太阳能逆变器IGBT选型指导

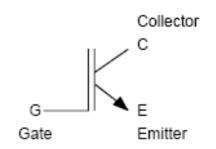
"英飞凌杯"第二届嵌入式处理器和功率电子设计应用大奖赛

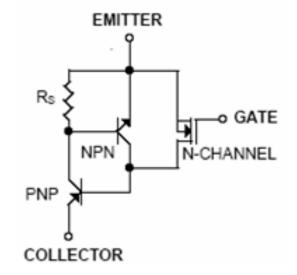
Never stop thinking

Table of Contents

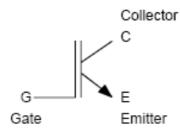
IGBT basics

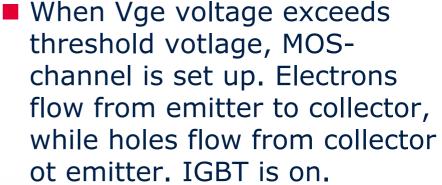
Infineon IGBT datasheet understanding


Infineon discrete IGBT portfolio

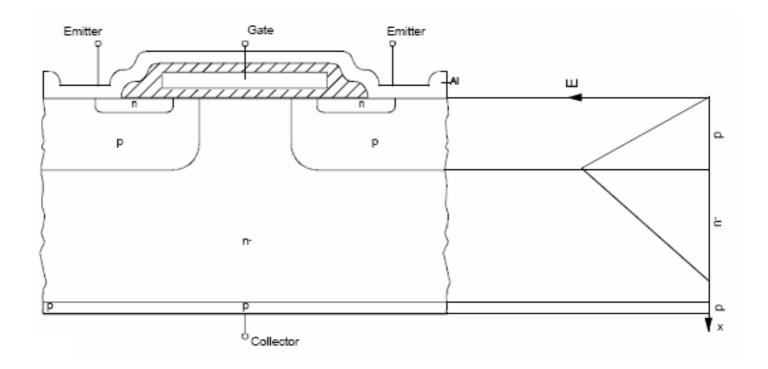

Infineon IGBT characteristics

IGBT basics

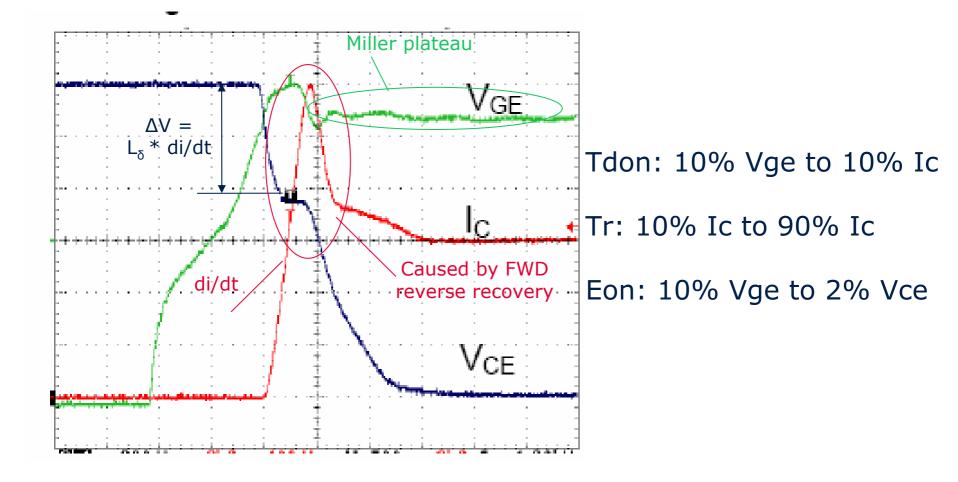

- Insulated gate bipolar transistors (IGBT) are semiconductors that combine a high voltage and high current bipolar junction transistor (BJT) with a low power and fast switching metal-oxide semiconductor field-effect transistor (MOSFET).
- Consequently, IGBTs provide faster speeds and better drive and output characteristics than power BJTs and offer higher current densities than equivalent high-powered MOSFETs.



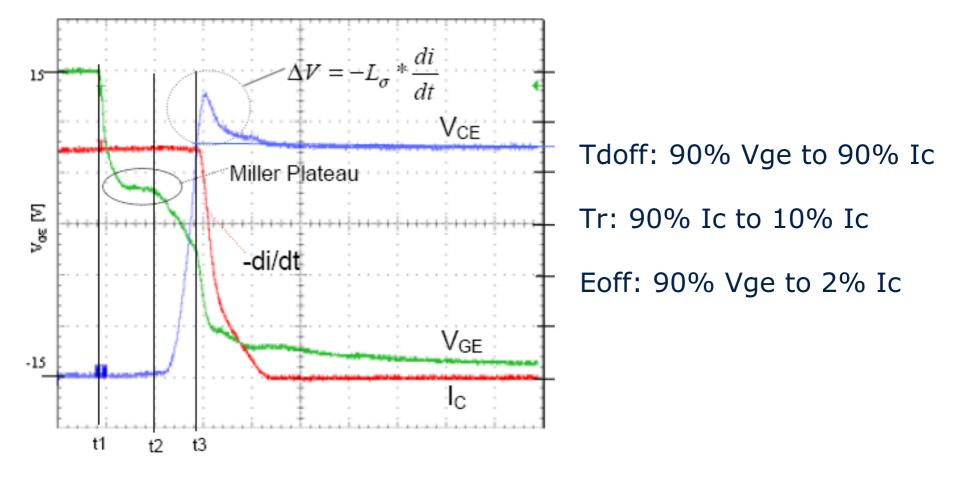
IGBT basic structure (on-state)



