(infineon

EZ-Serial firmware platform user guide for
CYW20822 module

About this document

Scope and purpose

This document describes the usage of CYW920822M2P4XXI040 -EVK.

Intended audience

This document is intended for embedded developers using the CYW920822M2P4XX1040 -EVK Evaluation Kit.

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-39351 Rev. *B
www.infineon.com 2025-11-12

http://www.infineon.com/

o _.
EZ-Serial firmware platform user guide for CYW20822 I Nn f| neon
module

Table of contents

Table of contents

About this dOCUMENT......ceuuiiiuiiiniiiniiiiiitiiiiuiiiiiittictaiittitseistastsessseissssssesssssssssssssssssssssssssssssssssssssses 1
Table Of CONtENES....ciuuiiiiiriiiriiiiiiitiiiraiitiitteittaitseieseisracsssessssissassrsssns 2
1 INErOUCEION «.ovuiiiniiiniiriiiineiiiniiruiiiaiiseiireisraestseisrasrsesssesssssrsesse 11
1.1 HOW t0 USE thisS UILE ...cuiieeeieieeeeeeeeee ettt ettt a e s e e e sa e s e st e ssneaessessnenanensensas 11
1.2 BLOCK I@BIam ... ittt ettt ettt s bt et b e et e st et e s bt et et e sat et e s be et ense et enbs 12
1.3 21U Tl Qe LF= = = o T TSRS 13
131 Bluetooth® LE commuNication fEAtUIEScouevvevieiieirerieereerteetete ettt 13
1.3.2 Hardware and communication fEAtUIESccuevvivveieiririrererereeee st 13
1.3.3 DevelopmeNnt lIMITAtioNSccecieieceeeecree ettt e s e s e e e e b e s re e s e se e s essessneneas 13
2 Getting Started ...cciviieiiiiniiniieiineiiesineiaesreiiaesnesracsesrestaessessascasssessasssssssssssssassasssnssassasssessassns 14
2.1 P O EQUISITES. . ettiietiieciteeete ettt ettt s st e sre e e tee s s ate e s bae s ate e e beessaaeessbae e eteeasseeensseesstaeenseesassaesnsaeeans 14
2.2 Factory default DENAVIONccui ettt ettt s s e be s beeaesseenaenes 14
2.3 CONNECEING @ NOSE AEVICE ...c.viviiiieietetete ettt sttt ettt sa s bbb e b et e s e e enesaeenes 15
2.3.1 Connecting the Serial iNterface......ouu it 16
2.3.2 CONNECHING GPIO PINS weeneiiieieriieieeeee ettt ettt et e s bt st s b st e ae st s e b e et e s e sae et e besaeensesseeneenne 16
2.3.3 Connecting the CYW920822M2PAXXIOA0-EVKccuerverieirirrenierienienienienieeeeeeesessessessesessensesesnessenne 17
2.4 Communicating With @ hOSTAEVICEouiriiieieeeeeeetete ettt et ettt et 18
2.4.1 Using the AP protocolin teXt MOTE.....o.eeiriiriiriiieieeeeeeeencrreree ettt sttt enes 18
24.1.1 Text mode protoCol CharaCteriStiCs ...uiiiiiiiiciiciecieceeteree e et beesseas 18
2.4.1.2 Text mode AP cOMMANd CAtEEONIES ...cvevuereeieieieieieeterteetesteste ettt seesresseseetesee e saeenes 19
2.4.1.3 Text mode AP cOMMANd CAtEEOMIES ...cvevuerrerieieieieeeierieetesteste sttt ettt ssestessesee s enee e sseenes 20
2.4.2 Using the APl protocolin binary MOde... ..ottt s 22
24.2.1 Binary mode protocol CharaCteristiCS......ciiiirririreeieeetereeeeereere e 23
2.4.2.2 Binary Mode APl @XamMPLe.....ccciicieeieeiecieecieeste ettt ettt be e sbe e e e e e saae e be s be e e e naeenes 23
243 Key similarities and differences between text and binary command modeccccceeuvevvevreennee. 26
2.4.4 API protocol format aUtOAEtECHION ...c..ecveeieeeeeeee e 27
245 USING CYSPP MOAE...uiiiitiiieiieierieeterie st esteste st este st e stesst st este st e sessesstessesssensesssensesesssensessesnsessesnsenses 27
2451 Starting CYSPP OPErationco.coveceiieerieeseetees ettt ettt sttt e e st e be st eeens 27
2.45.2 Sending and receiving data in CYSPP data Mode.........coceviivirienienienienentenieseeeesee e 28
2.45.3 EXItING CYSPP MOE.....iiiiiiiiiiiieeteeeteese ettt et ettt et st et e s et e be s e e b e s e esesaeensensas 29
2454 Customizing CYSPP behavior for Specific NeedS.........cceerireririenienieinieerereseeeeeeeeeeaees 29
2.45.5 Understanding CYSPP CONNECLION KEYSevuirierieriiieniieterieeterieseetesiesieesaesieseesseseesaesasesaeneas 30
2.4.5.6 Using the CYSPP peripheral ConNeCtion KeY........ccueerirereririenieieieieeneeeneesienee et 30
2457 Using the CYSPP central connection key and mMaskco.ceeeereevienieenenenenenenenieneeeeeseenene 31
2.45.38 CYSPP configuration and Pin STAteS........ceeervererierierininineeereretetee ettt 32
2.5 Configuration settings, storage and ProteCtion.........ccecveirirerenenenenceeeee et 33
2.5.1 Factory, boot, runtime, and automatic SETHINGSccvevirierierieirereeeee e 33
2.5.2 Saving runtime settings in flash ..o 34
2.53 Protected configuration SEHHINGS.......ccuvieiriririirieteee ettt sttt 35
2.6 Where to find related Material........ccoveieieinireee et 35
2.6.1 Latest EZ-Serial firmwWare iMagecoeveeererieniiieieteteeeeseste ettt ettt et st sa et saeenes 35
2.6.2 Latest host AP ProtoCol lIDrary ...ttt 35
2.6.3 ComMPrehensive AP FEFEIENCEuiviieieiieeeteteeee ettt ettt sttt sae e s e be s e essesseeneenns 35
3 Operational @XamMPIES...ccccieiieieieiieceienrecerenrececessececassesecassssssssssscassssssasssssssssssssassssssassssssassssnse 36
3.1 SYSTEM SELUP EXAMPLES .evviireiieeieiieerte et ese et se e sae s saesraeesee e sbeesrnesasesstessbasssesnsaesssesssessseessaensees 36
311 How to identify the running firmware and Bluetooth® LE stack versioncc.cccceeveevevvevencnnenne. 36
User guide 2 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 I Nn f| neon
module

