WBG power semis with focus on SiC (CoolSiC™)
- Continuously increase scale leadership with 300 mm
- Exploit scale in R&D

Grow in adjacent fields
- Invest into growth of IPM business, using existing IGBT, driver and iMOTION™ portfolio to become top-3 player in IPMs soon
- Invest into products for digital control sequence for IPC including algorithms for drives

Broaden scope to new applications
- System understanding and strong R&D force enable entering emerging power applications like charging infrastructure for xEV, Commercial and Agriculture Vehicles (CAV), eMarine, eAviation
IPC's biggest application "drives" segmented by end applications in the industry

Industrial drives

<table>
<thead>
<tr>
<th>Servo drives</th>
<th>General purpose drives</th>
<th>High-power drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>64%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Examples

- **Servo drives**
 - robotics
 - material handling
 - machine tools

- **General purpose drives**
 - pumps & fans
 - process automation
 - cranes
 - marine drives

- **High-power drives**
 - oil & gas industry
 - chemical industry (e.g. air compressors)
 - marine drives

Source: Based on or includes content supplied by IHS Markit, Technology Group, “Industrial Motor Controls Source Book”, December 2017; share by revenue.
With an increasing number of applications, particularly module players will win in SiC

SiC power semiconductors by application

CAGR\(_{(17-23)}\): 26.6%

<table>
<thead>
<tr>
<th>Application</th>
<th>2017</th>
<th>2023e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full SiC Modules</td>
<td>399</td>
<td>1,644</td>
</tr>
<tr>
<td>Hybrid SiC Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC JFETs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC MOSFETs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC Schottky barrier diodes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SiC power semiconductors by product type

<table>
<thead>
<tr>
<th>Product Type</th>
<th>2017</th>
<th>2023e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full SiC Modules</td>
<td>31.7%</td>
<td></td>
</tr>
<tr>
<td>Hybrid SiC Modules</td>
<td>16.5%</td>
<td></td>
</tr>
<tr>
<td>SiC JFETs</td>
<td>38.9%</td>
<td></td>
</tr>
<tr>
<td>SiC MOSFETs</td>
<td>27.0%</td>
<td></td>
</tr>
<tr>
<td>SiC Schottky barrier diodes</td>
<td>28.4%</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Based on or includes content supplied by IHS Markit, Technology Group, "SiC and GaN Power Semiconductors Report - 2018", April 2018, mid case.
Cold Split technology allows splitting of processed SiC wafers

SiC raw wafer → device processing, first run → wafer splitting (several individual steps, see below) → device processing, second run → dicing

- Thin wafer
- Reusable wafer
- Thin wafer

Cold Split technology

- Laser
- Deposit polymer
- Cool down and split
- Remove polymer
IPC's digital control strategy enables our customers to reduce their systems significantly.

- Solution based on standard IPM
- Solution based on CIPOS™ Nano
- Solution based on iMOTION™ Smart IPM

Customer benefits of highly integrated power ICs:

- Significant system cost reduction with BoM savings of ~30%
- Reduction in engineering efforts
- Reduction in time-to-market
What comes next? Mid- to long-term structural growth opportunities

Core

- Silicon Carbide
- New material
- EV charging
- cobots

Adjacent

- Solar pumps
- Energy storage
- eDelivery vehicles

New area

- Fuel cell
- eMarine
- eAviation

Courtesy: Siemens AG

Courtesy: Lilium GmbH

Courtesy: McKinsey

Courtesy: Shakti pumps

Courtesy: Alstom

Copyright © Infineon Technologies AG 2018. All rights reserved.
PMM – Power
PMM at a glance

PMM revenue and Segment Result margin

PMM revenue

- FY13: 986 [EUR m]
- FY14: 1061
- FY15: 1795
- FY16: 2050
- FY17: 2147
- FY18: 2318

CAGR (FY13-FY18): +18.6%

PMM Segment Result margin

- FY13: 15%
- FY14: 16%
- FY15: 20%
- FY16: 16%
- FY17: 20%
- FY18: 23%

Split by major segments

- RF & Sensing
- Power
- HiRel

Key customers

- PMM at a glance

Distribution and EMS partners

- PMM revenue and Segment Result margin

Copyright © Infineon Technologies AG 2018. All rights reserved.
PMM has a high exposure to the US$ as most of the Asia revenue is US$-denominated.

