

Appl icat ion Note, V 1.0, September 2005

XC866
Two Phase Stepper Motor Control
wi th the XC866

Microcontrol lers

AP0801510

N e v e r s t o p t h i n k i n g .

Revision History: 1.0 V 1.0
Previous Version: -
Page Subjects (major changes since last revision)

Controller Area Network (CAN): License of Robert Bosch GmbH

XC866

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

Edition 2005-09-01

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

AP0801510
Two Phase Stepper Motor Control

Introduction

Application Note 3 V 1.0

1 Introduction
Small Two Phase Stepper Motors are popular for instrumentation since they provide
easy to see information to the end user. Applications such as vehicle instrument
clusters employ these types of motors in high volumes. This ApNote describes how to
control two phase stepper motors with the powerful CAPCOM6E peripheral of the
Infineon XC866 8-bit 8051 based flash microcontroller.

AP0801510
Two Phase Stepper Motor Control

Two Phase Stepper Motor Structure

Application Note 4 V 1.0

2 Two Phase Stepper Motor Structure
A two Phase Stepper Motor is a four pin device that contains two coils and a
permanent magnet rotor as shown in Figure 1. The coils can be controlled
independently and can carry either positive or negative current by controlling the
voltages. A ferrite metal usually channels the flux created by the coils closer to the
rotor so that the air gap can be reduced.

Figure 1 Two Phase Stepper Motor Structure

One or more gears are often connected to the rotor. A pointing device may also be
connected to the gears so that one revolution of the rotor shaft moves the pointer only
a few degrees or even just a fraction of a degree.

N

S

- V1 +

- V
2 +

Pin 1Pin 2

Pin

Pin

AP0801510
Two Phase Stepper Motor Control
Two Phase Stepper Motor Operation

Application Note 5 V 1.0

3 Two Phase Stepper Motor Operation
When current flows through the stator coils, flux is produced and channeled through
the ferrite material and then jumps the air gap to interact with the rotor. The rotor tries
to align itself with the stator flux. This is similar to the behavior of a switched
reluctance motor. There are several different methods that can be used to control the
position of the stepper motor.

3.1 Full Stepping

By energizing one coil at a time, the rotor can make one complete rotation by taking 4
steps as shown in figure 2. This is referred to as “Full Stepping”. Each full step is 90
electrical degrees (0°, 90°, 180°, 270°, 360°).

Figure 2 Full Stepping a Stepper Motor

3.2 Half Stepping

By energizing both coils at the same time the rotor can move into a position half way
between two full steps (45°, 135°, 225°, 315°). This is called Half Stepping. Using a
combination of Full Steps and Half Steps, the motor can be moved 8 steps per
revolution as shown in figure 3 giving a resolution of 45 electrical degrees.

N

S

N S
N

S

NS

AP0801510
Two Phase Stepper Motor Control
Two Phase Stepper Motor Operation

Application Note 6 V 1.0

Figure 3 Half Stepping a Stepper Motor

To produce the currents in the motor coils for full/half stepping, both ends of both coils
must be able to be driven high or low. The coil voltages for the full/half stepping
pattern in Figure 3 are shown in Figure 4 (the block voltages). Figure 4 assumes the
coils are labeled as shown in Figure 1.

Figure 4 Coil Voltages for Half Stepping a Stepper Motor

N

S

Step 1

N

S

Step 2

N

S

Step 3

N S

Step 4

N

S

Step 5
N

S

Step 6

N

S

Step 7

NS

Step 8

 V1

 V2

Vol
ts

Vol
ts

AP0801510
Two Phase Stepper Motor Control
Two Phase Stepper Motor Operation

Application Note 7 V 1.0

The block voltages shown in figure 4 are shifted 90º from each other. The dotted lines
in Figure 4 show a smoothed sinusoidal version of the coil voltages. One voltage
could be considered a sine function of the desired rotor position, and the other can be
considered a cosine function.

3.3 Micro Stepping

It is possible to get even higher resolution than 45 degrees if a wider range of voltages
can be applied to the coils. The resolution of the rotor position is then dependent on
the resolution of the voltage that can be applied (and mechanical tolerances of the
motor and gears). Ideally, sinusoidal voltages can be applied to the coils to produce
the maximum rotor resolution (see Figure 4) and smooth rotor movement. This is
referred to as micro-stepping.
Pulse Width Modulation (PWM) signals can be generated by a microcontroller to
produce sinusoidal voltages. To produce sinusoidal voltages on a coil, only one
channel of PWM is required. One end of the coil can be driven by a PWM signal to
control the magnitude of the voltage and the other end of the coil can be held high or
low to control the direction of the voltage as shown in Figure 5.