Table of contents

3.1.1.1 Getting version details from bOOt @VENLcceeiiciieieeeeeeeeee e 36
3.1.1.2 Getting version details from boot @VENTcc.cvveviiiiiiieereeec e 37
3.1.2 How to change the serial communication Parameterscccoceeveevereeivrereereseeeeeee e 37
3.13 How to change the device Nname and apPeAraNCe.......uvvicereeceeereeeetee e 39
3.14 How to change the OULPUL POWETco.iiiiiiieetete ettt ettt ettt et 40
3.15 HOW t0 MaNage SIEEP STALES ...ccveeeieieeeeteeee ettt ettt e st e s e e s e se e e e saeeneeneas 40
3.151 Configuring the system-wide SIeepP LEVELccevevieieiriririreeeeceeresese e 41
3.15.2 Configuring the CYSPP data mode SIeep LeVEL......coveiieeriiieeeeceeteeceeeee e 42
3.153 Preventing sleep with the LP_MODE PiN.....cccccceeieirriinerierieeeerteseeeesieseseseessesseessessessessesssenees 42
3.15.4 Preventing activity with the ATEN_SHDN PiNn ...cc.cociiiiriiiiiinieieteteentetee ettt 42
3.155 Avoiding UART data loss or corruption due to Deep Sleep transitionccccecevveeveveeererennene 42
3.1.6 HOW t0 Perform a faCtory F@SET..... .ttt ettt e sa e s es 43
3.16.1 Factory reset via APl COMMANGccuiiiiiiieeiieriecieccie e et ee et te e sbeesbeesbeesaesasestesbesssasssaesnes 43
3.2 Cable replacement examples With CYSPP......c..oo et e e 44
3.2.1 How to get started in CYSPP MOE....c..coouiriiiiiirieierteteestee sttt ettt ettt st 44
3.2.1.1 How to start CYSPP in peripheral MOde.......oovvieeeiieeeeeeeeeeeee et 45
3.2.1.2 How to start CYSPP in Central MOcocueviiiiniirieieieetceetetese ettt 46
3.3 GAP PEripheral @XamMPLES.......ccceiiiiieeiie ettt et e e e ste e sbe e sbee st e sate s te s baesseessaesntesnsessseaseesses 47
331 How to advertise as peripheral dEVICEo iiiieiececeececteeeee et 47
3.3.2 How to stop advertising as a peripheral deViCe.......ooiviiieriiniininienerteieseeee et 48
3.33 How to customize advertisement and scan response datacccecveveeeereeneecieneeceesee e 48
3.4 GAP CENLIAL EXAMPLES ..oeveeeiieeeteteeeetertee et e et e e e s s e sae st et e sse e s e sesseassesseessesseassensesssensensesssenes 51
34.1 How to scan for peripheral deVICESccieeieiiieeeeceeeeeteee ettt et 52
3.4.2 How to stop scanning for peripheral deViCes........coueurireeerenenienericteteeeesesese ettt 54
343 How to connect to a peripheral deVICEivvieiieieecieeeeceececeee et et 54
344 How to cancel a pending connection to a peripheral devicecoecvvvivereneneneneneneeeeenenen 55
345 How to disconnect from a peripheral deViCe......ouiviiieiecieceeeeeeeeee e 55
3.5 GATT SEIVEL EXAMPLES ...eierieiieieeiteecee e ete et e ste e e e et e et este e te e be e beesbaesstesatesateesaesseesssesnsesnsesseesseensees 56
3.5.1 How to define custom local GATT services and characteristicS.......ceovevveererenenenenienienieeeenene 56
3.5.11 Understanding custom GATT limitations......cecieeerierieniniiereeteriereetee ettt 56
3.5.1.2 Building custom services and charaCteristiCs......cuvuiriririireniinienteteeseeee et 56
3.5.1.3 Choosing the correct GATT PEIMISSIONS ...cc.evveruerterteieieerieeressesientetetetesessessessessessensessensenessens 58
3.5.2 How to list local GATT services, characteristics, and descriptors.....c.ccveveevveeeveeceeceeseesreeseeenns 59
3521 DiSCOVEING lOCAl GATT SEIVICES ..cveruirvirrerierierieteiteteesseesestessestestesteseesessessessessensessenseneesessessenee 59
3.5.2.2 Discovering local GATT CharaCteriStiCScouverereeieiinerenenienrenieterteee et 60
3.5.2.3 Discovering loCal GATT d@SCIIPLOIS.....coiivieririerierteteteete ettt et estesaeetesbe st esbe s e esaesaeesseneas 60
3.5.3 How to read and write local GATT attribute values........cceeeeierieiiininieieneeceeeeeeeeeeeee e 61
3.5.3.1 REAdING [0CAl GATT dat@..icuieiiciieiieierieeteiere ettt ettt et tesae st et e s e e s e ssessesaeensansas 61
3.5.3.2 WHItINg 1OCAl GATT daLa .eeueeeieieiieteeeeeeeet ettt ettt et et e s et s et et e b st eeens 62
3.5.4 How to notify and indicate data to a remote clieNt.......ccceeeeceeeecineceeceeee e, 62
3.54.1 Notifying data to @ remote CLIENTcoeoviriirieiiiie e 63
3.5.4.2 Indicating data to a remote ClIENT.......ooiiiiiiieeeeeeteee ettt 63
3.5.5 How to detect and process written data from a remote clientccoeecvvvievcervenenieneneereeeene, 64
3.6 GATT ClIENT EXAMPLES ...vieieiiieeteteeteterce ettt te ettt et e s st st e besae e s e ba st essessaessesssensansasasensensesnsenns 64
3.6.1 How to discover a remote server’s GATT SETUCTUIE ..c..coiecierierieneeiereeeteee ettt 64
3.6.1.1 Discovering remote GATT SEIVICES ..cccuirirreririecerteeeere ettt sttt sat e re st se e st eesse e nes 65
3.6.1.2 Discovering remote GATT CharaCteristiCScuvuiririrrienerierieneesieseetee ettt 65
3.6.1.3 Discovering remote GATT deSCrIPLOrS....c.cviviirierierieeeenieerertesretete ettt sesre s sse e e e ne 66
3.6.2 How to read and write remote GATT attribute ValUes.......ccocvecvieerienenieiereeeeseeeeeee e 67
User guide 3 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