IGBT basic structure (on-state)


When IGBT is off, IGBT internal PN junction endure the reverse voltage from emitter to collector.

Turn on & turn off


Typical turn on wave form

infineon

Turn on & turn off

Typical turn on wave form

- Performance specifications for insulated gate bipolar transistors (IGBTs) include:
 - collector-emitter breakdown voltage
 - □ collector-emitter "on" or saturation voltage
 - maximum collector current
 - rise time
 - □ fall time
 - switching speed
 - power dissipation and temperature

Table of Contents

IGBT basics

Infineon IGBT datasheet understanding

Infineon discrete IGBT portfolio

Infineon IGBT characteristics

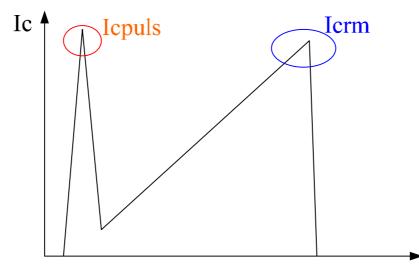
Collector-emitter voltage V _{CE}	2E 1200 V
---	-----------

- Break down voltage is the maximum voltage that IGBT can suffer. In any condition, this parameter can not be violated, otherwise IGBT will broke out.
 - Special attention should be paid when IGBT turning off. The voltage spike due to stray inductance must not exceed this value

DC collector current (T_j =150°C)	I _c		A
$T_{\rm C} = 25^{\circ}{\rm C}$		75 ²	
<i>T</i> _c = 110°C		40	

Nominal current: this value is just a reference calculated value, only concerning DC condition. The calculation formula is as below:

Tjmax = Tc + Ic * Vcesat * Rthjc



Pulsed collector current, t_p limited by T_{jmax}	/ _{Cpuls}	160
Turn off safe operating area	-	160
V _{CE} ≤ 1200V, <i>T</i> _j ≤ 175°C		

Icpuls and Icrm (turn off save operation area) specify the IGBT current capability.

Icpuls is the maximum peak pulse current, the pulse width is limited by the thermal condition (Tjmax)

Icrm is the maximum turn off current.

Gate-emitter voltage	V _{ge}	±20	V
Maximum gate applied voltage, if this gate may be destroyed.	voltage	is exceed, IG	BT

Short circuit withstand time3)	t _{sc}	10	μs
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 600$ V, $T_{\rm j,start} \le 175^{\circ}$ C			

- Short circuit: All Infineon hard switching IGBT are short circuit rated. When short circuit happens under the above condition, turning off IGBT within tsc can insure IGBT not break down.
 - If the Vge is smaller, Vcc is smaller, Tj,start is smaller, the short circuit time can be longer
 - Short circuit is not repetitive test. Only in abnormal condition, it can happen.

Power dissipation	P _{tot}	480	W
$T_{\rm C} = 25^{\circ}{\rm C}$			

Ptot reflect the thermal condition of the IGBT, its calculation formula is:

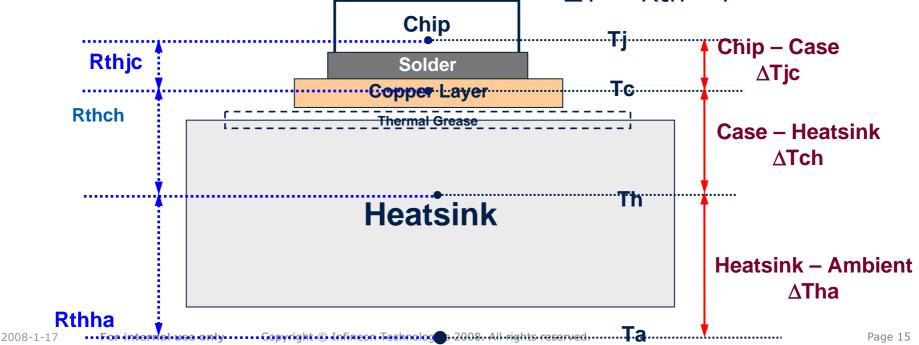
Ptot = (Tjmax – Tc) / Rthjc

Operating junction temperature	T _j	-40+175	°C
Storage temperature	T _{stg}	-55+150	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	
Wavesoldering only, temperature on leads only			

- Tjmax is the max. junction temperature (chip temp.), it can not be exceeded, otherwise IGBT may thermal run away.
- Tstg is the max. temperature when storing IGBT.
- Also soldering temperature is specified.

