
ModusToolbox™ & Friends

About this document
Scope and purpose

This document guides you in learning how you can become a part of the Infineon Partner Program and
integrate your software content into the ModusToolbox™ ecosystem.
Intended audience

This document is intended for partners registered in the Infineon Partner Program and who want to integrate
their software content into the ModusToolbox™ ecosystem.
Reference documents

See the following documents and sites for more information as needed:
• ModusToolbox™ user guide
• ModusToolbox™ runtime software
• Project Creator user guide
• Library Manager user guide
• https://github.com/Infineon

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 4
1.1 What is a partner? . 4
1.2 Why become a partner? . 4
1.3 How to become a partner? .4

2 ModusToolbox™ software overview .5
2.1 Types of software content . 5
2.1.1 Code examples . 5
2.1.2 Middleware . 6
2.1.3 Board support packages (BSPs) . 9
2.2 Manifests .9
2.3 Git versioning control system .11
2.4 How does everything come together in ModusToolbox™? . 12
2.5 How does partner integration work? . 12

3 Setting up your own Git infrastructure . 14
3.1 Choosing your Git hosting platform . 14
3.2 Choosing your development flow . 14
3.2.1 Single-stage workflow . 14
3.2.2 Dual-stage workflow .14
3.3 Designing your internal staging setup . 15

AN235691

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-35691 Rev. *B
www.infineon.com 2023-06-09

https://www.infineon.com/partner-program
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/dgdl/Infineon-ModusToolbox_AnyCloud_User_Guide_Version_1.5-Software-v01_00-EN.pdf?fileId=8ac78c8c7f2a768a017f30651c7f6bf6
https://www.infineon.com/ModusToolboxProjectCreator
https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon
https://www.infineon.com

3.4 Designing your external production setup . 16

4 Creating your own software content . 17
4.1 Creating a code example .17
4.1.1 Choosing a starter application . 17
4.1.2 Choosing the name . 17
4.1.3 Choosing the title . 18
4.1.4 Adding the source files . 18
4.1.5 Adding middleware .19
4.1.6 Adding the End User License Agreement (EULA) . 20
4.1.7 Create a Git repository . 20
4.1.8 Create a topic branch . 20
4.1.9 Testing the code example . 20
4.1.10 Merging into mainline .20
4.1.11 Creating the release package . 20
4.2 Creating a middleware library . 21
4.3 Creating a BSP . 22

5 Creating your own manifest . 23
5.1 Creating repositories . 23
5.2 Creating your code example manifest . 23
5.2.1 Adding BSP capabilities . 28
5.2.2 Specifying requirements for restricted scope . 31
5.3 Creating your middleware manifest . 33
5.3.1 Adding middleware dependencies . 37
5.4 Creating your BSP manifest . 41
5.4.1 Adding BSP dependencies .45
5.5 Creating your super manifest .48
5.6 Specifying the dependency manifests . 51
5.7 Validating your manifests . 52

6 Testing the manifest integration . 54
6.1 Testing the dependency manifest integration . 56
6.2 Out-of-the-box testing . 57

7 Integrating into ModusToolbox™ . 59

8 Updating your content . 60
8.1 Cloning the repositories . 60
8.2 Creating a topic branch . 60
8.3 Updating and testing your content .60
8.4 Merging into mainline . 60
8.5 Creating the release package . 60
8.6 Updating the corresponding manifest . 61
8.7 Updating the dependency manifest . 61

ModusToolbox™ & Friends

Table of contents

Application note 2 002-35691 Rev. *B
2023-06-09

8.8 Testing the integration .62

9 Technical Support . 63

10 Summary . 67

11 Appendix A – Partners integrated into ModusToolbox™ . 68
11.1 Memfault .68

Revision history .69

Disclaimer . 70

ModusToolbox™ & Friends

Table of contents

Application note 3 002-35691 Rev. *B
2023-06-09

1 Introduction
ModusToolbox™ & Friends is a development program which extends the increased productivity, and feature-rich
platform of ModusToolbox™ with highly innovative, robust and product ready partner software for developers.
By opening ModusToolbox™ to partners, it provides a simple and tested integration of valuable software to
developers for easy evaluation and integration to meet their product needs. Each partner owns their own
software license, allowing them to maintain control of their engagement model.
To get started with this program, you first need to be a part of the Infineon Partner Network. See upcoming
sections for more details.

1.1 What is a partner?
A partner is a company selected by Infineon based on their proven competence and ability to design and deliver
strong and trustworthy solutions, especially for new technologies and application fields. This way the partners
can be a huge value add to the ModusToolbox™ ecosystem through development kits / production boards,
innovative software IP, middleware or system references to showcase their design skills. See Partner Network
webpage for more information.

1.2 Why become a partner?
ModusToolbox™ provides a rich platform with support for multiple IDEs, toolchains, software tools and libraries,
development kits, reference examples etc. making it the platform of choice for developers. By being a partner,
you can leverage everything ModusToolbox™ has to offer and distribute your own software via ModusToolbox™

to market your product and services directly to developers. See Partner Brochure to learn more.

1.3 How to become a partner?
To become a part of the partner ecosystem, the process is fairly simple. Go to the Infineon Partner Network
webpage and click “Join the program” to become a partner. The partner management team will evaluate how
you can contribute to the network and help with onboarding.

ModusToolbox™ & Friends

1 Introduction

Application note 4 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/cms/en/product/promopages/modustoolbox-and-friends/
https://www.infineon.com/partner-program
https://www.infineon.com/partner-program
https://www.infineon.com/dgdl/Infineon-PartnerEcosystem_brochure-UserManual-v01_00-EN.pdf?fileId=5546d46272e49d2a01732efea61f1a90
https://www.infineon.com/partner-program

2 ModusToolbox™ software overview
ModusToolbox™ software is a modern, extensible development environment supporting a wide range of
Infineon microcontroller devices, wireless connectivity devices, and sensors. It provides a flexible set of tools
and a diverse, high-quality collection of application-focused software. These include configuration tools, low-
level drivers, libraries, and operating system support, most of which are compatible with Linux-, macOS-, and
Windows-hosted environments. For more information, refer to the ModusToolbox ™ user guide.

2.1 Types of software content
ModusToolbox™ comprises mainly three types of software content that are hosted online using Git repositories
(Infineon GitHub and third-party Git servers):
• Code examples
• Middleware
• Board Support Packages (BSPs)
As a partner, you can contribute to any or all of these software types. An illustration of how all these software
types interact with each other is shown below:

In the upcoming sections, we discuss each of the software types in brief and the use-cases which mandate the
creation of content in these categories. To understand more about these software types in detail, refer to the
ModusToolbox™ user guide and ModusToolbox™ run-time software reference guide.

2.1.1 Code examples
The code examples are ModusToolbox™ applications intended to demonstrate the usage of a particular
product, feature, or tool. Users should be able to easily consume these examples by copying and pasting
portions of the code into their own applications.
All current ModusToolbox™ code examples can be found through the GitHub code example page. There you will
find links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, and PSoC™ 4 device, among others. See Creating a
code example for more information.
Let’s look at a few demonstrative scenarios to understand when you would develop a code example.
Scenario #1 – Demonstrate integrating your proprietary firmware SDK or software IP: For example, if you
are a partner dealing with cutting edge image processing solutions, you would demonstrate how an Infineon
microcontroller can be leveraged to interface with your solutions to create some interesting application like
face recognition or object detection.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 5 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/dgdl/Infineon-ModusToolbox_2.4_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017ed97e72563632
https://www.infineon.com/dgdl/Infineon-ModusToolbox_AnyCloud_User_Guide_Version_1.5-Software-v01_00-EN.pdf?fileId=8ac78c8c7f2a768a017f30651c7f6bf6
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

Scenario #2 – Demonstrate your tools to simplify processes: As a partner focused on cutting-edge tools to
simplify a particular process, the usage of these tools would normally be explained in a code example. For
example, a tool that simplifies creation of graphics on LCD displays may be demonstrated using a graphics-
based code example with instructions on tool usage.

Instrumentation cluster
graphics code example

Partner Graphics
Tools

Infineon
Microcontrollers

Board Support
Packages (BSPs)

Interesting
Application

Coffee machine graphics
code example

Scenario #3 – Demonstrate your modules: As a partner focused on creating modules or hardware using
Infineon chipsets, a code example can be used to demonstrate how the custom module or evaluation kits
(called custom BSP) can be interfaced to create interesting applications. For example, a partner focused on
creating IoT prototyping modules using Infineon chipsets can develop a code example to demonstrate how to
use their module to send data to the cloud.

Cloud data transfer
code example

Partner BSPs / Modules
based on Infineon

Chipsets

Board Support
Packages (BSPs)

Interesting
Application

Note: These scenarios are not an exhaustive list and any number of combinations between the different
software types is possible and permitted. If you are unsure where your content belongs, you can
contact technical support to seek help. See section Technical Support for more details.

2.1.2 Middleware
A middleware library is usually a wrapper on top of the low-level device driver libraries intended to
demonstrate a particular feature or application by further abstracting the hardware level details from the
user. For example, an Emulated EEPROM middleware library (emeeprom) operates on top of the Flash driver
and allows users to easily store and manage data in an emulated EEPROM memory region.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 6 002-35691 Rev. *B
2023-06-09

There could be dependencies between several middleware libraries. For example, wifi-mw-core depends on
other libraries like abstraction-rtos and clib-support as shown below to work correctly.

More information on creating your own middleware can be found in Section Creating a middleware library.
Let’s look at a few scenarios to understand when you would develop a middleware library.
Scenario #1 - As a partner, your proprietary firmware SDK or software IP usually belongs in the
middleware category. To support creation of applications using your firmware SDK or software IP on Infineon
microcontrollers, some modifications might be necessary to create porting layers as shown below.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 7 002-35691 Rev. *B
2023-06-09

This modified firmware SDK or software IP with the porting layers is then offered as a middleware library
that users can leverage in their code examples to interface with Infineon microcontrollers to create interesting
applications.

Scenario #2 - If the tools require a particular IP or an SDK to work correctly, the tools should be offered as part
of the middleware and not directly as a code example. For example, a partner focused on graphics tools that
rely on a software SDK must bundle the SDK and tools together as shown below.

Partner Graphics SDK

Porting Layers

Proprietary Source Code

Proprietary Graphics tools

Instrumentation cluster
graphics code example

Coffee machine graphics
code example

Interesting
ApplicationMiddleware

Scenario #3 - As a partner offering shields or sensors, the source code for interfacing with the shield or sensor
should be provided as a middleware library. For example, a partner manufacturing a pressure sensor will
develop the middleware library that allows users to interact with their sensor module easily using a simple API.
This allow users to easily interface with any Infineon kit and obtain pressure data.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 8 002-35691 Rev. *B
2023-06-09

Reference examples that fall under this use case:
• CY8CKIT-028-EPD – This middleware library from Infineon provides the pin mapping and APIs to easily

interface with the E-ink display shield board.
• BMI160 Sensor Driver – This middleware library from Bosch provides APIs to interface with the BMI160

inertial measurement unit (IMU) sensor.

Note: These use-cases are not an exhaustive list and any number of combinations between the different
software types is possible and permitted. If you are unsure where your content belongs, you can
contact technical support to seek help. See section Technical Support for more details.

2.1.3 Board support packages (BSPs)
The Board Support Package (BSP) is intended to specify critical hardware items needed by the application,
including:
• Hardware configuration files for the device (for example, design.modus)
• Startup code and linker files for the device
• Other libraries that are required to support a kit
This section is intended for partners who offer custom modules or hardware based on Infineon chipsets. For
partners focusing on only software solutions/services, you can leverage the existing BSPs offered by Infineon.
Let’s look at a demonstrative scenario to understand when you would develop a BSP:
As a partner focused on creating modules or hardware using Infineon chipsets, a code example can be used
to demonstrate how the custom module or evaluation kits (called custom BSPs) can be interfaced to create
interesting applications. For example, a partner focused on creating IoT prototyping modules using Infineon
chipsets can develop a BSP to simplify the development of applications targeting their modules or evaluation
kits.

Note: These scenarios are not an exhaustive list and any number of combinations between the different
software types is possible and permitted. If you are unsure where your content belongs, you can
contact technical support to seek help. See section Technical Support for more details.

2.2 Manifests
ModusToolbox™ uses the concept of manifests to load the content to be displayed in its tools (Project Creator
and Library Manager). Manifests are XML formatted files that contain a list of URLs that point to the appropriate
libraries. The tools discover the locations of these Git repositories by loading the manifests hosted from
preconfigured locations in Infineon GitHub.
There are multiple types of manifest files:
• The “super manifest” file contains a list of URLs that software uses to find the board, code example, and

middleware manifest files.
• An “app manifest” file contains a list of code examples that should be made available to the user.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 9 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/CY8CKIT-028-EPD
https://github.com/BoschSensortec/BMI160_driver

• A “board manifest” file contains a list of boards that should be presented to the user in the new project
creation tool as well as the list of BSP packages that are presented in the Library Manager tool. There is
also a separate BSP dependencies manifest that lists the dependent libraries associated with each BSP.