3.6.3 How to detect notified or indicated values from a remote GATT Server......c.coceeevereereereeenernenen 67
3.7 Security and eNCryption EXAMPLESccviivieiiieriiececctcee e se e seesre s e sste s bessbeessaessaesrsesnseesseesseas 68
3.7.1 How to use peripheral and central Privacycceeeecereeienereeeeeerereetse e 68
3.7.2 How to bond with or without MITM proteCtioncccecveeeeierineeeereetee e 68
3.7.21 Understanding /O Capabilitiesooueeierieniiiienirieeeeteeet ettt ettt st 69
3.7.2.2 Controlling automatic pairing request aCCEPLANCE......cccvvvvirerieriereeere et eeeneens 71
3.7.2.3 Pairing and bonding in “just works” mode without MITM protection.........ccccecceverveenienenneenee. 72
3.7.2.4 Pairing and bonding with full I/O capabilities and MITM protection........ccceceeeveveeverveerereenne. 72
3.7.2.5 Pairing and bonding with a fixed PassKeY.......ceeeeeerieririirineeereece e 73
3.7.3 HOW to USe OUt-0f-DaNd PAIMING ..c.veieiriririerieeeeeeeres ettt ettt 74
3.74 How to encrypt and decrypt arbitrary dataccceceeeeiececeeeeeceee s 75
3.8 IBEACON EXAMPLES ...veiiieiiecieceeeete ettt rte e ste e s te e see st e s tesebe e baeeseesstesnteenseassesssaessaesseesssennsanns 76
3.8.1 How to configure iBeacon tranSmiSSIONS......ccveverieirerineniesiesiesiesieteeeeeessessesseseessesaessesenesseenes 76
3.8.2 How to configure EddysStone tranSmiSSIONSccceveieererinienienienienieteeeee et 76
3.9 Performance teStiNg @XAMPLESc.ccviiriririrerieieet ettt sbe sttt e e e e e ae e sesaeas 77
3.9.1 How to maximize throughput t0 @ remote PEENceeevieirierieeeetee s 77
3.9.11 How to maximize throughput t0 an iOS dEVICEcccueruirieriirieiereeteest ettt 78
3.9.1.2 How to maximize throughput to an android devViCe.........ccceecievierircienieninsieneneeeeeeeeseeeees 79
3.9.2 How to minimize pOWer CONSUMPTION c..ciiiirieriierieriierieistesressresreeseeesseesseesseesssesssesssesssasssaesssessns 79
3.9.2.1 How to minimize power consumption while broadcasting........coccecevervievenieniienensenenceeenne, 79
3.9.2.2 How to minimize power consumption while broadcastingccccceceeverereneneneneneneeneenenne 80
3.9.3 How to communicate using an L2CAP Channelccoeeieererenienienieieieeeesiesiesreseeseeee e 81
3.10 Device firmware Update @XAMPLEScceivieieeeeeeieeeetecee ettt et be et et e s re et e s beess e beennenes 83
3.10.1 How to use the DFU Bootloader OVEr UARTc.ccueieiririnienierienieienteteteee et ssestesee st saeenes 83
3.10.2 How to upgrade firmware OVer the Air (OTA)ucucceeeeeeeeererenieientete e seessestessesaesaesseeeesseenes 83
4 Application design eXamPLlesccciieiiiiiriiniiniireiiniisnreiiseiresiacisestestsessestasssessosssssssssasssssssssasssnss 84
4.1 Smart MCU host with 4-wire UART and full GPIO cONNECLIONS......coerverierieieieireneresienreeeeee e 84
411 HArAdWare AESIZN .c.eeueruieiiieieietetete ettt ettt st ettt et et sb e b st et e b et et eneenesaeeses 84
412 MOAULE CONFIGUIAtION. .. eetietiteietetete sttt ettt e e e s b st e s b e be b e saenseneenasannas 84
413 HOST CONFIGUIATION .ottt et b e s bbbttt saeenes 84
4.2 Dumb terminal host with CYSPP and simple GPIO state indicationcccceceveevecenceeceseeceseeeenee, 85
4.2.1 HardWare AESIZNcccueeuieriirieierieetee ettt ettt ettt et s e et e s b st e b st et e sae st esbesanessessasssesesnsensas 85
422 MOAULE CONFIGUIATION. .. eetitiieieteteteeeeet ettt ettt ettt b s bbbt e b et e e e e saeenes 85
423 MOAULE CONFIGUIALION. .. cetietiieieteteteereee ettt sttt a et e e e s b e st e sbesaesbaaesseneenesannas 85
4.3 Module-only application with beacon functionality........cccceeveeieciceeieecceceeeeeee e, 85
43.1 HArAWare AESIZN .c.eeueruieiiieieteteeete ettt ettt e st et ettt et sb et e s b e b et et et eneenesaeenes 85
4.3.2 MOAULE CONFIGUIATION.c..covetiieieietete ettt ettt b e bttt nes 86
433 HOSE CONFIGUIATION .ottt sttt sb e bbb ens 86
5 [0T N U] T - TSR 87
5.1 HOSE API LIDIrary OVEIVIEWcccueiiiiiiiiiieiienieestesee e sstessvesseeesaeesnessse s bessbasssassssesssesssesssasssnessnesssesssanns 87
511 High-1eVel @rChitECIUIEo.veieieieeee ettt sttt 87
5.1.2 HOSE lIDrary d@SIZN ..ottt sttt et ettt e sae et be et e b e bt et e sae et enees 87
5.2 Implementing a project using the host APIIIDrarycccoeveeerineneniineeeeeneeceeeeeeeeeeeens 88
5.2.1 Basic application arChit@CIUIE........ocuiviiiieeeee ettt ettt s sa e st ae s ees 88
5.2.2 EXPOSEA AP fUNCLIONS....c.viceieieitieieeseetese et et et e et este s e e tessesss e seesaessesseessessessnensessaessesesssenses 89
5.2.3 COMMANG MACTOS ...utiterieeuierieriertesieetetesestessesseestessesstessesssesensesssessessesssessesssensesssensessesssensessesssenns 90
5.2.4 CONVEINIENCE MACKOS ..eeiieeieerieeiteete et et et e et esstesreesatesate s besbe e st esseeeseesneesneeeaseeseesseesneesaeesasesasesas 90
5.3 Porting the host API library to different platformsooeeiecenircieneneeeerceee e 91
User guide 4 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

