
PSoC™ 6 MCU interrupts

About this document
Scope and purpose
This application note explains the interrupt architecture in PSoC™ 6 MCU and its configuration using PSoC™

Creator, ModusToolbox™, and the PSoC™ 6 Peripheral Driver Library (PDL) APIs. This document serves as a
guide in developing projects that use interrupts. Advanced interrupt concepts such as interrupt latency, code
optimization, and debug techniques are also explained.
To access an ever-growing list of hundreds of PSoC™ code examples, please visit our code examples web page.
You can also explore the Infineon video training library here.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3
1.1 How to use this document . 3

2 PSoC™ 6 MCU interrupt architecture . 4
2.1 CY8C61x6/7, CY8C62x6/7, and CY8C63xx interrupt architecture . 5
2.2 CY8C62x4, CY8C62x5, and CY8C62x8/A interrupt architecture . 6
2.3 Types of interrupts . 6
2.3.1 Level and pulse interrupts . 7
2.4 Interrupts and Power modes . 7
2.5 CPU sleep and wakeup . 8

3 Interrupt configuration .10
3.1 Configuring interrupts using ModusToolbox™ .10
3.1.1 Using HAL . 10
3.1.2 Using Device Configurator and PDL .11
3.2 Configuring interrupts using PDL . 11
3.3 Configuring interrupts using PSoC™ Creator . 14
3.3.1 Using the schematic (TopDesign) . 14
3.3.1.1 Deep sleep capable . 16
3.3.1.2 Interrupt type .16
3.3.2 Using the design-wide resource window (CyDWR) . 16
3.3.3 Using PSoC™ Creator generated code and PDL . 17

4 Debugging tips . 19

5 Advanced interrupt topics . 20
5.1 Exceptions . 20
5.2 Interrupt latency . 21
5.3 Nested interrupts . 22
5.4 Code optimization . 22

AN217666

Application Note Please read the sections "Important notice" and "Warnings" at the end of this document 002-17666 Rev. *F
www.infineon.com 2022-07-21

https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-cdc-echo?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/training
https://www.infineon.com

References .24

A Appendix A. Interrupt sources in PSoC™ 6 MCU . 26

Revision history .29

Disclaimer . 30

PSoC™ 6 MCU interrupts

Table of contents

Application Note 2 002-17666 Rev. *F
2022-07-21

1 Introduction
An interrupt is a hardware signal or an event that transfers the execution of a program from the normal flow
to an alternate set of instructions. An interrupt frees the CPU from continuously polling for a specific event,
and only notifies and engages the CPU when the event occurs. The alternate program flow is referred to as an
interrupt service routine or ISR. An ISR is also called an interrupt handler. After the interrupt is serviced, the
program flow is reverted back to the flow that was interrupted. In system-on-chip (SoC) architectures such as
PSoC™, interrupts are frequently used to communicate the status of on-chip peripherals to the CPU.
While interrupts refer to those events generated by peripherals external to the CPU such as timers, serial
communication blocks, and port pin signals, an exception is an event generated by the CPU such as memory
access faults and internal system timer events. PSoC™ 6 MCU supports interrupts and exceptions on both its
Arm® Cortex®-M4 (CM4) and Cortex®-M0+ (CM0+) CPUs.

1.1 How to use this document
This document assumes that you are familiar with the PSoC™ 6 MCU architecture, and application development
for PSoC™ devices using the Infineon PSoC™ Creator integrated design environment (IDE) and Peripheral Driver
Library (PDL). For an introduction to PSoC™ 6 MCU, see AN210781 - Getting Started with PSoC™ 6 MCU with
Bluetooth® Low Energy (BLE) Connectivity. If you are new to PSoC™ Creator, ModusToolbox™, or PDL, see the
References section for links to some of the available resources.
Note: Use PSoC™ Creator version 4.2 or higher for PSoC 6 MCU-based designs.

This document begins with a brief explanation of the PSoC™ 6 MCU interrupt architecture, with more details
available in the PSoC™ 6 MCU: PSoC™ 63 with BLE Architecture Technical Reference Manual (TRM). To skip
to an overview of writing firmware that uses interrupts, see Configuring interrupts using PDL or Configuring
interrupts using PSoC™ Creator or Configuring interrupts using ModusToolbox™ sections respectively. Code
examples that show how to use interrupts for various peripherals are listed in the References section.
The Debugging tips section provides a few tips on finding and resolving common issues encountered while
using interrupts. More complex topics are covered in Advanced interrupt topics.

PSoC™ 6 MCU interrupts

1 Introduction

Application Note 3 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/an210781
http://www.cypress.com/an210781
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/trm218176

2 PSoC™ 6 MCU interrupt architecture
PSoC™ 6 MCU contains two CPUs: CM4 and CM0+. Interrupt signals to each CPU are handled by the respective
Nested Vectored Interrupt Controller (NVIC). The NVIC enables/disables any interrupt based on the user
configuration. It also resolves the interrupt priority when multiple requests occur at the same time and
supports nested interrupts to allow a higher-priority interrupt to be serviced before a lower-priority ISR.
PSoC™ 6 MCU also supports a wakeup interrupt controller (WIC) and multiple synchronization blocks. The WIC
block allows the CPU to wake up from sleep or deep sleep low-power modes using interrupts. The WIC block
remains active while the NVIC, processor core, and other device peripherals shut down. When an interrupt
triggers, the WIC activates the power management system, which restores the NVIC and the processor core
along with other peripherals. Each CPU has independent WIC settings.
Natively, CM4 supports up to 240 interrupts, while CM0+ supports 32 interrupts. The number of CPU interrupts
available to the user varies depending on the device, see Table 1.
CM4 supports configurable interrupt priority from 0 to 7. CM0+ supports priority from 0 to 3.
There are up to 175 interrupt sources (also referred to as system interrupts) in a PSoC™ 6 MCU device. System
interrupts can trigger either or both CPUs.
The WIC block can wake up a CPU from deep sleep power mode. Table 2 lists the interrupt sources that can
wake a CPU from deep sleep.
One or more system interrupts can be selected as the source for the CPU non-maskable interrupt (NMI), see
Table 1.

Table 1 Interrupt features in PSoC™ 6 MCU

Parameter CY8C61x6/7,
CY8C62x6/7,
CY8C63xx

CY8C62x8/A CY8C62x5 CY8C62x4

Number of system
interrupts (“N”)

147 168 174 175

Number of deep sleep-
capable system interrupt
sources (“W”)

41 39 39 45

Number of CM0+ interrupt
vectors available

32
(8 deep sleep-
capable)

8 hardware (deep
sleep-capable)
8 software triggered

8 hardware
(Deep sleep-capable)
8 software triggered

8 hardware
(Deep sleep-capable)
8 software triggered

Number of system
interrupts that can be
connected to a CM0+
multiplexer/vector

1 All (168) All (174) All (175)

Number of CM4 interrupt
vectors available

240 240 240 240

Number of system
interrupts that can be
connected to a CM4
multiplexer/vector

1 (1:1
mapping)

1 (1:1 mapping) 1 (1:1 mapping) 1 (1:1 mapping)

Number of system
interrupts that can be
connected to CM0+/CM4
NMI interrupt

1 4 4 4

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 4 002-17666 Rev. *F
2022-07-21

2.1 CY8C61x6/7, CY8C62x6/7, and CY8C63xx interrupt architecture

CM0+
Processor coreNVIC

CM0+ processor

IRQ 1

IRQ 7

Interrupt sources

(Peripherals like
GPIO, TCPWM,

etc..)