• A “middleware manifest” file contains a list of available middleware libraries. There is also a separate
middleware dependencies manifest that lists the dependent libraries associated with each middleware
library.

The super manifest can list any number of app, board, and middleware manifest files. Each entry in an app,
board, or middleware manifest file can contain more than one version of each library if desired. This allows new
versions to be released while still allowing existing users to use any version they desire for their application
needs.
Beginning with the ModusToolbox™ 2.2 release, there are two versions of manifest files: the old versions for the
‘LIB’ flow used with ModusToolbox™ 2.1 and earlier, and new versions for the ‘MTB’ flow (aka "fv2"), which is
used with ModusToolbox™ 2.2 and later. In this application note, we will only cover the new “fv2” version of the
manifests and content developed using ModusToolbox™ 2.2 and later.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 10 002-35691 Rev. *B
2023-06-09

Partners can set up a similar infrastructure of manifests to point to content and showcase it within
ModusToolbox™ tools (Project Creator and Library Manager). See upcoming sections to learn more about how
you can set up such an infrastructure.

2.3 Git versioning control system
The Git versioning control system is central to how software content in ModusToolbox™ is offered. All the
software content is hosted on Git repositories (Infineon GitHub and third-party Git servers). This allows content
to be released regularly without requiring any update to the ModusToolbox™ tools.
As discussed previously, the manifests point to these Git repositories to allow discovery of the content from
the tools. The tools run Git commands in the background to fetch the content from Git into your development
environment. This is why it is important to host content on version control platforms based on Git so that the
tools can work with them seamlessly.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 11 002-35691 Rev. *B
2023-06-09

The software content contains release tags that allow a specific version of the library to be brought in to the
development environment. Because the software content is version-controlled, if any issues occur in a newly
released version, it can be easily mitigated by rolling back to the last working version.

2.4 How does everything come together in ModusToolbox™?
ModusToolbox™ tools (Project Creator and Library Manager) point to a pre-configured super manifest location
on GitHub. The super manifest points to the code example, middleware, and BSP manifests as explained
earlier. This allows the tools to discover all the software content hosted on GitHub.

2.5 How does partner integration work?
The partner software content is delivered in a very similar fashion as the content offered by Infineon. As long as
the content is hosted on Git servers and conforms to the structure ModusToolbox™ expects, all the content can
be brought into ModusToolbox™ tools with the same concepts as shown below:

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 12 002-35691 Rev. *B
2023-06-09

The super-manifest points to all the partner manifests in addition to Infineon’s own manifests so that the
partner software content can be easily integrated and discovered in the tool. This allows partners to manage
their own content and deployment without any intervention from Infineon once your manifests are included in
the super manifest.

ModusToolbox™ & Friends

2 ModusToolbox™ software overview

Application note 13 002-35691 Rev. *B
2023-06-09

3 Setting up your own Git infrastructure
As we learned in the previous sections, all the software content needs to be hosted on a platform that
supports Git-based version control. Other version control systems like Mercurial, Perforce, and Subversion are
not supported.
There are several platforms that provide Git hosting solutions today such as GitHub, GitLab, and Bitbucket.
ModusToolbox™ can support any hosting platform as long it supports Git version control.
Let’s look at the steps to set up your own Git infrastructure.

3.1 Choosing your Git hosting platform
There is no specific recommendation when it comes to choosing a Git hosting platform. ModusToolbox™ is not
optimized to work better with any specific Git hosting platform. The tools only use the underlying Git version
control system to bring in the necessary software content.
You should make sure that the platform you choose is accessible in all geographic regions in which you wish to
supply your content.

3.2 Choosing your development flow
A development flow is a process used to develop, test, and deploy your software content in a systematic,
sequential manner that eliminates errors and meets a certain quality standard. The upcoming sections
describe two development workflows that can be used, but assume that you are familiar with Git and Git
hosting service platforms to implement such a workflow. How to use Git and Git hosting service platforms are
out of scope of this application note. The two most common development flows that can be adopted are as
follows:

3.2.1 Single-stage workflow
A single-stage workflow is when you have a single Git hosting server where the visibility of the repositories is
kept private until the development and testing is complete. This is slightly riskier considering that any human
error could result in an incorrect or unstable version of the software being released to the public. Certain checks
can be put in place to ensure these errors are caught before release.

Note: ModusToolbox™ tools does not work directly with private repositories and requires the setup of tokens
as explained in the “Access to Private Repositories” section in the ModusToolbox™ user guide to get
access to them. This extra step of setting up the tokens is just a one-time effort.

3.2.2 Dual-stage workflow
A dual-stage setup consists of separate staging and production servers with the following characteristics:

ModusToolbox™ & Friends

3 Setting up your own Git infrastructure

Application note 14 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/ModusToolboxUserGuide

• Staging – Internal Git hosting that is private and where the development and testing happens. Any content
here is considered functional, reviewed, and pending final approval for release.

• Production – External facing Git hosting platform that is public and hosts only fully tested software and
released software content.

This setup allows developers to create software content in the staging environment without worrying about any
mishaps or errors that could be exposed to the customer because it is internal to the company. Development
and testing can be done iteratively in staging. Because the staging environment simulates a near-production-
level environment, any issues can be caught before they reach end users. The software is deployed into
production only after the content is error-free and completely tested.
The staging environment uses continuous integration and continuous delivery (CI/CD) pipelines to automate
the process of testing the software content. The actions are performed on each commit to the repo, or after
events like merging a topic branch into the main branch. If GitLab is used for the staging server, the actions
performed are determined using the .gitlab-ci.yml configuration file, which is part of the development repo.
The software content is pushed to production only once all tests have passed. You get to decide how rigorous
the testing should be to ensure the quality of the software content offered. See CI/CD documentation for more
information on setting up such automated test pipelines.
Infineon uses the dual-stage development flow for creating its ModusToolbox™ software content.

3.3 Designing your internal staging setup
The internal staging setup can implement CI/CD pipelines which are a set of automated jobs that perform
particular tests based on some rules. These pipelines allow the software to be fully tested whenever there is any
change to the repo. It is left to the partners to decide which jobs are necessary in the pipeline and which jobs
are optional. Some examples of the types of testing jobs that can be implemented are as follows:
• Documentation test – This test validates the documentation. It goes through documentation such as

markdown files to check if a particular template is being followed and if all the required sections exist.
Additionally, all the links in the document can be tested to find any broken ones.

ModusToolbox™ & Friends

3 Setting up your own Git infrastructure

Application note 15 002-35691 Rev. *B
2023-06-09

https://resources.github.com/ci-cd/

• Software test – This test validates the working of the code against all the constraints such as BSPs,
ModusToolbox™ tools versions, toolchains, cross-platform support (Windows, Linux, macOS), and build
configurations, and provides information on any errors or warnings that the code may have.

• Code coverage test – This test allows the code to be tested for any poor coding practices and conditions
that can be optimized.

3.4 Designing your external production setup
The external production setup can implement the same CI/CD pipelines (explained in the previous section) to
test the software content in a dual-stage setup but it is redundant because the staging environment mirrors
the production one and has fully tested the content. However, in a single-stage setup, these pipelines might be
necessary to help test the code before the repository goes public.

ModusToolbox™ & Friends

3 Setting up your own Git infrastructure

Application note 16 002-35691 Rev. *B
2023-06-09

4 Creating your own software content
This section explains the procedure and best practices for going about the creation of software content. It is
recommended to follow the steps explained in the upcoming sections so that the content developed works
seamlessly with ModusToolbox™. All content should be developed using the latest version of ModusToolbox™ for
best results but the steps are applicable for all content developed using ModusToolbox™ 2.2 and later.
Note: This section assumes that you are familiar with creating applications in ModusToolbox™ and now

want to create your own content. See the ModusToolbox™ user guide if this is not the case. Additional
training material can be found here.

4.1 Creating a code example
All current ModusToolbox™ code examples can be found through the GitHub code example page. There you will
find links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, and PSoC™ 4 device among others. You can also
create any of the released code examples using the ModusToolbox™ Project Creator tool. Let’s look at the steps
to create your own code example.
1. Choosing a starter application
2. Choosing the name
3. Choosing the title
4. Adding the source files
5. Adding middleware
6. Adding the End User License Agreement (EULA)
7. Create a Git repository
8. Create a topic branch
9. Testing the code example
10. Merging into mainline
11. Creating the release package

4.1.1 Choosing a starter application
Based on the application you want to develop and the device you want to target, open Project Creator and
choose a BSP and code example that provides a good starting point. You can always use the empty application
if you do not know where to begin. Before you click Create, choose an appropriate name for the code example
by following the instructions provided in section Choosing the name.

4.1.2 Choosing the name
The name of the code example should be unique and should conform to the following best practices:
• Should be short (avoid long file paths)
• All lower-case, with words separated with hyphens ‘-‘
• Prefixed with <partner>-mtb-example-
Some examples include mycompany-mtb-example-psoc6-object-detection-using-ml or mycompany-mtb-example-
psoc6-face-recognition.
Add this name in the text-box under "New Application Name" as illustrated below and click Create.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 17 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/ModusToolboxUserGuide
https://github.com/Infineon/training-modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

Once the code example generation is complete, update the Makefile to set the APPNAME make variable to the
name of the code example. For example,

APPNAME=mycompany-mtb-example-psoc6-face-recognition

4.1.3 Choosing the title
The code example title should be a short descriptive header text and should conform to the following best
practices:
• Informs the user of the scope and content of the code example
• It can contain the device family or platform name
• It does not use trademark symbols, superscripts, or subscripts
Some examples include "MyCompany PSoC 6 Face Recognition with ML" or "MyCompany PSoC 6 Object
Detection" or "PSoC 6 Face Recognition with ML using MyCompany".
The Readme.md file in the code example should be updated with this title.

4.1.4 Adding the source files
The Project Creator tool is responsible for creating the fully functional application. During project creation,
it looks at the deps folder to bring in all the dependent libraries to create the fully functional application.
Additionally, based on the IDE of choice, other IDE-specific folders/files may be created.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 18 002-35691 Rev. *B
2023-06-09

All ModusToolbox™ code examples will contain the following folder/files:
• deps – Contains all the dependencies needed for the code example to run
• Makefile – Contains all the configuration variables to control the build flow
• main.c – Contains the source code
Add your source files that will interact with Infineon’s device driver libraries or other middleware libraries. Here
are some of the best practices when developing your source code:
• Use hardware abstraction layer (HAL) APIs if available for the hardware to allow the code example to be

portable across multiple device families.
• Use the pin-aliased names available in the BSPs rather than actual pin numbers.
• Use the abstraction- rtos library if possible to make the code modular and reusable by users.
• Update the Readme.md file to describe the scope, purpose, working, design, and implementation of the

code example. See available code example Readme.md files for reference.
• Follow other general coding practices like documentation of functions and meaningful variable naming.
If your source files need to interact with your proprietary software, we will cover how to add your proprietary
software as a middleware in the next section.

4.1.5 Adding middleware
This section assumes that you have already created your middleware by following the steps in the Creating a
middleware library section. The deps folder in an application contains a number of .mtb files. Each library used
in the application is identified by a .mtb file. This file contains the URL to a Git repository, a commit tag, and a
variable for where to put the library on disk.
For example, a capsense.mtb file might contain the following line:

http://github.com/cypresssemiconductorco/capsense#latestv2.X#$$ASSET_REPO$$/capsense/latest-
v2.X

The build system implements the make getlibs command. This command finds each .mtb file, clones the
specified repository, checks out the specified commit, and collects all the files into the specified directory.
Typically, the make getlibs command is invoked transparently when you create an application or use the
Library Manager, although you can invoke the command directly from a command-line interface.
Adding your middleware to the code example is fairly simple:
1. Create a .mtb file inside the deps folder with the following value:

http://github.com/<partner_name>/<my_middleware>#<commit>#$$ASSET_REPO$$/<my_middleware>/
<commit>

2. Edit the details highlighted in bold to specify the path to your middleware on your Git hosting platform
and also the corresponding commit or release tag to be used. Save the file and close it.

3. Run Library Manager and click Update. This runs make getlibs in the background which sees the
new .mtb file and clones your middleware into the mtb_shared folder. You can also use the command line
and run make getlibs for the same purpose.

4. Use the make variables in the application Makefile to specify the source files, header files, and paths
from the middleware to be included by the build system. This is typically the path to the porting
layer (see Scenario #2 in Middleware) in the middleware that supports Infineon chipsets. See the
ModusToolbox™ user guide for more information on available make targets.