5.4 Using the API definition JSON file to create a custom libraryc.cceecveveeeeceneecececeeeeeeeeeeeen 91
6 Troubleshooting gUIdEliNeS......ccivireiiniiiniaiiniieniniinesieiiaesresiacisestesisesrestascsessessssssessassssssessassses 92
6.1 UART COMMUNICATION ISSUES ..eieieiiieeeeiiieeeeitieeeeiteeeeeiteeesesseeeesessaeseessesesessssassesssssesesssssssesssssssensssseenn 92
6.2 BlUELOOTh® LE CONNECIION ISSUBS ...ccuvvieeerieeieeeeteeectee et e eeteeeeteeeeteeeereeebeeessseesseeensseessseessesenssesensseens 93
6.3 GPIO SIZNALISSUES...cuieieeteetiteetertesteete st e te e st et este et e sessessessesssessesseessassesssassesseessessesnsessesssessensesssenes 93
7 APl ProtoCOl ref@r@NCE cucvuiuiiiiiiieiiittiitteteitettersecscastesssssecascssssssssssssssssssssscsssssssssssssssssssssssssasss 94
7.1 Protocol structure and commuNiCation FlOW.........cuievviiviieneiieiciecrecrecetr et re e eee v eveens 94
7.1.1 F A o W oY o) e Yalo] B {0 ¢ ' =1 53OS 94
7.1.1.1 TEXE FOIrMAt OVEIVIEW ...ttt ettt ettt et re e be e be e s e e srbesbeenba e beessaesssesnseenseenseeses 94
7.1.1.2 BiNary fOrMat OVEIVIEW ...c.ccueeiiieeeeieeeete ettt ettt s re e e te s be et esbessa e beeseesesraensenss 94
7.1.2 P o W oY o) o Yelo] e F= Y= T Y o1 E TSP 94
7.1.3 Binary fOrmat detailsc.eeeecieeiieieieceeeeee ettt ettt et et be e e e nts 96
7.1.3.1 Byte ordering and StruCtUre PACKINGcccuevirierierieieieeterieet ettt sttt sae s aes 96
7.1.3.2 BiNary PACKEt HEAAETv ittt s et e e s e e e s e e nesreesneneas 97
7.2 APl COMMANAS QN0 FESPONSES ... uecveereiireereerieeteeiteesteeeteeseesstesteeseesseesseessaesseesssesssesssesssessssesseesssesnes 98
7.2.1 PrOtOCOL ZrOUP (IDT1)cuieueriiieieieeeiteiesieetesiesteste ettt st ere st s sbe st e sse st et e st e sessesbesbessesensenseneenesaens 99
7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)....ccccirieiieeecierieeeecresreectesreeeesseeseesaesseesessessnensens 100
7.2.1.2 protocol_get_parse_mode (GPPM, IDZ1/2) ...cccccvvurvereriererienienienieteteesiessessessessessessensenessesnes 101
7.2.1.3 protocol_set_echo_mode (SPEM, IDZ1/3)ccciveeriererercieneeeeeieseesesesseessesseessessesssessessnessens 101
7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4) ...ccccecueverirerienenienienienieteeeesessessessessessessensesesseenes 102
7.2.2 SYSEEM GrOUP (IDT2)cueuieueerereeienieteteteeeiee et et et et e et st e e sbesbessebe st estesesatebessessessensensensenessesses 103
7.2.2.1 SYStEM_PING (/PING, IDZ2/1) weveieieieiiriinientenierieteteteeereseessestestense et et sessessessessenseseeseenessenee 104
7.2.2.2 SYStEM_rebOOt (/RBT, ID=2/2) .oueeieteeeeieeteeteste ettt e te st ete s e s e tesrsebesbesasensesseensessaensanss 105
7.2.2.3 SYStEM_dUMP (/DUMP, IDZ2/3) ..ccviieeeeeieeeeeesteeeeteseeeteseeeseeteseesssessesssessessesssessessesssessnsnsenes 106
7.2.2.4 system_store_config (/SCFG, ID=2/4)......cccuurirerenieieieeresiesieniensessesesesessessessessessensessensesenns 107