DC Diode forward current (Tj=150°C)	1 _F	
$T_{\rm c} = 25^{\circ}{\rm C}$		75 ²
<i>T</i> _c = 110°C		40

Nominal current: this value is just a reference calculated value, only concerning DC condition. The calculation formula is as below:
Tjmax = Tc + Ic * Vf * Rthjc


-		1
Diode pulsed current, t_p limited by T_{jmax}	/ _{Fpuls}	160

Ifpuls is the maximum peak pulse current, the pulse width is limited by the thermal condition (Tjmax)

IGBT thermal resistance,	R _{thJC}	0.31	K/W
junction – case			
Diode thermal resistance,	R _{thJCD}	0.53	
junction – case			
Thermal resistance,	$R_{\rm thJA}$	40	
junction – ambient			

Thermal resistance reflect the power dissipation capability of the product, its thermal model is as below:
ΔT = Rth * P

Collector-emitter saturation voltage	V _{CE(sat)}	V _{GE} = 15V, I _C =40A			
		<i>T</i> _j =25°C	-	1.75	2.2
		T _j =150°C	-	2.25	-
		T _j =175°C	-	2.3	-
Diode forward voltage	VF	V _{ge} =0∨, / _F =40A			
		<i>T</i> _j =25°C	-	1.75	2.2
		T _j =150°C	-	1.80	-
		T _j =175°C	-	1.80	-

Saturate voltage of IGBT and forward voltage of diode is specified. Using this value to calculate the conduction losses:

$$P_{cond_IGBT} = V_{cesat} * I_{C} * D$$
 $P_{cond_diode} = V_{F} * I_{F} * D'$

					1
Gate-emitter threshold voltage V _{GE(th)}	$I_{c}=1.5 \text{ mA}, V_{ce}=V_{Ge}$	5.2	5.8	6.4	

Threshold voltage: When Vge exceed this value, IGBT start to turn on. Gate voltage can not always stay at Vth, otherwise the losses would be quite high. The recommend gate trigger voltage is 15V.

Zero gate voltage collector current	I _{CES}	V _{CE} =1200V, V _{GE} =0V				mA
		<i>T</i> _j =25°C	-	-	0.4	
		T _j =15°C	-	-	4.0	
		T _j =175°C	-	-	20	
Gate-emitter leakage current	IGES	V _{CE} =0V, V _{GE} =20V	-	-	200	nA

Vce leakage current and Vge leakage current. These losses can be ignored when doing IGBT losses calculation.

Internal emitter inductance	LE	-	13	-	nH
measured 5mm (0.197 in.) from case					

Package internally also contains stray inductance. Designer should be sure that the peak voltage of the chip not exceed break down voltage (V_B), which means:

Tested from out pin

Input capacitance	Ciss	V _{ce} =25V,	-	2360	-	pF	
Output capacitance	Coss	V _{ge} =0∨,	-	230	-		
Reverse transfer capacitance	Crss	f=1MHz	-	125	-		
Gate charge	Q _{Gate}	V _{cc} =960V, / _c =40A	-	192	-	nC	
		V _{ge} =15V					
Equivalent circuit:							
$\Box Ciss = C_{GE} + C_{GC} ($	output s	horted) C	sc 🖊	Ĭ			
$\Box Coss = C_{GC} + C_{EC}$	(input sh	orted) G ⊶		-K ≠	C _{EC}		
Crss = C_{GC} (Miller capacitance) $C_{GE} \neq C_{CE}$							
				Ι _Ε			

Driving losses can be calculated from these value.

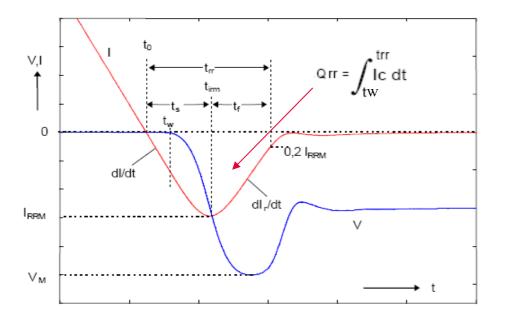
$$P_{G} = f * \Delta V_{GE}^{2} * C_{ies} * 4$$
rough
$$P_{G} = f * \Delta V_{GE} * Q_{g}$$
accurate

		l	L			<u> </u>
Short circuit collector current ¹⁾	I _{C(SC)}	V _{GE} =15V,t _{SC} ≤10µs	-		-	А
		$V_{cc} = 600V$,				
		$T_{j,start} = 25^{\circ}C$		220		
		$T_{j.start} = 175^{\circ}C$		156		

Typical short circuit is given, this current strongly depend on the test condition. Different value can be got in different set up.