You have successfully added support for your middleware in your code example.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 19 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/abstraction-rtos
https://www.infineon.com/ModusToolboxUserGuide

Note: Make sure to copy these changes to the local copy of the repository and push these changes to the
upstream Git server.

4.1.6 Adding the End User License Agreement (EULA)
Once the code development is complete, add the EULA provided by Infineon as part of the partner agreement
into your source directory. The source directory is the one that contains the application Makefile.

4.1.7 Create a Git repository
Create a repository with the code example name in your Git hosting platform:
• This will be the staging server for the dual-stage workflow.
• This will be the production server with the repository set to Private for the single-stage workflow.
Clone the repository using the git clone command. A local copy of this repository will now be available.

4.1.8 Create a topic branch
It is up to the partner to create a separate topic branch or use the main branch to work on the changes. It is
recommended to use a topic branch to prevent any accidental updates to the main branch that might break the
code for everyone. Use the git checkout -b <branch_name> command to create a topic branch.
As a rule of thumb, copy the project files and add it to your local copy of your Git repository you created
previously whenever you make significant progress. Push all these changes to the upstream Git server so that
you can always track your work and revert to a previously working configuration if needed. See the gitignore file
for reference to understand what files should be pushed and what should be ignored.

4.1.9 Testing the code example
The code example must be tested to ensure that there are no issues with the build. It must also be tested
on the hardware to verify the functionality. Once both the tests have passed, push the code example to the
Git repository for automated test CI/CD pipelines to test it against multiple toolchains, tools versions, build
configurations, cross-platform support, etc.

4.1.10 Merging into mainline
Once the code passes all the test pipelines, merge the topic branch into the main branch. Any merge conflicts
that may arise should be resolved. If using a dual-stage setup, deploy the contents into production.

4.1.11 Creating the release package
Create a release tag from the main branch with the following naming scheme:

release-<major_version>-<minor_version>-<patch_version>

For example, the first release version will be release-v1.0.0. See release tags of an existing code example to
understand what this looks like.
Here’s how to decide the version numbers when creating a release package:
• major version: Should be incremented only for code or makefile changes that break backward

compatibility. This happens when the code no longer works with previous major versions of the tool
or ecosystem. Reset the minor and patch version numbers to ‘0’ when this is incremented.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 20 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-example-psoc6-empty-app/blob/master/.gitignore
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/Infineon/mtb-example-psoc6-empty-app/tags

• minor version: Should be incremented for code-related changes like changes to source code, file structure
or makefile, that DO NOT break backward compatibility. Reset the patch version number to ‘0’ when this is
incremented.

• patch version: Should be incremented for document or code comment changes only.
An example of the version history for a code example that underwent different types of changes:

Scenario Category of change Version number

New content New 1.0.0

Documentation fix, no changes to source code Increment patch number 1.0.1

Cosmetic changes to source code, doesn’t affect
functionality

Increment patch number 1.0.2

Files / folders restructured Increment minor number 1.1.0

Source code or Makefile changes that do not
break backward compatibility

Increment minor number 1.2.0

Source code or Makefile changes that break
backward compatibility

Increment major number 2.0.0

In addition to release tags, latest version tags need to be generated whenever there is a change in the major
version number. They follow the naming scheme: latest-v<major_version>.X
The latest version tags are used to point to latest versions of the major version of the content available. This
helps users to get the latest version of the content. For example, if there are two release tags for a code example
such as release-v1.0.0 and release-v1.1.0, the latest-v1.X tag will be generated to point to the latest release
of the major version library, i.e., release-v1.1.0. See the tags generated here for reference.
Here’s how you can create a latest version tag:
1. Create a latest version tag from the main branch with the naming scheme specified above and filling in

the major version available.
2. Whenever there is an update to the content, the latest version tag must be moved to point to the latest

version. For example, during initial deployment of content, latest-v1.X will point to the same commit
as release-v1.0.0 tag. Whenever the content is updated to release-v1.1.0, the latest-v1.X should be
updated to point to the same commit as release-v1.1.0 tag.

4.2 Creating a middleware library
There is no generic way to define what a middleware library should look like. It could be a firmware SDK, a
binary or .a static library that users can link in their project. In any case, there are certain general guidelines to
be followed.
To create a middleware library that is supported by ModusToolbox™, the following should be considered:
• It should follow any of the naming schemes listed below if the middleware library is developed specifically

to support ModusToolbox™:
- <partner_name>-middleware (For example, mycompany-middleware)
- <partner_name>-middleware-<feature_name> (For example, mycompany-middleware-remote-debugging)
- <partner_name>-middleware-<tool_name> (For example, mycompany-middleware-graphics-wizard)
- <partner_name>-middleware-<application> (For example, mycompany-middleware-image-processing)

• If the middleware library is not developed to support ModusToolbox™ specifically, the naming scheme is
left to the discretion of the partners.

• It should be hosted as a Git repository on any Git hosting platform. The name of the Git repository should
be the same as the name of the middleware library.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 21 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-example-psoc6-empty-app/tags
https://git-scm.com/book/en/v2/Git-Basics-Tagging

• It should have a valid release and latest tag to prevent applications that use it from breaking because the
contents of the middleware might change.

• It should have appropriate documentation to explain the APIs and how to add and use the middleware in
an application.

• It can be easily integrated with the make-based flow in ModusToolbox™.
• Constraints should be specified in the documentation such as capabilities of the hardware required,

supported operating systems, toolchains, and ModusToolbox™ tools versions.
Once the middleware is developed, push the changes to the upstream Git server and create a release tag similar
to the one described in section Creating the release package.
If the middleware has dependencies on other libraries (i.e., it needs other libraries for it to work), then see
Adding middleware dependencies to understand how to specify these dependencies. For example, a partner
that offers cloud-based services could require wifi-connection-manager and http-client libraries to establish a
connection to the cloud. This can be specified as a dependency to their middleware to make sure the right
dependent libraries are brought in whenever the middleware is used.

4.3 Creating a BSP
The BSPs have a specific folder structure, files, and Makefiles to allow ModusToolbox™ applications to build
correctly. To create your own BSP, ModusToolbox™ 3.x provides a graphical tool called "BSP Assistant". To
launch it in standalone mode, run the make bsp-assistant make command in your application or you can
search for bsp-assistant in the search bar and launch it. The steps to create your own custom BSP is provided
in the BSP Assistant User Guide.
On ModusToolbox™ 2.x versions, the custom BSP is created using the command line. It supports the make
bsp make command that creates a custom BSP based on a particular MCU device and optional connectivity
module. See the Creating a Custom BSP User Guide for the steps to create your own custom BSP.
Once your BSP is created, create a repository on your Git hosting platform with the following best practices:
• Repo name must be prefixed with TARGET_
• The BSP name should be all uppercase, with words separated by hyphens "-".
• Include documentation for the BSP with kit features, contents, default configuration, etc.
For example, TARGET_MY-KIT-062S2-43012 or TARGET_MY-SENSOR-SHIELD.
The BSP contains the design.modus file inside the config folder in the newer generation BSPs (BSP Gen 4) and
inside the COMPONENT_BSP_DESIGN_MODUS folder for older generation BSPs (BSP Gen3 and older). Use the Device
Configurator to open this file and define all the pin aliases, peripherals, clocks, and any other default settings of
the kit.
Once the BSP is developed, push the changes to the upstream Git server and create a release tag similar to the
one described in the Creating the release package section.

ModusToolbox™ & Friends

4 Creating your own software content

Application note 22 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/dgdl/Infineon-ModusToolbox_BSP_Assistant_1.0_User_Guide-UserManual-v02_00-EN.pdf?fileId=8ac78c8c8386267f0183a972f45c59af
https://www.infineon.com/ModusToolboxCreateCustomBSP

5 Creating your own manifest
By default, ModusToolbox™ tools look for Infineon’s manifest files maintained on Infineon’s GitHub server. So,
the initial list of BSPs, code examples, and middleware available to use are limited to our manifest files. Once
your content is completely integrated into ModusToolbox™, your manifest files will be included in the default
Infineon super manifest. However, during development, you can create your own manifest files on your servers
or locally on your machine, and you can override or add to where ModusToolbox™ tools look for manifest files.
To do that, you first need to create manifest files for your BSPs, code examples, and middleware. You will then
create a super manifest that points to these manifest files.
Let’s go through the steps to create these manifests in the following sections.

5.1 Creating repositories
Create repositories on your Git hosting platform for each manifest. Each manifest file should reside in its own
individual repository to allow the developer to update, maintain, and revert the manifests over time. That is,
you should have one repository for a BSP manifest, one for a code example manifest, and one for a middleware
manifest. You only need a repository for the types of content that you will be creating. For example, if you are
not creating any BSPs, you don't need a BSP manifest.
The repositories need to use the following naming scheme based on the manifest type:
• Super manifest: mtb-<partner_name>-super-manifest
• App manifest: mtb-<partner_name>-ce-manifest
• Middleware manifest: mtb-<partner_name>-mw-manifest
• BSP manifest: mtb-<partner_name>-bsp-manifest
For example, the super manifest repository can be named mtb-mycompany-super-manifest.
The following repositories can be used for reference on how to create them and understand what goes in them:
• Super manifest: mtb -partner-super-manifest
• App manifest: mtb-partner-ce-manifest
• Middleware manifest: mtb-partner-mw-manifest
• BSP manifest: mtb-partner-bsp-manifest

Note: ModusToolbox™ tools does not work directly with private repositories and requires the setup of tokens
as explained in the "Access to Private Repositories" section in the ModusToolbox™ user guide to get
access to them. This extra step of setting up the tokens is just a one-time effort.

5.2 Creating your code example manifest
The code example manifest is used to point to URIs of code examples. Inside the mtb-partner-ce-manifest
repository, create a file named mtb-partner-ce-manifest-fv2.xml.
Open the mtb-partner-ce-manifest-fv2.xml in an editor of your choice. The code example manifest is
essentially an XML with the following base structure:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 23 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-partner-super-manifest
https://github.com/Infineon/mtb-partner-ce-manifest
https://github.com/Infineon/mtb-partner-mw-manifest
https://github.com/Infineon/mtb-partner-bsp-manifest
https://www.infineon.com/ModusToolboxUserGuide

Code Listing 1

<apps version="2.0">
 <app keywords="for keywords">
 <name>code example name</name>
 <category>code example category</category>
 <id>code-example-id-without-spaces</id>
 <uri>code example URL</uri>
 <description>Hi I am a code example</description>
 <req_capabilities>code example capabilities</req_capabilities>
 <versions>
 <version flow_version="2.0" tools_min_version="MTB tools minimum version"
req_capabilities_per_version="bsp_gen4">
 <num>Name of the branch</num>
 <commit>exact branch of the repo to be used</commit>
 </version>
 </versions>
 </app>
</apps>

The file starts with <apps>...</apps> as the root labels. Each code example is described within an <app></app>
section. Multiple code examples can thus be added using the <app> labels within the root <apps> section.

Code Listing 2

<apps version="2.0">
 <app keywords="psoc6,partner,demo">
 // body of the code example 1
 </app>
 <app keywords="psoc6">
 // body of the code example 2
 </app>
</apps>

Update the body of the code example using the guidance for the fields described below to add details of your
CE:

Field / attribute Description Example

app:keywords List of labels which helps identify
the given code example using the
Project Creator search feature.
✔ Multiple keywords are supported
as a comma-delimited list.
✔ Allowed: chars, nums, spaces,
hyphen, underscore, period
✔ Best practice: include keywords
used in CE title, req_capabilities
attribute.

<app keywords="psoc6,led,starter,hello
world,mtb-flow">

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 24 002-35691 Rev. *B
2023-06-09

Field / attribute Description Example

<name> Name of the CE as it would show up
in the Project Creator.
✔ Use a short descriptive text. The
CE title is a good starting point.
❌ Avoid including device family or
SDK name (example: "PSoC 6") as
part of this field.
❌ Do not use special characters
like hyphens, colons, underscores,
bracket or slashes in this field.
Spaces are allowed.

<name>Hello World</name>

<category> Value which enables showing CEs
in categorized (grouped) list. Check
existing categories to determine
where the CE fits best.

<category>Voice</category>

<id> Unique ID of the CE. <id>mtb-example-psoc6-hello-
world</id>

<uri> Path to the CE's GitHub repo. No
trailing or leading spaces.

<uri>https://github.com/Infineon/mtb-
example-psoc6-hello-world</uri>

<description> Short description of the CE. This text
shows up in the description area of
the Project Creator while selecting
the CE.
❌ Do not use special characters like ™
or ® or smart (curly) braces.
✔This can be used to include a link
to company website and sales.

