

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 002-32689 Rev. *A

www.infineon.com 2024-02-15

AN232689

Wi-Fi software user guide

About this document

Scope and purpose

This document provides an overview of the building blocks of the Linux 802.11 ecosystem. This document helps
you to use Wi-Fi modules conveniently with a host of your choice and configure it based on your application.

Intended audience

This document is primarily intended for those using Infineon Wi-Fi solutions with the Linux host of their choice.
It is recommended that you have prior experience with Linux kernel networking or knowledge of the boot flow
of a Linux host processor.

Note: See Wi-Fi Glossary for terms and acronyms used in this document.

http://www.infineon.com/
https://www.infineon.com/dgdl/Infineon-Wi-Fi_glossary-Software-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017e90ede1540c75

Application note 2 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction to Wi-Fi software ... 4
1.1 Wi-Fi software architecture block diagram .. 4

2 Platform interface, boot process, and device tree blob ... 5

2.1 Hardware connection.. 5
2.2 Kernel configuration ... 6
2.2.1 Device tree blob configuration .. 7
2.3 WLAN host interface .. 8

2.3.1 Multimedia card (SDIO) .. 8

2.3.2 Peripheral Component Interconnect Express (PCIe) .. 8

2.3.3 USB ... 8

3 Linux kernel 802.11 subsystem .. 9
3.1 NL80211 ... 9

3.2 CFG80211 ... 11
3.3 FMAC bringup .. 11

3.3.1 Support for kernels 6.1+ ... 13
3.3.2 Backports ... 15
3.3.3 Cross-compilation .. 16

3.3.4 Loading the FMAC driver .. 18
3.3.5 Debug notes ... 19

3.3.6 Frequently encountered issues ... 20

4 User-space Wi-Fi utils .. 23

4.1 wpa_supplicant ... 23
4.1.1 Dependencies of wpa_supplicant ... 23

4.1.2 Compilation .. 24
4.1.3 Configuring wpa_supplicant ... 24

4.1.4 wpa_cli.. 26

4.1.4.1 Options for configuration ... 26
4.1.4.2 WPA_CLI commands ... 27

4.1.4.3 Typical STA/AP use-cases ... 28
4.1.4.4 Wireless authentication and privacy infrastructure (WAPI) .. 30

4.2 Hostapd ... 30
4.2.1 Dependencies of hostapd .. 31

4.2.2 Compilation of hostapd ... 31
4.2.3 Conf files ... 31
4.2.3.1 Hostapd usage .. 32

4.2.4 DHCP configuration ... 33
4.3 IW ... 33
4.3.1 Dependencies ... 34
4.3.2 Compilation .. 34

4.3.3 Typical usage .. 34

4.3.3.1 SoftAP with WPA/WPA2/WPA3 security .. 34
4.3.3.2 STA connecting to an AP with open/wep security ... 34

5 Appendix .. 35

5.1 Checklist to add connectivity to a default/yocto release .. 35

Application note 3 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Table of contents

5.2 Checklist to add connectivity to a non-yocto release .. 35
5.3 Upgrading firmware .. 38

5.4 Toolchain for iMX8 ... 38
5.4.1 Linux host setup ... 38

5.4.2 Required packages ... 38
5.4.3 Download Yocto recipes .. 39
5.4.4 Initialize the build... 39

5.4.5 Custom iMX toolchain .. 39
5.4.6 Building the image ... 40

References .. 41

Revision history... 42

Disclaimer... 43

Application note 4 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Introduction to Wi-Fi software

1 Introduction to Wi-Fi software

The Wi-Fi Software provides the essential components required to set a Wi-Fi device operational; that is,
sending and receiving 802.11 frames over the air. This document helps you to understand the Linux kernel

networking subsystems and the components involved in configuring the WLAN from user space, for example,
wpa_supplicant, hostapd, iw, and so on. This document covers the user space, kernel space features, and

device drivers written or configured to be used by Wi-Fi devices.

1.1 Wi-Fi software architecture block diagram

User-space utilities
(iw, wpa_supplicant, hostpad)

nl80211

cfg80211

Infineon host Full-MAC drivers
(Infineon MAC/Infineon DHD)

Infineon WLAN hardware

WLAN firmware

User-space

cfg80211_ops

SDIO, PCIe,
USB

Kernel space

IFX chip
firmware

Figure 1 Linux 802.11 architecture – a bridged

There is a transmit (TX), receive (RX), and event paths between the applications (the top-most layer where iw,
wpa_supplicant, and hostapd belong) and firmware level (embedded within the Infineon Wi-Fi chip) of Wi-Fi
software architecture. The intermediate layers employ conditionals for each type of flow; either TX/RX or event.

Based on that, the flow control or event queue mechanism between the host and the device is also

implemented in the device driver (packaged and provided by Infineon release trains). The hardware layer
implements the core 802.11 operations along with a part of the bus hardware. This layer is implemented inside
the IFX Wi-Fi firmware and packaged with eliminating the need for writing separate device drivers; therefore,
reducing time-to-market significantly.

https://github.com/Infineon/ifx-linux-wireless

Application note 5 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Platform interface, boot process, and device tree blob

2 Platform interface, boot process, and device tree blob

2.1 Hardware connection

The connection between the host processor and the target Wi-Fi radio can be categorized into the following:

• Bus connection: In this category, the host processor and the target Wi-Fi radio are connected through a

bi-directional bus.

• The connections for:

− SDIO: D0, D1, D2, and D3

− PCle: TDN, TDP, RDN, and RDP

− USB: DP, DN, and so on

• For Bluetooth®, the transport usually will be either through SDIO or through UART(the connections will be
RX, TX, RTS, CTS, and so on).

Table 1 Transport bus combinations between host processor and Wi-Fi/Bluetooth® radios

Connection category Bus Pins corresponding to each bus

Host <--> Wi-Fi connection SDIO D0-D3

Host <--> Wi-Fi connection PCIe TDN, TDP, RDN, and RDP

Host <--> Wi-Fi/Bluetooth® connection USB DP, DN

Host <---> Bluetooth® connection UART RTS, CTS, TX, RX

Host processor Wi-Fi/Bluetooth® radio

SDIO/PCIe/USB

UART for Bluetooth® /
Bluetooth® Low Energy

WL_REG_ON

BT_REG_ON

WL_HOST_WAKE

WL_DEV_WAKE

BT_HOST_WAKE

BT_DEV_WAKE

Figure 2 Host processor to Wi-Fi/Bluetooth®/Bluetooth® Low Energy radio connection blocks

• Power-related connection: This category includes the GPIOs required to power up the Wi-Fi module.

WL_REG_ON and BT_REG_ON belong to this category.

• Signaling connection: This category includes the GPIOs needed to wake the host processor or Wi-Fi module.
The responsible pins are WL_HOST_WAKE, WL_DEV_WAKE, BT_HOST_WAKE, and BT_DEV_WAKE.

Application note 6 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Platform interface, boot process, and device tree blob

2.2 Kernel configuration

For the kernel compilation, follow the vendor’s instructions and set up the source and toolchain. You can find

them in the vendor’s distribution medium. Based on the target’s architecture (Arm64, Arm®, x86, mips, and so
on), you can select a default defconfig available in arch/arm/configs and issue the following command to

configure the kernel with the .config file:

$ make defconfig

Then, edit the .config file and build “cfg80211” as module:

CONFIG_CFG80211=m

If you are not using legacy DHD as the driver, change the following configuration:

CONFIG_BCMDHD=n

For kernel versions 5.4.18 and above, disable the following “cfg80211 regdb” configurations:

CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

Additionally, enable the following configurations in the .config file:

CONFIG_ASYMMETRIC_KEY_TYPE=y

CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

CONFIG_X509_CERTIFICATE_PARSER=y

CONFIG_PKCS7_MESSAGE_PARSER=y

Now, you can build the Linux kernel image for the target host. Here is an example for i.MX:

$ make oldconfig

$ make zImage -j8

The kernel image is now available in the arch/arm/boot/zImage directory.

Infineon software artifacts available from quarterly train releases are supported, and validated in a variety of

platforms (for MMC/SDIO: NXP iMX6, NXP iMX8, for PCIe: iMX8, Intel NUC) in two primary ecosystems:

• Latest Google Android Open Source Platform (AOSP) version (with derivative support for Android TV, Wear

OS, and so on)

• Latest Long-term Linux kernel release

Infineon’s kernel support policy uses the Backports Project for FMAC driver-based chipset. This enables older
kernels to run the newest software. If the kernel version is not the latest LTS, execute the Backports package in
the development environment to enable the latest connectivity software (firmware and drivers) in the design.

Then, flash the host processor with the modified dtb, and kernel image, and load the (backported) kernel
modules (KM).

https://backports.wiki.kernel.org/index.php/Main_Page

Application note 7 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Platform interface, boot process, and device tree blob

2.2.1 Device tree blob configuration

Device Tree provides a way to describe the platform_data or pdata of the hardware that is not inherently

discoverable, for example, I2C and SPI devices. Device Tree Blob is typically created and maintained in human-
readable formats such as .dts source files and .dtsi include files. The .dts file provides board-level definitions

while the .dtsi provides SoC-level definitions. The device tree source files are compiled using the Device Tree
Compiler (DTC); source files can be found in the <kernel_base>/scripts/dtc folder. DTC generates the .dtb, which
is also known as the Flattened Device Tree (FDT).

The Linux operating system uses the device tree data to find and register the devices in the system. The FDT is
accessed in the raw form during the very early phases of boot but is expanded into a kernel internal data
structure known as the Expanded Device Tree (EDT) for more efficient access during the later phases of the

boot and after the system has completed booting. The device tree usually contains the information regarding
the I/O port and interrupt lines that the device is supposed to use. Each device node (representing a platform

device in a tree of devices) has a name property that is used to identify the device when the kernel scans
through the device tree. In the driver, the “compatible” property specifies the name field that the kernel should

look for in the device tree. Once the kernel finds the name, the corresponding device will be instantiated and
matched with a driver.

