AN228753

infineon

PSoC™ 6 MCU usage of Direct Memory Access (DMA)

About this document

Scope and purpose

This application note provides advanced guidance on DMA in PSoC™ 6 MCU and its use cases.

Table of contents

Aboutthisdocument......... e 1

Tableof contents e e 1
1 Introduction e e e 3
2 Architecture e e 4
2.1 TraNS I MOAES . . .ttt e e e 5
3 DM A eSS N ... e e 6
3.1 Step 1: Choosethe DMA channel ...t ettt 6
3.2 Step 2: CoNfigUIE LG EerS . o ettt e e e 6
3.3 Step 3:Setupthe DMA Channel ettt e e e 7
3.4 Step 4: Set Up the DMA desCriplor . ..o vttt e e et i e 7
3.5 Step 5: Write the USer COde . ..o i ettt e s 7
4 Priorities and preemption i 9
5 Datatransferwidths e 11
6 Typesof transfers i e e 12
6.1 B o T A = 1 7= 12
6.2 1-40-Ntrans er . . e e 13
6.2.1 Noncontiguous source/destinationincrementscovviiii i, 14
6.3 N o I =1 1) =T A 15
6.4 N-tO-N EraNS Ol . e e 15
6.5 N0 XM Lo i e e e 16
7 Chaining descriptors i e 18
8 Chaining DMA channels. i e et 20
9 Differences between DMA (DW) and DMACttt 21
10 DMA transfer performance it e 22
10.1 Elements of atransfer. ... e 22
10.2 DMA (DW) and DMAC: trigger schemes and performanceooiiiiiiiiiiiiennne.n. 25
10.3 Preemption and itsimpacton performance...........c i e e 26
10.4 Bus arbitration and itS impacto e e e e 27
11 SUMIMIANY ..ottt ettt ettt et ettt e et e e e 28

R OrENCES e e e 29
Application Note Please read the sections "Important notice" and "Warnings" at the end of this document 002-28753 Rev. *C
www.infineon.com 2023-08-17

https://www.infineon.com

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

Table of contents
ReVISION MiStOry e e 30
DiSClaiMer o e 31
Application Note 2 002-28753 Rev. *C

2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

1 Introduction

1 Introduction

A Direct Memory Access (DMA) block is specifically designed for data movement and is therefore more efficient
than CPU for transferring large data blocks. In a system, DMA blocks also provide an independent data transfer
engine, which relieves the CPU of bandwidth for data transfers. DMA blocks in PSoC™ 6 MCU implement a data
transfer engine with different configurations and settings that let the DMA block be used in different data
transfer use cases. This application note describes these different DMA configurations and use cases, and
explains how to design with DMA to achieve the most efficient and fastest data transfers, and provides guidance
for calculating the performance of a DMA transfer in the number of clock cycles.

DMA in PSoC™ 6 MCU is specifically designed to cater to data transfer requirements of a System on Chip (SoC).
For this reason, there are two types of DMA engines in some of the PSoC™ 6 MCU devices.

DMA (DW) (also called Datawire): This DMA engine is specifically designed for transferring small data blocks,
typically between peripherals, to offload the CPU from any data transfer with peripherals. In this document,
this DMA engine will be referred to as DMA (DW) or DW.

DMAC (DMA Controller): This DMA engine is specifically designed to efficiently transfer large data blocks in
memory. The DMAC provides higher performance compared to DMA/DW. In this document, this DMA engine is
referred to as DMAC.

In addition to the two types of DMA hardware blocks, there are multiple other implementation-level features
such as X and Y loops, different triggering schemes, and trigger routing. See the Technical Reference Manual
(TRM).

This document will use the term DMA to generally refer to a feature or explanation for both DMA(DW) and DMAC.

Application Note 3 002-28753 Rev. *C
2023-08-17

https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

2 Architecture

2 Architecture

There are two types of DMA hardware blocks implemented in PSoC™ 6 MCU devices: DMA/DW and DMAC. Both
DMA/DW and DMAC have similar feature sets and architecture, but differ in their performance and use cases;
see Differences between DMA (DW) and DMAC. This section provides a general high-level description of the DMA
block architecture. For a more detailed explanation of individual features, see the Technical Reference Manual
(TRM).

The DMA transfer engine implements the state machine from the time a trigger is received, to when the transfer
is completed. Figure 1 shows the block diagram of the DMA hardware block.

The DMA hardware block can implement multiple DMA channels that can be independently configured for
different data transfers. At a time, only one DMA channel can be active in a DMA block; other channels, if
triggered, are put in a pending state. When the DMA hardware block completes the current active channel,
pending channels are evaluated based on their priorities.

The data transfer associated with a DMA channel is described by a descriptor. The descriptor defines different
configurations of the transfer such as size, data width, burst sizes, address increment schemes, and source and
destination addresses. The descriptor is a structure of a specific type placed in a memory location. The pointer
to this descriptor is associated with a DMA channel as part of its DMA channel configuration. When a DMA
channel is made active, the first action is to fetch its descriptor from the memory. The descriptor could be in
any form of memory: RAM, flash, or even an external memory. Multiple descriptors can be associated with a
DMA channel in a chained configuration: see Chaining descriptors.

The DMA hardware block connects to the system through two data bus interfaces and a set of trigger signals.
The bus master interface is used for data transfers by the DMA block, while the bus slave interface is for other
masters to access and configure DMA.

Each DMA channel has a trigger input, trigger output, and interrupt output line. Interrupt signals are routed to
individual interrupt lines in the respective CPU. Trigger signals to and from DMA channels are routed through a
trigger multiplexer block, which has a device-specific architecture. The trigger multiplexer block enables
routing of trigger signals from different peripherals to the DMA block and routing trigger outputs back to other
peripherals.

To understand specific trigger routes in a specific PSoC™ 6 MCU device, see the “Trigger Multiplexer Block”
chapter in the Technical Reference Manual (TRM).