INT Source 1
INT Source 2

INT Source 40

INT Source 0 IRQ 0

CM4
Processor coreNVIC

CM4 processor

IRQ 1

IRQ 40

IRQ 146

IRQ 0

INT Source 146

CM0+ Wake Up
Interrupt Controller

240:1 multiplexer
(32 nos.)

(some IRQs are
reserved by software)

Priority 0-3

Priority 0-7

8

41
CM4 Wake Up

Interrupt Controller

Power Management
System

IRQ 0-7

IRQ 0-40

Deep Sleep capable
vectors

Deep Sleep capable
interrupt sources

INT Source 41

0

1

7
147

147

147

147

147

147

147

IRQ 31

IRQ 3030

31

(priority 0 reserved
by software)

Figure 1 CY8C61x6/7, CY8C62x6/7, and CY8C63xx interrupt architecture

CY8C61x6/7, CY8C62x6/7, and CY8C63xx devices support up to 147 system and peripherals interrupt sources.
For CM4, the 147 interrupt sources are directly mapped to its first 147 IRQ lines, i.e., INT source n is connected to
IRQ n, where ‘n’ = 0 to 146. For CM0+, a 240:1 multiplexer is present in front of each of 32 IRQs and redirects any
of the 147 interrupts to one of CM0+ IRQ lines. This enables any interrupt source to trigger any CM0+ IRQ.

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 5 002-17666 Rev. *F
2022-07-21

2.2 CY8C62x4, CY8C62x5, and CY8C62x8/A interrupt architecture

Figure 2 CY8C62x4, CY8C62x5, and CY8C62x8/A interrupt architecture

In CY8C62x4, CY8C62x5, and CY8C62x8/A devices, the ‘N’ interrupt sources are directly mapped to the first ‘N’
IRQ lines of the CM4. The CM0+ supports 16 interrupts, of which the first 8 interrupts (IRQ 0 – 7) can be triggered
by a peripheral interrupt source; the other 8 are software-triggered interrupts. One or more system interrupts
(upto ‘N’) can be assigned as the interrupt source for each of the IRQ 0 - 7 lines. This allows multiple interrupt
sources to be connected to the same CPU interrupt simultaneously.
The WIC block supports up to ‘W’ interrupts that can wake up a CPU from deep sleep power mode; see
“Number of deep sleep-capable system interrupt sources” in Table 1.
Table 2 lists the interrupt sources that can wake a CPU from deep sleep.

Note: When using Infineon software (PDL or PSoC™ Creator), certain software restrictions apply on the
number of CPU interrupts available to user and interrupt priorities. See Configuring interrupts using
PDL for details.

2.3 Types of interrupts
There are two kinds of interrupt sources in PSoC™ 6 MCU:
• Fixed-function interrupt sources

These are predefined interrupt sources from on-chip peripherals such as GPIO, TCPWM, SCB, and BLE
Radio. Interrupts from fixed-function sources are generated from configurable events; for example, an
interrupt on a rising for example signal on an input pin (GPIO), or an interrupt on a counter overflow
(TCPWM).

• Universal Digital Block (UDB) interrupt sources
UDBs consist of programmable logic devices (PLDs), datapaths, and flexible routing, which can be used
to synthesize different digital functions such as Timer, PWM, UART, SPI and many more. In contrast to
fixed-function interrupt sources, any digital signal generated in a UDB can trigger an interrupt. The signals
are routed to the interrupt controller through the routing fabric known as Digital System Interconnect
(DSI). UDB sources are available only in CY8C61x6/7, CY8C62x6/7, and CY8C63xx devices

For a complete list of interrupt sources in PSoC™ 6 MCU, see Appendix A.

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 6 002-17666 Rev. *F
2022-07-21

2.3.1 Level and pulse interrupts
Both CM0+ and CM4 NVICs support level and pulse signals on IRQ lines. The classification of an interrupt
as level or pulse is based on the interrupt source. A fixed-function interrupt is treated as level-sensitive. For
the DSI sources, which include the UDB, the interrupt can be configured as either rising-edge-triggered or
level-triggered. This configuration is available only in PSoC™ Creator. For more details on selecting the interrupt
type, refer to the PSoC™ Creator Component datasheet or PDL API reference for the interrupt source.
For level interrupts, if the interrupt signal is still HIGH after completing the ISR, the interrupt is still pending and
the ISR is executed again. Figure 3 illustrates the timing diagram for level-triggered interrupts, where the ISR is
executed if the interrupt signal is HIGH.
For pulse interrupts, while the ISR is being executed by the CPU, one or more rising edges of the interrupt signal
are logged as a single pending request. The pending interrupt is serviced again after the current ISR execution is
complete. Figure 4 illustrates the timing diagram for pulse interrupts.

Figure 3 Level interrupts

Figure 4 Pulse interrupts

Note: The GPIO interrupt logic has additional circuitry to support interrupts on the rising edge, falling edge,
and both edges. See the I/O System chapter in PSoC™ 6 MCU Architecture TRM for more information.

2.4 Interrupts and Power modes
PSoC™ 6 MCU has the following system Power modes: Low-Power (LP), Ultra-Low-Power (ULP), deep sleep, and
hibernate. The Arm® CPU Power modes are active, sleep, and deep sleep; these are available in system LP and
ULP Power modes.
In CPU active modes, CPUs execute code; all memory blocks and peripherals are available.
In all other Power modes (sleep, deep sleep, hibernate), CPU clocks are turned off and code execution is halted.
All peripherals available in active modes are also available in the sleep, deep sleep, and hibernate modes. Any
peripheral interrupt, masked to the CPU, wakes up the CPU to Active mode.
Only a subset of peripherals operate in deep sleep mode. Interrupts from these peripherals cause a CPU to
wake up to active mode. Table 2 lists these peripherals. Each CPU has a Wakeup Interrupt Controller (WIC) to
wake up the CPU from its deep sleep mode. deep sleep wakeup functionality is supported only on the first 8
IRQs (0 to 7) on CM0+ and first ‘W’ IRQs on CM4, see Table 1.

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 7 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/trm218176

During hibernate mode, all peripherals and clocks are turned off and only certain sources like Low Power
Comparator, RTC, a dedicated WAKEUP pin, or an XRES event can wake up the device. The wakeup action is a
device reset instead of an interrupt to the CPU.
For more details on device Power modes CPU sleep and wakeup behavior due to interrupts, see AN219528 –
PSoC™ 6 MCU Low-Power Modes and Power Reduction Techniques or PSoC™ 6 MCU Architecture TRM.