The Wi-Fi Linux driver package has a device tree folder, which includes iMX6SX and iMX6UL device tree blobs. If
the host platform is not available in the device tree package, refer to the existing source files (.dts and .dtsi files)
available in arch/arm/boot/dts/, and port the files to your target host platform. Following are the settings for

each field of .dts and .dtsi files:

• wlreg_on: This pin (WL_REG_ON) is responsible for powering up the Wi-Fi device. The pin must be set to
active HIGH. See the corresponding chip datasheet for the voltage requirement.

• In-band/out-of-band: When the Wi-Fi device is connected over SDIO to the host processor, there are two

ways to route the interrupts from the Wi-Fi device to the host. In-band mechanism of the interrupt uses SDIO
DATA1 line to signal the interrupts. The out-of-band mechanism requires a dedicated GPIO pin. Make sure
that the pin multiplexing has been taken care of and the pin is working as a GPIO only. You can opt for in-

band or out-of-band (OOB) depending on the application. To achieve the best low-power numbers, it is
endorsed to use OOB signaling methods; because in that mode, the SDIO bus will be put into a suspended

mode unless an interrupt triggered is on the WLAN_HOST_WAKE line when a packet is received. If no spare
GPIOs are available in the host processor, you might choose to use the in-band interrupt method where the

DATA1 line is repurposed to work as the interrupt, thereby preventing the bus from being suspended which

adds to the power burden.

The following are example implementations for iMX platforms that are available in
linux-imx/arch/arm/boot/dts/:

• imx6ul-evk-btwifi-oob.dtsi for the OOB interrupt pin allocation and configuration

• imx6ul-evk-btwifi.dtsi for the WL_REG_ON pin-related configuration

For FullMAC (FMAC), the compatible field expands to of_device_is_compatible(np, "brcm,bcm4329-
fmac")). For more details on the Linux device tree, see the Linux Device Tree - FMAC webpage.

https://github.com/Infineon/ifx-linux-wireless/tree/master/devicetree
https://community.infineon.com/t5/Resource-Library/Linux-Device-Tree-FMAC/ta-p/246025

Application note 8 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Platform interface, boot process, and device tree blob

2.3 WLAN host interface

This section explains the interface options available for connecting a Wi-Fi device to a host processor of your

choice.

2.3.1 Multimedia card (SDIO)

The Multimedia Card (MMC) is a low-cost data storage medium, from which the Secure Digital (SD)standard
evolved. The I/O card variant combines high-speed serial data input/output lines with low power consumption
making it very suitable for battery-powered electronic devices; a typical use case being IoT devices. The Wi-Fi
solution is pre-packaged with the device driver; therefore, you only need to take care of the driver

implementation in SDIO Host (SDHC, MMC interface in the host needs to be carefully mapped to an SDIO host

interface to communicate with the Wi-Fi chip). Table 2 lists the Wi-Fi chipsets which support the MMC/SDIO

interface.

Table 2 Wi-Fi devices with SDIO as host interface

Antenna configuration 802.11 protocol IFX Wi-Fi chip

1×1 SISO 802.11n CYW43439

1×1 SISO 802.11ac CYW43012

1×1 SISO 802.11ac CYW4373

1×1 SISO 802.11ac CYW43455

2×2 MIMO 802.11ac CYW5459x

2×2 MIMO 802.11ax CYW5557x

2.3.2 Peripheral Component Interconnect Express (PCIe)

The PCIe is a high-speed serial bus that is commonly used as an interface for SSDs, Wi-Fi, Ethernet, and so on.
For version or lane-related specifications, see the corresponding chip datasheet. Table 3 lists the chip matrix

that supports the PCIe interface.

Table 3 Wi-Fi devices with PCIe as host interface

Antenna configuration 802.11 protocol IFX Wi-Fi chip

1×1 SISO 802.11ac CYW43455

2×2 MIMO 802.11ac CYW5459x

2×2 MIMO 802.11ax CYW5557x

2.3.3 USB

USB is a de-facto communication medium for plugging or connecting a device to a PC. The functionality of this
class of devices can range from a storage medium to a Wi-Fi, Ethernet dongle even. In the Wi-Fi portfolio,

CYW4373 (1×1 802.11ac) support the USB interface.

For more details on the WLAN device, see the AIROC™ Wi-Fi + Bluetooth® Combos.

https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/

Application note 9 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

3 Linux kernel 802.11 subsystem

3.1 NL80211

The netlink (nl80211) protocol is a socket-based IPC mechanism used for communicating between user space
and kernel space or between the userspace processes. It was designed to be a more flexible successor to ioctls
to provide mainly kernel-related networking configuration and monitor network interfaces. Table 4 compares
the legacy ioctl-based system calls with netlink.

Table 4 Comparison between syscall and netlink

Properties Netlink sockets Syscalls

Who can initiate the

communication?

User-space application and kernel

module

User-space application

Does it provide multicast? Yes No

Does it require polling? No Yes

Is it asynchronous? Yes (It provides message queues) No

The netlink socket operation is simple; you open and register a socket in user space and that handles all sorts
of communications with a kernel netlink socket. The netlink has some advantages over other ways of

communication between the userspace and the kernel. For example, there is no need for polling when working
with netlink sockets. A userspace application opens a socket and then calls recvmsg(), and enters a blocking

state if no messages are sent from the kernel, for example, the rtnl_listen() method of the iproute2
package (lib/libnetlink.c).

Another advantage is that netlink sockets support multicast transmission. You create netlink sockets from the
user space with the socket() system call. The netlink sockets can either be SOCK_RAW or SOCK_DGRAM

sockets. Netlink sockets can be created in the kernel or the user space; kernel netlink sockets are created by the
netlink_kernel_create() method and userspace netlink sockets are created by the socket() system

call. Creating a netlink socket from user space or from the kernel creates a netlink_sock object. When the

socket is created from userspace, it is handled by the netlink_create() method. When the socket is created
in the kernel, it is handled by __netlink_kernel_create(); this method sets the
NETLINK_KERNEL_SOCKET flag. Eventually, both methods call __netlink_create() to allocate a socket

commonly (by calling the sk_alloc() method) and initialize it.

Figure 3 shows how a netlink socket is created in the kernel and userspace.

Application note 10 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

socket(
Userspace Netlink socket

netlink_create()

__netlink_create()

sk_alloc()
sock_init_data(sock, sk);

Netlink_kernel_create()
Kernel Netlink socket

User space

Kernel space

Figure 3 Netlink process flow

The libnl package is a collection of libraries providing APIs to the netlink protocol-based Linux kernel interfaces.
The iproute2 package uses the libnl library. Besides the core library (libnl), the package includes support for the

generic netlink family (libnl-genl), routing family (libnl-route), and netfilter family (libnl-nf).

Figure 4 Netlink family

Image source is available at Netlink Protocol Library Suite (libnl).

https://www.infradead.org/~tgr/libnl/

Application note 11 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

3.2 CFG80211

CFG80211 is primarily responsible for the configuration of APIs for 802.11 devices in Linux. It provides a

management interface between kernel and user space via nl80211. For backward compatibility, cfg80211 also
offers wireless extensions (WEXT) to the user space but abstracts them out from the driver layer completely.

Additionally, cfg80211 contains the code that helps to establish the regulatory power constraints and spectrum
considerations.

For a driver to use cfg80211, it must register the hardware device with cfg80211. This happens through several
hardware capability structs, which are explained in this section. The fundamental structure for each device is
the ‘wiphy’, of which each instance describes a physical wireless device connected to the system. Each wiphy
can have zero, one, or many virtual interfaces associated with it. The associated virtual interface needs to be

identified by pointing the network interface’s ieee80211_ptr pointer to a struct wireless_dev, which
describes the wireless part of the interface. Normally, this struct is embedded in the network interface’s private

data area. Drivers can optionally allow creating or destroying virtual interfaces on the fly, but without at least
one virtual interface or the ability to create some, the wireless device is not useful. Each wiphy structure

contains device capability information and has a pointer to the various operations the driver offers. It is the Wi-
Fi drivers’ responsibility to provide the cfg80211 operation callbacks and fill in the wiphy struct to accurately

indicate the device’s capability. With Infineon’s driver release package, all cfg80211 related operations are
already taken care of and you can skip knowing about the complexities related to cfg80211 and continue with

application development. If you want to customize the driver with some additional cfg80211_ops, see

cfg80211.h for more details on each operation.

3.3 FMAC bringup

FMAC describes a type of wireless card where the mac sublayer management entity (MLME) is managed in
hardware. All chips in the Wi-Fi portfolio fall under this category. The FMAC driver was originally introduced in

Linux Kernel 2.6+. Because this driver is a part of the Linux kernel, anyone can upstream changes. The following
are some key attributes of the FMAC driver:

• Supports SDIO, PCIe, and USB interfaces with a single binary

• Supports major features such as SoftAP, P2P, TDLS, and so on (see README file provided with the Infineon
FMAC driver release package for specifications related to each chip).

• Because FMAC is part of the kernel, supporting different kernel versions becomes easy

Do the following to build the Infineon FMAC:

1. Download the latest supported Linux kernel source from Infineon GitHub.

$ git clone https://github.com/Infineon/ifx-wireless-drivers.git

2. Modify the default kernel .config and enable the following options, and then compile the kernel image:

#CONFIG_BRCMUTIL=y

#CONFIG_BRCMFMAC=y

#CONFIG_BRCMFMAC_SDIO=y

#CONFIG_BRCMFMAC_PROTO_BCDC=y

#CONFIG_BRCMFMAC_PCIE=y

#CONFIG_BRCMFMAC_PROTO_MSGBUF=y

3. For the kernel versions above 5.4, add the following extra options:

#CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

#CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

https://wireless.wiki.kernel.org/en/developers/documentation/glossary
https://github.com/Infineon/ifx-wireless-drivers.git

Application note 12 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

4. There are two options for the firmware of the Wi-Fi chips:

a) Use the original firmware files in the /lib/firmware/cypress directory.