DMA Hardware Block
System Trigge'r
Triggers — aPr:gCF?fz:'r']tg B> DMA Data Transfer Engine P Trigger out
iori i
Decodingy Channels (Active Request) » Interrupt
Trigger
Multiplexer Block Bus Slave DMA Bus Master
Interface Registers Interface

iy iy
1r

Descriptors

Memory

Figure 1 DMA architecture

Application Note 4 002-28753 Rev. *C
2023-08-17

https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

2 Architecture

2.1 Transfer modes

There are three transfer modes for a DMA channel as defined by its associated descriptor:

+ InaSingle transfer, the DMA descriptor transfers only a single data element. A data element could be a
byte, 2 bytes, or a 4-byte word based on the width definition in the descriptor. Each single transfer would
need to be initiated by a trigger signal to the DMA channel

« 1D transfer (X loop) is useful for buffer-to-buffer transfer or a peripheral-to-memory buffer transfer; it
allows for multiple data elements to be transferred as defined in a descriptor. The descriptor can decide on
the exact form of source and destination address increments. You can choose to trigger the transfers one
data element at a time or the entire 1D transfer at a time

+ The 2D transfer (Y loop) mode allows for multiple 1D transfers to be defined in a single descriptor. This
allows for a larger data count and allows for transfers of more complex data entities like array of data
structures. The trigger scheme allows for triggering individual data elements, an entire 1D transfer, or the
entire 2D transfer at a time

Application Note 5 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

3 DMA design

3 DMA design

Setting up a DMA channel using ModusToolbox™ involves multiple steps described in the following sections. The
instructions assume that you have a basic understanding of bringing up a project using ModusToolbox™. See
AN228571 - Getting Started with PSoC™ 6 MCU on ModusToolbox™. The following sections take an example use
case of an ADC triggering a DMA channel at the end of conversion. The DMA channel transfers the ADC result
data to a memory buffer. The memory buffer is meant to be a 32-element-long array and therefore, the DMA
descriptor will be configured to transfer the ADC result 32 times to fill the buffer array.

Steps for setting up a typical DMA channel are shown as numbered in Figure 2.

3.1 Step 1: Choose the DMA channel

DMA channel trigger connections to peripherals are dependent on the design of the Trigger Multiplexer block.
The choice of the DMA channel to use will depend on the trigger routing from the peripheral that is triggering
the DMA channel. In this case, because the source of the DMA trigger is an ADC, you will need to refer the trigger
routing and find the DMA channel associated with the ADC trigger outputs. In the case of the PSoC™ 62
CY8C62x8 or CY8C62xA device, DMA channel 28 provides this routing connection to the ADC as shown in Figure
2. See the Technical Reference Manual (TRM) for a detailed discussion of Trigger Multiplexer block design.

After you identify the DMA channel, use the DMA tab in Device Configurator in ModusToolbox™, as shown in
Figure 2. Enable the DMA channel that you are planning to use, and then configure its parameters on the right of
the screen. You can configure one or more DMA descriptors, DMA channel parameters, and the trigger input and
output routing.

Peripherals | Pins | AnalogRouting | System | Perpheral-Clocks | DMA r f O B &
TE® % G @ Name Value
Resource Name(s) Personality 7) Configuration Help n DMA ymentation
» DMA Controller :
~ DMA DataWire 0
DMA DataWire 0: Channel 0 |cf hiar %) Trigger Input & | 12-bit SAR ADC tr_sar_out [USED] ~
DMA DataWire 0: Channel 1 ¢ han e
?) Trigger Output <unassigned>
DMA DataWire 0: Channel 2 | < b >
?) Channel Priority 3
DMA DataWire 0: Channel 3 DY T — 5
DMA DataWire 0: Channel 4 | < 7) Preemptable
DMA DataWire 0: Channel 5 a 7) Bufferable
DMA DataWire 0: Channel 6 | cf han (@) Select the descriptor Descriptor_0 -

DMA DataWire 0: Channel 7 i
DMA DataWire 0: Channel 8 |cp har ?) Trigger output Trigger on every element transfer completion -
DMA DataWire 0: Channel 9 ?) Interrupt type Trigger on every element transfer completion -
?) Enable Chaining v
DMA DataWire 0: Channel 10| b .
?) Chain to descriptor 0
DMA DataWire 0: Channel 11 1 =
?) Channel state on completion Enable

DMA DataWire 0: Channel 12 ¢

?) Trigger input type One transfer per trigger et
DhA% DataWice & Ghannelll3 ?) Trigger and Retrigger (pulse trigger) =
SHAGIERSE S 1 %) Data transfer width Word to Word (full 32 bit) -
DMA DataWire 0: Channel 15 < fiptor sething
DMA DataWire 0: Channel 16 han 7) Number of data elements to transfer | 32
DMA DataWire 0: Channel 17 ¢ han_17/ #) Source increment every cycle by 0
DMA DataWire 0: Channel 18 ha ?) Destination increment every cycle by |1
DMA DataWire 0: Channel 19| han_1 ?) CRC
DM DataiWirs & Channel 2 fcp 7) Numbes of x-lo.ops to execute 1
D414, DotaWiee & Chonnel 21 c ?) Source increment every cycle by 0
D P e 2) Destination increment every cycle by|0
DMA DataWire 0: Channel 23 < ==
DMA DataWire 0: Channel 24 ?) Store Config in Flash
DMA DataWire 0: Channel 25 <.

Q DMA DataWire 0: Channel 26
DMA DataWire 0; Channel 27 < b
| oo~ I |
T ONATIEWIrE T
. o .
Figure 2 DMA configuration
o .
3.2 Step 2: Configure triggers

The trigger input and outputs of a DMA channel are determined by the requirements of the system you are
building. For the example of an ADC triggering the transfer of data from its result register to a memory buffer,
the trigger input needs to be set to connect to the ADC trigger signal. You can configure the peripheral that will
trigger the DMA channel by selecting the “Trigger Input” setting in the DMA channel settings. You can also

Application Note 6 002-28753 Rev. *C
2023-08-17

https://www.infineon.com/dgdl/Infineon-AN228571_Getting_started_with_PSoC_6_MCU_on_ModusToolbox_software-ApplicationNotes-v08_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d36de1f66d1
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

3 DMA design

configure how to route the trigger output from the DMA. Both these settings automatically configure the trigger
multiplexer block routing.

3.3 Step 3: Set up the DMA channel

The channel configuration involves setting up channel-level parameters such as channel priority, preemptable,
and bufferable. Here, you set the number of descriptors to be configured, and specify the descriptor that needs
to be associated with the DMA channel when the channel is initialized.

3.4 Step 4: Set up the DMA descriptor

Based on the number of descriptors configured, the Select Descriptor field will have an option to select and
configure as many descriptors as set in the Number of Descriptors field. Select each descriptor and configure
it.