Table 2 List of Deep Sleep Wakeup-Capable Interrupts

Interrupt Source Interrupt Source Number

CY8C63xx CY8C62x6/7CY
8C61x6/7

CY8C62x8/
ACY8C62x5

CY8C62x4

GPIO Port Interrupt 0–14 0–14 0–14 0–14

GPIO All Ports 15 15 15 15

GPIO Supply Detect Interrupt 16 16 16 16

Low Power Comparator Interrupt 17 17 17 17

Serial Communication Block Interrupt 18 18 18 18

Multi Counter Watchdog Timer 19, 20 19, 20 19, 20 19, 20

Backup Domain Interrupt 21 21 21 21

Other combined Interrupts for SRSS 22 22 22 22

Combined Continuous Time Block
(CTBm) Interrupt

23 23 – –

Bluetooth® Radio Interrupt 24 – – –

Inter Process Communication
Interrupt

25–40 25–40 23-38 23-38

SAR ADC Interrupt – – – 39, 40

Individual Continuous Time Block
(CTBm) Interrupt

– – – 41

PASS Timer interrupt – – – 42

PASS FIFO Interrupt – – – 43, 44

2.5 CPU sleep and wakeup
There are two instructions that can cause the CPU to enter its sleep modes: the “Wait-for-Interrupt” [__WFI()]
and “Wait-for-Event” [__WFE()]. When a WFI instruction is executed, the CPU enters sleep or deep sleep
(depending on the SLEEPDEEP bit of the SCR register) and wakes up on an interrupt request (with a higher
priority than the current priority level) or on debug requests. The WFE instruction is like WFI but wakes up
on the next interrupt or on events like Send Event (SEV instruction), external event, or debug signals. See
AN219528 for more details on sleep and wakeup instructions.
Normally, when an ISR is done executing, CPU execution returns to where it was before the ISR. PSoC™ 6 MCU
supports the “Sleep-on-Exit” feature where the CPU enters or returns to sleep or deep sleep (a state similar
to WFI) as soon as it completes ISR execution. As seen in Figure 5, when this feature is enabled, only one WFI
instruction is needed to enter a sleep mode; the CPU returns to sleep after each ISR instead of the execution
returning to main. The Sleep-on-Exit feature reduces the active cycles of the CPU and reduces the energy
consumed by the stacking (PUSH to stack) and unstacking (POP from stack) of processes between interrupts.
Nested interrupts are also supported when Sleep-on-Exit is enabled.

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 8 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/an219528
http://www.cypress.com/an219528
http://www.cypress.com/trm218176
http://www.cypress.com/an219528

The Sleep-on-Exit feature is enabled by setting SLEEPONEXIT bit of the SCR register. There is also a PDL
function available – Cy_SysPm_SleepOnExit; see Configuring interrupts using PDL for details.

Figure 5 Sleep-on-Exit function

PSoC™ 6 MCU interrupts

2 PSoC™ 6 MCU interrupt architecture

Application Note 9 002-17666 Rev. *F
2022-07-21

3 Interrupt configuration
This section lists the steps needed to set up interrupts on a PSoC™ 6 MCU device, without going into details of
the software used to do them. These steps are common to both CM0+ and CM4 unless specified otherwise, and
must be done for each CPU separately.
• Out of device reset, all interrupts are disabled, and interrupt priorities are set to zero
• Configure the priority level of the required IRQ in the NVIC
• Configure the interrupt path
• Choose which interrupt source is connected to the desired IRQ of the CPU. For CM0+, select the appropriate

peripheral interrupt to be connected to the CPU. For CM4, this is not configurable. Interrupt source n is
always connected to IRQn

• Configure the interrupt source (peripheral) and enable its interrupt
• Configure the vector table with the address of the ISR (vector). The vector table stores the entry addresses

for each exception handler; see Exception Vector Table in Interrupts chapter of PSoC™ 6 MCU Architecture
TRM.

• Optional: Clear pending interrupt states in the NVIC
• If enabling a previously disabled interrupt, it is a good practice to clear the pending state of the NVIC before

enabling the interrupt. This prevents any false trigger caused by previous interrupts that created a pending
state

• Enable the interrupt in the NVIC
• Enable global interrupts. Interrupt configuration is complete
An enabled interrupt is triggered when the hardware signal from the interrupt source is active and there is no
higher priority interrupt that is executing. When this happens, CPU execution jumps to the location in its vector
table that corresponds to the triggered interrupt. This location contains the address of the ISR associated with
that interrupt.
The ISR executes the tasks required to handle the interrupt. Typically, the first thing an ISR does is clearing the
interrupt source to avoid re-entering the ISR. When the ISR terminates, the CPU returns to the address it was
executing before it was interrupted. The following sections describe the software tools available for performing
the steps described.

3.1 Configuring interrupts using ModusToolbox™

ModusToolbox™ applications support both the PSoC™ 6 Hardware Abstraction Layer (HAL) and Peripheral Driver
Library (PDL) libraries.

3.1.1 Using HAL
The HAL gives an abstracted interface to configure and use various blocks on Infineon MCUs. There is no
separate block for interrupts in HAL. The interrupts for different blocks are configured using the HAL APIs
specific to those blocks.
For example, in the case of a GPIO Interrupt, interrupts arising from the GPIO block are configured using the
GPIO HAL APIs. The steps to configure the GPIO HAL block for this example include:
• Initializing the GPIO pin: The GPIO pin, direction, drive mode, and initial value are passed to the

cyhal_gpio_init HAL API function
• Registering the interrupt callback function: The callback function for the interrupt is registered with the

GPIO pin using cyhal_gpio_register_callback
• Configuring the interrupt: The interrupt settings such as the GPIO event and interrupt priority are

configured using cyhal_gpio_enable_event
• See the Interrupts on GPIO events code snippet in GPIO HAL API Reference Guide

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 10 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/trm218176
http://www.cypress.com/trm218176
http://www.cypress.com/modustoolbox
https://github.com/cypresssemiconductorco/psoc6hal
https://github.com/cypresssemiconductorco/psoc6pdl
https://github.com/cypresssemiconductorco/psoc6pdl
https://cypresssemiconductorco.github.io/psoc6hal/html/group__group__hal__gpio.html

For more details on HAL APIs, see PSoC™ 6 HAL on GitHub.

3.1.2 Using Device Configurator and PDL
Interrupts can be configured in ModusToolbox™ using the Device Configurator, the GUI-based tool used to
enable and configure MCU peripherals and their interrupt parameters.
Figure 6 shows the configuration of a GPIO pin to generate interrupt on a falling edge.

Figure 6 ModusToolbox™ peripheral configuration

Based on the configuration, ModusToolbox™ generates the ‘C’ code to achieve the desired configuration. The
code generated can be viewed in the Code Preview pane; it is added to relevant cycfg_xxx.c/h files in the
TARGET_<BSP name>/COMPONENT_BSP_DESIGN_MODUS/GeneratedSource folder in the ModusToolbox™ application. The
generated code includes macros defining the interrupt source numbers and any peripheral configuration that is
necessary to set up and enable the interrupt source. This simplifies the process of searching for the dedicated
interrupt numbers in the device header file. The user application only needs to enable the interrupt vector on
the CPU and assign an interrupt handler function as described in Configuring interrupts using PDL.

3.2 Configuring interrupts using PDL
The Peripheral Driver Library (PDL) simplifies software development for the PSoC™ 6 MCU architecture. The
PDL reduces the need to understand register usage and bit structures, so easing software development for the
extensive set of peripherals available.
Note: The ModusToolbox™ software version of PDL is available at the Infineon GitHub site. It is not

compatible with PSoC™ Creator. The ModusToolbox™ version of the PDL includes support for new PSoC™

6 MCU devices and drivers. It also supports macOS and Linux hosts, as well as Windows. Developers
should move to the ModusToolbox™ package as projects and schedules permit. PDL v3.1 is designed
for and works with PSoC™ Creator. PDL v3.1 is expected to be the final PSoC™ Creator-compatible
release. PDL v3.0.x is installed along with the PSoC™ Creator 4.2 development tools.