<description>This code example
demonstrates the implementation of
simple UART communication and blinks
an LED using a Timer resource using
PSoC 6 MCU.</description>

<req_capabilities> Capabilities required by the CE
which must be provided by the
board (BSP). CEs will be listed in the
Project Creator only for those BSPs
which provide these capabilities
using the <prov_capabilities> field
in the BSP manifest. Use this to
ensure that the CE is listed only
for supported kits. See Adding BSP
capabilities
for a list of available capabilities and
their descriptions.
✔ Enter a space-separated list of
capabilities the CE requires. All
the required capabilities must be
satisfied by a BSP for the CE to show
up in Project Creator for that BSP.

psoc6

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 25 002-35691 Rev. *B
2023-06-09

Field / attribute Description Example

version:flow_version Specifies flow version, required/
identified by tools > MTB 2.1
For the -fv2 manifest, this should be
2.0.

<version flow_version="2.0"

version:num
version:commit

These indicate the aliases for the
commit hash or branch/tag to fetch.
CE should mandatorily contain a
release tag i.e., release-v1.0.0 and a
latest tag i.e., latest-v1.X. See section
Creating the release package for
more details.
Although the default “main” branch
can be used here, it might keep
receiving updates and commits
might move. It is always better to
create a release tag to make the
content static.

<versions>
 <version>
 <num>Latest v1.X release
</num>
 <commit>latest-v1.X</
commit>
 </version>
 <version>
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</
commit>
 </version>
 </versions>

version:tools_min_version
version:tools_max_version

[Optional] Specifies min and max
ModusToolbox™ tool/patch versions
on which the particular <version> of
application is displayed.
tools_min_version should match
the minimum required tools or
patch version. For example, 2.2.0
if ModusToolbox™ 2.2 is required
without any patches, or 2.2.1 if the
2.2.1 patch is required.
All entries in fv2 manifest file MUST
contain tools_min_version="2.2.0"
or a higher version number.
In general, leave tools_max_version
blank as examples are expected to
work with latest versions of tools.

Note: The ModusToolbox™

version in the Readme
requirements section
should match these
values.

<version tools_min_version="2.2.0"
tools_max_version="2.4.1">

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 26 002-35691 Rev. *B
2023-06-09

Field / attribute Description Example

version:req_capabilities_per_
version

[Optional] A list of required version-
specific capabilities for the given
application. This list is treated as an
“AND" list in addition to the global
req_capabilities.
The list is whitespace-delimited. If
this attribute is missing or empty, it
means that this application has no
version-specific capability.

<version req_capabilities_per_version="
bsp_gen4 std_crypto">

app:req_capabilities_v2 [Optional] A list used to restrict
the scope of the code example.
See Specifying requirements
for restricted scope for more
information.

req_capabilities_v2="[cy8ckit_062-
wifi_bt,cy8ckit_062s2_43012]"

An example of what the manifest file will look with all the details filled in is shown below:

Code Listing 3

<apps version="2.0">
 <app keywords="psoc6,partner,my,cool,demo">
 <name>My Cool Demo</name>
 <category>Voice</category>
 <id>partner-mtb-example-my-cool-demo</id>
 <uri>https://github.com/partner/partner-mtb-example-my-cool-demo</uri>
 <description>
 <![CDATA[This code example demonstrates this XYZ application PSoC™ 6 MCU with AIROC™
CYW43xxx Wi-Fi & Bluetooth® combo chips.

For more details, see the <a href="https://github.com/partner/partner-mtb-
example-my-cool-demo/blob/master/README.md">README on GitHub.

Partner is a company that does ABC
and XYZ.

 > Get Started
 > Talk to Sales]]>
 </description>
 <req_capabilities>psoc6</req_capabilities>
 <versions>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>Latest 1.X release</num>
 <commit>latest-v1.X</commit>
 </version>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 </version>
 </versions>
 </app>
</apps>

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 27 002-35691 Rev. *B
2023-06-09

Note: The latest tag is used to bring the latest version of the content available in the repository. This tag
must be used to point to the latest version of the library. All the tags mentioned in the manifest must
exist in the repository hosting the content. See Creating the release package to learn more about
creating these tags if not already done.

An illustration of how these fields affect the behavior in project-creator is shown below:

5.2.1 Adding BSP capabilities
ModusToolbox™ relies on a set of capabilities provided by the BSP and required by the code examples to
determine what is compatible. This ensures that code examples and BSPs can be created and released
completely independently of the software tools that present them to customers.

Capabilities Description

psoc4 This board includes a PSoC™ 4 (e.g., PSoC™ 4200, PSoC™ 4100S Max, , ...) MCU
that can be used to develop firmware on.

psoc6 This board includes a PSoC™ 6 (e.g., PSoC™ 62, PSoC™ 63, ...) MCU that can be
used to develop firmware on.

pmg1 This board includes a EZ-PD™ PMG1 (e.g., CYPM1xxx, ...) MCU that can be used
to develop firmware on.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 28 002-35691 Rev. *B
2023-06-09

Capabilities Description

cat1 This board includes an MCU that is part of CAT1A (or PSoC™ 6) and CAT1B
family of devices.

cat2 This board includes an MCU that is part of CAT2 (PSoC™ 4 and PMG1) family of
devices.

cat3 This board includes an MCU based on the Infineon XMC™ platform (XMC1xxx,
XMC4xxx).

cat4 This board includes an MCU based on the 43907 platform (43907, 54907).

xmc This board includes an XMC™ MCU that can be used to develop firmware on.

xmc1000 This board includes an Arm® Cortex® M0 (CM0) XMC1xxx MCU that can be used
to develop firmware on.

xmc4000 This board includes an Arm® Cortex® M4 (CM4) XMC4xxx MCU that can be used
to develop firmware on.

xmc7000 This board includes a CM0+ and up to two an Arm® Cortex® M7 (CM7) XMC7xxx
MCU that can be used to develop firmware on.

cyw20xxx This board includes a CYW20xxx (e.g., CYW20735, CYW20820, ...) MCU that can
be used to develop firmware on.

cyw20<###> This board includes the specific connectivity chip (e.g., CYW4343W,
CYW43012). This should only be used when the generic 'cyw20xxx' capability is
also provided.

cyw43xxx This board includes a CYW43xxx (e.g., CYW4343W, CYW43012, ...) chip
providing Bluetooth® and Wi-Fi functionalities.

Chip capabilities

adc The MCU on the board contains at least one programmable analog-to-digital
converter (ADC) block.

can The MCU on the board contains at least one Controller Area Network (CAN)
block.

comp The MCU on the board contains at least one analog comparator block.

cyw20xxx_controller The MCU on the board includes a CYW20xxx (e.g., CYW20819, CYW20706, ...)
chip providing Bluetooth® controller functionality (standard HCI, WICED-HCI).
A separate MCU is used for the host functionality.

dac The MCU on the board contains at least one programmable digital-to-analog
converter (DAC) block.

dma The MCU on the board contains at least one programmable DMA block.

flash_<X>k The MCU on the board contains X kilobytes of internal flash memory, e.g., for a
device with 256 KB of flash, the capability would be: flash_256k.

i2c The MCU on the board contains at least one programmable I2C block.

i2s The MCU on the board contains at least one programmable I2S block.

lin The MCU on the board contains at least one programmable Local Interconnect
Network (LN) block.

low_power The MCU and board are capable of running in low-power modes.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 29 002-35691 Rev. *B
2023-06-09

Capabilities Description

lptimer The MCU on the board contains at least one programmable low-power timer
(LPT) block.

mcu_gp The MCU on the board has a programmable general-purpose MCU (e.g.,
PSoC™, CYW43907), NOT: 20xxx.

multi_core The MCU on the board has multiple user-configurable cores (e.g., most PSoC™

6 MCUs have a CM0+ and a CM4 core)

opamp The MCU on the board contains at least one programmable operational
amplifier block.

qspi The MCU on the board contains at least one programmable Quad SPI block.

rtc The MCU on the board contains at least one programmable real-time clock
(RTC) block.

secure_boot The MCU on the board is capable of booting into a secured environment.

smart_io The board contains provisions to access smart I/O capable pins, even if the
pins are multiplexed with other peripherals like CAPSENSE™.

std_crypto The MCU on the board supports standard cryptography APIs.

uart The MCU on the board contains at least one programmable UART block.

udb The MCU on the board has a device that supports configurable Universal
Digital Blocks (UDB).

sram_<X>k The MCU on the board contains X kilobytes of internal SRAM, e.g., for a device
with 16 KB of SRAM, the capability would be: sram_16k.

ble This chip and board are capable of performing Bluetooth® LE communication.
DEPRECATED: With the AIROC™ stack unification, going forward the "bt"
capability covers all devices with Bluetooth® radios.

bt This chip and board are capable of performing full Bluetooth® communication.

capsense This chip supports CAPSENSE™ and the board contains CMOD and/or CINT
capacitors to support CAPSENSE™ design. It may not have any widget present
though.

capsense_button The chip supports CAPSENSE™ and the board contains at least one
CAPSENSE™ button.

capsense_linear_slider The chip supports CAPSENSE™ and the board contains at least one
CAPSENSE™ linear slider.

capsense_radial_slider The chip supports CAPSENSE™ and the board contains at least one
CAPSENSE™ radial slider.

capsense_touchpad The chip supports CAPSENSE™ and the board contains at least one
CAPSENSE™ touchpad/trackpad.

sdhc This chip supports SDHC communication and the board contains an SDHC-
compatible card port.

usb_device This chip supports USB device operation and the board contains a USB
header.

usb_host This chip supports USB host operation and the board contains a USB header.

usbpd This chip supports USB Power Delivery and the board contains a USB header.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 30 002-35691 Rev. *B
2023-06-09

Capabilities Description

wifi This chip and board are capable of performing full Wi-Fi communication.

Board elements

arduino This board provides a pinout compatible with Arduino.

enclosure This board is sealed in an enclosure to showcase liquid tolerance by
immersing in liquids.

fram This board contains at least one memory device that is a F-RAM.

j2 This board contains the an extended J2 pin header beyond the regular
Arduino pins (used by some shields). This is only expected to be used if
'arduino' capability is also provided.

led This board contains at least one user-controllable LED.

memory This board contains a memory device external to the main processor that can
be accessed via SPI, QSPI, ...

nor_flash This board contains at least one memory device that is a NOR flash.

pot This board contains an analog potentiometer that can be accessed via a GPIO.

rgb_led This board contains at least one RGB LED.

serial_led This board contains at least one RGB LED driven serially using SPI interface.

switch This board contains at least one user-controllable switch (aka button).

Others

bsp_gen1, bsp_gen2,
bsp_gen3,
bsp_gen4

Anytime a new major version of a BSP is created, you need to switch the
bsp_gen[X] capability to a higher number. This ends up being used by Project
Creator in the way the major version of the asset should be used.
bsp_gen1 - CAT1A v1
bsp_gen2 - CAT1A v2, CAT2 v1, CAT3 v1
bsp_gen3 - CAT1A v3, CAT2 v2
bsp_gen4 - CAT1A v4, CAT1B v1, CAT1C v1, CAT2 v3, CAT3 v2

Note: You don’t necessarily have to add all the capabilities. At a basic level just Infineon chip-level
capabilities like “psoc6” or “psoc4” can be used. Other constraints that the code example may have
are typically documented in the Readme file.

A code example manifest template has been created with details filled out. You can use this directly or modify
the fields as required.

5.2.2 Specifying requirements for restricted scope
The code example manifest lists the capabilities it requires to work using options <req_capabilities>
or <req_capabilities_per_version> described previously. ModusToolbox™ looks at BSPs that provide these
capabilities (specified using <prov_capabilities> as described in Adding BSP dependencies) and displays the
code examples against only the supported BSPs.
For those special cases when the code example works for specific BSP(s), it is not possible to use
<req_capabilities> or <req_capabilities_per_version> because several BSPs could have the same capabilities.
Hence, for a code example with restricted scope where it works only for specific BSPs or devices with
a minimum flash size, the manifests provide an additional option <req_capabilities_v2> to specify such
requirement.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 31 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-partner-ce-manifest/blob/master/mtb-partner-ce-manifest-fv2.xml

Use req_capabilities_v2 as per guidance and example provided below:
• req_capabilities_v2 uses the format "[tag1] [tag2, tag3]" which translates to the app requiring tag1 AND

(tag2 OR tag3) Reminder: req_capabilities and req_capabilities_per_version use the format "tag4 tag5"
which translates to the app requiring tag4 AND tag5.

• Overall required capabilities for the app for a particular version is an AND condition of individual lists:
req_capabilities_v2 AND req_capabilities AND req_capabilities_per_version.

Example 1: For displaying a code example that is supported only by two specific BSPs:

Code Listing 4

<apps version="2.0">
 <app keywords="psoc6,partner,my,cool,demo" req_capabilities_v2="[cy8ckit_062-
wifi_bt,cy8ckit_062s2_43012]">
 <name>My Cool Demo</name>
 <category>Voice</category>
 <id>partner-mtb-example-my-cool-demo</id>
 <uri>https://github.com/partner/partner-mtb-example-my-cool-demo</uri>
 <description><![CDATA[This code example demonstrates this XYZ application PSoC™ 6 MCU with
AIROC™ CYW43xxx Wi-Fi & Bluetooth® combo chips.