Update to the latest firmware available through quarterly releases from Infineon. For updating the
firmware, issue the following commands:

$ git clone https://github.com/Infineon/ifx-linux-firmware.git

$ cp ifx-linux-firmware/firmware/* /lib/firmware/cypress

Now reboot the device with the freshly compiled kernel image and use the latest Wi-Fi features.

After rebooting, you can use dmesg to check the chip ID and additional information such as firmware version,
firmware id, compilation date, and so on.

• Use “modprobe cfg80211” to insert all dependent modules that brcmfmac needs.

• While insmoding the driver, you can pass the parameters, listed in Table 5, as arguments to LKM. For

example, see the following:

$ insmod brcmfmac.ko alternative_fw_path=/etc/firmware/cypress

Table 5 FMAC module parameters

Module parameter name Functionality Module parameter type

p2pon Enable legacy p2p management functionality int

txglomsz Maximum tx packet chain size [SDIO] int

debug Level of debug output, see Debug notes int

feature_disable Disable features int

alternative_fw_path alternative firmware path; that is, if the firmware is
present in a different path other than

/lib/firmware/cypress.

string

fcmode Mode of firmware-controlled flow control int

roamoff Do not use an internal roaming engine int

iapp Enable partial support for the obsoleted inter-access

point protocol

int

ignore_probe_fail Always succeed probe for debugging int

https://github.com/Infineon/ifx-linux-firmware.git

Application note 13 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

3.3.1 Support for kernels 6.1+

Forward porting of a kernel involves updating the FMAC source code of the kernel to work with the new version.

This may involve making changes to the kernel's interface with the operating system, as well as updating
drivers and other kernel modules to work with new hardware or software configurations.

To cross-compile FMAC on newer versions of kernel, build system should have toolchain suitable for platform

(usually provided in the BSP). A pre-requisite to download FMAC patches (Download the FMAC driver from
Infineon Community or contact the local Infineon FAE/sales representative to get release package).

Do the following to enable the setup with the newer kernel version:

1. Download the 6.1 + kernel source code specific to the platform used. For example, on iMX8:

$ git clone https://github.com/embeddedartists/linux-imx.git

$ cd linux-imx

$ git checkout ea_6.1.y

2. Setup the tool chain specific to platform’s kernel version. For example, on iMX8, follow the procedure to get
the Toolchain for iMX8.

3. Download the FMAC patches and apply the patches.

4. Add the flags necessary for FMAC in defconfig and fix the API compatibility issues caused due to kernel
upgrade. For example, on iMX8:

diff --git a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

index ad7479ba7db5..f55c107e1386 100644

--- a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

+++ b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

@@ -27,13 +27,15 @@

};

modem reset: modem-reset {

- compatible = "gpio-reset";

+/* compatible = "gpio-reset";

reset-gpios = <&gpio_buff 0 GPIO_ACTIVE_LOW>;

initially-in-reset;

diff --git a/arch/arm64/configs/ea_imx8_defconfig

b/arch/arm64/configs/ea_imx8_defconfig

index 2a3fa3d95531..6917a8014d4c 100644

--- a/arch/arm64/configs/ea_imx8_defconfig

+++ b/arch/arm64/configs/ea_imx8_defconfig

@@ -242,6 +242,21 @@ CONFIG_MTD_NAND_DENALI_DT=y

 CONFIG_MTD_NAND_GPMI_NAND=y

 CONFIG_MTD_NAND_FSL_IFC=y

 CONFIG_MTD_SPI_NOR=y

+CONFIG_CFG80211=m

+CONFIG_BCMDHD=n

+CONFIG_BRCMUTIL=m

+CONFIG_BRCMFMAC=m

+CONFIG_BRCMFMAC_SDIO=y

+CONFIG_BRCMFMAC_PROTO_BCDC=y

+CONFIG_BRCMFMAC_PCIE=y

+CONFIG_BRCMFMAC_PROTO_MSGBUF=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

https://community.infineon.com/t5/Wi-Fi-Bluetooth-for-Linux/bd-p/WiFiBluetoothLinux
https://github.com/embeddedartists/linux-imx.git

Application note 14 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

+CONFIG_ASYMMETRIC_KEY_TYPE=y

+CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

+CONFIG_X509_CERTIFICATE_PARSER=y

+CONFIG_PKCS7_MESSAGE_PARSER=y

+CONFIG_MMC_BUS_CLOCK_GATE=y

 # CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is not set

 CONFIG_MTD_UBI=y

 CONFIG_BLK_DEV_LOOP=y

@@ -1106,3 +1121,5 @@ CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

 CONFIG_X509_CERTIFICATE_PARSER=y

 CONFIG_PKCS7_MESSAGE_PARSER=y

 CONFIG_PWM_IMX_TPM=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

diff --git

a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

--- a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

+++ b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

@@ -4810,13 +4811,15 @@

- netif_rx_ni(skb);

+ netif_rx(skb);

+ skb = skbnext;

+ }

diff --git a/kernel/sched/core.c b/kernel/sched/core.c

index b23dcbeacdf3..b0bca07a5c5e 100644

--- a/kernel/sched/core.c

+++ b/kernel/sched/core.c

@@ -7732,7 +7732,7 @@ int sched_setattr_nocheck(struct task_struct *p, const struct

sched_attr *attr)

 return __sched_setscheduler(p, attr, false, true);

 }

 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);

+EXPORT_SYMBOL_GPL(sched_setscheduler);

5. Use the following commands to disable cfg80211:

#3.1 Disable cfg80211 regdb for the kernel above v5.4.18

CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

6. Setup the build source-specific to platform. For example, on iMX8,

7. $ source /opt/fsl-imx-wayland/6.1-mickledore/environment-setup-
armv8a-poky-linux

8. Run the following command to avoid linker errors:

$ unset LDFLAGS

9. Build the kernel for the platform. For example, on iMX8,

$ make clean

$ unset LDFLAGS

$ make ea_imx8_defconfig

$ make

The built kernel is available in arch/arm64/boot/Image.

Application note 15 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

The output modules can be found in the following files:

− net/wireless/cfg80211.ko

− drivers/net/wireless/broadcom/brcm80211/brcmutil/brcmutil.ko

− drivers/net/wireless/broadcom/brcm80211/brcmfmac/brcmfmac.ko

Note: For any issues during the compilation, see the community.

3.3.2 Backports

The backports is a Linux official project that enables old kernels to run the latest drivers. For example, it

enables the Linux 5.15 FMAC driver to run on v4.4 up to v5.15.58.

Backports project contains a set of scripts, patches, and source code. Backport takes the newer version kernel
tree as its input and generates the "backports package" as its output. You can take the backports package and
compile the drivers for running on an older kernel.

Figure 5 shows where the backports package provides a modified version of cfg80211. There is an extra compat
module to enable the backward compatibility. Note that the original cfg80211 and brcmfmac (in the old kernel)

need to be disabled in .config when building the kernel.

brcmfmac.ko

cfg80211.ko

Older version of Linux kernel

cfg80211.ko
compat.ko

Upstream brcmfmac.ko

Figure 5 Backports package

Infineon supports the package release mode of the backports package, that is, the target type is loadable

modules instead of kernel-integration; therefore, the kernel source remains untainted, supports multiple

versions of the kernel, eliminates Board Support Package (BSP) specific dependencies, and so on. To integrate
the backports release package, with your kernel following the steps mentioned below.

$ git clone https://github.com/Infineon/ifx-backports.git

$ cd ifx-backports/v5.15.58-backports

$ cp brcmfmac defconfigs/.

Choose the appropriate linux headers

$ MY_KERNEL=/usr/src/linux-headers-*

$ make KLIB=$MY_KERNEL KLIB_BUILD=$MY_KERNEL defconfig-brcmfmac

$ make KLIB=$MY_KERNEL KLIB_BUILD=$MY_KERNEL modules

https://community.infineon.com/t5/AIROC-Wi-Fi-and-Wi-Fi-Bluetooth/bd-p/WifiBTcombo
https://github.com/Infineon/ifx-backports
https://github.com/Infineon/ifx-backports.git

Application note 16 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

To enable the debug prints, modify the .config file:

$ CPTCFG_BACKPORTED_DEBUG_INFO=y

$ CPTCFG_BRCM_TRACING=y

$ CPTCFG_BRCMDBG=y

3.3.3 Cross-compilation

To cross-compile FMAC, for example on a Linux host, you need to get the toolchain suitable for your target
platform (usually provided in the BSP). For example, get the toolchain from the GNU-A Downloads and extract

it in any directory.

Do the following to cross-compile the FMAC driver:

1. Use the following commands to set the appropriate Kernel headers and compilers:

export MY_KERNEL=<PATH_TO_KERNEL_OBJ>

export CROSS_COMPILE=<PATH_TO_COMPILER>

2. Patch the FMAC driver as mentioned in the Support for kernels 6.1+

Forward porting of a kernel involves updating the FMAC source code of the kernel to work with the new version.
This may involve making changes to the kernel's interface with the operating system, as well as updating
drivers and other kernel modules to work with new hardware or software configurations.

To cross-compile FMAC on newer versions of kernel, build system should have toolchain suitable for platform
(usually provided in the BSP). A pre-requisite to download FMAC patches (Download the FMAC driver from

Infineon Community or contact the local Infineon FAE/sales representative to get release package).