In the descriptor configuration, you can configure the trigger and interrupt behavior. In the case of multiple
descriptors that need to be chained, select Enable Chaining and then select the descriptor to chain to in the
Chain to descriptor field. You can also configure the X and Y loop transfers. Select Store Config in Flash to
store the descriptors in flash.

3.5 Step 5: Write the user code

After configuring the triggers, channel, and descriptors, save and close the configurator. This automatically
generates the code in the cycfg_DMAs.h and cycfg_DMAs.c files. Each descriptor will generate a descriptor
structure called cpuss_o_dwe_e_chan_28_Descriptor_e in the code. Note that this descriptor is not automatically
initialized or allocated to the DMA channel. This must be done in user code.

1. A configuration structure named cpuss_@_dw@_e_chan_28_Descriptor_@_config is generated, which has
all descriptor configuration set in the Device Configurator. This can be used to initialize the descriptor
cpuss_© dwe_© chan_28 Descriptor_o

2. All channel-level configuration such as priority is configured in cpuss_0_dwe_o_chan_o_channelConfig.
This structure can be used to initialize the channel

In addition, you need the following user code to initialize and enable DMA transfers:

1. Initialize the descriptor with the following function. This step transfers all configuration to the descriptor

Cy_DMA_Descriptor_Init(&cpuss_0_dwe_0_chan_0_Descriptor_o,
&cpuss_0_dwo_0_chan_0_Descriptor_0_config);

2, Configure the source and destination addresses with the following functions:

Cy_DMA_Descriptor_SetSrcAddress(cpuss_©_dw®_© chan_0_Descriptor_0, SAR->CHAN_RESULT);
Cy_DMA_Descriptor_SetDstAddress(cpuss_0_dw@_0_chan_0_Descriptor_0, &Buffer);

3. Initialize the channel and associate the descriptor to it with the following function:

Cy DMA_Channel Init(cpuss_© dw® © chan_© HW, cpuss © dwd @ chan_© CHANNEL,
&cpuss_0_dwo_0 chan_0_channelConfig);

The initialization also automatically associates cpuss_0_dw0_0_chan_0_Descriptor_0 to the channel.

Application Note 7 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

3 DMA design

4, Enable the channel using the following function:

Cy_DMA_Channel_Enable(cpuss_0_dw@_©_chan_0 HW, cpuss_0 dw@_©_chan_0_ CHANNEL)

5. Note that at this stage, only the channel is enabled but not the DMA block itself. To enable the DMA
block, use the following function:

Cy_DMA_Enable(cpuss_0_dw@_©_chan_0_HW);

Application Note 8 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

4 Priorities and preemption

4 Priorities and preemption

A single DMA hardware block can support many DMA channels which may be triggered by independent and
unrelated events. This leads to the possibility of multiple DMA channels going to a pending state at the same
time and contesting for bus access.

Every DMA channel has an associated priority value, which is used by the DMA hardware block’s priority
decoder to choose the channel when multiple channels are pending in the same DMA block. In such a situation,
the DMA channel with the lowest priority number gets active and others are held pending. There are only four
priority levels (0-3), while there can be more than four DMA channels present. In such cases, where multiple
DMA channels of the same priority level are contesting for the bus, a round robin scheme of arbitration is
employed.

However, if there is a low-priority channel already active and is in the middle of a large transfer, a pending
higher-priority channel cannot become active. This can hold the execution of a higher-priority channel. This can
be a problem when the higher-priority channel caters to a data transfer that is time-sensitive. Figure 3 shows
this condition in the case of Channel Without Preemption.

To address this, there is an additional configuration parameter in the DMA channel called “Preemptable”. This
parameter allows a higher-priority channel to preempt the currently active low-priority channel. If a channel
has Preemptable enabled, any other channel with a higher priority can preempt the channel. This means that
even when the DMA channel is in the middle of a transfer, a higher-priority channel request will stop the current
transfer after completing the current atomic transfer, keep the channel pending, and then start the higher-
priority channel. The Data Width parameter determines the size of an atomic transfer. Only when the high-
priority channel is completed, the low-priority channel may resume. A low-priority preemptable channel can
get preempted multiple times during a single transfer. See Figure 3.

Preemption is useful only in cases when there are low-priority channels with no constraints of transfer times
and there are high-priority channels that are time-sensitive and cannot be held hostage by other on-going
transactions.

Note that preemption can cause significant delay in low-priority transfers, if:
« There are multiple frequent requests from high-priority channels
+ Thetime taken for a high-priority transfer is too long

Application Note 9 002-28753 Rev. *C
2023-08-17

PSoC™ 6 MCU usage of Direct Memory Access (DMA)

4 Priorities and preemption

infineon

High-Priority Channel Delayed
I
A A A L A A A
HP HP LP HP || HP HP
ti'me
Channel Arbitration Without Preemption
Low-Priority Channel Preempted
A A A / SA A A
HP HP LP | HP“ LP HP LP HP HP
time
Channel Arbitration with Preemption
High-priority DMA T High-priority DMA
HP . . .
channel is active channel triggered
L Low-priority DMA
LP Low-priority DMA T channel triggered
channel is active

Figure 3

Application Note

Channel arbitration and preemption in DMA

10

002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

5 Data transfer widths

5 Data transfer widths

The data width determines the width of the data being accessed at the source or destination. This setting is
also responsible for the value of each increment of the X or Y loops. Data widths must always be equal to the
width supported by the device. For example, because all peripherals support 32-bit data width, if the source or
destination of a transfer is a peripheral, the source or destination data width must be set to 32 bits.

Memory supports 8-bit, 16-bit, and 32-bit access. You can use larger data widths to increase throughputs, or use
smaller data widths to quantize the data size. For example, 8-bit data is being transferred from a
communication block to the memory, the source data width must be 32 bits (because the source is a
peripheral), but the destination can be 8 bits (because the destination is a memory location), which
automatically truncates the higher 24 bits. This will enable a smaller memory footprint.

Application Note 11 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

6 Types of transfers

6.1 1-to-1 transfer

This form of transfer allows for one data element to be transferred from a source to a destination. A good
example is the peripheral-to-peripheral transfer shown in Figure 4. This shows an SPI block and a UART block.
The data coming on SPI Rx is directly transferred to UART Tx using DMA channel 0; similarly, the data coming on
UART Rx is directly transferred to SPI Tx. The implementation utilizes the Rx interrupt of both the
communication blocks to trigger DMA channels.