7.2.2.5 system_factory_reSet (/RFAC, IDT2/5) ..cceceeceeeeeerreeeeeesveeseestesessessesssesessesssessessssssessesssenses 107
7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)......ccccecereeerrererresesreseeseseessesesssessesssenes 108
7.2.2.7 system_query_unique_id (/QUID, ID=2/T) ...ccueeeeeceeeectesreeeectesreecresresreessesseeseesseessessesssesenes 109
7.2.2.8 system_query_random_number (/QRND, IDZ2/8)ccceveeerrrererrrenenrreresreseesseesesssesseesenees 109
7.2.2.9 system_aes_encrypt (/AESE, IDT2/9)coeiieceeeeeecreereeeesreeeestesreevesresreesessesasessesrsesessaensenss 110
7.2.2.10 system_aes_decrypt (JAESD, ID=2/10) ...c.cceecueeeeeeireereeiienreeeestesseesessesseessessessessesssessessessenses 111
7.2.2.11 system_write_user_data (/WUD, ID=2/11)ccccoeverrerierrierrieeeieseeressesseesessessessessesssessessenees 112
7.2.2.12 system_read_user_data (/RUD, ID=2/12).....cccecerreceeeeienrieeesiesreecrestesreessesseessessessessessaesenses 113
7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13)ccccceeverieirriererreneeeereseseeseesresssessessenees 114
7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14)......ccccceerererenenierieieeneniesiensenseneeeeeeeesenne 115
7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19)c.ccevueerererenienieieeeeeeseessessesseseeseeeesessenns 115
7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20)cccecuvererererenierieereneniesienieneeneeeeeeessenne 116
7.2.2.17 system_set_tX_POWEr (STXP, IDZ2/21) ...cceirererieeeeeeeesiestestesiesaesseneeessessessessessessessessensesenns 117
7.2.2.18 system_get_tX_power (GTXP, ID=2/22)...c.couvirerierieirerenienienienienienteeeessessessessessessenseeeeesenne 118
7.2.2.19 system_set_transport (ST, IDT2/23)....ucceieecieeeeeteseetesteeee e e re e reetesrese e se e s eae e saeneas 119
7.2.2.20 system_get_transport (GT, ID=2/24)c.cevueerieereeinieirieieietrieteiesteie ettt eae s 120
7.2.2.21 system_set_uart_parameters (STU, ID=2/25)....cccecieeererieienieneeresieseessessessessessesssessssssenses 121
7.2.2.22 system_get_uart_parameters (GTU, IDT2/26)cccecuerererenererienieieeeeeeseessessessessesseseeeesenns 123
7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29)....ccccerieieerenerenienienieeeeeeseessessessessesseseseesenns 124
7.2.3 DFU ZrOUP (IDT3) .cueeuerieieieieteteiteeeiesiestessesteste st et et et sstssessessesseste st et eneesessessessessensensensensenessessens 124
7.2.3.1 AFU_TEDOOT (JCDFU, IDZ3/1) 1o eeeeeeeeseeeeseesee e seeseeseeses s seee s esesesesessesseneeseeseesesseassaeseens 125
7.2.4 GAP ZIOUP (IDT4) ..ttt ettt sttt sttt ettt et st s bbb e b et e e e sesaesbessesbenbebensentenessensas 126
7.24.1 ZAP_CONNECE (/C, IDTA/1) weeuirieeieieieieeeereetesiestessesaeteeesessessassesaesaessesseseesassessassansessensesseneesenns 127
User guide 5 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