Do the following to enable the setup with the newer kernel version:

3. Download the 6.1 + kernel source code specific to the platform used. For example, on iMX8:

$ git clone https://github.com/embeddedartists/linux-imx.git

$ cd linux-imx

$ git checkout ea_6.1.y

4. Setup the tool chain specific to platform’s kernel version. For example, on iMX8, follow the procedure to get
the Toolchain for iMX8.

5. Download the FMAC patches and apply the patches.

6. Add the flags necessary for FMAC in defconfig and fix the API compatibility issues caused due to kernel
upgrade. For example, on iMX8:

diff --git a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

index ad7479ba7db5..f55c107e1386 100644

--- a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

+++ b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

@@ -27,13 +27,15 @@

};

modem reset: modem-reset {

- compatible = "gpio-reset";

+/* compatible = "gpio-reset";

reset-gpios = <&gpio_buff 0 GPIO_ACTIVE_LOW>;

initially-in-reset;

https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain

Application note 17 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

diff --git a/arch/arm64/configs/ea_imx8_defconfig

b/arch/arm64/configs/ea_imx8_defconfig

index 2a3fa3d95531..6917a8014d4c 100644

--- a/arch/arm64/configs/ea_imx8_defconfig

+++ b/arch/arm64/configs/ea_imx8_defconfig

@@ -242,6 +242,21 @@ CONFIG_MTD_NAND_DENALI_DT=y

 CONFIG_MTD_NAND_GPMI_NAND=y

 CONFIG_MTD_NAND_FSL_IFC=y

 CONFIG_MTD_SPI_NOR=y

+CONFIG_CFG80211=m

+CONFIG_BCMDHD=n

+CONFIG_BRCMUTIL=m

+CONFIG_BRCMFMAC=m

+CONFIG_BRCMFMAC_SDIO=y

+CONFIG_BRCMFMAC_PROTO_BCDC=y

+CONFIG_BRCMFMAC_PCIE=y

+CONFIG_BRCMFMAC_PROTO_MSGBUF=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

+CONFIG_ASYMMETRIC_KEY_TYPE=y

+CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

+CONFIG_X509_CERTIFICATE_PARSER=y

+CONFIG_PKCS7_MESSAGE_PARSER=y

+CONFIG_MMC_BUS_CLOCK_GATE=y

 # CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is not set

 CONFIG_MTD_UBI=y

 CONFIG_BLK_DEV_LOOP=y

@@ -1106,3 +1121,5 @@ CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

 CONFIG_X509_CERTIFICATE_PARSER=y

 CONFIG_PKCS7_MESSAGE_PARSER=y

 CONFIG_PWM_IMX_TPM=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

diff --git

a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

--- a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

+++ b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

@@ -4810,13 +4811,15 @@

- netif_rx_ni(skb);

+ netif_rx(skb);

+ skb = skbnext;

+ }

diff --git a/kernel/sched/core.c b/kernel/sched/core.c

index b23dcbeacdf3..b0bca07a5c5e 100644

--- a/kernel/sched/core.c

+++ b/kernel/sched/core.c

@@ -7732,7 +7732,7 @@ int sched_setattr_nocheck(struct task_struct *p, const struct

sched_attr *attr)

 return __sched_setscheduler(p, attr, false, true);

 }

 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);

+EXPORT_SYMBOL_GPL(sched_setscheduler);

7. Use the following commands to disable cfg80211:

Application note 18 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

#3.1 Disable cfg80211 regdb for the kernel above v5.4.18

CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

8. Setup the build source-specific to platform. For example, on iMX8,

9. $ source /opt/fsl-imx-wayland/6.1-mickledore/environment-setup-
armv8a-poky-linux

10. Run the following command to avoid linker errors:

$ unset LDFLAGS

11. Build the kernel for the platform. For example, on iMX8,

$ make clean

$ unset LDFLAGS

$ make ea_imx8_defconfig

$ make

The built kernel is available in arch/arm64/boot/Image.

The output modules can be found in the following files:

− net/wireless/cfg80211.ko

− drivers/net/wireless/broadcom/brcm80211/brcmutil/brcmutil.ko

− drivers/net/wireless/broadcom/brcm80211/brcmfmac/brcmfmac.ko

Note: For any issues during the compilation, see the community.

12. Backports

13. Configure FMAC using the following command:

$ make KLIB=$MY_KERNEL KLIB_BUILD=$MY_KERNEL ARCH=arm64 COMPILE=$CROSS_COMPILE

defconfig-brcmfmac

14. Now, compile the FMAC driver modules using the following command:

$ make KLIB=$MY_KERNEL KLIB_BUILD=$MY_KERNEL ARCH=arm64 COMPILE=$CROSS_COMPILE

modules

15. The compiled kernel modules are available in the following directories:

− compat/compat.ko

− net/wireless/cfg80211.ko

− drivers/net/wireless/broadcom/brcm80211/brcmutil/brcmutil.ko

− drivers/net/wireless/broadcom/brcm80211/brcmfmac/brcmfmac.ko

3.3.4 Loading the FMAC driver

Do the following to load the FMAC driver to the kernel:

Make sure you have the latest clm_blob and the firmware from the link -

• Make sure you have the firmware, clm_blob, and nvram present in the /lib/firmware/cypress folder.

− Get the latest firmware and clm_blob from IFX GitHub_firmware.

https://github.com/Infineon/ifx-linux-firmware

Application note 19 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

− Get the latest NVRAM from your module vendor.

• Make sure that all binaries have the prefix cyfmac<chip_name>-<bus_name>.bin/clm_blob/txt.

• Follow this sequence of insmod:

$ insmod compat.ko

$ insmod cfg80211.ko

$ insmod brcmutil.ko

$ insmod brcmfmac.ko

Note: For SDIO interface, add the following module parameters to insmod brcmfmac.ko to achieve
the maximum throughput:
fcmode=2

sdio_in_isr=1

sdio_rxf_thread=1

3.3.5 Debug notes

If you ran into some kernel crash issue because of some problem with the Wi-Fi driver or firmware, you must
enable the debug prints in the FMAC driver. To compile the kernel modules with the debug prints enabled, do

the following steps:

1. If you are building the brcmfmac kernel modules against the kernel running on the system, use the
following:

CPTCFG_BRCM_TRACING=y

CPTCFG_BRCMDBG=y

CPTCFG_BRCMFMAC_PROTO_BCDC=y

CPTCFG_BRCMFMAC_PROTO_MSGBUF=y

CPTCFG_CFG80211_WEXT=y

To build a new kernel image, modify the .config file of the kernel source with the following:

CONFIG_BRCMDBG=y

CONFIG_DEBUG_FS=y

2. To compile brcmfmac as LKM against the running kernel, run the following command:

make -C <path_to_kernel_src> M=<fmac_source_dir>

For example,

$ make -C /lib/modules/`uname -r`/build M=$PWD

3. To enable the brcmfmac debug log, use the following command:

$ echo 8 > /proc/sys/kernel/printk

4. Insert the driver module with the required message level as the module parameter.

$insmod brcmfmac.ko debug=${BRCMF_Message_Level}

Following are the message levels defined in the debug.h file
(available at /v4.14.52-backports/drivers/net/wireless/broadcom/brcm80211/brcmfmac/debug.h):

#define BRCMF_TRACE_VAL 0x00000002

#define BRCMF_INFO_VAL 0x00000004

#define BRCMF_DATA_VAL 0x00000008

#define BRCMF_CTL_VAL 0x00000010

#define BRCMF_TIMER_VAL 0x00000020

#define BRCMF_HDRS_VAL 0x00000040

#define BRCMF_BYTES_VAL 0x00000080

Application note 20 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

#define BRCMF_INTR_VAL 0x00000100

#define BRCMF_GLOM_VAL 0x00000200

#define BRCMF_EVENT_VAL 0x00000400

#define BRCMF_BTA_VAL 0x00000800

#define BRCMF_FIL_VAL 0x00001000

#define BRCMF_USB_VAL 0x00002000

#define BRCMF_SCAN_VAL 0x00004000

#define BRCMF_CONN_VAL 0x00008000

#define BRCMF_BCDC_VAL 0x00010000

#define BRCMF_SDIO_VAL 0x00020000

#define BRCMF_MSGBUF_VAL 0x00040000

#define BRCMF_PCIE_VAL 0x00080000

#define BRCMF_FWCON_VAL 0x00100000

#define BRCMF_ULP_VAL 0x00200000

For example,

• To enable the Wi-Fi firmware console (ring buffers meant to hold debug prints inside Wi-Fi firmware) log, use
the following command:

$ insmod brcmfmac.ko debug=0x00100006 (TRACE, INFO and WIFI_FW_LOG)

• To set console polling interval (250ms), use the following command:

$ echo 250 > /sys/kernel/debug/brcmfmac/${mmc slot}/console_interval

• To enable trace, use the following command:

$ insmod brcmfmac.ko debug=0x6 (TRACE and INFO)

For further details on the functions associated with debugging FMAC, see the source code available in
drivers/net/wireless/broadcom/brcm80211/brcmfmac/debug.c.

3.3.6 Frequently encountered issues

1. Invalid module format.

If you get the following errors, see the dmesg for the detailed error.

Root cause:

There could be a mismatch between the LKMs built for a particular kernel version and those in the current
system. Additionally, the architecture might differ between the compiled kernel module and the host

platform.

Solution:

Download the correct kernel and reinstall the correct kernel image.

2. Unknown symbol in module.

Application note 21 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

Use dmesg to check the root cause of this error.

Root cause:

Some modules were missed before brcmfmac insmod.

Solution:

− Check all dependencies of the module before loading it.

− Grep the unknown symbols, as printed by dmesg in the Linux kernel to identify the missing modules.

3. No channels in “iw reg get”, country code is #n.

Check the detailed error in dmesg.

Root cause:

The clm_blob might be for cyw4373 in the /lib/firmware/cypress folder.