For more details, see the <a href="https://github.com/partner/partner-mtb-example-
my-cool-demo/blob/master/README.md">README on GitHub.

Partner is a company that does ABC and
XYZ.

 > Get Started

 > Talk to Sales]]>
 </description>
 <req_capabilities>psoc6</req_capabilities>
 <versions>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>Latest 1.X release</num>
 <commit>latest-v1.X</commit>
 </version>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 </version>
 </versions>
 </app>
</apps>

Example 2: For displaying a code example that requires a minimum flash size

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 32 002-35691 Rev. *B
2023-06-09

Code Listing 5

<apps version="2.0">
 <app keywords="psoc6,partner,my,cool,demo" req_capabilities_v2="[flash_2048k,flash_1024k]">
 <name>My Cool Demo</name>
 <category>Voice</category>
 <id>partner-mtb-example-my-cool-demo</id>
 <uri>https://github.com/partner/partner-mtb-example-my-cool-demo</uri>
 <description><![CDATA[This code example demonstrates this XYZ application PSoC™ 6 MCU with
AIROC™ CYW43xxx Wi-Fi & Bluetooth® combo chips.

For more details, see the <a href="https://github.com/partner/partner-mtb-example-
my-cool-demo/blob/master/README.md">README on GitHub.

Partner is a company that does ABC and
XYZ.
 > Get Started

 > Talk to Sales]]<
 </description>
 <req_capabilities>psoc6</req_capabilities>
 <versions>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>Latest 1.X release</num>
 <commit>latest-v1.X</commit>
 </version>
 <version flow_version="2.0" tools_min_version="3.0.0"
req_capabilities_per_version="bsp_gen4">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 </version>
 </versions>
 </app>
</apps>

5.3 Creating your middleware manifest
The middleware manifest is used to point to URIs of middleware. Inside the mtb-partner-mw-manifest
repository, create a file named mtb-partner-mw-manifest-fv2.xml.
The middleware manifest file has the following base structure:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 33 002-35691 Rev. *B
2023-06-09

Code Listing 6

<middleware>
 <middleware>
 <name>Middleware Name</name>
 <id>middleware-id-without-spaces</id>
 <uri>Middleware URL</uri>
 <desc>Middleware Description</desc>
 <category>Middleware</category>
 <req_capabilities>capabilities required for the middleware to work</req_capabilities>
 <versions>
 <version flow_version="1.0,2.0" tools_min_version="3.0.0">
 <num>Version number</num>
 <commit>release tag of middleware</commit>
 <desc>description for release tag</desc>
 </version>
 </versions>
 </middleware>
</middleware>

The root of the XML contains the <middleware> … </middleware> section. Details of the middleware are written
within another <middleware> section within the root <middleware> node as shown below:

Code Listing 7

<middleware>
 <middleware>
 // body of middleware 1
 </middleware>
 <middleware>
 // body of middleware 2
 </middleware>
</middleware>

Update the body of the middleware using the guidance for the fields described below to add details of your
middleware:

Element Description Example

<name> A user-friendly name for the
middleware. This is what is
displayed in the UI. Typically, the
name is the same as the GitHub
repository name.

partner-middleware

<id> A unique identifier for the
middleware.
The manifest processing code
will give an error if multiple
middleware items have the same
ID. Typically, the name is the
same as the GitHub repository
name.

partner-middleware

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 34 002-35691 Rev. *B
2023-06-09

Element Description Example

<uri> The URI for the Git repository
holding the middleware.

https://github.com/partner/partner-
middleware

<desc> A user-friendly text description
of the middleware item. This
is meant to be displayed in
the UI. Typically, this is one or
two sentences that match the
GitHub repository "About" text or
README.md first paragraph.
Note: Some asset descriptions
apply advanced formatting
like bold/inline text or line
separators. In such situations,
enclose the text into CDATA
section.

<![CDATA[
Block device drivers for use with littlefs
filesystem.

License Disclaimer:</
b>

Adding this library will also download
and add littlefs to your project. It is your
responsibility to understand and accept
the littlefs license.
]]>

<category> A user-friendly text string
that specifies the category for
displaying this middleware item
in a GUI. It is expected that all
middleware in the same category
will be shown together in the
library management GUI.

Middleware

<req_capabilities> A list of capabilities that this
middleware requires. This list is
treated as an "AND" list. That
is, all capabilities must be met.
The list is whitespace-delimited;
each item in the list must be a
valid C identifier. If this element
is missing or empty, it means
that this middleware has no
capability requirements. That is,
it works with all boards.
For the complete list of the
provided capabilities that can be
"required" by the middleware,
see
Adding BSP capabilities.

psoc6

All libraries and middleware are shown in the Library Manager tool. An illustration of how these fields affect the
behavior in Library Manager is shown below:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 35 002-35691 Rev. *B
2023-06-09

https://github.com/partner/partner-middleware
https://github.com/partner/partner-middleware

An example of what the middleware manifest file will look like with all the details filled is shown below:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 36 002-35691 Rev. *B
2023-06-09

Code Listing 8

<middleware>
 <middleware>
 <name>partner-middleware-sdk</name>
 <id>partner-middleware-sdk</id>
 <uri>https://github.com/partner/partner-middleware-sdk</uri>
 <desc>This SDK is used for ABC and XYZ on PSoC6 devices.</desc>
 <category>Middleware</category>
 <req_capabilities>cat1</req_capabilities>
 <versions>
 <version flow_version="1.0,2.0">
 <num>Latest v1.X release</num>
 <commit>latest-v1.X</commit>
 <desc>latest-v1.X</desc>
 </version>
 <version flow_version="1.0,2.0">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 <desc>release-v1.0.0</desc>
 </version>
 </versions>
 </middleware>
</middleware>

Note: The latest tag is used to bring the latest version of the content available in the repository. This tag
must be used to point to the latest version of the library. All tags mentioned in the manifest must exist
in the repository hosting the content. See Creating the release package to learn more about creating
these tags if not already done.

5.3.1 Adding middleware dependencies
Middleware libraries can work standalone or require other middleware or other high-level libraries to work
correctly. A middleware dependencies manifest is used to specify the dependencies a middleware may have on
other middleware or high-level libraries.
Note: The dependency manifest defines only dependencies between high-level middleware libraries. There

is no need to define the dependencies on the low-level base libraries like HAL, PDL, or Core-Lib.
Instead, the BSP dependencies manifest will define such dependencies separately for each BSP.

For example, an MQTT middleware might have dependencies on Wi-Fi and HTTP libraries to function correctly.
ModusToolbox™ offers a number of middleware libraries that can be added dependencies. These middleware
libraries are divided into three categories:
• General middleware libraries (mtb -mw-manifest)
• Bluetooth ® middleware libraries (mtb - bt -mw-manifest)
• Wi-Fi middleware libraries (mtb - wifi -mw-manifest)
All the above links point to the manifest repositories used by ModusToolbox™ for organizing the middleware
libraries. If your library has a dependency on a Wi-Fi library, use the mtb-wifi-mw-manifest repository to find
the information required for your dependency manifest. Similarly, if your middleware has a dependency on
a general library, use the mtb-mw-manifest repository to find the information required for your dependency
manifest.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 37 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-mw-manifest
https://github.com/Infineon/mtb-bt-mw-manifest
https://github.com/Infineon/mtb-wifi-mw-manifest

In each of these repositories, you will find manifest files that have the same typical structure:

Code Listing 9

<middleware>
 <name>bmm150</name>
 <id>bmm150</id>
 <uri>https://github.com/BoschSensortec/BMM150-Sensor-API</uri>
 <desc>Bosch BMM-150 Sensor Driver.</desc>
 <category>Peripheral</category>
 <req_capabilities>mcu_gp</req_capabilities>
 <versions>
 <version flow_version="1.0,2.0">
 <num>2.0.0 release</num>
 <commit>bmm150_v2.0.0</commit>
 <desc>2.0.0 release</desc>
 </version>
 </versions>
</middleware>

Based on which middleware library should be added as a dependency, locate the name of the middleware
using the <name> label in the manifest file. For example, if your middleware has a dependency on the BMM150
sensor library, because this is a non-Bluetooth® or a non-Wi-Fi library, you will use the mtb-mw-manifest
repository to search for it.
Once you have found the library, note the ID of the middleware in the <id> label. This will be used to specify the
dependency.
Create a file in the mtb-partner-mw-manifest repository named mtb-partner-mw-dependencies-manifest.xml. The
structure of the middleware dependencies manifest file is as follows:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 38 002-35691 Rev. *B
2023-06-09

Code Listing 10

<dependencies>
 <depender>
 <id>my-middleware-id</id>
 <versions>
 <version>
 <commit>2.0.0</commit>
 <dependees>
 <dependee>
 <id>dependent-library1-id</id>
 <commit>1.1.0</commit>
 </dependee>
 <dependee>
 <id>dependent-library2-id</id>
 <commit>1.2.0</commit>
 </dependee>
 </dependees>
 </version>
 <version>
 <commit>1.0.0</commit>
 <dependees>
 <dependee>
 <id>dependent-library1-id</id>
 <commit>1.0.0</commit>
 </dependee>
 <dependee>
 <id>dependent-library2-id</id>
 <commit>1.1.0</commit>
 </dependee>
 </dependees>
 </version>
 </versions>
 </depender>
</dependencies>

All the middleware dependencies are specified within the root <dependencies>…</dependencies> section.
The dependencies of each middleware library are specified within the <depender> section. Because each
middleware library can have dependencies on different versions of other libraries for a particular release, the
<version> section is used to differentiate the dependencies across versions.
Update the body of the middleware dependencies file using the guidance for the fields described below to add
details of your middleware:

Element Description Example

<id> A unique identifier for the
middleware.
The manifest processing code
will give an error if multiple
middleware items have the same
ID. Typically, the name is the same
as the GitHub repository name.

partner-middleware

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 39 002-35691 Rev. *B
2023-06-09

Element Description Example

<commit> Specifies the tag/branch used for
fetching the library

1.0.0

<dependee><id> Unique identifier of the dependent
library

bmm150

<dependee><commit> Specifies the tag/branch used for
fetching the dependent library for
a specific version of the depender
library.

bmm150_v2.0.0

For example, if your middleware has a dependency on wifi-connection-manager and http-client to function
correctly, the completed middleware dependencies file should look like this:

Code Listing 11

<dependencies>
 <depender>
 <id>partner-middleware</id>
 <versions>
 <version>
 <commit>latest-v1.X</commit>
 <dependees>
 <dependee>
 <id>wifi-connection-manager</id>
 <commit>latest-v2.X</commit>
 </dependee>
 <dependee>
 <id>http-client</id>
 <commit>latest-v1.X</commit>
 </dependee>
 </dependees>
 </version>

 <version>
 <commit>release-v1.0.0</commit>
 <dependees>
 <dependee>
 <id>wifi-connection-manager</id>
 <commit>latest-v2.X</commit>
 </dependee>
 <dependee>
 <id>http-client</id>
 <commit>latest-v1.X</commit>
 </dependee>
 </dependees>
 </version>
 </versions>
 </depender>
</dependencies>

The middleware manifest dependencies file reference can be found here.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 40 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/partner-mw-manifest/blob/master/partner-mw-dependencies-manifest.xml

5.4 Creating your BSP manifest
The BSP manifest is used to point to URIs of BSPs. Inside the mtb-partner-bsp-manifest repository, create a file
named mtb-partner-bsp-manifest-fv2.xml.
The BSP manifest file has the following base structure:

Code Listing 12

<boards>
 <board default_location="local">
 <id>CUSTOM-BSP-NAME</id>
 <category>BSP Category</category>
 <board_uri>URL of the BSP</board_uri>
 <chips>
 <mcu>Name of the MCU chip used</mcu>
 <radio>Name of optional radio chip used</radio>
 </chips>
 <name>Name of the kit</name>
 <summary>Summary of the BSP</summary>
 <prov_capabilities>Capabilities of the BSP </prov_capabilities>
 <description> Detailed description of the BSP </description>
 <documentation_url>URL to BSP documentation </documentation_url>
 <versions>
 <version tools_min_version="3.0.0" flow_version="1.0,2.0"
prov_capabilities_per_version="bsp_gen4">
 <num>Latest 0.X release</num>
 <commit>latest-v0.X</commit>
 </version>
 <version tools_min_version="3.0.0" flow_version="1.0,2.0"
prov_capabilities_per_version="bsp_gen4">
 <num>0.5.0 release</num>
 <commit>release-v0.5.0</commit>
 </version>
 </versions>
 </board>
</boards>

The root of the XML contains the <boards> … </boards> section. Details of the BSPs are written inside the
<board> section within the root <boards> node as shown below:

Code Listing 13

<boards>
 <board>
 // body of BSP 1
 </board>
 <board>
 // body of BSP 2
 </board>
</boards>

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 41 002-35691 Rev. *B
2023-06-09

Update the body of the board section using the guidance for the fields described below to add details of your
middleware:

Element Description Example

board:default_location
(optional)

Describes whether the BSP should
be placed in the shared or local
application folder

<board default_location="local"> or
<board default_location="shared">

<id> A unique identifier for the custom
BSP.The manifest processing code
will give an error if multiple BSP
items have the same ID. Typically,
the name is the same as the
GitHub repository name.