PMM FY18 revenue by application:
- Computing
- Industrial
- Communications
- Consumers
- Other

Distribution share: ~60%

PMM FY18 revenue by region:
- EMEA
- APAC
- China
- Americas
- Japan

US$ exposure: ~80%
Infineon is the clear leader in MOSFETs; growth potential in power ICs

Discrete Power MOSFET market
total market in 2017: $6.65bn

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infineon</td>
<td>26.3% (+0.3%-pt)</td>
</tr>
<tr>
<td>ON Semi</td>
<td>12.8%</td>
</tr>
<tr>
<td>Renesas</td>
<td>9.2%</td>
</tr>
<tr>
<td>Toshiba</td>
<td>7.4%</td>
</tr>
<tr>
<td>STMicro</td>
<td>6.8%</td>
</tr>
<tr>
<td>Vishay</td>
<td>5.6%</td>
</tr>
<tr>
<td>A & O</td>
<td>4.6%</td>
</tr>
<tr>
<td>Nexperia</td>
<td>3.7%</td>
</tr>
<tr>
<td>Microchip*</td>
<td>2.6%</td>
</tr>
<tr>
<td>MagnaChip</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Power IC market
total market in 2017: $23.6bn

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI</td>
<td>15.9%</td>
</tr>
<tr>
<td>Qualcomm</td>
<td>8.1%</td>
</tr>
<tr>
<td>Infineon</td>
<td>7.6% (+0.3%-pt)</td>
</tr>
<tr>
<td>ADI</td>
<td>7.4%</td>
</tr>
<tr>
<td>STMicro</td>
<td>5.6%</td>
</tr>
<tr>
<td>ON Semi</td>
<td>4.9%</td>
</tr>
<tr>
<td>Dialog</td>
<td>4.9%</td>
</tr>
<tr>
<td>Maxim</td>
<td>3.9%</td>
</tr>
<tr>
<td>NXP</td>
<td>3.8%</td>
</tr>
<tr>
<td>Renesas</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

* On 29 May 2018, Microchip closed the acquisition of Microsemi. The 2017 revenue depicted here was contributed entirely by Microsemi.
Source: Based on or includes content supplied by IHS Markit, Technology Group, "Power Semiconductor Market Share Database 2017", September 2018.
Discrete Power MOSFET market incl. automotive MOSFETs. Power IC market incl. automotive power ICs.
Three strategic levers to outgrow the power semiconductor market

Strengthen core
- Complement technology leadership and #1 position in CoolMOS™ and OptiMOS™ with next-generation wide band gap power semis (CoolGaN™, CoolSiC™)
- Continuously increase scale leadership with 300 mm
- Exploit scale in R&D

Grow in adjacent fields
- Complement core (= switch and driver ICs) by adding further (digital) power management ICs
- Grow into adjacent markets such as class D audio amplifiers or PoL in telecom and data center

Broaden scope to new applications
- System understanding and strong R&D force allow us to enter emerging power applications like AI data center, wireless power, EV on-board charger, infrastructure, cobots and low-speed electric vehicles
PMM's mid-term growth in power is strongly driven by several high-growth applications.

5-year planning horizon

- **Battery-powered applications**
 - E.g. power tools, consumer devices, robots and drones

- **xEV and LSEV**
 - Densification of charging infrastructure; power semis for on-board charger and battery switch (CoolMOS™)

- **Data center**
 - Classical data centers and high-computing data centers for AI

- **Powering 5G**
 - Densification of infrastructure; higher number of antennas in radio boards (massive MIMO) drives MOSFET content
Four interrelated trends drive power semiconductor BoM in battery-powered applications

<table>
<thead>
<tr>
<th>Interrelated trends for battery-powered applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From corded to cordless power tools</td>
</tr>
<tr>
<td>2. From brushed DC to brushless DC motors</td>
</tr>
<tr>
<td>3. Trend towards higher power and higher battery voltage</td>
</tr>
<tr>
<td>4. New applications with trend towards "batteryfication"</td>
</tr>
</tbody>
</table>

BoM increase:
- power semiconductor content increase up to 4x for DIY tools

Premium products:
- ~15% higher ASP for MOSFETs and drivers

significant volume increase

In total battery-powered applications are a significant growth driver for PMM’s power business
Highly differentiating solution for data centers enables significant opex and capex reduction

Structural trends for data center

- Higher memory content; higher computing power
- Diversified processor supplier base: AMD, ARM, Intel, NVIDIA, Xilinx
- Data center operators invest in proprietary processor designs

Data center power flow optimized by Infineon

- **CoolMOS™** and **CoolGaN™** enable 2x the output power in a given slot size

- Digital power solutions based on **OptiMOS™**, driver and control ICs supporting latest processor technologies

Customer benefit

- **Capex reduction**: doubling computing power per server rack
- **Opex savings**: higher efficiency of power conversion reduces electricity cost (computing & cooling)
Transition from 3G/4G to 5G drives demand in power semis for antennas and power supplies