7.2.4.2 gap_cancel_connection (/CX, IDT4/2)ccuuuieereereeeeriereeeeesieseesessesseessessesseessesseessessnsssenees 129
7.2.4.3 gap_update_conn_parameters (JUCP, IDT4/3)cccocviririrenenenienieeeesesiesiesseseensenseeeeesenne 130
7.2.4.4 gap_send_connupdate_reSponse (/CUR, IDZ4/4)ccuvcereeirsererieneeeeieseseesseeeessessseeesees 131
7.2.4.5 EaAP_dISCONNECE (/DIS, IDTA/5) c..ueeveeeeeteeiereeteseetesteseesteseeeeessessesssessesssessassesnsessessesssessesssenses 132
7.2.4.6 gap_add_whitelist_entry (/WLA, IDT4/6)cccueeruererreeirererienienienieteeeessessessessessessessesseeesenns 133
7.2.4.7 gap_delete_whitelist_entry (/WLD, IDZ4/T)ccoueeireeereeneieiesieseeiesieseesseseessessesseessesssessenees 134
7.2.4.8 ZAP_StArt_adV (/A, IDT4/8) .ottt ettt ettt ettt 135
7.2.4.9 EAP_SLOP_AAV (JAX, IDTA/9) ..neeeeeeieeeeeeeieeeetesieetestesee st e see et sste s e e ssessesseessassasneesesseensessnensanses 137
7.2.4.10 EaAP_StArt_SCaN (/S, IDT4/10) ...ccveeierereeeiereeteseetestesresseessee e essesseeeessesseessassesnsansesseessesseensenses 137
7.2.4.11 ZAP_StOP_SCAN (/SX, IDTA/11)cueeuieieiieiiriirierierienienietete sttt sttt st sb bt et sa e e beene 139
7.2.4.12 gap_query_peer_address (/QPA, IDZ4/12)...c.ccereveereeieerienienienienieteeeeesessessessessessenseseeeesenne 140
7.2.4.13 gap_query_rsSi (/QSS, IDTA/13)...ccueeeieirereniesienieteteeeesresteste e sae s et b s s ente e e e e e e e eseee 140
7.2.4.14 gap_query_whitelist (/QWL, IDT4/14)cccoiverererieieieenesiesienieniesseeeessessessessessessessessesessenns 141
7.2.4.15 gap_set_device_name (SDN, IDZ4/15)cccouverererierieinerienrenienienienteeeeesessessessessessenseseeneesenne 142
7.2.4.16 gap_get_device_Name (GDN, ID=4/16)ccuvererueruerereneriesrerieniensenseseesessessessessessessesseeesenns 143
7.2.4.17 gap_set_device_appearance (SDA, IDTA/1T) .ccccevereerererenienienienieteeeeeessessessesseneeneeeeeesenne 143
7.2.4.18 gap_get_device_appearance (GDA, ID=4/18)ccccevuerererererenienienieeeesessessessessessessesseeesenns 144
7.2.4.19 gap_set_adv_data (SAD, IDT4/19)ccuviririrerienienieteteesiessessessesaesseseessessessessestesae e saenessenes 145
7.2.4.20 gap_get_adv_data (GAD, IDT4/20)cccccurerrererienieieieieieneessessensenseseseesessessessessessensensesessessenee 146
7.2.4.21 gap_set_sr_data (SSRD, IDT4/21)...ccccuvirirererienieieteteesressessessessessessesessessessessessessenseseenessenes 146
7.2.4.22 gap_get_sr_data (GSRD, IDZ4/22)ccuevurieererieieieteteieniestesiestente et et ssessessesseseeseesesnessenee 147
7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23)cccoeverurrierenerienienienienieteeeeesessessessessesseseeeeeesenne 148
7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24)c.couvevueieeieeerenienenienienseseesessessessessessensessessesenns 150
7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25) c..cc.cveviviririrerenierieniesieteeeeesesse e stesee st e ene 151