SPI RX FIFO Not Empty TR_in TR_out
Rx Trigger Level I — TX FIFO T nterrupt
RX FIFO DMA ChannelO
ST G UART (SCB)
— —— | RXFIFO
TX FIFO DMA Channel1 R Interrupt
Tx Trigger Level P
UART RX FIFO Not Empty TR in TR_out

Figure 4 1-to-1 transfer

Figure 5 shows the configuration for a 1-to-1 transfer. When the X and Y loops are configured to execute only
once, the configurator automatically configures the DMA channel for a single transfer. This form of transfer is
useful when a specific data transfer path is set up with a trigger, and is expected to work without CPU
intervention.

\7) Trigger Input é) Serial Communication Block (SCB) 0 rx_request [USED]

.7) Trigger Output <unassigned> =
| 7 Channel Priority 3

(7) Number of Descriptors 1

(2) Preemptable

(2) Bufferable

7 Select the descriptor Descriptor_0

. ?) Number of data elements to transfer | 1

ﬁ__'?) Source increment every cycle by 0
(?) Destination increment every cycleby 0
\7) CRC

:_.?_ Number of X-loops to execute 1
7 Source increment every cycle by 0
f) Destination increment every cycle by |0

Figure 5 Setting up a 1-to-1 transfer

Application Note 12 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

6.2 1-to-N transfer

Transfer from a single source address to multiple destination addresses is a typical use case for transfers from
peripherals like ADC to memory buffers for further processing by the CPU. The example in Figure 6 shows an
ADC output being DMA-transferred to a memory buffer. The ADC has a 12-bit resolution; therefore, the result is
in a 16-bit data register, and the buffer is a 16-bit array. At the end of the entire buffer transfer, the DMA creates
an interrupt for the CPU, so it can start post-processing on the buffered data.

The configuration for this example is shown in Figure 7.

1. The trigger source is set to the SAR ADC, so the ADC trigger is automatically routed to the DMA channel

2, The interrupt is configured to trigger when the transfer is completed. This will enable the CPU to act on
the buffer once the entire buffer is filled

3. The trigger input is configured to have one transfer in each ADC trigger. The data transfer width is
configured to “Word to Halfword”. The ADC is a peripheral and therefore, the peripheral interface is
32-bit. The destination is a 16-bit buffer in memory

4, The X loop is set to run 10 times (which is the size of the buffer), while only the destination is
incremented for each element transferred. The source remains constant because it is always the ADC
result register

Memory Buffer
(SRAM)
X
1(‘\998 P | i
Trigger 2 sl 2 CPU Access AM oving
SAR ADC | 2 bytes M S | o verage
Eoc SIS Filter
/\’{90@ I Sample 4 Interrupt» (in code)
7 H :
TRIGGER ' W !
Descriptor 0
Figure 6 ADC to buffer: 1-to-N transfer configuration for ADC to buffer
Application Note 13 002-28753 Rev. *C

2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

—~ 1
7 Trigger Input é) 12-bit SAR ADC tr_sar_out [USED] >

" Trigger Output <unassigned> iy
(7) Channel Priority 3
(?) Number of Descriptors 1

?) Preemptable

_7) Bufferable

; '7 Select the descriptor Descriptor_0 -

f" Trigger output Trigger on every element transfer completion -

"’ Interrupt type Trigger on descriptor completion - @
2) Enable Chaining

7 Channel state on completion Enable -

? Trigger input type One transfer per trigger v @
(2) Trigger deactivation and retriggering | Retrigger immediately (pulse trigger) v

3‘) Data transfer width Word to Halfword -

7 Number of data elements to transfer 10 @
':'_?} Source increment every cycle by 0

) Destination increment every cycle by 1

Figure 7 Configuration for ADC to buffer

6.2.1 Noncontiguous source/destination increments

In this transfer mode, you can also have the output placed in noncontiguous locations of the memory. This is
useful if the destination was an array of structures and you are only filling a specific element in that array. An
example is the destination that has an array of structures with each structure element comprising a 32-bit time
stamp followed by a corresponding ADC result reading. This implementation is shown in Figure 8. If a DMA
channel was transferring only time stamp data, it would need to interleave destination addresses. This is
accomplished by having a destination increment value greater than 1. The following use case independently
transfers the time stamp data from its timer source, and the ADC result from the ADC.

Application Note 14 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

Timestamp Timestamp DMA Timestampd (32-bd)
Data Chawmel ———
Trigger Out ADC Resultl (22-bit)
Timestamp1 (32-bil)
ADC Result1 (22-bit)
Trgoer In
Timestampt? (32-bil)
ADC Chamel ADC DMA
Result Channel
ADC Requll? (32-bit)
Memory
Tumestamp DMA ADC DMA
Trigger Input o | TCPWMID) 32-bit Counter O overflow [USED] Trigger Input o | DMA Dataire 0 Channed 0 tr_ouwt [USED]
Trigges Dutput & | DMA DataWire O Channel 1 tr_in [USED] Trigger Cutput <unassigned
Channel Priority 3 Channel Prictity 3
Mumiber ef Descrigters 1 Huenbr of Descriptors 1
Preeenptable Preemgtakle
Bufferable Bulterable
Sebect the descriptor Descriptor 0 Select the descriptor Descriptor
Trigge: eutput Trigger om every element transler completsan Tragger eutput Tragger en descriptor completion
Interrupt type Trigger on descrgtor completion Interrupt type Trigger on descriptor completion
Enable Chaming Enable Chaining
Channel state on completion Enable Channel state on completion Enable
Trigges inpust type One tranafer per trigger Trigger input Eype Cine transler per trigger
Trgger desctrateon and retnggenng | Retigger nmedistely (pulse ingger) Trigger dea and setrsggenng Fetngges imemechately |pulte tigger)
Data transfer width Word 1o Wiord (fill 32 bat) Data transfer width Wieed to Word (Full 32 bit)
Number of data elements to transfer |32 MNumbser of dats elements to tranafer | 32
Sousce incremnent every cyce by] Source ncrement every cycle by
Destination increment every cycle by |2 Destination increment every cyche by |2
CRC CRC
Number of X-lcops to execute 1 HNumnbser of X-k =3 ecute
Souce ingrement every cycle by] 5o r vele by
Destination increment every cycle by |0 Destinati nt every cycle by 0

Figure 8 Example of transferring to noncontiguous destination addresses

The transfer can be accomplished by using two DMA channels with the time stamp channel triggering the ADC
channel. In this case, the X loop settings will use a destination increment of 2. This will accomplish placing
every result in the right interleaved location in the array. The same setting is used for both DMA channels.