The message “cannot find clm version” in dmesg indicates that the Infineon-specific patches were not
applied for brcmfmac clm_blob might not have the download facility.

Solution:

− Copy the clm_blob file from the quarterly release train to /lib/firmware/cypress.

− See AN225347 to understand the clm_blob flow. Request a product-specific clm_blob from Infineon.

Replace the generic clm_blob copied, from the quarterly release train, with the product-specific
clm_blob.

− Move to Infineon-specific brcmfmac instead of Linux-native FMAC.

4. The USB dongle is not brought up after “insmod brcmfmac”

Root cause:

NVRAM parameters might be included in the firmware image. Run the strings command in
/lib/firmware/cypress/cyfmac4373-usb.bin to check whether NVRAM parameters are included in the tail of
the firmware image.

https://community.infineon.com/t5/Knowledge-Base-Articles/Wi-Fi-CLM-Regulatory-Policy-for-Module-Vendor-Customers-KBA229113/ta-p/251424

Application note 22 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Linux kernel 802.11 subsystem

Solution:

If NVRAM parameters are not present, contact the Infineon support to build a firmware with NVRAM and
replace the existing one. This error does not occur if you use the firmware from the quarterly release train.

Application note 23 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4 User-space Wi-Fi utils

4.1 wpa_supplicant

WPA_SUPPLICANT is a cross-platform supplicant providing support for WEP, WPA, WPA2, WPA3 (IEEE 802.11i),
and WPA-EAP. It implements the key negotiation with an authenticator and also controls the roaming and
association of STA devices. Following are some of the key features of wpa_supplicant:

• WPA and full IEEE 802.11i, RSN, WPA2

• WPA-PSK and WPA2-PSK

• WPA-EAP (WPA – Enterprise, for example, with RADIUS server)

• Key management for CCMP, TKIP, and WEP (both 104/128- and 40/64-bit)

• RSN: PMKSA caching, pre-authentication

• IEEE 802.11r

• IEEE 802.11w

• Wi-Fi Protected Setup (WPS)

4.1.1 Dependencies of wpa_supplicant

• Libnl

The libnl suite is a collection of libraries providing APIs to netlink-based Linux kernel interfaces. Netlink is a

socket-based IPC mechanism primarily between the kernel and user-space processes. It was designed to be

a more flexible successor to IOCTL to provide mainly networking-related kernel configuration and

monitoring interfaces. The IOCTL risks polluting the kernel and damaging the stability of the system. Netlink

socket is simple, only a constant (protocol type) needs to be added to netlink.h. Then, the kernel module
and application can communicate using socket-style APIs immediately.

• OpenSSL

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer

Security (TLS v1) network protocols and related cryptography standards required by them. The OpenSSL

program is a command-line tool for using the various cryptography functions of OpenSSL's crypto library

from the shell.

• Dbus (optional)

D-Bus is a message bus system, a simple way to communicate with other processes. Modern

wpa_supplicant versions have two control interfaces: a dbus API and a directory, normally
/var/run/wpa_supplicant/ or /run/wpa_supplicant/ depending on the distro, containing a socket named for
each Wi-fi interface that wpa_supplicant is managing. The control interfaces are not active by default. You
need the -u command-line option to get dbus, and -O /var/run/wpa_supplicant (or whichever directory) for

the sockets.

https://en.wikipedia.org/wiki/CCMP_(cryptography)
https://en.wikipedia.org/wiki/Temporal_Key_Integrity_Protocol
https://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

Application note 24 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4.1.2 Compilation

• Get the latest source of wpa_supplicant from the ifx-hostap GitHub.

$ git clone https://github.com/Infineon/ifx-hostap.git

• Migrate to wpa_supplicant-2.10/wpa_supplicant and modify the defconfig according to your

system requirements. For an Android-based host, you might want to re-route the debug prints to logcat and
for that uncomment CONFIG_ANDROID_LOG=y. There are several other debug-specific macros that you

can uncomment based on your requirements.

$ cd ifx-hostap/wpa_supplicant

$ cp defconfig_base .config

• To compile the wpa_supplicant source files, use the following command:

$ make -j4

Note: If you are cross-compiling, use the below command

$ export CROSS_COMPILE=<PATH_TO_COMPILER>

$ make -j4 <cc=$CROSS_COMPILE>

• To install the compiled binaries at /usr/sbin directory (a popular choice), use the following command:

$ make install DESTDIR=<your_target_directory>

Note: You can also manually copy the generated binaries from the following:

• hostap/wpa_supplicant/wpa_supplicant

• hostap/wpa_supplicant/wpa_cli

Note: You might come across such as missing the header file in openssl or version mismatch. Make sure

that you have followed the dependency section and installed them according to the exact version
requirement. For example, in a ubuntu-based system, for libssl.so or libcrypto.so, most times, sudo
apt-get install libssl-dev should be sufficient but sometimes the version requirement might be 1.0.2

or 1.1 instead of the default installed version (1.0.0 in some cases). In that case, you would need to
upgrade your system’s libssl version to the one required by the particular release of

wpa_supplicant. Though these errors are uncommon, some host processors running an older
version of the kernel can introduce such errors.

4.1.3 Configuring wpa_supplicant

Wpa_supplicant is configured using a text file that lists all accepted networks and security policies, including
pre-shared keys. All file paths in this configuration file should use a full (absolute, not relative to the working
directory) path to allow the working directory to be changed.

Example:

allow frontend (e.g., wpa_cli) to be used by all users in the 'wheel' group

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=wheel

https://github.com/Infineon/ifx-hostap
https://github.com/Infineon/ifx-hostap.git

Application note 25 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

home network; allow all valid ciphers

network= {

 ssid="home"

 scan_ssid=1

 key_mgmt=WPA-PSK

 psk="very secret passphrase"

}

work network; use EAP-TLS with WPA; allow only CCMP and TKIP ciphers

network= {

 ssid="work"

 scan_ssid=1

 key_mgmt=WPA-EAP

 pairwise=CCMP TKIP

 group=CCMP TKIP

 eap=TLS

 identity="user [at] example.com"

 ca_cert="/etc/cert/ca.pem"

 client_cert="/etc/cert/user.pem"

 private_key="/etc/cert/user.prv"

 private_key_passwd="password"

}

For more details on other specific macros relevant in wpa_supplicant.conf, see wpa_supplicant configuration

file.

After completing the configuration, fire up wpa_supplicant for connecting to your office or home access point
and get on with the application. Run the following command:

$ wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant/example.conf

where,

• “-B” is used to run the wpa_supplicant daemon in the background.

• “-c” option is used to provide the configuration file, in this case, example.conf.

• “-i” option is used to select the network interface to be used.

For additional debug prints, you can add “-d” parameter while running the command. For more details, see the

wpa_supplicant(8) Linux man page.

Note: If you get the following error: “Failed to initialize control interface '/var/run/wpa_supplicant'”, you

may have another wpa_supplicant process already running or the file was left by an unclean

https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf
https://linux.die.net/man/8/wpa_supplicant

Application note 26 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

termination of wpa_supplicant. Use the $killall wpa_supplicant command to manually

remove this file before restarting wpa_supplicant.

4.1.4 wpa_cli

The Wpa_cli utility is a text-based front-end program for interacting with wpa_supplicant. It is used to query
the current status, change the configuration, trigger events, and request interactive user input.
Additionally, the utility can configure EAPoL state machine parameters and trigger events such as reassociation

and IEEE 802.1X logoff and logon.

The wpa_cli utility supports two modes: interactive and command line. Both modes share the same command

set and the main difference is that the interactive mode provides access to unsolicited messages (event

messages and username/password requests).

Interactive mode is started when wpa_cli is executed without any parameters on the command line.
Commands are then entered from the controlling terminal in response to the wpa_cli prompt. In command line
mode, the same commands are entered as command line arguments.

4.1.4.1 Options for configuration

The options listed in Table 6 are available as an argument to configure wpa_cli.

Table 6 Options to start wpa_cli

Command Description

-p path Controls sockets path. This should match the ctrl_interface in wpa_supplicant.conf.

The default path is /var/run/wpa_supplicant

-i ifname Configures the interface. By default, the first interface found in the socket path is used

-h Shows help

-v Shows version information

-B Runs the daemon in the background

-a action_file Runs in daemon mode, executing the action file based on events from wpa_supplicant

-P pid_file Provides the PID file location

-g global_ctrl Uses a global control interface to wpa_supplicant rather than the default Unix domain

sockets

-

G ping_interval
Waits for the ping interval (in seconds) before sending each ping to wpa_supplicant.

See the ping command

command Lists the available commands

https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf

Application note 27 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4.1.4.2 WPA_CLI commands

The commands are issued as listed in Table 7 on the command line or at a prompt when operating

interactively.

Table 7 WPA_CLI commands

Command Description

add_network Adds a network.

blacklist [bssid | clear] Adds a BSSID to the blacklist. When invoked without any
extra arguments, display the blacklist.

Specifying clear causes wpa_cli to clear the blacklist.

bss [idx | bssid] Gets a detailed BSS scan result for the network identified by

"bssid" or "idx"

bssid network_id bssid Sets a preferred BSSID for an SSID.

disconnect Disconnects and waits for reassociate or reconnect

command before connecting.

enable_network network_id Enables a network.

get_network network_id variable Gets network variables.

help Displays usage information.

identity network_id identity Configures the identity for an SSID.

ifname Shows the current interface name. The default interface is

the first interface found in the socket path.

interface [ifname] Shows the available interfaces, sets the current interface, or

does both when multiple interfaces are available.

interface_add ifname [confname

driver ctrl_interface driver_param

bridge_name]

Adds a new interface with the given parameters.

interface_list Lists the available interfaces.

interface_remove ifname Removes the interface.

level debug_level Changes the debugging level in wpa_supplicant. Larger

numbers generate more messages.

license Displays the full license for wpa_cli.

list_networks Lists the configured networks.

logoff Sends the IEEE 802.1X EAPOL state machine into the

“logoff” state.

logon Sends the IEEE 802.1X EAPOL state machine into the

“logon” state.

mib Reports MIB variables (dot1x and dot11) for the current

interface.

new_password network_id password Changes the password for an SSID.

otp network_id password Configures a one-time password for an SSID.

passphrase network_id passphrase Configures a private key passphrase for an SSID.

password network_id password Configures a password for an SSID.