Turn-on delay time	t _{d(on)}	T _j =175°C	-	32	-	ns
Rise time	t _r	V _{cc} =600V,/ _c =40A, V _{GE} =0/15V,	-	28	-]
Turn-off delay time	$t_{d(off)}$	$R_{GE} = 0/15V$, $R_{G} = 12\Omega$,	-	405	-]
Fall time	tf	$L_{\sigma}^{(1)} = 180 \text{nH},$	-	195	-	
Turn-on energy	Eon	$C_{\sigma}^{1)}=67 \text{ pF}$ Energy losses include	-	4.5	-	mJ
Turn-off energy	E₀ff	"tail" and diode reverse	-	3.8	-]
Total switching energy	Ets	recovery.	-	8.3	-]

The gate resistor is not recommended to use smaller than the test value.


■ The switching loss can be calculated as: $E_{sw,IGBT}(i) = E_{on,IGBT}(I_{nom}, V_{nom}) + E_{off,IGBT}(I_{nom}, V_{nom}))\frac{i}{I_{nom}} \cdot \frac{V_{dc}}{V_{nom}}$ □ Considering the Esw is in linear with I_{c} and V_{DC}

infineon

Datasheet understanding

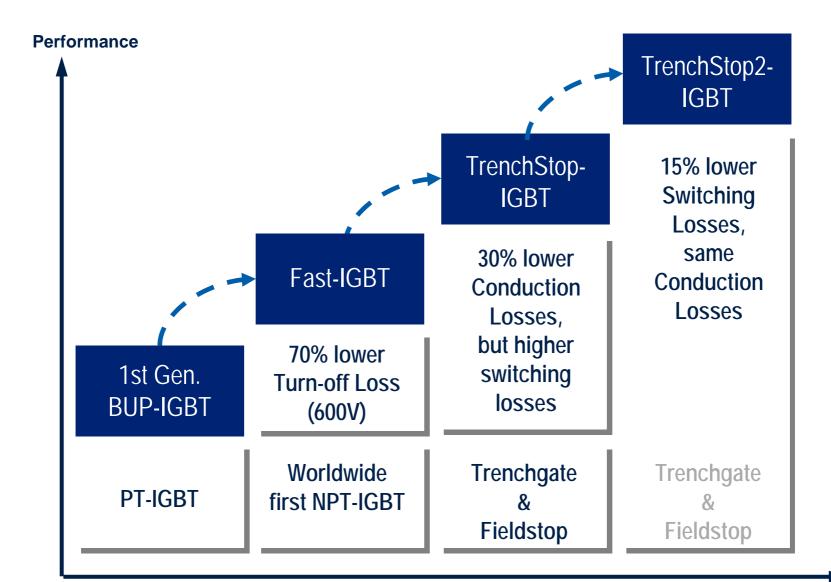
Diode reverse recovery time	t _{rr}	T _j =175°C	-	480	-	ns
Diode reverse recovery charge	Qrr	V _R =600∨, I _F =40A,	-	6.6	-	μC
Diode peak reverse recovery current	l _{rrm}	di⊧/dt=950A/µs	-	31	-	А
Diode peak rate of fall of reverse recovery current during t _b	di _{rr} /dt		-	200		A/μs

Diode reverse recovery energy is not specified. A brief calculation formula is:

 $Erec = \frac{1}{2} * U_{DC} * Q_{rr}$ $Psw_didoe = f * Erec$

Table of Contents

IGBT basics


Infineon IGBT datasheet understanding

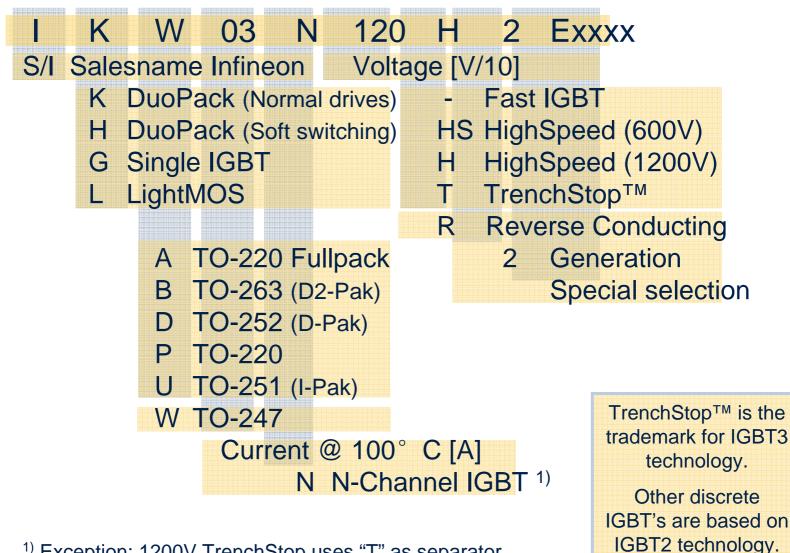
Infineon discrete IGBT portfolio

Infineon IGBT characteristics

Roadmap of Infineon IGBT

2008-1-17 For internal use only Copyright © Infineon Technologies 2008. All rights reserved.