6.3 N-to-1 transfer

This uses only an X loop transfer, but the source increments while the destination is constant, for example,
when there is a waveform data stream in memory and it needs to be streamed to a DAC over SPI. Such an
implementation will simply have non-zero increment for the source and a zero-increment value for the
destination. The source can also be incremented by numbers greater than 1 for cases like the ones discussed in
1-to-N transfer.

6.4 N-to-N transfer

This is a use case for X loop when both source and destination addresses are incrementing such as a memory-
to-memory transfer between flash and RAM for copying the configuration data to register blocks, or copying of
a block of memory from the external to the internal memory.

Application Note 15 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

Memory Location Memory Location
Sample 1 (| Sample 1
DMA Channel
Sample 2 [Ly Sample 2
Sample 3 | » Sample 3
Sample 4 [~»f Sample 4
Sample 5 [SAf Sample 5

L .
Sample 6 Sieare—» TR_in TR out Na| Sample 6
Descriptor 0
Source Address
Destination Address
— —

Figure 9 N-to-N transferN-to-N with dissimilar increment

Typically, such large data transfers between memories are time-critical. In such cases, you should use DMAC for
better transfer speed.

Variations in this model are possible by using dissimilar source and destination increment values, such as
shown in Figure 10. Here, there is already mixed-in left and right channel audio data in the source memory
location.. They need to be separated into different buffers for audio processing. In this case, you can use two
descriptors in a single channel. The first descriptor will transfer the left channel to its destination register while
the second descriptor will transfer the right channel. However, each DMA descriptor will have source
increments of 2 and destination increments of 1.

Audio L [0]
/ Audio L [1]

Audio L [0] Audio L [2]
Audio R [0]
Audio L [1]
Audio R [1] Audio R [0]
Audio L [2] \ Audio R [1]
Audio R [2] Audio R [2]

Figure 10 N-to-N with dissimilar increment

6.5 N-to-NxM

N-to-NxM is a case for using X and Y loops such as a structure that is getting transferred to an array of
structures. Assume that there is a data structure coming over as a USB packet in every frame. This 60-byte long
structure needs to be buffered into an array in the memory for further processing later as shown in Figure 11.

Application Note 16 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

6 Types of transfers

The configuration of X and Y loops for this transfer is shown in Figure 12. Note that the source and destination
are incremented in the X loop. This is the phase when the structure is being moved. Each X loop is used to move
individual instances of the structure from USB to the buffer. After each X loop, the source address is reset back
to the start of the source USB address because the Y source increment is zero. However, the Y loop destination
increment is 60 (the size of the structure); this makes the next instance of the structure to get written as the next
array element in the destination.

The scenario shown in Figure 10 can also be implemented by using a N-to-NxM transfer with two X loops. The
first time the X loop runs, it will transfer Audio L data from the source to the destination; the second time, it will
transfer the Audio R data. The X loop increments will be two bytes on the source and one byte on the
destination. However, the Y loop source increment will be 1. This is to ensure that after the first X loop, the next
X loop starts at a ‘1’ offset to get the R channel. The Y destination increment will be the distance between the
Audio L and Audio R addresses.

USB > Structure A[0]
> Structure A[1]
Structure A R N
(60 bytes) > DMA Channel > Structure A[2]
> Structure A[3]
> Structure A[4]
Figure 11 N-to-NxM transferConfiguration for an N-to-NxM transfer
'1’\ Trigger Input e | Universal Serial Bus (USB) 0 dma_req[0] [USED] -
'?' Trigger input type One X loop transfer per trigger v
Descriptor X loop settings
|7 Number of data elements to transfer |60
* Source increment every cycle by 1
’ Destination increment every cycle by | 1
(7) cre
Descriptor Y loop settings
'3' Number of X-loops to execute 5
I ’ Source increment every cycle by 0
' Destination increment every cycle by |60
Figure 12 Configuration for an N-to-NxM transfer
Application Note 17 002-28753 Rev. *C

2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

7 Chaining descriptors

7 Chaining descriptors

DMA blocks support descriptor chaining, which is useful if different types of transfers are to be done in a
sequence. Each descriptor has the pointer to the next descriptor it must chain to, similar to a linked list. There
is no limit on the number of descriptors you can chain. One of the greatest advantages of chaining is that each
descriptor can have a different configuration including different source/destination addresses, trigger settings,
interrupt settings, transfer modes, loops settings, and data widths. This allows the same DMA channel to
implement multiple transfers of varying characteristics.

A good use case for descriptor chaining is double buffering as shown in Figure 13. The input data comes in the
form of 8-byte blocks in the SCB FIFO, which needs to be moved to Buffer 0 or 1 for double buffering. The
buffers are 256 bytes each and therefore can accommodate 32 FIFOs worth of data before overflowing. A single
DMA channel is used for the transfer, with two descriptors. Both descriptors are set up for a 2D transfer with the
FIFO as the source. The X loop will cycle through the FIFO and therefore needs both source and destination
increments. The Y loop handles the moving of 32 FIFOs. Descriptor 0 is set to chain to Descriptor 1 and vice
versa. Descriptor 0 is configured to transfer to Buffer 0 and Descriptor 1 to Buffer 1.

Once Descriptor 0 is completed, the control automatically transfers to Descriptor 1 due to chaining. This will
ensure continued transfer and double buffering. Each descriptor is also configured to interrupt the CPU at its
transfer completion. This will inform the CPU that one buffer is available for processing.