Application note 28 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

Command Description

PIN network_id pin Configures a PIN for an SSID.

ping Pings the wpa_supplicant utility. This command can be

used to test the status of the wpa_supplicant daemon.

pmksa Shows the contents of the PMKSA cache.

preauthenticate BSSID Forces preauthentication of the specified BSSID.

quit Exits wpa_cli.

reassociate Forces a reassociation to the current access point.

reconfigure Forces wpa_supplicant to reread its configuration file.

reconnect Similar to reassociate, but only takes effect if already

disconnected

remove_network network_id Removes a network.

scan Requests a new BSS scan.

scan_results Gets the latest BSS scan results. This command can be

invoked after running a BSS scan with scan.

select_network network_id Selects a network and disable others.

set [settings] Sets variables. When no arguments are supplied, the known

variables and their settings are displayed.

set_network [network_id variable

value]
Sets network variables. Shows a list of variables when run

without arguments.

status Gets the current WPA/EAPOL/EAP status for the current

interface.

terminate Terminates wpa_supplicant.

Note: If you encounter the error “Rfkill Soft blocked” while running any of the wpa_cli or wpa_supplicant
commands, use the $sudo rfkill unblock all command.

4.1.4.3 Typical STA/AP use-cases

STA/AP combinations wpa_cli commands

STA connecting to an AP with open

security

wpa_cli>IFNAME=wlan0 remove_n all

wpa_cli>IFNAME=wlan0 add_network

IFNAME=wlan0

wpa_cli>set_network 0 ssid "wireless_test_2"

wpa_cli>IFNAME=wlan0 set_network 0 key_mgmt NONE

wpa_cli>IFNAME=wlan0 enable_network 0

wpa_cli>IFNAME=wlan0 select_network 0

wpa_cli>IFNAME=wlan0 status

STA connecting to an AP with WPA2

security

wpa_cli> IFNAME=wlan0 remove_n all

wpa_cli> IFNAME=wlan0 add_network

wpa_cli> IFNAME=wlan0

set_network 0 ssid "wireless_test_2"

wpa_cli> IFNAME=wlan0 set_network 0 proto WPA2

wpa_cli> IFNAME=wlan0 set_network 0 key_mgmt

WPA-PSK

Application note 29 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

STA/AP combinations wpa_cli commands

wpa_cli> IFNAME=wlan0 set_network 0 pairwise

CCMP

wpa_cli> IFNAME=wlan0

set_network 0 psk "12345678"

wpa_cli> IFNAME=wlan0 enable_network 0

wpa_cli> IFNAME=wlan0 select_network 0

wpa_cli> IFNAME=wlan0 status

STA connecting to an AP with WPA3

security

wpa_cli> IFNAME=wlan0 disconnect
wpa_cli> IFNAME=wlan0 list_network
wpa_cli> IFNAME=wlan0 remove_network 0
wpa_cli> IFNAME=wlan0 add_network
wpa_cli> IFNAME=wlan0 set_network 0 ssid

'"localap3"'
wpa_cli> IFNAME=wlan0 set_network 0 ieee80211w

2
wpa_cli> IFNAME=wlan0 set_network 0 proto RSN
wpa_cli> IFNAME=wlan0 set_network 0 key_mgmt

SAE
wpa_cli> IFNAME=wlan0 set_network 0 pairwise

CCMP
wpa_cli> IFNAME=wlan0 set_network 0

sae_password '"12345678"'
wpa_cli> IFNAME=wlan0 save_config
wpa_cli> IFNAME=wlan0 enable_network 0
wpa_cli> IFNAME=wlan0 select_network 0
wpa_cli> IFNAME=wlan0 status

STA connecting to an AP with

WPA3_WPA2 security

wpa_cli> IFNAME=wlan0 disconnect
wpa_cli> IFNAME=wlan0 list_network
wpa_cli> IFNAME=wlan0 remove_network 0
wpa_cli> IFNAME=wlan0 add_network
wpa_cli> IFNAME=wlan0 set_network 0 ssid

'"localap3"'
wpa_cli> IFNAME=wlan0 set_network 0 ieee80211w

1
wpa_cli> IFNAME=wlan0 set_network 0 proto RSN
wpa_cli> IFNAME=wlan0 set_network 0 key_mgmt

SAE
wpa_cli> IFNAME=wlan0 set_network 0 pairwise

CCMP
wpa_cli> IFNAME=wlan0 set_network 0

sae_password '"12345678"'

wpa_cli> IFNAME=wlan0 set_network 0 psk

‘”12345678”’
wpa_cli> IFNAME=wlan0 save_config
wpa_cli> IFNAME=wlan0 enable_network 0
wpa_cli> IFNAME=wlan0 select_network 0
wpa_cli> IFNAME=wlan0 status

2G/5G SoftAP with open security wpa_cli> IFNAME=wlan0 remove_net all

wpa_cli> IFNAME=wlan0 add_net

Application note 30 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

STA/AP combinations wpa_cli commands

wpa_cli> IFNAME=wlan0 set_net 0 ssid

‘”CYP_5GAP”’

wpa_cli> IFNAME=wlan0 set_net 0 key_mgmt NONE

wpa_cli> IFNAME=wlan0 set_net 0 frequency 5180

(Change 5180 to 2437 for setting up 2.4 GHz AP)

wpa_cli> IFNAME=wlan0 set_net 0 mode 2

wpa_cli> IFNAME=wlan0 select_net 0

2G/5G SoftAP with WPA2 security wpa_cli> IFNAME=wlan0 remove_network all

wpa_cli> IFNAME=wlan0 add_network

wpa_cli> IFNAME=wlan0 set_network 0 ssid

‘"CYP_wpa2psk_5GAP"’

wpa_cli> IFNAME=wlan0 set_network 0 proto WPA2

wpa_cli> IFNAME=wlan0 set_network 0 key_mgmt

WPA-PSK

wpa_cli> IFNAME=wlan0 set_network 0 pairwise

CCMP

wpa_cli> IFNAME=wlan0 set_network 0 psk

‘"9876543210"’

wpa_cli> IFNAME=wlan0 set_net 0 frequency 5745

(Change 5180 to 2437 for setting up 2.4 GHz AP)

wpa_cli> IFNAME=wlan0 set_net 0 mode 2

wpa_cli> IFNAME=wlan0 select_network 0

wpa_cli> IFNAME=wlan0 status

4.1.4.4 Wireless authentication and privacy infrastructure (WAPI)

WAPI is a Chinese national standard for the security of WLANs. It is more secure than WEP or WPA.
For WAPI-related support, contact the local Infineon sales office or an Infineon representative who can provide

you the WAPI-enabled version of wpa_supplicant.

Note: The Linux driver should support nl80211/cfg80211. If the device is old and does not support the
netlink driver, you would need to roll back to the legacy wext driver:

wpa_supplicant -B -i wlan0 -D wext -c /etc/wpa_supplicant/example.conf

4.2 Hostapd

Hostapd is a user space daemon for setting up the access point or authentication servers with fine granular

control over most of the parameters. It implements the IEEE 802.11 access point management, IEEE

802.1X/WPA/WPA2/WPA3/EAP Authenticators, RADIUS client, EAP server, and RADIUS authentication server.
You can configure hostapd to function in any of those modes. Originally, designed to be a daemon program,
hostapd supports front-end programs, such as hostapd_cli.

Application note 31 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4.2.1 Dependencies of hostapd

• Libnl

• Openssl

4.2.2 Compilation of hostapd

Do the following to compile the hostapd:

• Get the latest source of wpa_supplicant from the ifx-hostap GitHub.

$ git clone https://github.com/Infineon/ifx-hostap.git

Migrate to wpa_supplicant-2.10/hostapd and modify the defconfig according to your system

requirements.

$ cd ifx-hostap/hostapd

$ cp defconfig_base .config

• To compile the hostapd source files, use the following command:

$ make -j4

Note: If you are cross-compiling, use the following command:

$ export CROSS_COMPILE=<PATH_TO_COMPILER>

$ make -j4 <cc=$CROSS_COMPILE>

• To install the compiled binaries at /usr/sbin directory (a popular choice), use the following command:

$ make install DESTDIR=<your_target_directory>

Note: You can also manually copy the generated binaries from the following:

• hostap/hostapd/hostapd

• hostap/hostapd/hostapd_cli

4.2.3 Conf files

Hostapd is configured using a text file that sets up the Access Pont’s (AP’s) security policies (802.11i, 802.1X,
and so on), country code, passphrase, and so on. Create a hostapd.conf file. The following is a conf file example:

interface=wlan0

driver=nl80211

ctrl_interface=/tmp/hostapd

ssid=test_ssid

hw_mode=g

channel=1

macaddr_acl=0

auth_algs=1

wpa=2

https://github.com/Infineon/ifx-hostap
https://github.com/Infineon/ifx-hostap.git

Application note 32 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

wpa_key_mgmt=WPA-PSK

wpa_passphrase=test_ssid

rsn_pairwise=CCMP

wpa_pairwise=CCMP

To set the device up as a softap, n run the following command:

$ sudo hostapd ./hostapd.conf -B -dd

Note: “-dd” is used to enable debug prints. It can be removed after the platform bring-up is over.