MY-CUSTOM-BSP

<board_uri> The URI for the Git repository
holding the custom BSP

https://github.com/partner/TARGET_MY-
CUSTOM-BSP

<description> A user-friendly text description of
the BSP item. This is meant to
be displayed in the UI. Typically,
this is a few sentences that match
the GitHub repository "About"
text or the first paragraph in
README.md.
Note: Some asset descriptions
apply advanced formatting like
bold/inline text or line separators.
In such situations, enclose the
text into CDATA section.

<![CDATA[My Custom BSP is an evaluation
kit with the following features.]]>

<category> A user-friendly text string
that specifies the category for
displaying this BSP item in a GUI.
It is expected that all BSP in
the same category will be shown
together in the Project Creator
GUI.

PSoC™ 6 BSPs.
Note that ™ is the special code
representation of the trademark symbol.

<prov_capabilities> A list of capabilities that this BSP
provides. This list is treated as
an "AND" list. That is, all the
capabilities that are provided. The
list is whitespace-delimited; each
item in the list must be a valid
C identifier. If this element is
missing or empty, it means that
this BSP has no capability.
For the complete list of the
provided capabilities by the BSP,
see Creating your code example
manifest
Adding BSP capabilities.

psoc6

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 42 002-35691 Rev. *B
2023-06-09

All BSPs are shown in the Project Creator tool. An illustration of how these fields affect the behavior in Project
Creator is shown below:

An example of what the BSP manifest file will look like with all the details filled in is shown below:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 43 002-35691 Rev. *B
2023-06-09

Code Listing 14

<board default_location="local">
 <id>MY-KIT-062S2-43012</id>
 <category>PSoC™ 6 BSPs</category>
 <board_uri>https://github.com/partner/MY-KIT-062S2-43012</board_uri>
 <chips>
 <mcu>CY8C624ABZI-S2D44</mcu>
 </chips>
 <name>MY-KIT-062S2-43012</name>
 <summary>The BSP MY-KIT-062S2-43012 is the next generation board for XYZ applications</
summary>
 <prov_capabilities>adc arduino capsense capsense_button capsense_linear_slider cat1 comp
dma flash_2048k hal i2c i2s j2 led low_power lptimer mcu_gp memory memory_qspi multi_core
nor_flash pdm psoc6 qspi rgb_led rtc sdhc smart_io spi sram_1024k std_crypto switch uart</
prov_capabilities>
 <description><![CDATA[
 <div class="category">Kit Features:</div>
 Ready-to-Use CAPSENSE™ Trackpad
 EZ-BLE PRoC module
 Potentiometer
 Rechargeable coin-cell battery
 <p/>
 <div class="category">Kit Contents:</div>
 MY-KIT-062S2-43012
 USB Standard-A to Micro-B cable
 ABC Sensor
 Four press-fit connectors (for Arduino headers)
 Four jumper wires
 Quick Start Guide

]]></description>
 <documentation_url>https://www.partner.com/documentation/development-kitsboards/MY-
KIT-062S2-43012</documentation_url>
 <versions>
 <version tools_min_version="3.0.0" flow_version="1.0,2.0"
prov_capabilities_per_version="bsp_gen4">
 <num>Latest v1.X release</num>
 <commit>latest-v1.X</commit>
 </version>
 <version tools_min_version="3.0.0" flow_version="1.0,2.0"
prov_capabilities_per_version="bsp_gen4">
 <num>1.1.0 release</num>
 <commit>release-v1.1.0</commit>
 </version>
 <version tools_min_version="3.0.0" flow_version="1.0,2.0"
prov_capabilities_per_version="bsp_gen4">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 </version>
 </versions>
 </board>

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 44 002-35691 Rev. *B
2023-06-09

The BSP manifest file reference can be found here.

5.4.1 Adding BSP dependencies
All BSPs rely on low-level device-specific libraries to work correctly. A BSP dependencies manifest is used in to
specify the dependencies a BSP has on the lower-level libraries.
For example, a PSoC™ 6 BSP has dependencies on PSoC™ 6 Peripheral Driver Library (mtb-pdl-cat1), PSoC™ 6
Hardware Abstraction Layer library (mtb-hal-cat1), core libraries (core-lib), etc. ModusToolbox™ offers a number
of libraries that can be added as a dependency. These libraries are divided into three categories:
• General middleware libraries (mtb -mw-manifest)
• Bluetooth ® middleware libraries (mtb - bt -mw-manifest)
• Wi-Fi middleware libraries (mtb - wifi -mw-manifest)
All the above links point to the manifest repositories used by ModusToolbox™ for organizing the middleware
libraries. If your library has a dependency on a Wi-Fi library, use the mtb-wifi-mw-manifest repository to find
the information required for your dependency manifest. Similarly, if your middleware has a dependency on
a general library, use the mtb-mw-manifest repository to find the information required for your dependency
manifest.
In each of these repositories, you will find manifest files that have the same typical structure:

Code Listing 15

<middleware>
 <name>mtb-pdl-cat1</name>
 <id>mtb-pdl-cat1</id>
 <uri>https://github.com/cypresssemiconductorco/mtb-pdl-cat1</uri>
 <desc>The Peripheral Driver Library (PDL) integrates device header files, startup code, and
low-level peripheral drivers into a single package.</desc>
 <category>Core</category>
 <req_capabilities>cat1</req_capabilities>
 <versions>
 <version flow_version="1.0,2.0" tools_min_version="3.0.0">
 <num>3.0.0 release</num>
 <commit>release-v3.0.0</commit>
 <desc>3.0.0 release</desc>
 </version>
 <version flow_version="1.0,2.0" tools_min_version="2.4.1">
 <num>2.4.1 release</num>
 <commit>release-v2.4.1</commit>
 <desc>2.4.1 release</desc>
 </version>
 </version>
 </versions>
 </middleware>

Based on the middleware library that should be added as a dependency, locate the name of the middleware
using the <name> label in the manifest file. For example, if your BSP has a dependency on the PSoC™ 6 PDL,
because this is a non-Bluetooth® or a non-Wi-Fi library, you will use the mtb-mw-manifest repository to search for
it.
Once you have found the library, note the ID of the middleware in the <id> label. This will be used to specify the
dependency.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 45 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/partner-bsp-manifest/blob/master/partner-bsp-manifest-fv2.xml
https://github.com/Infineon/mtb-mw-manifest
https://github.com/Infineon/mtb-bt-mw-manifest
https://github.com/Infineon/mtb-wifi-mw-manifest

Create a file in the mtb-partner-bsp-manifest repository named mtb-partner-bsp-dependencies-manifest.xml.
The structure of the BSP dependencies manifest file is as follows:

Code Listing 16

<dependencies version="2.0">
 <depender>
 <id>my-bsp-id</id>
 <versions>
 <version>
 <commit>2.0.0</commit>
 <dependees>
 <dependee>
 <id>dependent-library1-id</id>
 <commit>1.1.0</commit>
 </dependee>
 <dependee>
 <id>dependent-library2-id</id>
 <commit>1.2.0</commit>
 </dependee>
 </dependees>
 </version>
 <version>
 <commit>1.0.0</commit>
 <dependees>
 <dependee>
 <id>dependent-library1-id</id>
 <commit>1.0.0</commit>
 </dependee>
 <dependee>
 <id>dependent-library2-id</id>
 <commit>1.1.0</commit>
 </dependee>
 </dependees>
 </version>
 </versions>
 </depender>
</dependencies>

All BSP dependencies are specified within the root <dependencies>…</dependencies> section. The dependencies
of each BSP library are specified within the <depender> section. Because each BSP library can have
dependencies on different versions of other libraries for a particular release, the <version> section is used
to differentiate the dependencies across versions.
Update the body of the BSP dependencies file using the guidance for the fields described below to add details
of your middleware:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 46 002-35691 Rev. *B
2023-06-09

Element Description Example

<id> A unique identifier for the BSP.
The manifest processing code
will give an error if multiple
middleware items have the same
ID. Typically, the name is the same
as the GitHub repository name.

PARTNER-MY-KIT-062S2-43012

<commit> Specifies the tag/branch used for
fetching the library

1.0.0

<dependee><id> Unique identifier of the dependent
library

mtb-pdl-cat1

<dependee><commit> Specifies the tag/branch used for
fetching the dependent library for
a specific version of the depender
library

release_v2.0.0

For example, if your BSP has a dependency on PSoC™ 6 PDL and PSoC™ 6 HAL to function correctly, the
completed BSP dependencies file should look like this:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 47 002-35691 Rev. *B
2023-06-09

Code Listing 17

<dependencies>
 <depender>
 <id>PARTNER-MY-KIT-062S2-43012</id>
 <versions>
 <version>
 <commit>latest-v1.X</commit>
 <dependees>
 <dependee>
 <id>mtb-pdl-cat1</id>
 <commit>latest-v3.X</commit>
 </dependee>
 <dependee>
 <id>mtb-hal-cat1</id>
 <commit>latest-v2.X</commit>
 </dependee>
 </dependees>
 </version>
 <version>
 <commit>release-v1.0.0</commit>
 <dependees>
 <dependee>
 <id>mtb-pdl-cat1</id>
 <commit>latest-v3.X</commit>
 </dependee>
 <dependee>
 <id>mtb-hal-cat1</id>
 <commit>latest-v2.X</commit>
 </dependee>
 </dependees>
 </version>
 </versions>
 </depender>
</dependencies>

The BSP manifest dependencies file reference can be found here.

5.5 Creating your super manifest
The super manifest is used to point to the URIs of your code example, middleware, and BSP manifest files. Inside
the mtb-partner-super-manifest repository, create a file named mtb-partner-super-manifest-fv2.xml.
The super manifest has the following base format:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 48 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/partner-bsp-manifest/blob/master/partner-bsp-dependencies-manifest.xml

Code Listing 18

<super-manifest version="2.0">
 <board-manifest-list>
 <board-manifest>
 <uri>https://github.com/partner/mtb-partner-bsp-manifest/raw/main/mtb-partner-bsp-
manifest.xml</uri>
 </board-manifest>
 </board-manifest-list>
 <app-manifest-list>
 <app-manifest>
 <uri>https://github.com/partner/mtb-partner-ce-manifest/raw/main/mtb-partner-ce-manifest-
fv2.xml</uri>
 </app-manifest>
 </app-manifest-list>
 <middleware-manifest-list>
 <middleware-manifest>
 <uri>https://github.com/partner/mtb-partner-mw-manifest/raw/main/mtb-partner-mw-
manifest.xml</uri>
 </middleware-manifest>
 </middleware-manifest-list>
</super-manifest>

At the root, the <super-manifest> label is used to identify that is a super manifest type and flow version of
the manifest is v2.0. It then uses <board-manifest-list>, <app-manifest-list>, and <middleware-manifest-list>
sections for listing the BSPs, code examples, and middleware libraries to be brought in.
The URL to the manifest XMLs must be in raw format. To create this link, use the following scheme:
<link to repo>/raw/<branch_name>/<manifest_name>.xml

For example, a repository named mtb -partner- ce -manifest and having the manifest file mtb-partner-ce-
manifest-fv2.xml on branch “master” will have the following link:
https://github.com/Infineon/mtb-partner-ce-manifest/raw/master/mtb-partner-ce-manifest-fv2.xml
To specify the BSP manifests, each BSP manifest URIs can be added using the <board-manifest> sections within
the <board-manifest-list> using the <uri> field. For example, if you have two different BSP manifests you want
to point to, it can be done this way:

Code Listing 19

<board-manifest-list>
 <board-manifest>
 <uri>https://github/partner/mtb-partner-bsp-manifest/raw/main/mtb-partner-bsp-
manifest.xml</uri>
 </board-manifest>
 <board-manifest>
 <uri>https://github/partner/mtb-partner-bsp-manifest/raw/main/other-bsp-manifest.xml</uri>
 </board-manifest>
 </board-manifest-list>

Similarly, to specify the code example manifests, each of the code example manifest URIs can be added using
the <app-manifest> sections within the <app-manifest-list> using the <uri> field. For example, if you have two
different code example manifests that you want to point to, it can be done this way:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 49 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-partner-ce-manifest
https://github.com/Infineon/mtb-partner-ce-manifest/blob/master/mtb-partner-ce-manifest-fv2.xml
https://github.com/Infineon/mtb-partner-ce-manifest/blob/master/mtb-partner-ce-manifest-fv2.xml
https://github.com/Infineon/mtb-partner-ce-manifest/raw/master/mtb-partner-ce-manifest-fv2.xml