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 11 002-17666 Rev. *F
2022-07-21

https://github.com/cypresssemiconductorco/psoc6hal
https://www.cypress.com/ModusToolboxDeviceConfig
https://github.com/cypresssemiconductorco/psoc6pdl
https://www.cypress.com/design-guides/peripheral-driver-library-pdl-psoc-creator
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

PDL API function calls are used to configure, initialize, enable, and use a peripheral driver. One such driver
is System Interrupts (SysInt). SysInt provides structures and functions to configure and enable interrupt
functionality. PDL also supports the CMSIS-Core libraries which include NVIC functions used for interrupt
configuration.
The following steps use PDL and NVIC APIs to set up an interrupt to trigger on a signal from a peripheral.
• Configure the peripheral to generate the interrupt. For example, for a GPIO, configure the drive mode (pull

up or pull down), interrupt signal generation on falling or rising edge, and unmask the interrupt. Refer to
the PDL API reference documentation for your peripheral for this information

• Configure the interrupt using the structure provided by the SysInt API.
The structure is defined in the PDL SysInt driver file cy_sysint.h:

* Initialization configuration structure for a single interrupt channel */
typedef struct {
 IRQn_Type intrSrc; /**< Interrupt source */
#if (CY_CPU_CORTEX_M0P)
 cy_en_intr_t cm0pSrc; /**< (CM0+ only) Maps cm0pSrc device
 interrupts to intrSrc */
#endif
 uint32_t intrPriority; /**< Interrupt priority number (Refer to
 __NVIC_PRIO_BITS) */
} cy_stc_sysint_t;

This structure is used to configure the following (see Figure 7 for a quick summary):
• Interrupt Source (intrSrc)

- These are the dedicated interrupt numbers as defined in the device header file (example:
cy8c6247bzi_d44.h)

- This selection depends on which CPU you want to assign the interrupt to
- For CM4, this number represents both the interrupt number of the source as well as the CPU IRQ

number. Select the interrupt number of the peripheral interrupt you wish to route to the CPU. For
example, to route Port 0 GPIO interrupt, assign a value of ioss_interrupts_gpio_0_IRQn (=0).

- For CM0+, this number represents one of the 32 multiplexers available for routing an interrupt to
CM0+. Because each multiplexer is connected to a dedicated CM0+ IRQ line, use this to select the
target CM0+ IRQ number. For example, to use multiplexer #4 (CM0+ IRQ#4), use “NvicMux4_IRQn”
(=4).

• CM0+ interrupt number (cm0pSrc)
- This parameter is applicable only for CM0+.
- This represents the interrupt number of the source, which is to be routed to the multiplexer/CM0+

interrupt generator logic, selected using the intrSrc parameter. Select the interrupt number of the
peripheral interrupt you wish to route to the CPU; for example, to route Port 0 GPIO interrupt, assign a
value of “ioss_interrupts_gpio_0_IRQn” (=0).

• Interrupt priority (intrPriority)
- Set the priority of the interrupt. For CM4, supported priorities are 0 to 7. For CM0+, supported priorities

are 0 to 3
Notes:
1. On CM0+, some IRQs are reserved for use by software and not available to the user. See “Configuration

Considerations” under SysInt driver in PDL API reference documentation for the list of reserved IRQs
2. On CM0+, the interrupt priority 0 is reserved for system calls

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 12 002-17666 Rev. *F
2022-07-21

http://arm-software.github.io/CMSIS_5/Core/html/index.html
http://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html

Figure 7 SysInt PDL structure parameters (highlighted in red) used for interrupt
configuration (sample configured path highlighted in blue)

For CY8C62x4, CY8C62x5 and CY8C62x8/A devices:

• Call Cy_SysInt_Init(&SysInt_SW_cfg_1, ISR_1_handler).
• Here, SysInt_SW_cfg_1 is the name of the configured structure. ISR_1_handler is the name of the

interrupt handler that executes when the interrupt triggers. This function applies the routing and priority
configuration of the interrupt but does not enable it

• Call NVIC_ClearPendingIRQ(SysInt_SW_cfg_1.intrSrc) to clear any pending interrupts

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 13 002-17666 Rev. *F
2022-07-21

• Call NVIC_EnableIRQ(SysInt_SW_cfg_1.intrSrc) to enable the interrupt
• Call the _enable_irq() function to enable global interrupts. This is safe to perform as the first step, as

individual CPU interrupts have not been enabled yet. You can also perform this later but interrupts are
disabled at startup unless this is called

In addition to the PDL SysInt driver, the system power modes (SysPm) driver API enables the Sleep-on-Exit
feature. If sleep or deep sleep mode is used in the application along with interrupts, this feature enables the
firmware to keep the system in a that sleep mode almost all the time, only wake up to execute the interrupt and
then immediately go back to the same sleep mode. The program does not return to the main function and stays
either in the interrupt handler or in the same sleep state unless the Sleep-on-Exit feature is disabled again.

Cy_SysPm_SleepOnExit(true);

3.3 Configuring interrupts using PSoC™ Creator
PSoC™ Creator provides a graphical interface for routing signals from peripherals to a CPU IRQ line. PSoC™

Creator provides an Interrupt (SysInt) Component. This component is a UI element on top of the SysInt
PDL driver discussed in the previous section. Based on the configuration in the Component, PSoC™ Creator
generates code to initialize peripherals, route interrupts, and populate the interrupt configuration structure.
This reduces the amount of code you must write when setting up interrupts.
The following section shows steps to use PSoC™ Creator to configure an interrupt. See the References section
for code examples.

3.3.1 Using the schematic (TopDesign)
Drag and drop a Component from the Component Catalog onto the TopDesign. Use TopDesign to place and
configure peripherals that provide a source of interrupt. Consult the Component datasheet for information on
the peripheral’s interrupt configuration. Some peripherals provide an interrupt terminal (e.g., TCPWM). Place an
instance of the SysInt Component and connect it to the interrupt terminal of the peripheral.

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 14 002-17666 Rev. *F
2022-07-21

Interrupt component

Interrupt source

Configure
Interrupt source

Figure 8 TopDesign with interrupt componentSysInt (Interrupt) configuration

Some peripherals do not have an external interrupt terminal (e.g., SCB has interrupts built-in) or may have an
option to expose it (e.g., UART).
The Interrupt Component has two configurable options as seen in Figure 9.

Figure 9 SysInt (Interrupt) configuration

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 15 002-17666 Rev. *F
2022-07-21

3.3.1.1 Deep sleep capable
Enable this checkbox if you want the interrupt to be assigned to a CPU IRQ line that is deep sleep-capable. You
must ensure that the interrupt source is also active and capable of providing the interrupt signal during deep
sleep, failing which PSoC™ Creator throws an error when the project is built. Note that this option is significant
only in case the interrupt is assigned to CM0+ which has 8 (IRQ 0-7) deep sleep slots to route to. The checkbox
is provided only for guidance in automatically assigning an IRQ for the interrupt and can be overridden by
manual assignment from the CyDWR window. For CM4, if the interrupt source is deep sleep-capable (IRQ 0-40),
disabling the checkbox has no effect on the deep sleep functionality of the interrupt.

3.3.1.2 Interrupt type
There are three options available for Interrupt type in the Interrupt Component configuration: Auto-Select
Trigger, Rising-Edge Triggered, and Level Triggered. The selection of a particular option depends on the
interrupt source (fixed-function or UDB/DSI) and the application requirements. In most cases, leave the option
to Auto-Select to let PSoC™ Creator derive the interrupt type from the nature of the interrupt source.
Choose only level-triggered for Fixed-function interrupt sources. Choose Level-triggered or Rising-Edge for UDB
sources.