IGBT Technologies (Discrete Technologies)



Tech. Voltage		Planar technology				Т	TrenchStop Technology			
600V		Fast IGBT HighSpeed IGBT				TrenchStop™ IGBT				
1200V		Fast IGBT HighSpeed2 IGBT					IGBT Serie for IH TrenchStop™ IGBTTrenchStop™2			
1600V							IGBT Serie for IH			
	K	W	03	Ν	120	H - HS H T R	2 Exxxx Fast IGBT HighSpeed (600V) HighSpeed (1200V) TrenchStop™ Reverse Conducting 2 Generation			

2008-1-17 For internal use only Copyright © Infineon Technologies 2008. All rights reserved.

Sales Code naming for Discrete IGBT

¹⁾ Exception: 1200V TrenchStop uses "T" as separator

Table of Contents

IGBT basics

Infineon IGBT datasheet understanding

Infineon discrete IGBT portfolio

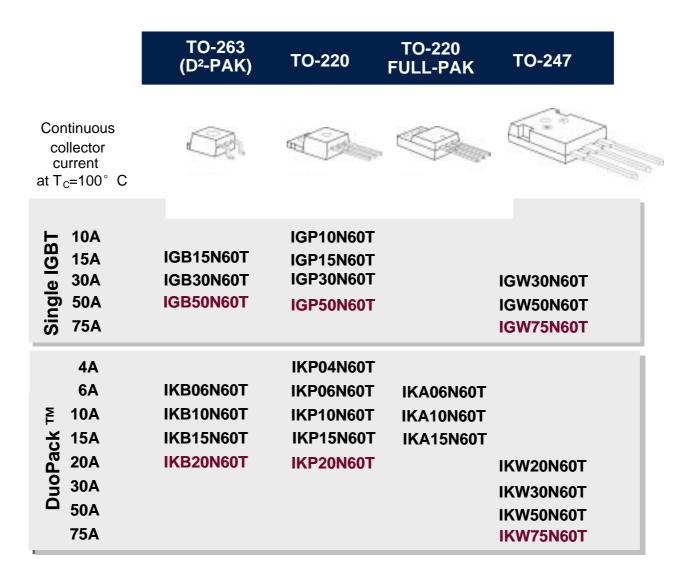
Infineon IGBT characteristics

Overview > 600V <u>Discrete</u>

		IGBT2: Fast	IGBT2: High-speed	IGBT3: Trenchstop
IGBT Tech	nology	Planar + NPT	Planar + NPT	Trench + Fieldstop
IGBT	25 °C	2.0 V	2.8 V	1.5 V
Vce,sat	150 °C	2.4 V	3.5 V	1.8 V @ 175 °C
Diode Tec	hnology	EmCon	EmCon Fast	EmCon HE
Diode	25 °C	1.4 V	1.55 V	1.65 V
Vf	150 °C	1.25 V	1.55 V	1.6 V
fsw Range	Suitable	20-40 kHz	40-80 kHz	up to 40 kHz
Max. Tvj o	peration	150 °C	150 °C	175 °C
Max. SC T	ïme	10 µs	10 µs	5 µs
Discrete Type No.		S60	S60HS	I60T
Target Applications		UPS / Welding / Solar Power	Welding / PFC / SMPS / Lamp Ballast	Drives / UPS / Welding / Solar Power

Switching losses: Highspeed < Fast < TrenchStop Conductin losses: Highspeed > Fast > TrenchStop