Code Listing 20

<app-manifest-list>
 <app-manifest>
 <uri>https://github.com/partner/mtb-partner-ce-manifest/raw/main/mtb-partner-ce-manifest-
fv2.xml</uri>
 </app-manifest>
 <app-manifest>
 <uri>https://github.com/partner/mtb-partner-ce-manifest/raw/main/other-ce-manifest-
fv2.xml</uri>
 </app-manifest>
 </app-manifest-list>

Similarly, to specify the middleware manifests, each middleware manifest URI can be added using the
<middleware-manifest> sections within the <middleware-manifest-list> using the <uri> field. For example, if
you have two different code example manifests that you want to point to, it can be done this way:

Code Listing 21

<middleware-manifest-list>
 <middleware-manifest>
 <uri>https://github.com/partner/mtb-partner-mw-manifest/raw/main/mtb-partner-mw-
manifest.xml</uri>
 </middleware-manifest>
 <middleware-manifest>
 <uri>https://github.com/partner/mtb-partner-mw-manifest/raw/main/other-mw-manifest.xml</
uri>
 </middleware-manifest>
 </middleware-manifest-list>

The super manifest should finally look like this once all the details have been filled in:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 50 002-35691 Rev. *B
2023-06-09

Code Listing 22

<super-manifest version="2.0">
 <board-manifest-list>
 <board-manifest>
 <uri>https://github.com/partner/mtb-partner-bsp-manifest/raw/main/mtb-partner-bsp-
manifest.xml</uri>
 </board-manifest>
 </board-manifest-list>
 <app-manifest-list>
 <app-manifest>
 <uri>https://github.com/partner/mtb-partner-ce-manifest/raw/main/mtb-partner-ce-manifest-
fv2.xml</uri>
 </app-manifest>
 </app-manifest-list>
 <middleware-manifest-list>
 <middleware-manifest>
 <uri>https://github.com/partner/mtb-partner-mw-manifest/raw/main/mtb-partner-mw-
manifest.xml</uri>
 </middleware-manifest>
 </middleware-manifest-list>
</super-manifest>

The super manifest file reference can be found here.

Note: You will probably only have a single manifest each for BSP, code examples and middleware unless you
need to bifurcate the manifests for organizing content a certain way.

Note: In cases when you don’t deal with a particular manifest, that entire list can be omitted from the
super manifest. For example, if you don’t have a BSP manifest, the <board-manifest-list> .. </
board-manifest-list> section can be removed entirely.

5.6 Specifying the dependency manifests
If the middleware or BSP manifests have a dependency manifest attached to them, they should be specified in
the super manifest using the dependency-url field in the following manner:

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 51 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/partner-super-manifest/blob/master/partner-super-manifest-fv2.xml

Code Listing 23

<super-manifest version="2.0">
 <board-manifest-list>
 <board-manifest dependency-url="https://github.com/Infineon/mtb-partner-bsp-manifest/raw/
master/mtb-partner-bsp-dependencies-manifest.xml">
 <uri>https://github.com/Infineon/mtb-partner-bsp-manifest/raw/master/mtb-partner-bsp-
manifest-fv2.xml</uri>
 </board-manifest>
 </board-manifest-list>
 <app-manifest-list>
 <app-manifest>
 <uri>https://github.com/Infineon/mtb-partner-ce-manifest/raw/master/mtb-partner-ce-
manifest-fv2.xml</uri>
 </app-manifest>
 </app-manifest-list>
 <middleware-manifest-list>
 <middleware-manifest dependency-url="https://github.com/Infineon/mtb-partner-mw-
manifest/raw/master/mtb-partner-mw-dependencies-manifest.xml">
 <uri>https://github.com/Infineon/mtb-partner-mw-manifest/raw/master/mtb-partner-mw-
manifest-fv2.xml</uri>
 </middleware-manifest>
 </middleware-manifest-list>
</super-manifest>

This field can be skipped if there are no dependencies attached to the manifests.

5.7 Validating your manifests
As a final check, all the manifests must be validated using the manifest checker tool. The manifest checker tool
runs a suite of tests to check for issues in format, schema, syntax, and whether the URIs pointed to contain valid
assets.
Follow these steps to check-in valid manifests into your repository:
1. Clone the mtb -manifest-checker repo into your local machine.
2. On Windows, run modus-shell by typing modus-shell in the Windows search bar. On Linux and MacOS, run any
shell application.
3. Navigate to the folder where the repo was cloned and create the folders apps, bsp, and mw. Copy all the app
manifests, bsp manifests, and middleware manifests into the apps, bsp, and mw folders respectively.
4. Run the following command to test your manifest for format, schema and syntax. You can just test for format
or schema or syntax as well.

>> ./mtb_manifest_checker.sh --syntax --format --schema apps/mtb-partner-ce-manifest-fv2.xml

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 52 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-manifest-checker
https://github.com/Infineon/mtb-manifest-checker

Refer to the Readme documentation for each of the tests to understand how to resolve the errors.
5. If you have multiple manifests in the local folder, you can use the “*” wildcard to test all the manifests at
once.

>> ./mtb_manifest_checker.sh --syntax --format --schema apps/*.xml bsp/*.xml mw/*.xml

6. After all the manifests have been tested, push the manifests upstream into their respective git repository.
7. Test the manifests checked into the repositories by running the tests on the super-manifest chain to ensure
nothing is broken.

>> ./mtb_manifest_checker.sh --syntax --format --schema --assets https://github.com/Infineon/
mtb-partner-super-manifest/raw/<topic_branch>/mtb-partner-super-manifest-fv2.xml

For more information, see the Readme of the manifest checker tool.
8. Once all the tests have passed, you can integrate the manifest and test the content directly in the tools like
Project Creator and Library Manager as explained in Testing the manifest integration.

ModusToolbox™ & Friends

5 Creating your own manifest

Application note 53 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-manifest-checker/tree/master/documentation
https://github.com/Infineon/mtb-manifest-checker

6 Testing the manifest integration
Once the content and manifests are created, the integration can be tested in ModusToolbox™ using the
following steps:
1. Navigate to the .modustoolbox folder (note the dot at the beginning of the folder name) which is

located in your user profiles directory where ModusToolbox™ is installed by default. Sometimes this
folder may be hidden, so unhide it in the file explorer view options to find it. For example, C:/Users/
Username/.modustoolbox

2. Add a file to this folder named manifest.loc.

Use an editor of your choice to edit the manifest.loc file to add the link to your super
manifest such as https://github.com/Infineon/mtb-partner-super-manifest/raw/master/mtb-partner-
super-manifest-fv2.xml.

3. Run the Project Creator tool. It will list all the super manifests it is processing to bring the content in as
shown below:

Note: If the tools were open previously, you will have to close and open them again for the
manifest.loc changes to take effect. If any issues are encountered, Project Creator will display
an error indicating the loading of the manifests failed as shown below:

ModusToolbox™ & Friends

6 Testing the manifest integration

Application note 54 002-35691 Rev. *B
2023-06-09

https://github.com/Infineon/mtb-partner-super-manifest/raw/master/mtb-partner-super-manifest-fv2.xml
https://github.com/Infineon/mtb-partner-super-manifest/raw/master/mtb-partner-super-manifest-fv2.xml

You should be able to see the BSPs and code examples that you added being displayed in their
respective tab and category.

4. Create an application that uses your solution.
5. Run the Library Manager tool.
6. You should be able to see the middleware that you added being displayed in its respective tab and

category.

ModusToolbox™ & Friends

6 Testing the manifest integration

Application note 55 002-35691 Rev. *B
2023-06-09

If you are able to see all the content displayed, you now have a successful setup in place to update your
software content and make it available to ModusToolbox™ users seamlessly.

6.1 Testing the dependency manifest integration
As discussed previously, the middleware and BSPs can have dependencies on other libraries that are specified
using the dependencies manifest. The expectation is that whenever any code example uses the .mtb file of
the middleware or BSP, the corresponding dependent libraries are brought in automatically by ModusToolbox™

tools without the users needing to add them manually.
Follow these steps to check if the dependent libraries are being brought in:
1. In your code example, add the .mtb file to the deps folder that points to your middleware or BSP that has

dependent libraries.

ModusToolbox™ & Friends

6 Testing the manifest integration

Application note 56 002-35691 Rev. *B
2023-06-09

2. Push these changes to the upstream server and create a release tag. Update the code example manifest
to add support for this new release.

3. Open Project Creator and select the code example. Click Create.
In the Project Creator log, you should see the following sets of lines that indicate the resolution of the
dependencies:

Resolving dependencies...
Checking if remote manifest is accessible...
Getting manifests from remote server...
Found C:/Users/User/.modustoolbox/manifest.loc
Processing super-manifest https://github.com/Infineon/mtb-partner-super-manifest/raw/main/
mtb-partner-super-manifest-fv2.xml...
Successfully acquired the information.

INFO - Warning: Multiple versions of "core-make" requested. Keeping version "latest-v1.X"
and discarding version "release-v1.9.0".
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/abstraction-rtos.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/capsense.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/clib-support.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/connectivity-utilities.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/core-lib.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/core-make.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/cy-mbedtls-acceleration.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/freertos.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/lwip.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/mbedtls.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/mtb-hal-cat1.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/mtb-pdl-cat1.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/psoc6cm0p.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/recipe-make-cat1a.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/secure-sockets.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/whd-bsp-integration.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/wifi-connection-manager.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/wifi-host-driver.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/wifi-mw-core.mtb was added
C:/Users/User/mtw/partner_internal/Partner_Demo/libs/wpa3-external-supplicant.mtb was
added
Dependencies resolved.

4. Once the project is created, check if all the dependent libraries are available in the mtb_shared
directory. If all the libraries are available, the dependencies integration is a success.

6.2 Out-of-the-box testing
Now that the content is visible in ModusToolbox™ tools, test if the content is being downloaded correctly and
works as expected. During the creation of the code example, Project Creator should import all the necessary
libraries and the middleware automatically. The code example should build out-of-the-box. To test this, do the
following (it is assumed you have added your super manifest file to manifest.loc file):
1. Run Project Creator.
2. Select the code example you added in your code example manifest, and click Create.
3. The code example will be cloned from your Git repository and all the dependencies will be brought in.

ModusToolbox™ & Friends

6 Testing the manifest integration

Application note 57 002-35691 Rev. *B
2023-06-09

4. Now, build your code example and make sure it works as expected. If there are modifications to be made
for the build to be successful, document the steps in the ReadMe.md file.

5. Program the code on the hardware to verify the functionality.

ModusToolbox™ & Friends

6 Testing the manifest integration

Application note 58 002-35691 Rev. *B
2023-06-09

7 Integrating into ModusToolbox™

Once the integration of the content and manifest has been tested, do the following to get the content
integrated formally with ModusToolbox™:
1. Reach out to Infineon by creating a ticket in the case system as documented in Technical Support.

Provide a brief description indicating that the ticket is a request for your content to be integrated along
with links to your manifests.

2. Infineon technical support will get in touch with you and support you with the integration. The
manifests will be reviewed and content will be tested to ensure that everything works as expected
in ModusToolbox™.

3. Any concerns with the manifest or the content will be raised in the ticket. Partners must address all the
concerns and provide an update of the resolution in the ticket.

4. Once the technical support team finds the content and manifest ready to be integrated, the
ModusToolbox™ super manifest will be updated to point to the partner manifests.

5. The update pertaining to the integration will be provided via the ticket. Partners can validate the
integration and close the ticket if everything looks good.

Partners can continue to manage their content via their own manifests. The partners are free to manage,
update, and create new content using their manifests without any need to contact Infineon. However, care
should be taken while updating manifests to prevent errors. Any update to the content or manifests should
follow the guidelines described in section Updating your content.
Steps 1 through 5 should be repeated only when new manifest files need to be integrated. For further queries,
contact Technical Support by creating a ticket (see Technical Support).

ModusToolbox™ & Friends

7 Integrating into ModusToolbox™

Application note 59 002-35691 Rev. *B
2023-06-09

8 Updating your content
Now that the initial version of the content and manifest is already integrated into ModusToolbox™, any update
should be handled with care. Infineon reserves the right to temporarily pull down any content or manifest that
does not work as intended or affects the user experience in ModusToolbox™ until it is rectified.
When updating your content, the following steps should be followed.
1. Clone repositories
2. Create a topic branch
3. Update and test your content
4. Merge into mainline
5. Create a release package
6. Update the corresponding manifest
7. Update the dependency manifest
8. Testing the integration

Note: Partners must strictly follow the guidelines to update the content and manifests to ensure it
doesn’t break the user experience in ModusToolbox™. Infineon will provide an indication via proper
communication channels to partners to rectify their content when such cases arise. If the guidelines
are not followed and these problems keep recurring, the content and manifests will be permanently
taken down after three such occurrences.