Figure 5 Using PWM to Produce Sinusoidal Voltages

By driving Coil 1 with a sine function and Coil 2 with a cosine function, the rotor angle
can be controlled to a high degree of accuracy. If 8-bit PWM is used to drive the
motor, then the rotor can achieve 512 discrete positions per revolution.

PWM
(Magnitude)

High or Low
(Direction)

Stepper Motor Micro Step Outputs

0%

20%

40%

60%

80%

100%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Microstep (128 per electrical revolution)

D
ut

y
C

yc
le

PWM duty cycle
Polarity

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 8 V 1.0

4 Determination of Step Timing
There is no rotor position measurement device in most stepper motor systems.
Therefore the microcontroller must assume that the rotor aligns itself with the
commanded angle. If the assumed and actual rotor angles differ enough, then the
rotor can take a step backwards.
To ensure that the motor never misses a step, the microcontroller must ensure that the
rotor is never commanded to accelerate or decelerate beyond its physical limits.
Figure 6 shows the shape of a torque/speed curve for a hypothetical stepper motor.
The torque that the motor can produce decreases as the motor speed decreases.

Figure 6 Typical Torque/Speed Curve a Two Phase Stepper Motor

So at higher speeds the motor cannot accelerate or decelerate as quickly as it can at
lower speeds. For safe operation the speed and acceleration of the motor must be
closely controlled.

Acceleration can be thought of as ∆ω/∆t. ∆ω is the difference between current velocity
and desired velocity. ∆t is not quite so straight forward. For a stepper motor to safely
increase or decrease its speed, it should reach the desired velocity after two full steps
of rotation (180°). If the motor is capable of changing from the current velocity to the
commanded velocity in the amount of time that it takes to make two full steps (at the
desired velocity), no steps will be lost. If however, the actual rotor position ever falls
more than 180º behind the commanded position, a step will be lost.

To ramp the motor from stand-still up to its maximum speed in the fastest amount of
time without loosing any steps, the motor should be driven at a constant speed for
180°. Then the speed can be increased for another 180°, and so on, until the desired
motor speed has been reached. To determine the maximum speed for each 180° of

Speed

To
rqu

e

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 9 V 1.0

rotation, some off-line calculations need to be done using the Torque/Speed curve of
the motor.

The torque produced by a motor can be expressed as:

In this case we know J and T (as a function of speed) from the motor data sheet. We
are trying to find the maximum values of α that will be just under the maximum torque
that the motor can produce.

α as mentioned before is ∆ω/(2 full step times). The time for two full step is π/ω. So
equation [1] can be re-written as:

4.1 Start/Stop Frequency

Given equation [2] and the motor torque speed curve, we can determine the start/stop
frequency of the motor. If the motor is at rest, the start/stop speed is the maximum
speed which the motor can achieve after 180° of rotation (two full steps). If the motor
is spinning at the start/stop speed, then it can stop spinning within two full step times.

To determine the start/stop frequency of a stepper motor, equation [2] is used with ωo
equal to zero. If the equation for the motor torque/speed curve is known, then
equation [2] (with ωo=0) can be solved analitically for ω. However since many motor
manufactures only specify the motor torque/speed curve graphically, the start/stop
frequency must be found iteratively by using guesses for ω. The result of equation [2]
can then be plotted on the torque/speed curve to find the intersection of the two lines.

For example, given a rotor and load intertia of 700⋅10-9 Kg⋅m2 we can calculate the
torque required to accelerate from a stop to various speeds as shown here:

[]









⋅
⋅=

2

2

sec
radin on acceleratirotor theis ...

mKgin load andmotor theof Inertia ofmoment theis J where...
[1]

α

αJT













⋅−
⋅=

sec
radlocity current ve theis ...

[2]
sec
rad velocity desired theis where...

)(

0

0

ω

ω
π

ωωω
JT

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 10 V 1.0

The results of the calculations above can be plotted directly onto the torque/speed
curve from the motor data sheet as shown in Figure 7.