3.3.2 Using the design-wide resource window (CyDWR)
The design-wide resources window (.cydwr file) of the PSoC™ Creator project has an Interrupts tab. This tab lists
the instance names of all interrupts used in the TopDesign schematic along with their interrupt numbers.
Each interrupt can be allocated to either CM0+ or CM4 or both the CPUs using the ‘ARM CMx Enable’ checkbox.
Unless specified otherwise, all interrupts are assigned to CM4 by default. Though possible, it is not advised to
assign an interrupt to both CPUs unless an application requires it. A warning icon appears in the Instance
name column if both CPUs handle the same interrupt. A tooltip description of the warning can be viewed on
hovering the mouse pointer over the icon.
For CM0+, also assign a CPU IRQ line using the ‘ARM CM0+ Vector’ column. Note that some CM0+ IRQs are
reserved. PSoC™ Creator does not allow assigning to these IRQs and will display a warning if done so. There is
no option to select the vector for CM4 as these are directly mapped to the corresponding interrupt numbers.
Once assigned to the CPU, assign the priority using the corresponding priority field. CM0+ priority is in the range
of 1 to 3, (priority 0 is reserved for system calls). CM4 priority is in the range 0 to 7. For both CPUs, priority 0
corresponds to the highest priority and higher numbers denote lower priorities.

A deep sleep-capable interrupt source or IRQ is indicated using an icon . An info icon appears if a non-deep
sleep-capable interrupt is assigned to a deep sleep-capable IRQ line. A build is required to refresh the interrupt
numbers and icons.

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 16 002-17666 Rev. *F
2022-07-21

Figure 10 Interrupts assignment in CyDWR

3.3.3 Using PSoC™ Creator generated code and PDL

Figure 11 Generated files

Building the project generates code for use in the application. The Pins and Interrupts folder contains files
with code generated using the information entered in the Interrupts tab in CyDWR.
Cyfitter_sysint.h contains macros with information on interrupt number, its CPU assignment, and priority.
Cyfitter_sysint_cfg.c/h declares and pre-populates instances of SysInt PDL configuration structure using the
CyDWR information.
The configuration structure for each interrupt is conditionally defined based on the CPU assignment.
The steps to enable interrupts in firmware are similar to the ones listed in the PDL section but fewer in number.
• Call the __enable_irq() API to enable global interrupts
• Call Cy_SysInt_Init(&SysInt_1_cfg, ISR_1_handler)

- Where SysInt_1_cfg is the name of the auto-generated structure from the cyfitter_sysint_cfg.c file.
ISR_1_handler is the name of the interrupt handler that executes when the interrupt triggers. The
handler function can reside in the respective CPU’s main.c to which the interrupt is assigned. If the

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 17 002-17666 Rev. *F
2022-07-21

handler exists outside main.c, that file must be compiled and linked into the executable for the CPU
that handles the ISR

- This step configures the interrupt (routing, priority, and interrupt handler assignment) but does not
enable it

• Call NVIC_ClearPendingIRQ(SysInt_1_cfg.intrSrc) to clear any pending interrupts
• Call NVIC_EnableIRQ(SysInt_1_cfg.intrSrc) to enable the interrupt
You can use PSoC™ Creator to generate code, and import that into a preferred IDE. AN219434 – Importing PSoC™

Creator Code into an IDE for a PSoC™ 6 MCU Project describes how to do that. It is recommended that you use
PSoC™ Creator to set up and configure interrupts in PSoC™ 6 MCU, export the project to the IDE you prefer and
continue developing firmware code with the IDE preferred.

PSoC™ 6 MCU interrupts

3 Interrupt configuration

Application Note 18 002-17666 Rev. *F
2022-07-21

https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-hid-mouse
https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-hid-mouse

4 Debugging tips
This section provides tips on trouble-shooting and debugging interrupts. The following are some of the
frequently encountered cases:
• Interrupt is not triggered

- Ensure that the interrupt source and global interrupt are enabled
- Ensure that the interrupt vector is initialized with correct ISR
- Check whether other interrupt sources are triggered repeatedly, so consuming the entire CPU

bandwidth
• Interrupt is triggered repeatedly

This can happen in multiple cases: Insert breakpoints in the ISR and elsewhere in the program which is
expected to execute repeatedly (for example, the super-loop in the main function). If the program is not
entering the main function, interrupt is triggered repeatedly

- The interrupt line from a fixed-function source
Resolution: Clear the interrupt source to resolve this behavior

- A digital output from the Component (not the interrupt line) is connected to a SysInt Component
configured to level type in PSoC™ Creator
Resolution: Configure the Interrupt Component to rising for example to get one interrupt per rising
edge.

• Execution of the ISR is taking longer than expected
This can happen if other high-priority interrupts are triggered during the execution of the ISR.
Resolution: Increase the priority of the interrupt relative to other interrupt sources.

The PSoC™ 6 BLE Pioneer Kit has the KitProg2 onboard programmer/debugger.
The CY8CPROTO-062-4343W PSoC™ 6 Wi-Fi BT Prototyping Kit has the KitProg3 onboard programmer/debugger.
This kit is supported only on ModusToolbox™.
PSoC™ Creator supports debugging one CPU at a time (either CM0+ or CM4). ModusToolbox™ IDE supports
debugging of both CPUs simultaneously.
The debug mode is useful for checking interrupts as given below:
• To check if an interrupt is executing, add a breakpoint at one of the instructions in the ISR
• Use Breakpoint Hit Count/breakpoint condition to detect the number of times an interrupt is triggered.

This is particularly useful to check if the interrupt signal has glitches causing the interrupt to trigger
multiple times. To see Breakpoint Hit Count, right-click on the breakpoint, select Hit Count and observe
current hit count.

• Use the Call Stack window of the debugger to check program flow to learn when a particular ISR is
executed. You can also use it to check if a high-priority interrupt occurred during the execution of a
low-priority ISR

• As an alternative to the debugger, you can also use a pin to do the following:
• Check if the CPU is entering the ISR
• Measure the ISR execution time. This can be done, for example, by asserting the pin in the beginning of

the ISR and de-asserting the pin before returning from the ISR. The time for which the pin is HIGH can be
measured using an oscilloscope to give the duration of ISR execution

PSoC™ 6 MCU interrupts

4 Debugging tips

Application Note 19 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8cproto-062-4343w

5 Advanced interrupt topics

5.1 Exceptions
Exceptions are the events that cause the processor to suspend the currently executing code and branch to
a handler. Interrupts are a subset of exceptions. Besides interrupts, exceptions exist for operating system
applications and fault handling.

Exception Exception
number

Exception
priority

CPUs
supporting
the
exception

Description

Reset 1 -3 Both CM0+
and CM4

This exception can occur due to multiple
reasons, such as power-on-reset (POR),
external reset signal on XRES pin, or
watchdog reset.
Cortex®-M4 execution begins only after CM0+
de-asserts the M4 reset.
The reset exception address in the SRAM
vector table will never be used because the
device comes out of reset with the flash vector
table selected. The register configuration to
select the SRAM vector table can be done only
as part of the startup code in flash after the
reset is de-asserted.

Nonmaskable
Interrupt (NMI)

2 -2 Both CM0+
and CM4

Both CPUs have their own NMI exception. NMI
can be triggered by the following: Any of the
interrupt sources, by setting NMIPENDSET bit
or using System Calls.
PSoC™ 6 BLE supports routing of only one
system interrupt as the source for NMI.
CY8C62x8/A supports four system interrupt
sources for NMI. The four selected interrupt
sources are logically Ored into a single CPU
NMI input
NMI exception handler address is
automatically initialized to the system call
API located in SROM (at 0x0000000D by the
boot code. The value should be retained
by the user during vector table relocations;
otherwise, no system call will be executed.