Application Note 18 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

7 Chaining descriptors

Buffer @
DMA Channel (256
bytes)
Descriptor 0 (USB
/7 toBuffer0)
i’
! -
,.’ Interrupt for each buffer completion
SCB FIFO | ; Y cpu
(8 bytes) " !
i h 4
]
1
]
, _ - Buffer 1
! Descriptor 1 (USB B (256
! to Buffer 1) bytes)
1
|
.l
\ ;
1 ’
\\‘-),‘
Select the descriptor Descriptor_0 Select the descriptor Descriptor_1
tor tor
Trigger output Trigger on descriptor completion Trigger output Trigger on descriptor completion
Interrupt type Trigger on descriptor completion Interrupt type Trigger on descriptor completion
Enable Chaining v Enable Chaining v
Chain to descriptor 1 Chain to descriptor 0
Channel state on completion Enable Channel state on completion Enable
Trigger input type One X loop transfer per trigger Trigger input type One X loop transfer per trigger
Trigger deactivation and retriggering | Retrigger immediately (pulse trigger) Trigger deactivation and retriggering | Retrigger immediately (pulse trigger)
Data transfer width Word to Halfword Data transfer width Word to Byte
tor X loop settings tor X loop settings
Number of data elements to transfer |8 Number of data elements to transfer |8
Source increment every cycle by 1 Source increment every cycle by 1
Destination increment every cycle by |1 Destination increment every cycle by |1
CRC CRC
tor Y loop settings tor Y loop settings
Number of X-loops to execute 32 Number of X-loops to execute 32
Source increment every cycle by 0 Source increment every cycle by 0
Destination increment every cycle by |8 Destination increment every cycle by |8
Figure 13 Double-buffering using descriptor chaining
Application Note 19 002-28753 Rev. *C

2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

8 Chaining DMA channels

8 Chaining DMA channels

In addition to chaining of descriptors in a single DMA channel, there are cases where it is useful to chain two
DMA channels. To do this, one DMA channel’s trigger output is routed to the next DMA channel’s trigger input.
Depending on the specific trigger multiplexer routing in a given PSoC™ 6 MCU device, only certain DMA channels
will have the ability to chain. See the “Trigger Multiplexer” chapter in the Technical Reference Manual to
understand the chaining restrictions of DMA channels.

A good example where DMA channels are chained is shown in Figure 14. Here, the ADC input is a large analog
mux. Because the number of input channels is large, it is not supported by the inbuilt multiplexer in the ADC
hardware. This analog multiplexer must be implemented using an Analog Mux resource that must have routing
registers modified to connect each channel. When an ADC conversion is completed, the ADC DMA channel is
triggered. This moves data from the ADC result register to the memory buffer. After completion of the transfer,
the ADC DMA channel triggers the MUX DMA channel. The source for this channel is a set of memory locations
with preset routing values for the routing registers. Whenever this DMA channel is triggered, it transfers the new
routing values to the Analog Mux registers, which effectively switch the channel.

Memory Buffer
(SRAM)
End of Conversion
Sample 1
Trigger In
> Y ‘ Sample 2
ADC DMA
L SAR ADC

S Channel 1 Sample 3
g Trigger Out Sample 4
Sample N

vTrigger In Array

MUX DMA (S
[“hannel |

Channel Route1

Route2

Route3

Route4
Sample N

Figure 14 DMA channel chaining example
Application Note 20 002-28753 Rev. *C

2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

9 Differences between DMA (DW) and DMAC

9 Differences between DMA (DW) and DMAC

The main difference between DMA (DW) and DMAC relates to their usage. DMA (DW) is meant as a small data
size, transactional DMA transfer. It would typically be used for transferring bytes between peripherals like from
ADC to RAM. Using DMA (DW) for large transaction is expensive on a system due to its relatively low
performance.

DMAC is substantially more efficient than DMA (DW) in transferring large blocks of data and should be used
whenever there is a need to transfer large amounts of data in memory. DMAC focuses on achieving high
memory bandwidth for a small number of channels.

There are some architectural differences in DMAC that facilitate a higher performance.

DMAC has a dedicated channel logic with dedicated channel state register for each channel. This helps retain
the channel state through arbitration or preemption. Therefore, DMAC will incur fewer cycles while arbitrating
between channels. This is particularly beneficial when working with multiple channels transferring large blocks
of data.

DMAC has a special transfer mode called the “memory transfer mode”, which is specifically designed for fast
memory-to-memory transfers. The mode is a specialized 1D transfer, where the source and destination
increments are fixed to 1.

DMAC also has a 12-byte FIFO which is used for prefetch. The prefetch works by prefetching the source data as
soon as the channel is enabled. When the channel is triggered, the prefetched data is simply transmitted to the
destination. This shortens the initial delay of data transmission. However, this feature should be used with care
to ensure that data synchronization is not violated. If the source data changes between transfers, using the
prefetch buffer is not recommended because it can lead to data synchronization issues.

Application Note 21 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

10 DMA transfer performance

The DMA block runs on the slow clock of PSoC™ 6 MCU. This section will analyze and detail how to determine
the performance of a DMA transfer based on its settings. All data is based on slow clock cycles. The performance
calculation numbers for all interactions over the bus presume that there is no delay due to bus arbitration. If
there is such a delay, that should be added to the calculation.

10.1 Elements of a transfer

A transfer can be split into multiple operations as shown in Table 1 with the corresponding cycles needed for
their execution. Each transaction is initiated by a trigger, which goes through trigger synchronization circuit and
takes up two cycles. These two cycles will be consumed whenever there is a trigger event being used. Loading
the channel configuration takes three cycles. The loading of descriptors and the next pointer is done over the
bus and therefore depends on the arbitration on the bus. Similarly, data transfers are also over the bus and
therefore dependent on the arbitration happening on the bus. After the descriptor and next pointer are loaded,
the DMA engine starts data transfer from the source address to the destination address. The data transfer
consumes three cycles per data element.

Table1 Operations in a transfer
Operation Cycles (Slow Clock Cycles)
Trigger Synchronization and Priority decoding 3
Start state machine and load channel config 3
Load descriptors 4 for single transfer
5 for 1D transfer
6 for 2D transfer
Load next pointer 1
Moving data from source to destination 3

A simple single transfer will take 14 cycles. However, with the next trigger, it still must go through all 14 cycles to
set up the transfer. Therefore, single transfers are not very efficient for moving multiple elements of data.

Application Note 22 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

Slow
Clock
Trigger J |
Operations /' Load channel and \} Move data
tart state machine
Trigger sync and priority decoding <> Load next descriptor pointer
Load channel and start state machine <:> Move data from source to destination
Load Descriptor
Figure 15 Timing diagram for a single transfer on the DMATiming diagram for N-byte transfer in

1D and 2D modes

1D and 2D transfers are more efficient in this regard even though they incur extra cycles to fetch additional
words in the descriptor. However, these are incurred only on the first transaction; every subsequent transaction
will only consume three cycles. This is shown in Figure 16. Note an additional cycle is required to fetch the
descriptor in a 2D transfer, but 2D transfer supports more transfer sizes compared to 1D transfer. Therefore, for
larger data transfers, 2D transfer is more efficient.