Figure 7 Graphical Determination of Maximum Start/Stop Frequency

Figure 7 shows that the maximum start/stop speed of the motor is approximately 600
rad/sec. So if the motor is initially stopped, it can be driven up to 600 rad/sec in two
full steps.

4.2 Maximum Acceleration Frequency

Equation [2] can also be used to find the torque required to accelerate or decelerate
from any initial speed to any desired speed. For example, if the motor described in the

mNmT

mNmT

mNmT

JT

2.8060010700

7.3540010700

91.820010700

2
9

6000

2
9

4000

2
9

2000

2

0

=⋅⋅=

=⋅⋅=

=⋅⋅=

⋅=

−
−

−
−

−
−

−

π

π

π

π
ω

ω

Speed

To
rqu

e

T0
-xx

T0-200

T0-400

T0-600

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 11 V 1.0

previous section can accelerate from a stop to 600 rad/sec in two full steps, we can
use 600 rad/sec for ω0 in equation [2], and generate another Torque/Speed curve as
was done previously. The intersection of the curve generated from equation [2] with
the motor torque/speed curve will give the maximum speed that the motor can
accelerate to from 600 rad/sec in two full steps. The process can then be repeated
many times using the previous result for ω0. Typical curves for such a process can be
seen in Figure 8.

Figure 8 Graphical Determination of Maximum Acceleration Ramp

As Figure 8 shows, to accelerate the motor from rest to its maximum speed as fast as
possible without loosing any steps, the motor should be run at several discrete speeds.
Each speed should be maintained for two full steps. The relationship between the
motor speed and the amount of time that the speed should be maintained (two full
steps) is straight forward:

Table 1 shows the time that each speed must be maintained for the motor shown in
Figure 8. The motor can be accelerated from a stop to full speed (940 rad/sec) after
10 full steps.

Speed

To
rq

ue

T0-200

T0-400

T0-600

T600-820

T820-900

T900-930

T930-940

ω
π=esTwoStepTim

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 12 V 1.0

Table 1 Full Step Timing for Maximum Motor Acceleration

Speed [rad/sec] Time For each Speed [s]
0 N.A.

600 π÷600
820 π÷820
900 π÷900
930 π÷930
940 π÷940

If the motor is to be driven in full step mode, the time for each full step would be half of
that shown in table 1. If the motor is to be driven in half step mode, then the time for
each half step would be ¼ that shown in table 1. In micro-step mode, the time for
each micro-step would be the value from table 1 divided by the number of micro-steps
in 180°. In any case, the time between steps should be maintained for 180° of
rotation.

4.3 Vibration and Safety Factor

Using above methods to determine the maximum motor acceleration does not leave
any margin for safety, error or unbalanced vibration. To take vibration and a safety
factor into account, the motor torque should be adjusted as shown in Equation 3.

Vibration effects any part of the load that is out of balance. So the “vibration torque” is
calculated as the load off-balance in Newton-Meters multiplied by the applications
maximum G’s.

The Safety Factor is just a proportional de-rating of the motor torque to provide an
acceptable margin for volume production of the system.

Figure 9 shows the graphical determination of the maximum acceleration taking into
account vibration and a safety factor.

]'[][

[3])(

sGevelVibrationLmNOffBalanceT
orSafetyFactTTT

Vibration

VibrationAdjusted

⋅⋅=

⋅−=

AP0801510
Two Phase Stepper Motor Control

Determination of Step Timing

Application Note 13 V 1.0

Figure 9 Graphical Determination of Maximum Acceleration Ramp

Speed

To
rq

ue

T0-200

T0-400

T0-400

T700-730

T730-740

T400-600

T600-700

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 14 V 1.0

5 XC866 Implementation of Stepper Motor Control
The Infineon XC866 8-bit microcontroller has a powerful motor control peripheral, the
CAPCOM6E. The CAPCOM6E can generate glitch free patterns for controlling a
stepper motors in full-step, half-step or micro-step modes.

Note: The control algorithm and implementation proposed in this application
note is only one of many possible solutions. Your application may have
different requirements. The implementation proposed in the application
notes is not optimized.

The stepper motor used in this application is geared, with a gear reduction ratio of
180:1. This means that when the rotor of the motor moves 180 degrees, the pointer
that is connected to the gears moves one degree. This gives the pointer much higher
resolution.

To spin the motor smoothly and further increase the resolution of the pointer, the motor
will be driven in micro-step mode. The software is setup so that 24 micro-steps will be
performed per revolution of the rotor.