7.2.4.26 gap_get_scan_parameters (GSP, ID=4/26)ccccevueruerereresenienienienseseesessessessessessessessessesenns 153
7.2.4.27 gap_set_conn_parameters (SCP, IDZ4/27) c.co.coevuevuerireeerenienienienienieeeeesessessessesseseesseseeeesenne 154
7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28)cccccevueerrerererrerienienieteeeesessessessessesseseeeeesenne 155
7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29).....ccccceeurverrererereenvenuereeeenenne 156
7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)ccceeurrerererereereereererreenenne 159
7.2.4.31 gap_start_legacy_coded_adV (/CA, IDT4/31) ..ccccevevieieeerirenienienienieeeeseseessesseseessesseeeeesenns 162
7.2.4.32 gap_stop_legacy_coded_adV(/CAX, ID=4/32)..c.ccucereerieerininienienienieeeesessessessessessessessesesenns 165
7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33) ..c.ccceverirerenerenenienienieeeeeeenenne 166
7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)cccccevueverrerrerenenenienieneeeeeenens 167
7.2.4.35 gap_start_legacy_coded_scan(/CS, IDT4/35)cccccerererererenenienieieeeeeessessessessenseeeeeseesenne 169
7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36)cccevuererererererienierieeeeeessessensensenseseeeeesenee 171
7.2.4.37 ZaAP_PhY_UPdate (JUP, IDT4/3T) .ccveeeeeirieenienienieeeteeeieseestestesaesaesseeeessassessessessessesssssesessenes 171
7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38)ccevurirerererenienieieeeeeesiesiesseseeseeeeeeeesenne 172
7.2.4.39 gap_get_extended_adv_data (GEAD, IDT4/39)ccecueeeererenienienieeeeeeeeseessessessesaesseeeeesens 174
7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40)cccceceruererrerrereneneneenueneereeeenenne 175
7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41)ccceevieerrenerenenieneenieneeeeeenenne 176
7.2.5 GATT SEIVET SrOUP (IDT5) cueevivirierieieieieieeieetestestestete et e e esee e stessessassesseseesessessessessessensensessesseseeses 177
7.2.5.1 gatts_create_attr (/CAC, IDZ5/1) oottt sttt sttt et sbe bttt s s s e 177
7.2.5.2 gatts_delete_attr (/CAD, IDT5/2) .ccuiieieirieirierienieeeteeereseestessesaesaesseeeessassessessassessesessessessenes 180
7.25.3 gatts_validate_db (/VGDB, ID=5/3)....ccccuririrerienieieieieeseesestesiessesseeeessessessessessessesseseeseesenns 181
7.2.5.4 gatts_Store_db (/SGDB, IDT5/4)ccueiriririerienienieteteteiesiestesieste sttt et sesbessessessessenae e ssessenee 182
7.2.5.5 gatts_dump_db (/DGDB, ID=5/5)....cccecuririrerrereenieneeieeeresessessessessessessesessessessessessessessessesessenss 183
7.2.5.6 gatts_discover_sServices (/DLS, IDZ5/6) ...c.ccurirererierieirierienienienienieteeeeesessessessessessenseseessenes 184
7.25.7 gatts_discover_characteristics (/DLC, ID=5/T)..ccucerrereeerererienienierieeeeeessessessessessesseseeeesenns 185
7.2.5.8 gatts_discover_descriptors (/DLD, IDT5/8)cccucevuererrerererrerieniensenseeeesessessessessessessessesesenns 186
User guide 6 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