4.2.3.1 Hostapd usage

Hostapd usage Settings

Setting up a SoftAP with WPA2 security interface=wlan0

driver=nl80211

ctrl_interface=/tmp/hostapd

ssid=test_ssid

hw_mode=g

channel=1

macaddr_acl=0

auth_algs=1

wpa=2

wpa_key_mgmt=WPA-PSK

wpa_passphrase=test_ssid

rsn_pairwise=CCMP

wpa_pairwise=CCMP

Setting up a SoftAP with WPA3 security interface=wlan0

driver=nl80211

ctrl_interface=/tmp/hostapd

ssid=hostap_sae

channel=6

hw_mode=g

auth_algs=3

wpa=2

wpa_key_mgmt=SAE

sae_password=12345678

ieee80211w=2

rsn_pairwise=CCMP

group_cipher=CCMP

Application note 33 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4.2.4 DHCP configuration

There are a few choices available for the DHCP daemon, such as udhcp, dhcp, dnsmasq, and so on. Most of

them are used as a dhcp server and some of them additionally provide the DNS server functionality.
Sometimes, they are included by default with a core OS, such as udhcp; otherwise, you can manually install the

packages (for example, dnsmasq). In this case, dnsmasq is considered an example to demonstrate how to
setup dhcp and dns servers on the AP interface. Do the following changes to the dhcpd.conf file:

$ sudo nano /etc/dhcpd.conf

interface wlan0

static ip_address=192.168.0.10/24

The default dnsmasq configuration file provides the options to configure the dhcp server. Therefore, instead of
editing the default .conf file, back up the file, create a new .config file, and use the file:

$ sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig

$ sudo nano /etc/dnsmasq.conf

 interface=wlan0

 dhcp-range=192.168.0.11,192.168.0.30,255.255.255.0,24h

 dhcp-option=3,192.168.1.1 #Gateway IP

 dhcp-option=6,192.168.1.1 #DNS

 server=8.8.8.8 #DNS Server

 log-queries

 log-dhcp

 listen-address=127.0.0.1

These lines allocate IP addresses between 192.168.0.11 and 192.168.0.30 to the wlan0 interface. Now, with
certain amendments in network routing you can start dnsmasq.

$ ifconfig wlan0 up 192.168.1.1 netmask 255.255.255.0

$ route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.1.1

$ dnsmasq -C dnsmasq.conf -d

Even if you choose to use some of the available dhcp server daemon tools, see the corresponding
documentation (for path-specific changes and so on) to setup the dhcp and dns servers.

4.3 IW

The iw utility is nl80211-based userspace command-line utility used to configure the wireless devices. It
supports both Wi-Fi drivers used by Wi-Fi devices. The old iwconfig tool is deprecated and it is strongly

recommended to switch to iw and nl80211.

Application note 34 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

User-space Wi-Fi utils

4.3.1 Dependencies

The basic requirement for iw is to have libnl. The following dependencies should be met for pkg-config:

• libnl >= libnl-1

• libnl-devel >=libnl-devel-1

• libnl-genl >= libnl-genl-1

• crda

• wireless-regdb

4.3.2 Compilation

You can use the package manager tool for your system to install the above packages and then proceed with the
installation of iw. If you choose to compile from source, release tarballs are available in kernel page.

4.3.3 Typical usage

Using iw is easy. The iw list command provides you the capabilities of your wireless device(s) in your

system. This command also displays the list of supported commands for your Wi-Fi device. Based on that, you
can use iw help <cmd_name> to issue the command for your use case.

4.3.3.1 SoftAP with WPA/WPA2/WPA3 security

The following commands help you set up a secured SoftAP:

$ iw dev wlan0 interface add softap type __ap

$ ifconfig wlan0 hw ether 00:90:4c:12:d0:05

$ ifconfig wlan0 192.168.10.1

For the AP-related security configuration, you can use hostapd.conf, with the interface parameter as

softap as mentioned in Conf files, and set up the AP with the desired level of security (WPAx).

4.3.3.2 STA connecting to an AP with open/wep security

“iw” can only handle the connection process with either open security or WEP security. For WPAx security, use
wpa_supplicant instead.

Open security:

iw wlan0 connect <target_ap_ssid>

If there are multiple APs with the same ssid, and you want to connect with the AP that is on frequency 2432
(channel 5), run the following command:

iw wlan0 connect <target_ap_ssid> 2432

WEP is deprecated in favor of the more robust security measures available in 802.11i. If you still have a WEP-
supported AP and want to connect using iw, use the following command:

iw wlan0 connect <target_wep_ap_ssid> keys 0:abcde d:1:0011223344

http://kernel.org/pub/software/network/iw/

Application note 35 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

5 Appendix

5.1 Checklist to add connectivity to a default/yocto release

Yocto is a widely used custom embedded Linux distribution creation tool. The Yocto project provides a flexible
set of tools and a space where embedded developers worldwide can share technologies, software stacks,
configurations, and best practices to create tailored Linux images for embedded and IoT devices, or anywhere a
customized Linux OS is needed. This release allows you to enable the Wi-Fi connectivity software in your Yocto

projects, making it easier to get started quickly with the connectivity software. For the Yocto release, follow this

build procedure:

1. Extract the build scripts tarball.

$ tar zxvf cypress-yocto-scripts-v5.15.58-*.tar.gz

2. Create a working directory. For example, cypress-imx-bsp.

$ mkdir cypress-imx-bsp

3. Copy the following data into the working directory:

* cypress-fmac-v5.15.58-*.zip

* build_yocto_wireless.sh

* meta-cywlan

* nvram.zip

* bt-firmware.tar.gz

$ cp cypress-fmac-v5.15.58-*.zip cypress-imx-bsp

$ cp -r cypress-yocto-scripts-v5.15.58-2023_0901/meta-cywlan cypress-yocto-scripts-

v5.15.58-2023_0901/build_yocto_wireless.sh cypress-yocto-scripts- v5.15.58-

2023_0901/nvram.zip cypress-yocto-scripts- v5.15.58-2023_0901/bt-firmware.tar.gz

cypress-imx-bsp

4. Run the setup_host_env.sh script for the first time build. This will help to set up the build environment for
your host.

$ cypress-yocto-scripts- v5.15.58-2023_0901/setup_host_env.sh

5. Run the build_yocto_wireless.sh script in the working directory to generate the Infineon customized Yocto
image.

$ cd cypress-imx-bsp

$./build_yocto_wireless.sh

6. If the scripts are unable to be run by user permission, use the following:

$ chmod a+x *.sh

5.2 Checklist to add connectivity to a non-yocto release

The patch files in this quarterly release package are based on the latest stable Linux kernel release (v5.15.58);
therefore, older kernels need to use backports package. Here are some examples of how to use this package

with an older kernel or Linux-stable v5.4.18. If you are using the backports project with an older version of the

kernel, the Linux kernel image, and Infineon Wi-Fi driver modules need to be built separately.

Building the kernel image is done by following the steps mentioned in the Kernel configuration. For Infineon
Wi-Fi driver backports modules, you can follow the steps mentioned in the Support for kernels 6.1+

Forward porting of a kernel involves updating the FMAC source code of the kernel to work with the new version.
This may involve making changes to the kernel's interface with the operating system, as well as updating

drivers and other kernel modules to work with new hardware or software configurations.

Application note 36 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

To cross-compile FMAC on newer versions of kernel, build system should have toolchain suitable for platform
(usually provided in the BSP). A pre-requisite to download FMAC patches (Download the FMAC driver from

Infineon Community or contact the local Infineon FAE/sales representative to get release package).

Do the following to enable the setup with the newer kernel version:

5. Download the 6.1 + kernel source code specific to the platform used. For example, on iMX8:

$ git clone https://github.com/embeddedartists/linux-imx.git

$ cd linux-imx

$ git checkout ea_6.1.y

6. Setup the tool chain specific to platform’s kernel version. For example, on iMX8, follow the procedure to get
the Toolchain for iMX8.

7. Download the FMAC patches and apply the patches.

8. Add the flags necessary for FMAC in defconfig and fix the API compatibility issues caused due to kernel
upgrade. For example, on iMX8:

diff --git a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

index ad7479ba7db5..f55c107e1386 100644

--- a/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

+++ b/arch/arm64/boot/dts/freescale/imx8mn-ea-ucom-kit_v3.dts

@@ -27,13 +27,15 @@

};

modem reset: modem-reset {

- compatible = "gpio-reset";

+/* compatible = "gpio-reset";

reset-gpios = <&gpio_buff 0 GPIO_ACTIVE_LOW>;

initially-in-reset;

diff --git a/arch/arm64/configs/ea_imx8_defconfig

b/arch/arm64/configs/ea_imx8_defconfig

index 2a3fa3d95531..6917a8014d4c 100644

--- a/arch/arm64/configs/ea_imx8_defconfig

+++ b/arch/arm64/configs/ea_imx8_defconfig

@@ -242,6 +242,21 @@ CONFIG_MTD_NAND_DENALI_DT=y

 CONFIG_MTD_NAND_GPMI_NAND=y

 CONFIG_MTD_NAND_FSL_IFC=y

 CONFIG_MTD_SPI_NOR=y

+CONFIG_CFG80211=m

+CONFIG_BCMDHD=n

+CONFIG_BRCMUTIL=m

+CONFIG_BRCMFMAC=m

+CONFIG_BRCMFMAC_SDIO=y

+CONFIG_BRCMFMAC_PROTO_BCDC=y

+CONFIG_BRCMFMAC_PCIE=y

+CONFIG_BRCMFMAC_PROTO_MSGBUF=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