5.1 Software Overview

The main object of the software is to drive the pointer that is connected to the motor
via the gears to any desired position smoothly and safely. The software to control the
motor consists of two parts. The first part is a periodic position and speed controller.
The second part is a micro-step function that is executed every micro-step
synchronously to the motor. Figure 10 shows how these two functions work together.

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 15 V 1.0

Figure 10 Data Flow Diagram of Stepper Motor Software

5.2 Postion/Speed Control Function

The position and speed controller is executed periodically, in this case every 100ms.
The 16-bit Timer 0, (T0) is used to trigger this function. The job of this function is to
filter the motor movement so that the pointer can come slowly to rest at the requested
position. This type of movement is more pleasing to the eye and also more beneficial
to the user since they can approximate the final pointer position before it is reached.
The effect of noise on the requested pointer position is also reduced.

A first order filter is used to calculate the desired path that the pointer should follow as
shown in the following formula:

If the pointer position follows Equation [4], the path that the pointer would follow after a
step change in the requested pointer position would look similar to the exponential
curve shown in Figure 11.

()
one than less andconstant filter theisK where...

[4] CurrentPososRequestedPKCurrentPosNewPos −⋅+=

Position/
Speed Filter

routine
(100ms)

Micro-Step
Timer

Interrupt
Service
Routine

Current
Pointer
Position

Time Between
Micro-Steps Commanded

Pointer
Position

Table of Maximum Motor
Speed (in Timer Counts)

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 16 V 1.0

Figure 11 Fitler Response to step change in requested poiner position

To get the motor to follow the desired path, the time between micro-steps must be
controlled. Each time the filter is activated (every 100ms) the commanded speed of
the motor is calculated. Equation [5] shows how the motor speed is calculated.

The position is measured in pointer degrees, therefore the velocity is calculated in
degrees per second. Once the desired motor speed is known, it must be converted
into timer ticks between micro-steps. The number of timer ticks between micro-steps
is used by the micro-step timer interrupt service routine to adjust the motor speed.
The flow chart for the 100ms routine is shown in Figure 12.

[5])(
100

100

CurrentPososRequestedP
ms

Kvelocity

ms
CurrentPosNewPosvelocity

−⋅=

−=

0

20

40

60

80

100

120

0 0.5 1 1.5 2

Time [s]

Po
in

te
r P

os
iti

on
 [D

eg

Requested
Position
[Deg]
Actual
Position
[Deg]

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 17 V 1.0

Figure 12 Filter Routine Flow Chart

Speed = K1 *
(ReqPointer-

Pointer)

Ticks = K2/Speed

ReqPointer>Pointer ReqPointer<Pointer Dir = STOP

Dir = CCWDir = CW

Home Motor?

Pointer<=0

Pointer=0
CmdPointer=0

CmdDir = STOP

CmdPointer = 0
CmdDir = CCW

CmdStepTime = -1

CmdPointer = ReqPointer
CmdStepTime=Ticks

CmdDir=Dir

Note: K1 = Filter Constant
K2 = 1/(100ms * Miro-step Timer Tick Time * 12)
Pointer = Actual Pointer Position
ReqPointer = Requested Pointer Position
CmdPointer = Commanded Pointer Position
CmdDir = Commanded Motor Direction
CmdStepTime = Number of Micro-step timer

ticks between Micro-steps

yes

yes

yes

yes

no no

no

no

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 18 V 1.0

5.3 Micro-step Control Function

The micro-steps are controlled by two 16-bit timers on the XC866. Timer 12 (T12) is
used to as the time base for PWM generation. PWM in produced on two channels to
drive the two coils of the motor. Although T12 is 16-bits wide, the period register is set
to 0x00FF so the timer acts like an 8-bit timer.

Timer 2 (T2) is a general purpose 16-bit timer on the XC866. Timer 2 is used to
generate an interrupt whenever it is time to take another micro-step. So the T2
interrupt service routine could also be called the micro-step interrupt service routine.
T2 can only interrupt the CPU after every overflow, so to time the micro-steps
accurately, after each interrupt the timer is manually re-loaded so that the next
interrupt occurs after the desired micro-step time (which was previously calculated in
the 100ms filter routine).

Since this routine operates synchronously to the motor, it is called many times more
often than the 100ms filter function when the motor speed is high. If the motor speed
is low, the micro-step function may be called less often than the 100 ms filter function.