HardFault Exception 3 -1 Both CM0+
and CM4

HardFault exception occurs when executing
an undefined instruction or accessing an
invalid memory addresses.

SVCall Exception 11 Configurable Both CM0+
and CM4

Supervisor Call (SVCall) is an always-enabled
exception caused when the CPU executes the
SVC instruction as part of the application
code. The SVC instruction enables the
application to issue a supervisor call that
requires privileged access to the system.

PSoC™ 6 MCU interrupts

5 Advanced interrupt topics

Application Note 20 002-17666 Rev. *F
2022-07-21

Exception Exception
number

Exception
priority

CPUs
supporting
the
exception

Description

PendSV 14 Configurable Both CM0+
and CM4

PendSV exception is normally software-
generated. PendSV is another supervisor call
related exception similar to SVCal.

SysTick Exception 15 Configurable Both CM0+
and CM4

SysTick is a 24-bit decrementing counter that
generates periodic interrupts.

Memory Management
Fault Exception

4 Configurable Only CM4 A memory management fault is an exception
that occurs because of a memory protection-
related fault.

Bus Fault Exception 5 Configurable Only CM4 A Bus Fault is an exception that occurs
because of a memory-related fault for an
instruction or data memory transaction.

Usage Fault
Exception

6 Configurable Only CM4 A Usage Fault is an exception that occurs
because of a fault related to instruction
execution.

Notes:
3. Exception priority that are configurable can be configured from priority 0-3 for CM0+ and 0-7 for CM4.
4. Interrupts are also part of exceptions. Interrupt vector number 0 (i.e., IRQ 0) corresponds to the exception

number 16, and so on.

5.2 Interrupt latency
Interrupt latency is defined as the time delay between the assertion of an interrupt and the execution of the
first instruction in its ISR. CM0+ has a latency of 15 clock cycles (worst case); CM4 has a latency of 12 clock
cycles (worst case). Some peripherals generate additional cycles due to synchronization circuit between the
peripherals and CPUs. Table 3 provides the number of CPU clock cycle delays for various peripherals in PSoC™ 6
MCU.

Table 3 Synchronization delay for various peripherals

Interrupt source Synchronization delay

TCPWM, DMA, USB, I2S, PDM – PCM, CDS 0 clock cycles

SCB, GPIO, LPComp, RTC, WDT, SMIF, BLE 2 clock cycles

When both CPUs are in sleep/deep sleep power mode, there is a need for additional two clock cycles required
for synchronization.
Context switching affects the latency and involves the following steps:
• Current instruction execution is completed
• The processor pushes the current Program Counter (PC), Link Register (LR), Program Status Register (PSR),

and some of the general-purpose registers (Program and Status Register (PSR), Return Address, Link
Register (LR or R14), R12, R3, R2, R1, and R0) to the stack

• The processor reads the vector address from the NVIC and updates it to the PC
• The processor updates the NVIC registers

PSoC™ 6 MCU interrupts

5 Advanced interrupt topics

Application Note 21 002-17666 Rev. *F
2022-07-21

Thus, the latency varies depending on the current instruction being executed. To make the process efficient,
both CM0+ and CM4 processors implement the following two schemes:
Tail Chaining: If an interrupt is in the pending state while the processor is executing another interrupt handler,
unstacking is skipped when the execution ends for the first interrupt and the handler for the pending interrupt
is immediately executed. This saves the time of restoring the registers from the stack and pushing the same
registers again to stack. This is useful for nested interrupts, as seen in the following section, and for reducing
the latency of low-priority interrupts.

Initialization

Tail-chaining

Stacking ISR 1 ISR 2 Unstacking

IRQ1 pending

IRQ2 pending

Figure 12 Tail chaining

Late Arrival: If a higher-priority interrupt occurs during the stacking process of a lower-priority interrupt, the
processor jumps to the higher-priority interrupt handler instead of a lower-priority one. The processor reads
the vector address of the higher-priority interrupt at the end of the stacking process. Once the higher-priority
interrupt handler execution is completed, the vector address for the pending lower-priority interrupt handler is
fetched and executed. This reduces the latency for a higher-priority interrupt by entering the lower priority ISR
and pushing the register values to the stack.

Initialization

Late-arrival

Stacking ISR 2 ISR 1 Unstacking

IRQ1 pending (lower priority)

IRQ2 pending (higher priority)

Tail-chaining

Figure 13 Late arrival

5.3 Nested interrupts
NVIC automatically handles nested interrupts without any software overhead. If a higher-priority interrupt is
asserted during the execution of a lower-priority interrupt handler, some of the general-purpose registers are
pushed to stack, CPU reads the vector address from NVIC and jumps to the higher-priority interrupt handler.
After the execution is completed, the processor restores the register values and execution resumes for the
lower-priority interrupt.

5.4 Code optimization
An important performance requirement in interrupt-based applications is the ISR code execution time. In some
applications, the critical code in the ISR must be executed within a particular time of receiving the interrupt
request. Also, interrupt execution should not take too much time and stall the main code execution or other
interrupts. To meet these requirements, use the following guidelines:
• Avoid calls to lengthy functions in the ISR. Functions such as Character LCD display routines or printing

long strings to a UART terminal takes long time to execute, so blocking the execution of other low-priority
interrupts. The recommended technique is to move non-critical function calls to the main code and just

PSoC™ 6 MCU interrupts

5 Advanced interrupt topics

Application Note 22 002-17666 Rev. *F
2022-07-21

set a flag variable in the ISR. The main code periodically checks the flag and if set, clears it and calls the
function

• Assign proper priority to the interrupts. In applications with multiple interrupts, give a higher priority to
more time-critical interrupts

Although AN89610 – PSoC™ 4 and PSoC™ 5LP ARM Cortex® Code Optimization targets a different CPU
architecture, it is a useful reference for general compiler topics.

PSoC™ 6 MCU interrupts

5 Advanced interrupt topics

Application Note 23 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/documentation/application-notes/an89610-psoc-4-and-psoc-5lp-arm-cortex-code-optimization

References
For a complete and updated list of PSoC™ 6 MCU code examples, visit our code examples web page . For more
PSoC™ 6 MCU-related documents, please visit our PSoC™ 6 MCU product web page.

Table 4 Documents related to PSoC™ 6 MCU features

Document Document name
Application notes
AN228571 Getting Started with PSoC™ 6 MCU on ModusToolbox™.