Higher the switching frequency, faster IGBT should be used


Fast IGBT 600V Portfolio for Medium Switching Frequencies (f<40kH

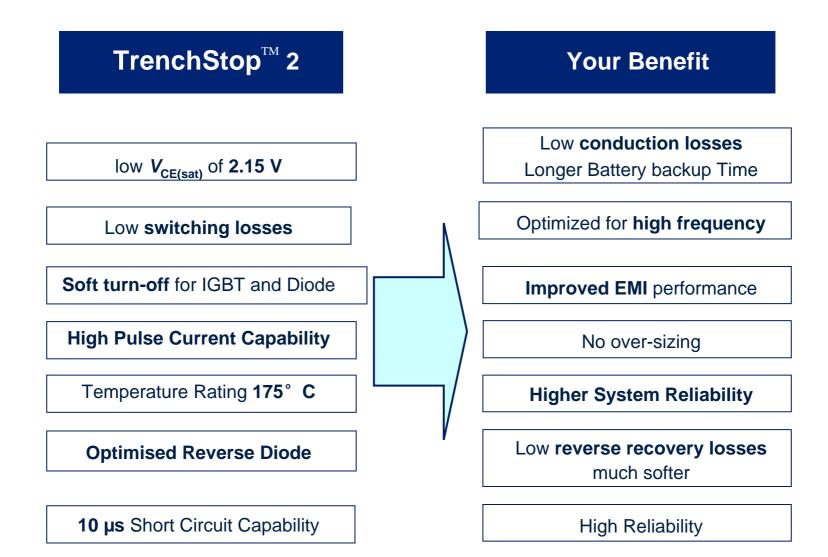
		TO-252 (D-PAK)	TO-263 (D²-PAK)	TO-220	TO-220 FULL-PAK	TO-247
Single IGBT	2A 4A 6A 10A 15A 20A 30A	SGD02N60 SGD04N60 SGD06N60	SGB02N60 SGB04N60 SGB06N60 SGB10N60A SGB15N60 SGB20N60 SGB30N60	SGP02N60 SGP04N60 SGP06N60 SGP10N60A SGP15N60 SGP20N60 SGP30N60	SGA20N60	SGW10N60A SGW15N60 SGW20N60 SGW30N60
DuoPack TM	2A 4A 6A 10A 15A 20A 30A		SKB02N60 SKB04N60 SKB06N60 SKB10N60A SKB15N60	SKP02N60 SKP04N60 SKP06N60 SKP10N60A SKP15N60	SKA04N60 SKA06N60 SKA10N60A	SKW10N60A SKW15N60 SKW20N60 SKW30N60

High Speed IGBT 600V Portfolio for High Switching Frequencies (f<80kHz)

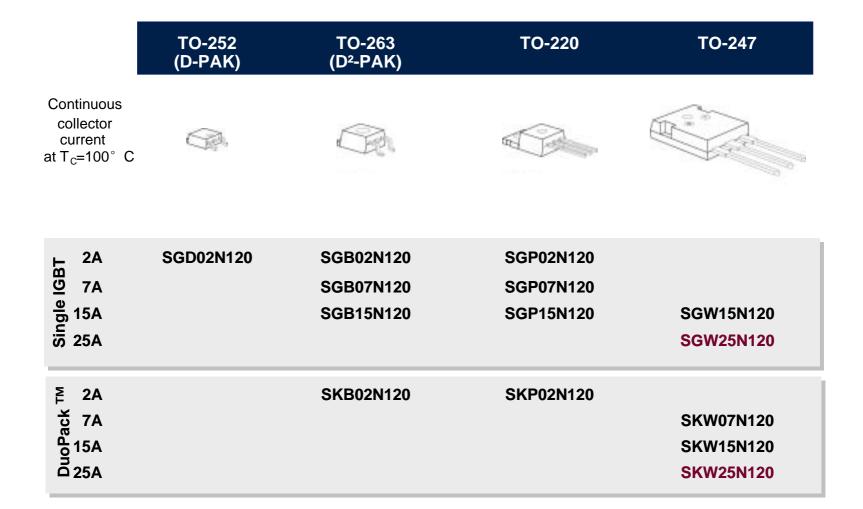
	TO-263 (D²-PAK)	TO-220	TO-247
Continuous collector current at T _C =100° C			
2A 4A 6A 10A 15A 20A 30A 50A	SGB15N60HS	SGP20N60HS SGP30N60HS	SGW20N60HS SGW30N60HS SGW50N60HS
2A 4A 6A 10A 15A 20A 30A	SKB06N60HS SKB15N60HS		SKW20N60HS SKW30N60HS

TrenchStop IGBT 600V Portfolio for Low Switching Frequencies (f <40kHz)

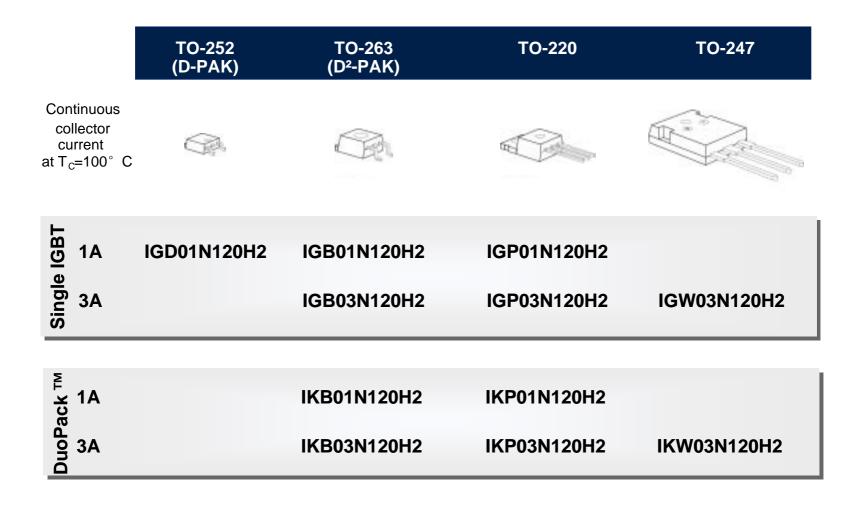
Overview > 1200V <u>Discrete</u> (Hard Switching)