- driver #1: massive growth of data and computing power
- driver #2: higher number of base stations due to denser network
- driver #3: ~4x higher power semiconductor content per radio board:
 - from ~$25 for MIMO antenna to ~$100 for massive MIMO antenna array
- driver #4: fog computing data center as a completely new market
What comes next? Mid- to long-term structural growth opportunities

<table>
<thead>
<tr>
<th>Core</th>
<th>Adjacent</th>
<th>New area</th>
</tr>
</thead>
<tbody>
<tr>
<td>5G infrastructure</td>
<td>on-board charger</td>
<td>collaborative robots</td>
</tr>
<tr>
<td>hyperscale AI data center</td>
<td>wireless charging</td>
<td>smart speaker</td>
</tr>
<tr>
<td>new material</td>
<td>battery main switch</td>
<td>class D audio</td>
</tr>
<tr>
<td>CoolGaN™</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part of your life. Part of tomorrow.
Dr. Peter Wawer
Division President Industrial Power Control

since 2016: Division President Industrial Power Control

2012: Member of the Management Board of the Power Management & Multimarket Division

2011: Senior VP Technology and Production at Q-Cells SE in Bitterfeld, Germany

2008 – 2011: Senior VP Technology at Q-Cells SE

1997 – 2008: various position at Infineon

Dr. Peter Wawer was born in Berlin, Germany, in 1967. He holds a Diploma in Electrical Engineering from the Technical University in Berlin where he also received his PhD.

He joined Infineon (Siemens AG until 1999) in 1997.
Andreas Urschitz was born in Klagenfurt, Austria, in 1972. He holds a master's degree in Commercial Science from the Vienna University of Economics and Business.

He joined Infineon (Siemens AG until 1999) in 1995.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>AC-DC</td>
<td>alternating current - direct current</td>
</tr>
<tr>
<td>BLDC</td>
<td>brushless direct current</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DC-DC</td>
<td>direct current - direct current</td>
</tr>
<tr>
<td>EMS</td>
<td>electronic manufacturing services</td>
</tr>
<tr>
<td>GaAs</td>
<td>gallium arsenide</td>
</tr>
<tr>
<td>GaN</td>
<td>gallium nitride</td>
</tr>
<tr>
<td>HST</td>
<td>high-speed train</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>IGBT</td>
<td>insulated-gate bipolar transistor</td>
</tr>
<tr>
<td>IPM</td>
<td>intelligent power module</td>
</tr>
<tr>
<td>LSEV</td>
<td>low-speed electric vehicle</td>
</tr>
<tr>
<td>MIMO</td>
<td>multiple input, multiple output</td>
</tr>
<tr>
<td>MOSFET</td>
<td>metal-oxide silicon field-effect transistor</td>
</tr>
<tr>
<td>OBC</td>
<td>on-board charger</td>
</tr>
<tr>
<td>OEM</td>
<td>original equipment manufacturer</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>R(_{(DS)on})</td>
<td>drain-source on resistance</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RoW</td>
<td>rest of world</td>
</tr>
<tr>
<td>Si</td>
<td>silicon</td>
</tr>
<tr>
<td>SiC</td>
<td>silicon carbide</td>
</tr>
<tr>
<td>T&D</td>
<td>transport and distribution</td>
</tr>
<tr>
<td>WBG</td>
<td>wide band gap</td>
</tr>
</tbody>
</table>
Disclaimer

This presentation contains forward-looking statements about the business, financial condition and earnings performance of the Infineon Group.

These statements are based on assumptions and projections resting upon currently available information and present estimates. They are subject to a multitude of uncertainties and risks. Actual business development may therefore differ materially from what has been expected.

Beyond disclosure requirements stipulated by law, Infineon does not undertake any obligation to update forward-looking statements.

Specific disclaimer for IHS Markit reports, data and information referenced in this document:

The IHS Markit reports, data and information referenced herein (the "IHS Markit Materials") are the copyrighted property of IHS Markit Ltd. and its subsidiaries ("IHS Markit") and represent data, research, opinions or viewpoints published by IHS Markit, and are not representations of fact. The IHS Markit Materials speak as of the original publication date thereof and not as of the date of this document. The information and opinions expressed in the IHS Markit Materials are subject to change without notice and neither IHS Markit nor, as a consequence, Infineon have a duty or responsibility to update the IHS Markit Materials or this presentation. Moreover, while the IHS Markit Materials reproduced herein are from sources considered reliable, the accuracy and completeness thereof are not warranted, nor are the opinions and analyses which are based upon it. IHS Markit and the trademarks used in the data, if any, are trademarks of IHS Markit. Other trademarks appearing in the IHS Markit Materials are the property of IHS Markit or their respective owners.