AN221774 Getting Started with PSoC™ 6 MCU on PSoC™ Creator

AN210781 Getting Started with PSoC™ 6 MCU with Bluetooth® Low
Energy (BLE) Connectivity

AN215656 PSoC™ 6 MCU Dual-CPU System Design

AN219434 Importing PSoC™ Creator Code into an IDE for a
PSoC™ 6 MCU Project

Programmable digital
Code Examples (ModusToolbox™) on GitHub

mtb-example-psoc6-gpio-interrupt PSoC™ 6 MCU GPIO Interrupt

mtb-example-psoc6-hello-world PSoC™ 6 MCU Hello World Example

mtb-example-psoc6-uart-transmit-receive-dma PSoC™ 6 MCU: SCB UART Transmit and Receive with DMA

mtb-example-psoc6-spi-master-dma PSoC™ 6 MCU: SCB SPI Master with DMA

mtb-example-psoc6-wdt PSoC™ 6 MCU Watchdog Timer

mtb-example-psoc6-capsense-buttons-slider PSoC™ 6 MCU: CAPSENSE™ Buttons and Slider

mtb-example-psoc6-csdadc PSoC™ 6 MCU: CSD Analog-to-Digital Converter (ADC)

mtb-example-psoc6-capsense-custom-scan PSoC™ 6 MCU: CAPSENSE™ Custom Scan

mtb-example-psoc6-capsense-buttons-slider-
freertos

PSoC™ 6 MCU: CAPSENSE™ Buttons and Slider (FreeRTOS)

mtb-example-psoc6-ble-findme PSoC™ 6 MCU with Bluetooth™ Low Energy (BLE)
Connectivity: Find Me Application

mtb-example-psoc6-ble-battery-level-freertos PSoC™ 6 MCU with BLE Connectivity: Battery Level
(FreeRTOS)

mtb-example-psoc6-ble-throughput-freertos PSoC™ 6 MCU: BLE Throughput Measurement (FreeRTOS)

mtb-example-psoc6-usb-audio-device-freertos PSoC™ 6 MCU: USB Audio Device with FreeRTOS

mtb-example-psoc6-usb-cdc-echo PSoC™ 6 MCU: USB CDC Echo Application

mtb-example-psoc6-usb-hid-mouse PSoC™ 6 MCU: USB HID Mouse Application

mtb-example-psoc6-usb-hid-generic PSoC™ 6 MCU: USB HID Generic Application

mtb-example-psoc6-usb-msc-file-system PSoC™ 6 MCU: USB Mass Storage File System

mtb-example-psoc6-usb-msc-logger PSoC™ 6 MCU: USB Mass Storage Logger

Code Examples (PSoC™ Creator)

CE219521 PSoC™ 6 MCU - GPIO Interrupt

CE216795 PSoC™ 6 MCU Dual-Core Basics

CE218129 PSoC™ 6 MCU Wake up from hibernate Using Low-Power
Comparator

(table continues...)

PSoC™ 6 MCU interrupts

References

Application Note 24 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
http://www.cypress.com/psoc6
http://www.cypress.com/an219434
https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software
http://www.cypress.com/an210781
http://www.cypress.com/an215656
http://www.cypress.com/an219434
http://www.cypress.com/an219434
https://github.com/cypresssemiconductorco/psoc6pdl
https://github.com/cypresssemiconductorco/mtb-example-psoc6-hello-world
https://github.com/cypresssemiconductorco/mtb-example-psoc6-uart-transmit-receive-dma
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
https://github.com/cypresssemiconductorco/mtb-example-psoc6-ble-findme
http://www.cypress.com/training
https://github.com/cypresssemiconductorco/mtb-example-psoc6-csdadc
https://github.com/cypresssemiconductorco/mtb-example-psoc6-capsense-custom-scan
http://www.cypress.com/modustoolbox
http://www.cypress.com/modustoolbox
http://www.cypress.com/trm218176
https://www.cypress.com/CE220607
https://github.com/cypresssemiconductorco/mtb-example-psoc6-ble-throughput-freertos
https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-audio-device-freertos
http://www.cypress.com/psoc6
https://www.cypress.com/CE219521
http://www.cypress.com/an219528
https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-msc-file-system
https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-msc-logger
https://www.cypress.com/documentation/code-examples/psoc-6-mcu-code-examples-psoc-creator
https://github.com/cypresssemiconductorco/mtb-example-psoc6-spi-master-dma
https://github.com/cypresssemiconductorco/mtb-example-psoc6-wdt
https://github.com/cypresssemiconductorco/mtb-example-psoc6-gpio-interrupt

Table 4 (continued) Documents related to PSoC™ 6 MCU features

Document Document name
CE218542 PSoC™ 6 Custom Tick Timer Using RTC Alarm Interrupt

CE219339 PSoC™ 6 MCU MCWDT and RTC Interrupts (Dual Core)

CE220061 PSoC™ 6 MCU Multi-Counter Watchdog Interrupts

CE220607 PSoC™ 6 MCU Watchdog Timer in interrupt mode

CE220169 PSoC™ 6 MCU Periodic Interrupt Using TCPWM

CE212736 PSoC™ 6 MCU with Bluetooth™ Low Energy (BLE)
Connectivity - Find Me

Software/IDE
PSoC™ Creator PSoC™ Creator User Guide

ModusToolbox™ ModusToolbox™ User Guide

Peripheral Driver Library (PSoC™ Creator) PDL API Reference available on installation

Peripheral Driver Library (ModusToolbox™) PDL API Reference

PSoC™ 6 MCU interrupts

References

Application Note 25 002-17666 Rev. *F
2022-07-21

http://www.cypress.com/ce218542
http://www.cypress.com/ce219339
http://www.cypress.com/search/all
https://www.cypress.com/CE212736
https://github.com/cypresssemiconductorco/mtb-example-psoc6-capsense-buttons-slider
http://www.cypress.com/trm218176
https://github.com/cypresssemiconductorco/mtb-example-psoc6-capsense-buttons-slider-freertos
http://www.cypress.com/file/137441/download
https://www.cypress.com/products/modustoolbox-software-environment
https://github.com/cypresssemiconductorco/psoc6pdl
https://github.com/cypresssemiconductorco/psoc6hal
https://github.com/cypresssemiconductorco/mtb-example-psoc6-usb-hid-generic
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html

A Appendix A. Interrupt sources in PSoC™ 6 MCU
For information on IRQ number and applicable power mode for each interrupt, see the “Interrupts” chapter of
the respective devices’ technical reference manual.

Interrupt source Details
GPIOs Each port consists of a maximum of eight pins. Each

pin can generate an interrupt, but the vector address
is common for all pins in a port. Firmware must
identify the pin that caused the interrupt. PSoC™ 6
MCU enables interrupt trigger on the rising edge,
falling edge, or both edges of the GPIO signal. This
interrupt can wake the device from sleep, deep-sleep
modes.

There is a GPIO All Ports interrupt that allows
combining all port interrupts into a single vector.
Firmware must identify the port that caused the
interrupt.

There is a GPIO Supply Detect Interrupt that can be
used to detect the supply ramping up or ramping
down.

LPComp Like GPIOs, an interrupt can be triggered on the rising
edge, falling edge, or both edges of the comparator
output signal. LPComp can also wake the device from
sleep, deep sleep, and hibernate power modes.

SCB (deep sleep) SCB interrupt that can wakeup CPU/system from deep
sleep

Multi Counter Watchdog Timer (MCWDT) Interrupt MCWDT configures two 16-bit counters and one 32-
bit counter capable of generating periodic interrupts.
MCWDT can wake the CPU from deep sleep power
mode.

Backup Domain Interrupt Backup domain interrupt includes the RTC ALARM1,
RTC ALARM2, and RTC century overflow interrupt. This
can be used to wake the CPU from sleep, deep sleep,
and hibernate power modes.

Other Combined Interrupts for SRSS The following cases generate this interrupt: WDT
interrupt, Low Voltage Detect (LVD) interrupt, and
clock calibration interrupt. WDT interrupt occurs
when the watchdog counter value matches the preset
Counter Match value. Missing two interrupts will cause
a watchdog reset.
Low-voltage detect (LVD) interrupt when the device
supply voltage drops below a threshold.
Clock calibration interrupt is triggered when clock
calibration is complete.
These are capable of waking the CPU from deep sleep.

CTBm Interrupt (all CTBms) This block provides continuous time analog
functionality. It generates interrupts on event such as
comparator triggers.