Application Note 23 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

SIOW::::::::::::::::::::::g::::::::

Trigger

Operations
fora 1D
Transfer

><.oad Descriptor Data0 >< Ijata%l >< Eéata:? >—

Operations
fora 2D
Transfer

Data0 >< Data1 >< Data2 >~———-—-——-

>< Load Descripton

Trigger sync and priority decoding <> Load next descriptor pointer

Load channel and start state machine <:> Move data from source to destination

908

Load Descriptor

Figure 16 Timing diagram for N-byte transfer in 1D and 2D modes

To understand this better, compare the three transfer modes (Table 2) if transferring 1024 words of data. Single
transfer is configured to run 1024 times. 1D transfer has a limit of 256 words per X loop. So, it would run the
descriptor four times. 2D transfer will have an X loop of 256 words and a Y loop of 4 X loops.

2D transfers can move the largest amount of data at the highest throughput on a single trigger, while single
transfers are the least efficient, because they treat every transaction as a new transfer and go through all the
cycles of setting up the channel. Therefore, single transfers are only useful in making single element transfers
on a trigger. Using single transfers to implement bulk transfers is not recommended.

Table 2 Comparing single, 1D, and 2D transfers

(Number of cycles) Single transfer (one | 1D transfer (entire 2D transfer(entire
transfer per trigger) |descriptor pertrigger) |descriptor per trigger)

First element transferred 14 15 16

(1 time) in number of slow
clock cycles

First element of each Xloop |14 15 3

(3 times) in number of slow
clock cycles

(table continues...)

Application Note 24 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

Table 2 (continued) Comparing single, 1D, and 2D transfers

(Number of cycles) Single transfer (one | 1D transfer (entire 2D transfer(entire
transfer per trigger) |descriptor per trigger) descriptor per trigger)

All other transfers in number |14 3 3
of slow clock cycles

(1020 times)
Total 14336 3120 3085
(1024 bytes) in number of
slow clock cycles
Throughput (MB/s) 14.28 65.64 66.68
Slow clock=50 MHz
Transfer width=32-bit

10.2 DMA (DW) and DMAC: trigger schemes and performance

Note that whenever a trigger is to be processed, the DMA (DW) incurs the entire 14-16 cycles (depending on the
transfer mode). This is because every time the DMA hardware block is in a state where it needs to wait for a
trigger, it may switch channels to service other pending channels. So, when the next trigger is initiated, DMA
(DW) goes through the additional cycles needed to start the transfer. Thus, performance is degraded where
triggers are processed more often. Table 3 compares trigger schemes in a 2D transfer for a DMA (DW) that is set
up to transfer 1024 bytes.

Table 3 Performance of trigger schemes in DMA (DW)
(Number of cycles) 2D transfer(one transfer | 2D transfer(one X loop | 2D transfer(entire
per trigger) per trigger) descriptor per trigger)
First element transferred | 16 16 16
First elementof eachX |16 16 3
loop
All other transfers 16 3 3
Total (slow clock cycles) |16384 3124 3085
(1024 bytes)

On DMAC, the DMA transfer engine logic is replicated per channel with channel-level memory to hold the state
while switching channels. For every trigger, the DMAC does not have to fetch all channel and descriptor
information. The only extra cycles incurred are for trigger sync and priority decoding. This means that DMAC
will perform better in a transfer that is triggered multiple times. Figure 17 shows this comparison of
performance between DMAC and DMA (DW) using a timing diagram.

Application Note 25 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

DMA .
(DW) Load Descripto <> Data1
DMAC Data1> . Data?2 >—

. Trigger sync and priority decoding <> Load next descriptor pointer
<:> Load channel and start state machine <:> Move data from source to destination
. Load Descriptor

Figure 17 Performance comparison of DW and DMAC for a triggered mode of transfer

Also note that, when a transaction is waiting for a trigger, it could get preempted by another channel. This can
lead to additional delays waiting for the preempting channel to relieve the DMA hardware block. This is
especially an issue when dealing with a system with multiple DMA channels which have competing priorities.

From this performance comparison it is clear that

1. Transfers are more efficient when transactions are done in bulk without waiting for triggers. Triggering
requirement adds delay

2, Using 2D transfers improves performance when the entire transfer is completed in a single trigger

3. Waiting for a trigger can seriously drop performance due to the possibility of arbitration with other
channels in the DMA hardware block

4, If there is a need to use a trigger for individual transfer elements, using the DMAC will give you a better
performance than the DMA (DW)

10.3 Preemption and its impact on performance

The choice of making a DMA (DW) channel as preemptable affects its performance. This is because every time a
channel is preempted, the following happen:

Application Note 26 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

10 DMA transfer performance

+ Thechannelisin pending state for as long as a higher-priority channel is running

+ Onresumption, the channel descriptor must be fetched again, costing additional cycles for every resume.
So, if there are large number of higher-priority channels, making a low-priority channel preemptible can
have adverse effects on its throughput

During preemption, the throughput of a low-priority DMA (DW) channel is affected by the delay caused by the
high-priority channel and the extra cycles incurred for each time it was preempted. If the low-priority channel
was transferring large blocks of data, this can incur multiple instances of preemption and the effect of the extra
cycles incurred start hurting the throughput.

This impact is limited for DMAC channels because they do not need to go through the entire descriptor fetch
cycle when resuming after a preemption. This means that the throughput of a low-priority DMAC channel is
only affected by the delay caused by the high-priority channel. When transferring large blocks of data through a
low-priority preemptable channel, it is better to use DMAC for a better throughput.

The performance comparison in a preemption scenario is shown in Figure 18.

Stow Clock [T [T LU U U UL UL U U U A UL U T o a ey it a gt g gt iR

High-Priority Trigger HE il
Low-Priority Trigger I
High-Priority Channel High-priority channel Highsptiority ehannel
Low-Priority DMA (DW) i Vama\ 2 reempted ; an IswenY (o reempled : (T Datad
(getting preempted) .<7/ @a‘ 9 .L7> \Ei)QTZ -<,J \/<1J
Low-Priority DMAC & Preempted
(getting preempted) =
Trigger sync and priority decoding <> Load next descriptor pointer

Load channel and start state machine <:> Move data from source to destination

Load Descriptor

j O ‘ L

Figure 18 Comparing performance of DMAC and DMA(DW) in a preemption scenario

On the other hand, if there is a low-priority channel that is transferring a large amount of data, not making it
preemptable can starve other high-priority channels for too long. Only channels whose data transfers are not
time-critical can be made preemptable.