8.1 Cloning the repositories
Clone the repository of the content you want to update. Use git clone command to clone your repository.

8.2 Creating a topic branch
Create a new topic branch to work on the updates. This prevents any accidental code being pushed to the
mainline that can affect your users. Use git checkout -b <branch_name> command to create a new topic
branch.

8.3 Updating and testing your content
Update the source code and documentation. Make sure that the changes are tested thoroughly. If the source
code is updated, the functional tests should be conducted to verify it is working on the hardware.
For content that has dependencies on others, the asset that has the dependencies should also be tested. If
the asset breaks, the asset should be updated to work with the updated dependencies. For example, a code
example has dependencies on middleware. If the middleware is updated, the code example should also be
tested to verify if it works with the updated middleware. If not, the code example should be updated to work
with the updated middleware.

8.4 Merging into mainline
Merge the fully tested content into the main branch. Any merge conflicts that may arise as a result of this action
should be resolved. If this is a dual-stage setup, deploy the contents into production.

8.5 Creating the release package
The release tags should be created for any new update to the content. See the table in Creating the release
package to understand how to update the version number.

ModusToolbox™ & Friends

8 Updating your content

Application note 60 002-35691 Rev. *B
2023-06-09

8.6 Updating the corresponding manifest
Once the release tag is created, the corresponding manifest should be updated based on the content being
updated. For example, if the code example is updated and a new release tag "release-v2.0.0" is created, the CE
manifest should be updated to reflect this change as highlighted in bold below:

Code Listing 24

<apps version="2.0">
 <app keywords="psoc6,partner,my,cool,demo">
 <name>My Cool Demo</name>
 <category>Voice</category>
 <id>partner-mtb-example-my-cool-demo</id>
 <uri>https://github.com/partner/partner-mtb-example-my-cool-demo</uri>
 <description><![CDATA[This code example demonstrates this XYZ application PSoC™ 6 MCU with
AIROC™ CYW43xxx Wi-Fi & Bluetooth® combo chips.

For more details, see the <a href="https://github.com/partner/partner-
mtb-example-my-cool-demo/blob/master/README.md">README on GitHub.

<a href="https://
partner-webpage.com/">Partner is a company that does ABC and XYZ.
 > Get Started
 > <a href="https://partner-
webpage.com/contact/">Talk to Sales]]></description>
 <req_capabilities>psoc6</req_capabilities>
 <versions>
<version flow_version="2.0" tools_min_version="3.0.0" req_capabilities_per_version="bsp_gen4">
 <num>2.0.0 release</num>
 <commit>release-v2.0.0</commit>
 </version>
 <version flow_version="2.0" tools_min_version="2.4.0"
req_capabilities_per_version="bsp_gen3">
 <num>1.0.0 release</num>
 <commit>release-v1.0.0</commit>
 </version>
 </versions>
 </app>
</apps>

Note: Only the CE, BSP, MW, and corresponding dependency manifests will be updated whenever there is
an update. The super manifest will never be modified unless there is a new manifest file that should
be pointed to. In that case, you must follow the steps in Integrating into ModusToolbox™ to get your
super manifest changes integrated into the ModusToolbox™ super manifest.

8.7 Updating the dependency manifest
If the update to the content requires any newer versions of the dependent libraries, the dependency manifest
should be updated to reflect this change. For example, if the middleware is updated to release-v2.0.0 and it
uses newer version latest-v3.x of the wifi-mw-manager library, the middleware dependency manifest should
reflect that change as highlighted in bold below:

ModusToolbox™ & Friends

8 Updating your content

Application note 61 002-35691 Rev. *B
2023-06-09

Code Listing 25

<dependencies>
 <depender>
 <id>partner-middleware-sdk</id>
 <versions>
 <version>
 <commit>release-v2.0.0</commit>
 <dependees>
 <dependee>
 <id>wifi-connection-manager</id>
 <commit>latest-v3.X</commit>
 </dependee>
 <dependee>
 <id>http-client</id>
 <commit>latest-v1.X</commit>
 </dependee>
 </dependees>
 </version>
 <version>
 <commit>release-v1.0.0</commit>
 <dependees>
 <dependee>
 <id>wifi-connection-manager</id>
 <commit>latest-v2.X</commit>
 </dependee>
 <dependee>
 <id>http-client</id>
 <commit>latest-v1.X</commit>
 </dependee>
 </dependees>
 </version>
 </versions>
 </depender>
</dependencies>

8.8 Testing the integration
Follow the steps described in Validating your manifests and Testing the manifest integration to validate your
manifests and check if the content is working as expected post integration.
Note that since you created a new branch for manifest updates, you need to pass the super manifest file from
this new branch into the manifest checker tool.

>> ./mtb_manifest_checker.sh --syntax --format --schema --assets https://github.com/Infineon/
mtb-partner-super-manifest/raw/<topic_branch>/mtb-partner-super-manifest-fv2.xml

ModusToolbox™ & Friends

8 Updating your content

Application note 62 002-35691 Rev. *B
2023-06-09

9 Technical Support
This section documents how you can contact Technical Support when you face any issues or have questions
about your implementation. Infineon offers a case system to create tickets to seek technical support.
Additionally, once you have successfully tested your manifest implementation, reach out to Infineon via the
technical support channel to request the manifests to be integrated into ModusToolbox™.
Here are the steps to contact technical support:
1. Navigate to https://www.infineon.com/.
2. In the right-top corner, select the drop-down that reads myInfineon and click Login to myInfineon.

For new users, click Register for myInfineon to create your account and then login. The steps are very
straightforward.

3. Once logged in, click MyCases in the drop-down under your profile.

4. On the MyCases webpage, choose Technical Support option as highlighted below:

ModusToolbox™ & Friends

9 Technical Support

Application note 63 002-35691 Rev. *B
2023-06-09

https://www.infineon.com/

You will be directed to a new webpage with a form to fill out the details of your query. The table below
lists the various fields and values that need to be entered.

Field Description Example

Subject Specify a summary of the issue
or query.

Issue with super manifest

Inquiry type Select the type of query. Choose
between different options
available in the drop-down. Use
“CY Software Tools” for queries
related to this document.

CY Software Tools

Priority Specify the priority of the
request. Choose between low,
medium, and critical based on
how much the request affects
your work and how soon you
want the resolution.

Low

Due date Provide the deadline/final date. -

Product ID Select the Product ID. Choose
between different options
available in the drop-down.

SP005672751

Other product name Specify alternate product name. -

Application Provide the application you were
working on which led to the
query.

MODUSTOOLBOX & FRIENDS

Final Customer/OEM Specify the account associated
with the customer creating the
ticket. Use the partner account
issued to you as part of the
partner program.

CompanyName

Project Specify the project related to the
issue. Use “MODUSTOOLBOX &
FRIENDS” category for all issues
related to this document.

MODUSTOOLBOX & FRIENDS

ModusToolbox™ & Friends

9 Technical Support

Application note 64 002-35691 Rev. *B
2023-06-09

Field Description Example

Description Describe the issue in detail. Make
sure that you provide relevant
screenshots under “Attachment”
to illustrate your issue better.

Hi, I have problems
implementing the super
manifest. Here is what I
implemented. Please see the
attached file. I see the following
issues.

Note: If you have successfully implemented the manifests, mention the same in the description
and request the Technical Support team to have them integrated into ModusToolbox™. The
Technical Support team will review the manifests and have them integrated. Post integration,
updates will be provided on the ticket.

5. Click Submit to submit your request. After submitting the form, a case summary will be shown. Click
Add files to add attachments up to 50 MB to the case.

6. A ticket will be generated and the status can be viewed under My Cases section.

A technical support engineer will be assigned to the thread within the next 24 hours. They will reach out
to you via the ticket by adding their comments.

7. Use the Discussion Board box to interact with the technical support engineers. If your issue is resolved,
use the Resolve button and click Close Case.

ModusToolbox™ & Friends

9 Technical Support

Application note 65 002-35691 Rev. *B
2023-06-09

8. Use steps 1 through 8 to create a new case whenever you face any issues in the future.

ModusToolbox™ & Friends

9 Technical Support

Application note 66 002-35691 Rev. *B
2023-06-09

10 Summary
This application note has shown how partners can get onboarded into the "ModusToolbox™ & Friends" program
and contribute content to the ModusToolbox™ ecosystem. As mentioned earlier, this provides partners the
ability to showcase content directly to developers using ModusToolbox™ to create interesting applications.
Appendix A – Partners integrated into ModusToolbox™ in this document features a list of partners who have
been successfully integrated as part of this program and reference links to their content.

ModusToolbox™ & Friends

10 Summary

Application note 67 002-35691 Rev. *B
2023-06-09

11 Appendix A – Partners integrated into ModusToolbox™

This appendix features a representative partner successfully integrated into ModusToolbox™ as part of the
"ModusToolbox™ & Friends" program.

11.1 Memfault
Memfault is the first cloud-based observability platform for connected device debugging, monitoring, and
updating, which brings the efficiencies and innovation of software development to hardware processes.
Memfault, as part of “ModusToolbox™ & Friends”, leveraged the benefits of the program and developed
content to make remote debugging and monitoring accessible to developers using ModusToolbox™. With the
combination of Infineon’s powerful PSoC™ 6 MCUs and their proprietary firmware SDK, they demonstrated an
innovate solution on how to approach debugging.
Here are some quick links to the content and manifests developed by Memfault (for reference only):
• Memfault Super Manifest
• Memfault Middleware Manifest
• Memfault Code Example Manifest
• Memfault Middleware
• Memfault Code Example

ModusToolbox™ & Friends

11 Appendix A – Partners integrated into ModusToolbox™

Application note 68 002-35691 Rev. *B
2023-06-09

https://memfault.com/
https://github.com/memfault/mtb-memfault-super-manifest
https://github.com/memfault/mtb-memfault-mw-manifest
https://github.com/memfault/mtb-memfault-ce-manifest/blob/main/mtb-memfault-ce-manifest-fv2.xml
https://github.com/memfault/memfault-firmware-sdk
https://github.com/memfault/mtb-example-memfault

Revision history
Document
version

Date of release Description of changes

** 2022-07-29 Initial release

*A 2023-02-14 Update for ModusToolbox™ 3.x

*B 2023-06-09 Update naming scheme for manifests
Update all manifest URIs with new naming scheme

ModusToolbox™ & Friends

Revision history

Application note 69 002-35691 Rev. *B
2023-06-09

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-09
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-sxb1686629807689

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 What is a partner?
	1.2 Why become a partner?
	1.3 How to become a partner?

	2 ModusToolbox™ software overview
	2.1 Types of software content
	2.1.1 Code examples
	2.1.2 Middleware
	2.1.3 Board support packages (BSPs)

	2.2 Manifests
	2.3 Git versioning control system
	2.4 How does everything come together in ModusToolbox™?
	2.5 How does partner integration work?

	3 Setting up your own Git infrastructure
	3.1 Choosing your Git hosting platform
	3.2 Choosing your development flow
	3.2.1 Single-stage workflow
	3.2.2 Dual-stage workflow

	3.3 Designing your internal staging setup
	3.4 Designing your external production setup

	4 Creating your own software content
	4.1 Creating a code example
	4.1.1 Choosing a starter application
	4.1.2 Choosing the name
	4.1.3 Choosing the title
	4.1.4 Adding the source files
	4.1.5 Adding middleware
	4.1.6 Adding the End User License Agreement (EULA)
	4.1.7 Create a Git repository
	4.1.8 Create a topic branch
	4.1.9 Testing the code example
	4.1.10 Merging into mainline
	4.1.11 Creating the release package

	4.2 Creating a middleware library
	4.3 Creating a BSP

	5 Creating your own manifest
	5.1 Creating repositories
	5.2 Creating your code example manifest
	5.2.1 Adding BSP capabilities
	5.2.2 Specifying requirements for restricted scope

	5.3 Creating your middleware manifest
	5.3.1 Adding middleware dependencies

	5.4 Creating your BSP manifest
	5.4.1 Adding BSP dependencies

	5.5 Creating your super manifest
	5.6 Specifying the dependency manifests
	5.7 Validating your manifests

	6 Testing the manifest integration
	6.1 Testing the dependency manifest integration
	6.2 Out-of-the-box testing

	7 Integrating into ModusToolbox™
	8 Updating your content
	8.1 Cloning the repositories
	8.2 Creating a topic branch
	8.3 Updating and testing your content
	8.4 Merging into mainline
	8.5 Creating the release package
	8.6 Updating the corresponding manifest
	8.7 Updating the dependency manifest
	8.8 Testing the integration

	9 Technical Support
	10 Summary
	11 Appendix A – Partners integrated into ModusToolbox™
	11.1 Memfault

	Revision history
	Disclaimer