Bluetooth Radio Interrupt Bluetooth sub-system interrupt

IPC Interrupt IPC interrupts could be triggered when an IPC release
or notify event occurs.

PSoC™ 6 MCU interrupts

A Appendix A. Interrupt sources in PSoC™ 6 MCU

Application Note 26 002-17666 Rev. *F
2022-07-21

Interrupt source Details
SAR ADC

CTBm Interrupt (individual CTBm) This block provides continuous time analog
functionality. It generates interrupts on event such as
comparator triggers.

PASS FIFO Interrupt

SCB PSoC™ 6 MCU supports SCBs which can be configured
as SPI, I2C or UART. One SCB interrupt amongst the
8 SCBs is deep sleep-capable. The following events
generate an interrupt in a SCB.
• TX FIFO has less entries than specified. TX FIFO

is not full/full/overflow/underflow. RX FIFO has
more entries than the value specified, RX FIFO is
full/not empty.

• SPI: SPI interrupts are triggered when SPI master
transfer done, SPI Bus Error, SPI slave deselected
after any EZSPI transfer occurred

• I2C: I2C master lost arbitration, received NACK,
received ACK, sent STOP, I2C bus error, I2C slave
lost arbitration, received NACK, received ACK,
received STOP, received START, address matched.

• UART Interrupts: TX received a NACK in
SmartCard mode, TX done, Arbitration lost, frame
error in received data frame, parity error in
received data frame, LIN baud rate detection is
completed, LIN break detection is successful

CSD (CAPSENSE™) Interrupt CSD, used for touch applications, generates an
interrupt when the sensor scan is complete.

CPUSS DMAC, Channel #0 – 3 DMA Controller (DMAC) interrupts on DMA events
like transfer completion, bus errors, address
misalignments, current pointer being NULL, active
channel disabled and descriptor error.

DMA Interrupt DMA interrupt can be generated when the data
transfer is completed.

CPUSS Fault Structure Interrupt #0 This interrupt occurs when there is a protection unit
access violation.

CRYPTO Accelerator Interrupt Crypto Interrupt is generated in the following cases:
When a FIFO event is activated, FIFO overflows,
true random number generator is initialized, true
random number generator has generated a data value
of the specified bit size, pseudo random number
generator has generated a data value, instruction
decoder encounters an instruction with a non-defined
operation code, instruction decoder encounters an
instruction with a non-defined condition code, when a
AHB-Lite bus error is observed, true random number
generator monitor adaptive proportion test detects a
repetition of a specific bit value, true random number
generator monitor adaptive proportion test detects a
disproportionate occurrence of a specific bit value.

FLASH Macro Interrupt Flash controller has a timer that generates interrupts.

PSoC™ 6 MCU interrupts

A Appendix A. Interrupt sources in PSoC™ 6 MCU

Application Note 27 002-17666 Rev. *F
2022-07-21

Interrupt source Details
Floating point interrupt Floating Point operation fault

CM0+ CTI #0 CTI triggers are used to communicate events between
debug components.

CM4 CTI #0 CTI triggers are used to communicate events between
debug components.

TCPWM The TCPWM block can be configured to work as a
16- or 32-bit timer, counter, or PWM. It can generate
interrupts on terminal count, input capture signal, or
a compare true event.

UDB Interrupt #0 Any digital signal generated in a UDB can trigger
an interrupt. Signals are routed to the interrupt
controller through the routing fabric known as Digital
System Interconnect (DSI).

I2S Audio Interrupt Interrupt can be generated in the following cases. Less
entries in the TX FIFO than the value specified, TX FIFO
is not full, TX FIFO is empty, attempt to write to a
full TX FIFO, attempt to read from an empty TX FIFO,
triggers when the Tx watchdog event occurs, more
entries in the RX FIFO than the value specified , RX
FIFO is not empty, RX FIFO is full, attempt to write to a
full RX FIFO, attempt to read from an empty RX FIFO,
triggers when the Rx watchdog event occurs.

PDM/PCM Audio interrupt More entries in the RX FIFO than the value specified,
RX FIFO is not empty, attempt to write to a full RX
FIFO, attempt to read from an empty RX FIFO

Energy Profiler Interrupt This interrupt occurs on a profiling counter overflow.

Serial Memory Interface Interrupt This interrupt is activated when TX data FIFIO is
activated, RX data FIFO is activated, alignment error,
FIFIO overflow.

USB Interrupt The USB block has a predefined set of 13 interrupt
trigger events that can be mapped to either one of the
three interrupts. Events such as USB Start of Frame
(SOF), USB bus reset, data endpoint events, control
endpoint events, Arbiter Interrupt Event, and Link
Power Management (LPM) event generate interrupts.

CAN Interrupt CAN consolidated or individual channel interrupt

Consolidated Interrupt for all DACs Interrupt can be generated when DAC buffer is empty.
This interrupt can be used by the CPU to transfer the
next value to the DAC.

SDIO wakeup Interrupt for SDHC SDIO wakeup interrupt triggered on events such as
card insertion, removal, and SDIO card interrupt. This
doesn’t wakeup the system from deep sleep.

Consolidated Interrupt for SDHC Consolidated interrupt on all other normal/error
events related to SDHC

EEMC Wakeup Interrupt for mxsdhc, not used EEMC wakeup interrupt for SDHC block (reserved)

Consolidated Interrupt for SDHC Consolidated interrupt (reserved)

PSoC™ 6 MCU interrupts

A Appendix A. Interrupt sources in PSoC™ 6 MCU

Application Note 28 002-17666 Rev. *F
2022-07-21

Revision history
Document
version

Date of release Description of changes

** 2017-09-15 New Application Note

*A 2018-11-08 Updated for CY8C62x8/A and ModusToolbox™

*B 2019-02-25 Updated section “Configuring Interrupts Using ModusToolbox™”

*C 2019-10-21 Sunset review
Updated section “Configuring Interrupts Using ModusToolbox™”

*D 2020-07-29 Updated information for CY8C61x6/7, CY8C62x4, and CY8C62x5 devices
Updated References

*E 2021-03-27 Migrated to new template.

*F 2022-07-21 Template update

PSoC™ 6 MCU interrupts

Revision history

Application Note 29 002-17666 Rev. *F
2022-07-21

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-21
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-uud1649334232707

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 How to use this document

	2 PSoC™ 6 MCU interrupt architecture
	2.1 CY8C61x6/7, CY8C62x6/7, and CY8C63xx interrupt architecture
	2.2 CY8C62x4, CY8C62x5, and CY8C62x8/A interrupt architecture
	2.3 Types of interrupts
	2.3.1 Level and pulse interrupts

	2.4 Interrupts and Power modes
	2.5 CPU sleep and wakeup

	3 Interrupt configuration
	3.1 Configuring interrupts using ModusToolbox™
	3.1.1 Using HAL
	3.1.2 Using Device Configurator and PDL

	3.2 Configuring interrupts using PDL
	3.3 Configuring interrupts using PSoC™ Creator
	3.3.1 Using the schematic (TopDesign)
	3.3.1.1 Deep sleep capable
	3.3.1.2 Interrupt type

	3.3.2 Using the design-wide resource window (CyDWR)
	3.3.3 Using PSoC™ Creator generated code and PDL

	4 Debugging tips
	5 Advanced interrupt topics
	5.1 Exceptions
	5.2 Interrupt latency
	5.3 Nested interrupts
	5.4 Code optimization

	References
	A Appendix A. Interrupt sources in PSoC™ 6 MCU
	Revision history
	Disclaimer