+CONFIG_ASYMMETRIC_KEY_TYPE=y

+CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

+CONFIG_X509_CERTIFICATE_PARSER=y

+CONFIG_PKCS7_MESSAGE_PARSER=y

+CONFIG_MMC_BUS_CLOCK_GATE=y

 # CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is not set

 CONFIG_MTD_UBI=y

Application note 37 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

 CONFIG_BLK_DEV_LOOP=y

@@ -1106,3 +1121,5 @@ CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y

 CONFIG_X509_CERTIFICATE_PARSER=y

 CONFIG_PKCS7_MESSAGE_PARSER=y

 CONFIG_PWM_IMX_TPM=y

+CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

+CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

diff --git

a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

--- a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

+++ b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c

@@ -4810,13 +4811,15 @@

- netif_rx_ni(skb);

+ netif_rx(skb);

+ skb = skbnext;

+ }

diff --git a/kernel/sched/core.c b/kernel/sched/core.c

index b23dcbeacdf3..b0bca07a5c5e 100644

--- a/kernel/sched/core.c

+++ b/kernel/sched/core.c

@@ -7732,7 +7732,7 @@ int sched_setattr_nocheck(struct task_struct *p, const struct

sched_attr *attr)

 return __sched_setscheduler(p, attr, false, true);

 }

 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);

+EXPORT_SYMBOL_GPL(sched_setscheduler);

9. Use the following commands to disable cfg80211:

#3.1 Disable cfg80211 regdb for the kernel above v5.4.18

CONFIG_CFG80211_REQUIRE_SIGNED_REGDB=n

CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS=n

10. Setup the build source-specific to platform. For example, on iMX8,

11. $ source /opt/fsl-imx-wayland/6.1-mickledore/environment-setup-
armv8a-poky-linux

12. Run the following command to avoid linker errors:

$ unset LDFLAGS

13. Build the kernel for the platform. For example, on iMX8,

$ make clean

$ unset LDFLAGS

$ make ea_imx8_defconfig

$ make

The built kernel is available in arch/arm64/boot/Image.

The output modules can be found in the following files:

− net/wireless/cfg80211.ko

− drivers/net/wireless/broadcom/brcm80211/brcmutil/brcmutil.ko

− drivers/net/wireless/broadcom/brcm80211/brcmfmac/brcmfmac.ko

Application note 38 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

Note: For any issues during the compilation, see the community.

Backports section.

5.3 Upgrading firmware

Usually, the quarterly releases contain updated firmware. If you decide to upgrade to the latest firmware, you

can get the files from community page, replace in your hosts filesystem(/lib/firmware/cypress/*) and run the $

modprobe brcmfmac.ko command.

5.4 Toolchain for iMX8

5.4.1 Linux host setup

The Yocto build system requires a Linux host machine. The minimum available hard disk space is 50 GB;
however, it is recommended that the host machine has at least 120 GB to be able to build the largest image or
distribution.

The instructions in this document are tested on an Ubuntu 18.04.

5.4.2 Required packages

The Yocto project requires the following packages to be installed on the host machine:

sudo apt-get update

sudo apt-get install openssh-server

sudo service ssh restart

sudo apt-get update

sudo apt-get install gawk wget git-core diffstat unzip texinfo \ gcc-multilib

build-essential chrpath socat \

libsdl1.2-dev xterm sed cvs subversion \

coreutils texi2html docbook-utils python-pysqlite2 help2man make \ gcc g++ desktop-

file-utils libgl1-mesa-dev libglu1-mesa-dev \ mercurial autoconf automake groff curl

lzop asciidoc u-boot-tools

sudo locale-gen en_US.UTF-8

1. Use the following command to create a directory named bin in the home folder.

mkdir ~/bin

2. Download the tool using the following command:

curl http://commondatastorage.googleapis.com/git-repodownloads/repo > ~/bin/repo

3. Use the following command to execute the tool:

chmod a+x ~/bin/repo

4. Add the /bin directory to the PATH variable. Add the following line to the .bashrc file so the path is available
in each started shell or terminal:

echo "export PATH=~/bin:$PATH" >> ~/.bashrc

source ~/.bashrc

http://commondatastorage.googleapis.com/git-repodownloads/repo

Application note 39 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

5.4.3 Download Yocto recipes

The Yocto project consists of many recipes used when building an image. These recipes come from several

repositories; the repo tool is used to download these repositories. A branch must be selected of the ea-yocto-
base repository.

Create a directory for the downloaded files (ea-bsp in the following example):

mkdir ea-bsp

cd ea-bsp

1. Configure Git if it is not configured. Change “Your name” to your actual name and "Your e-mail" to your e-

mail address.

git config --global user.name "Your name"

git config --global user.email "Your e-mail"

2. Initialize the repo. The file containing all required repositories is downloaded in this step. Change <selected
branch> to a branch name accordingly.

This example uses ea-6.1.36 branch.

repo init -u https://github.com/embeddedartists/ea-yocto-base -b ea-6.1.36

3. Start to download the files:

repo sync

All files are now downloaded into the ea-bsp directory. Most of the files will actually be available in the

subdirectory called sources.

5.4.4 Initialize the build

1. Enter the following command to set up the yocto build. It automatically changes the directory to build-

imx8mqea-com-wayland:

DISTRO=fsl-imx-wayland MACHINE=imx8mnea-ucom source ea-setup-release.sh -b build-

imx8mnea-ucom-wayland

2. Edit conf/local.conf to enable the SSH server:

- EXTRA_IMAGE_FEATURES = "debug-tweaks"

+ EXTRA_IMAGE_FEATURES = "debug-tweaks ssh-server-openssh"

5.4.5 Custom iMX toolchain

1. Build an image to create the toolchain. See the following example:

bitbake meta-toolchain

This creates a build-imx8mnea-ucom-xwayland/tmp/deploy/sdk file. Go to the cd build-imx8mnea-ucom-
xwayland/tmp/deploy/sdk location to install the toolchain.

2. Use the following command to install the toolchain:

sudo ./fsl-imx-wayland-glibc-x86_64-meta-toolchain-armv8a-imx8mnea-ucom-toolchain-

6.1-mickledore.sh

This results in the toolchain being installed in /opt/fsl-imx-wayland/6.1-mickledore/.

https://github.com/embeddedartists/ea-yocto-base%20-b%20ea-6.1.36

Application note 40 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Appendix

3. Source the environment variables using the following command:

source /opt/fsl-imx-wayland/6.1-mickledore/environment-setup-armv8a-poky-linux

5.4.6 Building the image

Now, the setup is completed and start the build. The building of the ea-image-base image is demonstrated in
the following example:

bitbake ea-image-base

Note that creating an image may take many hours depending on the host computer’s capability.

Application note 41 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

References

References

[1] Device Tree Structure

[2] Linux Wireless

[3] Linux Device Drivers

[4] Linux MMC Subsystem

[5] Linux PCI Bus Subsystem

[6] Linux USB Subsystem

[7] Linux Backports project

https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://wireless.wiki.kernel.org/en/users/documentation
https://lwn.net/Kernel/LDD3/
https://www.kernel.org/doc/html/latest/driver-api/mmc/mmc-dev-parts.html
https://www.kernel.org/doc/html/latest/PCI/index.html
http://www.linux-usb.org/USB-guide/book1.html
https://kernel.googlesource.com/pub/scm/linux/kernel/git/backports/backports/+/refs/tags/v5.15.58-1/README

Application note 42 002-32689 Rev. *A

 2024-02-15

Wi-Fi software user guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2021-04-16 Initial release.

*A 2024-02-15 Update the cypress links to Infineon.

Removal of NRND chip.

Changed the Android specific steps to generic.

Updated Table 2 and Table 3.

Updated Multimedia card and Support for kernels 6.1+.

Added Toolchain for iMX8.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Edition 2024-02-15

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-32689 Rev. *A

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

 Disclaimer

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction to Wi-Fi software
	1.1 Wi-Fi software architecture block diagram

	2 Platform interface, boot process, and device tree blob
	2.1 Hardware connection
	2.2 Kernel configuration
	2.2.1 Device tree blob configuration

	2.3 WLAN host interface
	2.3.1 Multimedia card (SDIO)
	2.3.2 Peripheral Component Interconnect Express (PCIe)
	2.3.3 USB

	3 Linux kernel 802.11 subsystem
	3.1 NL80211
	3.2 CFG80211
	3.3 FMAC bringup
	3.3.1 Support for kernels 6.1+
	3.3.2 Backports
	3.3.3 Cross-compilation
	3.3.4 Loading the FMAC driver
	3.3.5 Debug notes
	3.3.6 Frequently encountered issues

	4 User-space Wi-Fi utils
	4.1 wpa_supplicant
	4.1.1 Dependencies of wpa_supplicant
	4.1.2 Compilation
	4.1.3 Configuring wpa_supplicant
	4.1.4 wpa_cli
	4.1.4.1 Options for configuration
	4.1.4.2 WPA_CLI commands
	4.1.4.3 Typical STA/AP use-cases
	4.1.4.4 Wireless authentication and privacy infrastructure (WAPI)

	4.2 Hostapd
	4.2.1 Dependencies of hostapd
	4.2.2 Compilation of hostapd
	4.2.3 Conf files
	4.2.3.1 Hostapd usage

	4.2.4 DHCP configuration

	4.3 IW
	4.3.1 Dependencies
	4.3.2 Compilation
	4.3.3 Typical usage
	4.3.3.1 SoftAP with WPA/WPA2/WPA3 security
	4.3.3.2 STA connecting to an AP with open/wep security

	5 Appendix
	5.1 Checklist to add connectivity to a default/yocto release
	5.2 Checklist to add connectivity to a non-yocto release
	5.3 Upgrading firmware
	5.4 Toolchain for iMX8
	5.4.1 Linux host setup
	5.4.2 Required packages
	5.4.3 Download Yocto recipes
	5.4.4 Initialize the build
	5.4.5 Custom iMX toolchain
	5.4.6 Building the image

	References
	Revision history
	Disclaimer