The micro-step timer interrupt service routine is responsible for controlling the PWM
duty cycles and pin states required to make the motor micro-step. This routine also
keeps tract of the position of the pointer.

5.3.1 Micro-stepping the motor

Two tables of sinusoidal PWM (one sine table and one cosine table) and a table of pin
states (high or low), each containing 24 entries (since there are 24 micro-steps per
revolution) are used to control the micro-steps. Each time the micro-step interrupt
occurs (and the motor is supposed to be moving), an index into these tables is
incremented or decremented depending on the direction the motor is supposed to
spin. The PWM values from the tables are copied into PWM shadow registers and the
pin state values are copied from a table into a shadow registers. When the PWM timer
reaches zero, the new values of the PWM and output pins are simultaneously applied
(from the shadow registers) to the motor for a glitch-less micro-step. This is done
automatically by hardware. Figure 13 shows a graphical representation of the tables
used in the software.

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 19 V 1.0

Figure 13 Graphical Representation of Tables used the the Software

Incrementing the index into the tables causes the motor to spin clockwise and
decrementing the index causes the motor to spin counter clockwise. This makes it
convenient to make a “direction” variable that can hold the values -1, 0 and 1. Adding
the direction variable to the index will cause the motor to spin counter clockwise, stop
or clockwise (respectively).

5.3.2 Verification of Commanded Micro-step Time

Since the motor must maintain a speed for 180 degrees of rotor movement (one
degree of pointer movement), the micro-step timer (T2) reload value is only updated
every 12 micro-steps. Before the value is updated, it is checked to see if the update
would cause acceleration or deceleration that would violate the motor capabilities.

Pin 1
I/O Value

Pin 3
PWM Duty

Cycle
(Timer Counts)

Pin 4
I/O Value

Pin 2
PWM Duty Cycle
(Timer Counts)

Step Pointer
(Index into PWM
and I/O Tables)

CWCCW

0 23

0

1

0

1

0

255

0

255

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 20 V 1.0

The process of checking to see if the speed that is commanded by the periodic filter
function can be achieved by the motor is implemented in a way so that the CPU time
required to do the calculations is reduced. However other methods may be used to
optimize this process even more.

First a table is made of the maximum motor acceleration ramp from standstill to the
max motor speed using the method described in Chapter 4. The shaded values in
Table 2 show the results of the calculations for the motor and pointer that is used in
this Application Note. For this Application Note, T2 is counting at a rate of 0.45 µs per
tick, and there are 12 micro-steps for each full step (180º of rotor movement, 1º of
pointer movement). The non-shaded lines are the speeds that are half way between
two shaded speeds. The shaded and non-shaded values are both used by the
software as will be described latter.

Table 2 Timing for Maximum Motor Acceleration

Pointer Speed
[Deg/sec]

Time for full step (1 deg.)
[msec]

T2 Ticks per micro-step

0 N.A N.A.

32 31.25 5787

64 15.63 2894

84 11.90 2205

104 9.615 1781

119 8.403 1556

134 7.463 1382

146 6.849 1268

158 6.329 1172

168 5.952 1102

178 5.618 1040

187 5.348 990

196 5.102 945

204 4.902 908

212 4.717 874

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 21 V 1.0

219 4.566 846

226 4.425 819

233 4.292 795

240 4.167 772

246 4.065 753

252 3.968 735

To control the acceleration of the motor, a look-up table is created similar to the last
column of Table 2. The software has a variable that is an index into the table. The
algorithm to control the motor acceleration works like this:

Assume that the current motor speed is 320 deg/sec, and the index into the table is
pointing to the entry for 233 deg/sec. Also assume that the speed control function
commands a new speed of 250 degrees per second. The software in the T2 ISR will
see that the commanded speed cannot be safely achieved, so instead it increments
the index into the table (so it points to the entry for 240 deg/sec) and sets the T2
reload value so that the timer will overflow again after 772 ticks.

After 12 micro-steps have passed (2 full-steps of the motor and 1 degree of pointer
movement), if the commanded speed remains 250 deg/sec, the software will again
increment the pointer into the table (so it point to the entry for 246 deg/sec) and set the
T2 reload value so that the timer will overflow after 753 ticks.