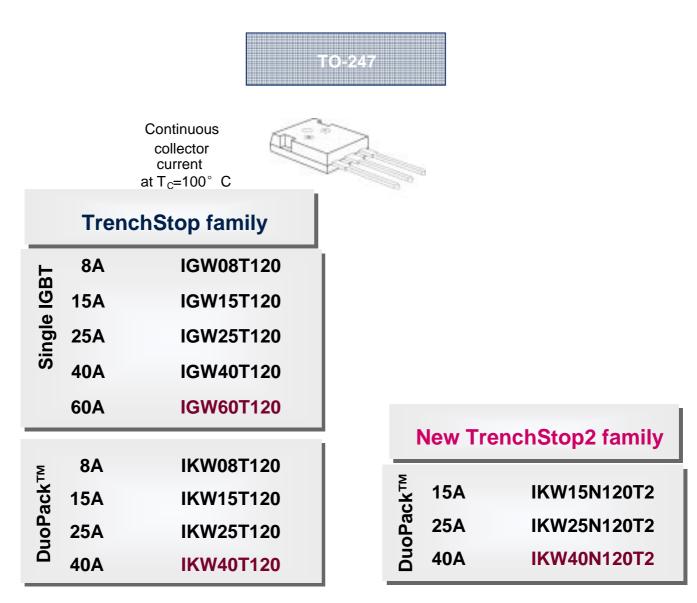


		IGBT2: Fast	IGBT2: High-speed2	IGBT3: TrenchStop	IGBT4: TrechStop2 ^{NEW}
		Planar + NPT	Planar + NPT +	Trench +	Trench +
IGBT Techn	ology		Fieldstop	Fieldstop	Fieldstop
IGBT	25 °C	3.1 V	2.2 V	1.8 V	1.75 V
Vce,sat	150 °C	3.7 V	2.5 V	2.3 V	2.25 V
Diode Techr	nology	EmCon	EmCon HE	EmCon HE	EmCon4
Diode	25 °C	2.0 V	1.75 V	1.75 V	1.75 V
Vf	150 °C	1.75 V	1.75 V	1.75 V	1.8 V
fsw Range S	Suitable	16-40 kHz	40-100 kHz	up to 20 kHz	up to 40 kHz
Max. Tvj op	eration *	150 °C	150 °C	150 °C	175 °C
Max. SC Tin	ne	10 µs	10 µs	10 µs	10 µs
Discrete Typ	pe No.	S120	I120H2	I120T	I120T2
Target Applications		UPS / Welding	Welding / PFC / SMPS / Lamp Ballast	Drives / UPS / Solar Power	Drives / UPS / Welding / Solar Power

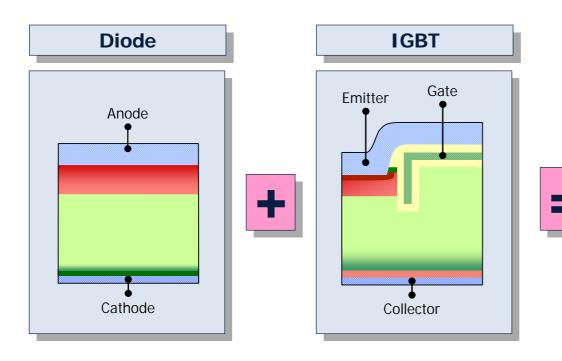

Switching losses: Highspeed < Fast < TrenchStop2 < TrenchStop Conductin losses: Fast > Highspeed > TrenchStop > TrenchStop2

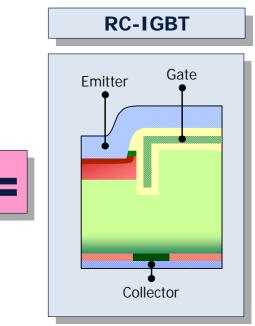
Features and Benefits of TrenchStop[™] 2