Sometimes, you can also distribute channels across multiple DW blocks to avoid conditions of preemption and
deal with contention at the bus arbitration level.

10.4 Bus arbitration and its impact

There are multiple bus masters in the PSoC™ 6 MCU device. A DMA channel may have the highest priority in its
DMA hardware block, but that does not guarantee its performance on the bus when arbitrating with other bus
masters. Sometimes, even a DMA channel’s descriptor fetch process can be delayed due to bus arbitration by
other masters. This issue can be minimized by controlling the arbitration scheme configured in
PROT_SMPU_MSx_CTL[PRIO]. For more details, see the Registers TRM.

Application Note 27 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

11 Summary

11 Summary

PSoC™ 6 MCU family devices offer two types of DMA blocks: DMA (DW) and DMAC. The DMA (DW) offers a lot of
DMA channels meant for small data size transfers, typically between peripherals and memory. The DMAC is a
high-performance DMA meant for large data transfers, typically between memory locations, with maximum
throughput.

Application Note 28 002-28753 Rev. *C
2023-08-17

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

References

References

For a comprehensive list of PSoC™ 3, PSoC™ 4, and PSoC™ 5LP resources, see KBA86521 in the Infineon

community.

Application Notes

[1] AN210781 - Getting Started vgith PSoC™ 6 MCU with Bluetooth” Low Energy Connectivity: Describes
PSoC™ 6 MCU with Bluetooth LE Connectivity devices and how to build your first PSoC™ Creator project

[2] AN215656 - PSoC™ 6 MCU: Dual-CPU System Design: Describes the dual-CPU architecture in PSoC™ 6
MCU, and shows how to build a simple dual-CPU design

[31 AN219434 - Importing PSoC™ Creator Code into an IDE for a PSoC™ 6 MCU Project: Describes how to
import the code generated by PSoC™ Creator into your preferred IDE

Code Examples

[1] CE218553 - PWM Triggering a DMA Channel

[2] CE218552 - UART to Memory Buffer Using DMA

[3] CE225786 - PSoC™ 6 MCU USB Audio Recorder

[4] CE222221 - PSoC 6 MCU Voice Recorder

[5] CE220762 - PSoC 6 MCU PDM to 12S Example

Device Documentation

[1] PSoC 6 MCU: PSoC 63 with BLE Datasheet

[2] PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

Development Kit Documentation

[1] CY8CKIT -062- BLE PSoC 6 BLE Pioneer Kit

Tool Documentation

[1] PSoC™Creator: Look in the Downloads tab for Quick Start and User Guides

[2] Peripheral Driver Library (PDL): Installed by PSoC™ Creator 4.2. Look in the <PDL install folder>/doc for
the User Guide and the API Reference

[3] ModusToolbox™ Software: Look in the Quick Panel under the heading Documentation. Alternately look in
the install directory for ModusToolbox™ <ModusToolbox install folder>/doc

[4] WICED SDK with PSoC™ 6 Support: Installed with ModusToolbox™ Software

Application Note 29 002-28753 Rev. *C
2023-08-17

https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-Design-with-PSoC-3-PSoC-4-and-PSoC-5LP-KBA86521/ta-p/248386
https://www.infineon.com/dgdl/Infineon-AN210781_Getting_Started_with_PSoC_6_MCU_with_Bluetooth_Low_Energy_(BLE)_Connectivity_on_PSoC_Creator-ApplicationNotes-v05_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d311f536528&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink&redirId=AN_VL554
https://www.infineon.com/dgdl/Infineon-AN215656_PSoC_6_MCU_Dual-CPU_System_Design-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d3180c4655f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink&redirId=AN_VL660
https://www.infineon.com/dgdl/Infineon-AN219434_Importing_PSoC_Creator_Code_into_an_IDE_for_a_PSoC_6_Project-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d31a8f86577&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-an_vanitylink&redirId=AN_VL690
https://www.infineon.com/dgdl/Infineon-CE218553-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e6daf3d027b
https://www.infineon.com/dgdl/Infineon-CE218552_(PSoC_Creator)-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e6d0f0a0214
https://www.infineon.com/dgdl/Infineon-CE225786_USB_AudioRecorder-Code%20Example-v01_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e76d30107c5
https://www.infineon.com/dgdl/Infineon-CE222221-Code%20Example-v04_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e725d090537
https://www.infineon.com/dgdl/Infineon-CE220762-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e710a6c0473
https://www.infineon.com/dgdl/Infineon-PSoC_6_MCU_PSoC_63_with_BLE_Datasheet_Programmable_System-on-Chip_(PSoC)-DataSheet-v16_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ee4efe46c37&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=VL4079
https://www.infineon.com/dgdl/Infineon-PSoC_6_MCU_PSoC_63_with_BLE_Architecture_Technical_Reference_Manual-AdditionalTechnicalInformation-v11_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f946fea01ca&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=VL4076
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/psoc-6-peripheral-driver-library-pdl-for-psoc-creator/
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

o~ _.
PSoC™ 6 MCU usage of Direct Memory Access (DMA) |n f| neon

Revision history

Revision history

Docqment Date of release Description of changes

version

** 2020-05-29 Initial release

*A 2021-02-23 Updated in Infineon template

*B 2022-07-21 Template update

*C 2023-08-17 Updated link references

Application Note 30 002-28753 Rev. *C

2023-08-17

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-17
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-1jx1648299443473

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Architecture
	2.1 Transfer modes

	3 DMA design
	3.1 Step 1: Choose the DMA channel
	3.2 Step 2: Configure triggers
	3.3 Step 3: Set up the DMA channel
	3.4 Step 4: Set up the DMA descriptor
	3.5 Step 5: Write the user code

	4 Priorities and preemption
	5 Data transfer widths
	6 Types of transfers
	6.1 1-to-1 transfer
	6.2 1-to-N transfer
	6.2.1 Noncontiguous source/destination increments

	6.3 N-to-1 transfer
	6.4 N-to-N transfer
	6.5 N-to-NxM

	7 Chaining descriptors
	8 Chaining DMA channels
	9 Differences between DMA (DW) and DMAC
	10 DMA transfer performance
	10.1 Elements of a transfer
	10.2 DMA (DW) and DMAC: trigger schemes and performance
	10.3 Preemption and its impact on performance
	10.4 Bus arbitration and its impact

	11 Summary
	References
	Revision history
	Disclaimer