After another 12 micro-steps, if the commanded speed remains 250 deg/sec, the
software will set the T2 reload value so that the motor will spin at 250 deg/sec and the
index into the table will not be incremented.

The table used in the software contains both positive and negative reload values to
make the math easier (only positive values are actually used for the T2 reload).

A high level flow chart of the micro-step timer interrupt service routine can be seen in
figure 14.

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 22 V 1.0

Figure 14 Micro-step Routine Flow Chart

Step = 0 OR
Step = 12 OR
ActDir = STOP

?

Pointer += ActDir

Pointer = CmdPointer
AND

Pointer Spinning slow
 enough to stop?

ActDir = STOP
ActStepTime = MAX

StepTimeIndex = Middle
of Table

CmdStepTime
outside of Min or Max

allowed at this
 speed?

ActStepTime = Min
or Max allowed at
this speed from

StepTimes Table

Update Index into
StepTimes table

Update ActDir

ActStepTime =
CmdStepTime

ActDir = CmdDir

Step += ActDir
PWM1 = PWM1 table[step]
PWM2 = PWM2table[step]

Passive Level = PassiveLevelTable[step]
Microstep Timer += 0xFFFF-ActStepTime

Note: Pointer = Position of Pointer [Deg]
ActDir = Actual Pointer Direction [-1,0,+1]
CmdPointer = Commanded Pointer Pos.
ActStepTime = Number of Timer Ticks between Micro-steps
CmdStepTime = Commanded Number of Timer Ticks between Micro-steps
StepTimeIndex = Index into a Table of StepTimes for max accel/decel
PalssiveLevelTable = Table of State for non-PWM pins

nono

no

yes

yes yes

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 23 V 1.0

5.4 Using the CAPCOM6E Peripheral for Glitch-Free Micro-
stepping

Although it is not technically required for a stepper motor to operate, it is generally
desired to have PWM and pin states that can be updated synchronously and without
glitches. The CAPCOM6E unit of the XC866 (and many other Infineon
microcontrollers) is capable of driving motors in this way.

There are two types of glitches that are eliminated by the CAPCOM6E. First, the PWM
compare registers contain shadow registers. The actual PWM values are not updated
until a shadow transfer bit is set and the PWM timer (T12) reaches 0. This prevents
glitches that can occur if the actual PWM registers are updated asynchronously to the
PWM timer.

Another kind of output glitch can occur if the PWM values are not updated at the same
time as the non-PWMed pins that control the direction of the coil current. The same
shadow transfer event that updates the PWM values can also update the state of the
non-PWMed pins.

The state of the I/O pins can be controlled by the Passive State Level Registers
(PSLR) in the XC866. The PSLR contains one bit per CAPCOM6 I/O pin. Updating
the value of this register updates the actual pin value at the same instant as the PWM
is updated.

Figure 15 shows the glitches referred to above and how they are avoided using the
CACPOM6E.

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 24 V 1.0

Figure 15 PWM Glitch (top), Pin State Glitch (middle) and Glitchless (bottom)
micro-stepping

The software for this Application Note was written using DAvE, the free code
generation tool from Infineon, and the Keil uVision3 embedded development
environment and C51 compiler.

PWM

Update PWM

New PWM Value
takes effect

Compare Timer (T12)

GLITCH

PWM

I/O Pin

Update PWM
and I/O Value

New PWM Value
takes effect

Compare Timer (T12)

GLITCH

PWM

Update PWM

New PWM Value
takes effect

Compare Timer (T12)

New Pin Value
takes effect

I/O Value

AP0801510
Two Phase Stepper Motor Control

XC866 Implementation of Stepper Motor Control

Application Note 25 V 1.0

DAvE is available for download at: www.infineon.com/DAvE

An evaluation version of the Keil C51 tools is available at: www.keil.com

AP0801510
Two Phase Stepper Motor Control

Conclusions

Application Note 26 V 1.0

6 Conclusions
In this application note, the construction of two phase stepper motors was described.
In addition various methods to control the motor were described (full-stepping, half-
stepping, micro-stepping). Finally an actual implementation of a typical stepper motor
control system using Infineon’s XC866 8-bit microcontroller was described, and the
software for such a system is provided as a reference.

In particular, the capability of the CAPCOM6E peripheral to easily and efficiently
generate the necessary stepper motor signals in a glitchless fashion was
demonstrated.

The companion application code to this application note uses less than 2k of code
space and only 40 bytes of RAM.

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