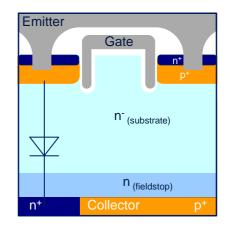

Fast IGBT 1200V Portfolio for Medium Switching Frequencies (f <40k

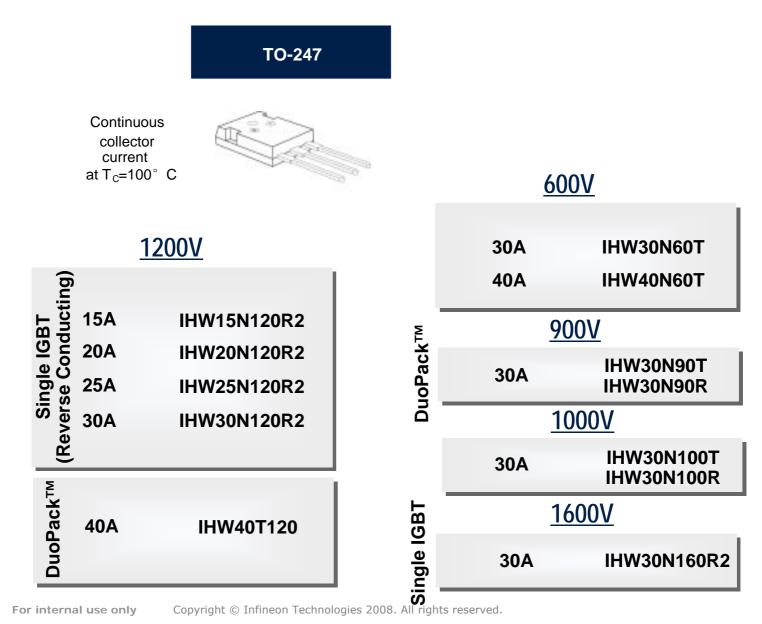
HighSpeed2 IGBT 1200V Portfolio for High Switching Frequencies (f<100kHz)


TrenchStop IGBT 1200V Portfolio for Low Switching Frequencies (f <20kHz)



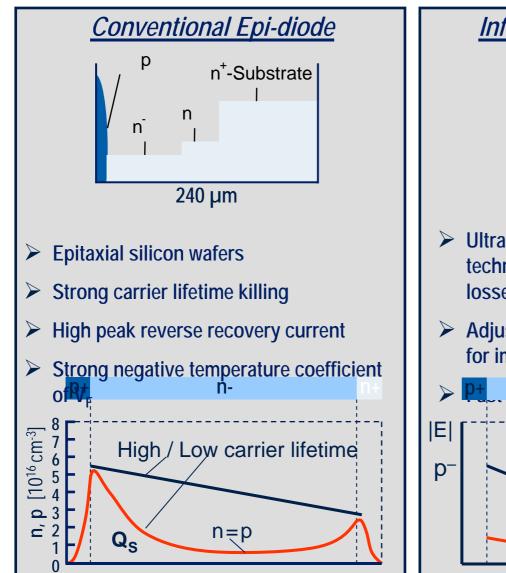
2008-1-17 For internal use only Copyright © Infineon Technologies 2008. All rights reserved.

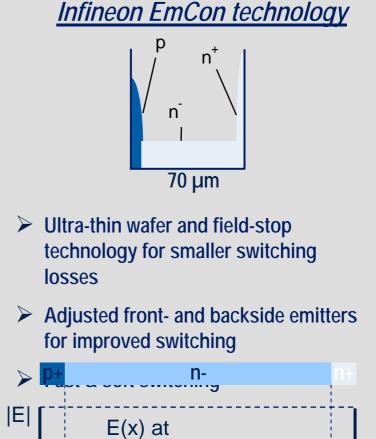

Reverse conducting IGBT


RC: Reverse Conducting

- Monolithic Trench-Fieldstop IGBT + Diode
- RC-diode utilizing complete chip area hence same Rth as RC-IGBT
- Only for soft-switching applications (resonance circuit), as RC-diode not commutation-proof

Portfolio for Soft Switching IGBT TrenchStop IGBT 600V / 900V /1000V /1200V





For internal use only 2008-1-17

Discrete EmCon[™] Diodes Product Family 600V & 1200V

n-

 $U_{R} = U_{DC}$

n=p

n+

Discrete EmCon[™] Diodes Product Family 600V & 1200V

		TO-252 (D-PAK)	TO-263 (D²-PAK)	TO-220	TO-247
for cu	tinuous ward rrent ,= 100° C	P-T0252-1	P.T02853-2	P-T0220-22	
600V	3A 6A 9A 15A 23A 30A 45A	IDD03E60 IDD06E60 IDD09E60 IDD15E60 IDD23E60	IDB06E60 IDB09E60 IDB15E60 IDB23E60 IDB30E60 IDB45E60	IDP06E60 IDP09E60 IDP15E60 IDP23E60 IDP30E60 IDP45E60	IDW75E60 IDW100E60
1200V	4A 9A 12A 18A 30A		IDB04E120 IDB09E120 IDB12E120 IDB18E120 IDB30E120	IDP04E120 IDP09E120 IDP12E120 IDP18E120 IDP30E120	

For any question, please contact us:

- Zhou Yizheng
- ¬ Tel: 021 61019242
- ¬ E-mail: <u>Yizheng.zhou@infineon.com</u>
- ¬ Chen Simon
- ¬ Tel: 021 61019220
- E-mail: <u>Simon.chen@infineon.com</u>

We commit. We innovate. We partner. We create value.

Never stop thinking