7.2.5.9 gatts_read_handle (/RLH, IDZ5/9)..cc.cccuicererierereeieneesieseeeeesteseeesessesssessessesssessessesssessesssenses 187
7.2.5.10 gatts_write_handle (/WLH, ID=5/10) ...ccccvvirirererienieieenenesiesiesiensenteseessessessessessessensesseneesenns 188
7.2.5.11 gatts_notify_handle (/NH, IDZ5/11) .ccccciveeciireeieieeeeeeseeeteieseesessesseeeeseesssesse e essesnnessenees 189
7.2.5.12 gatts_indicate_handle (/IH, ID=5/12) c...ccivercieeeeeeieeeeeeseeetesieseeeesre e se e ssesse e esse s e eeneas 190
7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13)..c..ccecurirererenienienieieeneniesiesseseensenseesessenne 191
7.2.5.14 gatts_set_parameters (SGSP, IDT5/14)ccuccieeeeereneeieneieeesiesessessesseessessessessesssessessesssenses 192
7.2.5.15 gatts_get_parameters (GGSP, IDT5/15)cccvererieriererinerieniesienienienseeeessessessessessessensenseneesenns 193
7.2.5.16 gatts_service_active (/SACT, IDT5/16) ..cccevveecrerereerrenerieseeeeessessessessesseessessessessessesssessessenses 193
7.2.5.17 gatts_service_handle_reset (/RSHL, IDZ5/17) c.ccveveeerreenieieriereeeesieseesesieseesseesesssesseessenees 194
7.2.6 GATT CLIENT ZIOUP (IDT6) c.veveviieienieieieiteiesiesiesteste ettt st s te st te st este st et e e ssesbessessensessensensenessenses 195
7.2.6.1 gattc_discover_services (/DRS, IDT6/1)coeverreruereerieinierienienienienteteeeessessessessessesseseseeneesenne 195
7.2.6.2 gattc_discover_characteristics (/DRC, IDT6/2) .ccuevveeeieerirerienienienieeeesesiessesseseessensesseseesenns 196
7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3) ..cceererueerirerienienienienienieeeessessessessessessensesseeesenns 197
7.2.6.4 gattc_read_handle (/RRH, IDZ6/4)c.cocureeererienieieieinieniesiesienteste et eesse s ssessesteseeeeneesessenee 198
7.2.6.5 gattc_write_handle (/WRH, IDZ6/5)ccecvirerenienieirieesiesiesiesienienseseessessessessessessensessesesenns 199
7.2.6.6 gattc_confirm_indication (/Cl, ID=6/6)ccceevrerierieieinenienienienienieteeeeesessessesseseesseseeeeeesenne 200
7.2.6.7 gattc_set_parameters (SGCP, IDT6/T).....ccceuverererierieiniesiesiesieniessenseseessessessessessessensessesesenns 201
7.2.6.8 gattc_get_parameters (GGCP, ID=6/8)ccccuverierierieirieeriisiesienienienseseessessessessessessensesseeesenns 202
7.2.7 SMP ZIOUP (IDTT) cueeueeueriirienierietetetetete et eressesseste st et et e st s st e besbesse s esbenteneenesaeesessessensensenseneenessenses 203
7.2.7.1 sMP_query_bonds (/QB, ID=T/1) ..c.uuicecereeeeeeeeecteeeeee st eeste s e eressesreesessesasensesssesessaessenes 203
7.2.7.2 smp_delete_bond (/BD, IDZT/2) ..cuuceeieeeeeeieseeeeteseetesseeeessesessessesssessessesssessessesssessesssenees 204
7.2.7.3 SMP_PAIT ([P, IDTT/3) eeereeeeeeesteeteiesteeteste st etesteseessesses st essessesssessesssessesssessassasssessessesssesseessenses 205
7.2.7.4 smp_query_random_address (/QRA, ID=T/4) ... ieeeececieeecieseeteseseeveste e sre e sae e nennas 206
7.2.7.5 smp_send_pairreq_response (/PR, IDTT/5) ..cvcveceereeeereereeeeenieseesessesseessessessessessesssessesssenses 207
7.2.7.6 smp_send_passkeyreq_reSponse (/PE, IDZT/6) ...ccceeveireeeecenreeciesresreesresreeeesseeseessesseesennes 208
7.2.7.7 smp_generate_o0ob_data (/GOOB, ID=T/T) .cccverereerieirerenienienienieieeeeesessessessesseseenseeeeesenne 209
7.2.7.8 smp_clear_oob_data (/COOB, IDZT/8)...ccccuecuererreirererrerreereessesessessesseessessessessessssssessesssenses 210
7.2.79 smp_set_privacy_mode (SPRV, ID=T/9) ..ccecceceeeecieeeieireeeesie e ecresresreesesseessessesssessessaesenss 211
7.2.7.10 smp_get_privacy_mode (GPRV, IDZ7/10) ..c.coceveruereeririrrerienienienienieteeeeesessessessessessensesseessenne 212
7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11)cccccueverrieeevenreecresresreecresreeeenreeeessesseenennes 212
7.2.7.12 smp_get_security_parameters (GSBP, IDZ7/12) ...c.ccceceverererenenienieeeesesiessessessessesseeeeesenns 214
7.2.7.13 smp_set_fixed_passkey (SFPK, ID=T/13) ...ccciieeeeerereeeereeeeesiesessessesseesessesssessessssssessesssenees 216
7.2.7.14 smp_get_fixed_passkey (GFPK, IDZT/14)couverevierieeeerenienienieniesseeeeeessessessessessessessessesenns 217
7.2.8 L2CAP SrOUP (IDT8) .eveverereieieienieiieiesieetestestestestestestesessessessessessessensenteseesessessessessessensensenseneenessens 218
7.2.8.1 [2CaP_CONNECE (/LC, IDT8/1) ..eeuvieeeeiereeeeeteeeetesteeeestesreesreseeseesesseesessesssessesseessessesssesessesssens 218
7.2.8.2 [2cap_diSCONNECE (/LDIS, IDT8/2) ...uveiveeerecreereeieeteeteeereeeestesteeeetesreestesseesseseeseessesseessensesssensens 220
7.2.8.3 [2cap_register_pSm (/LRP, IDT8/3)...c.cocueeririerieirieeniesieeiesieniententeteeesessessessestessessesseneesessesses 221
7.2.8.4 [2cap_send_connred_reSPoNnSe (/LCR, ID=8/4)cccceevevrerreerreereereecreereeieesseeseessesseessessesseensens 222
7.2.8.5 [2cap_send_credits (/LSC, IDT8/5) ...ccuevvecereeriesreeeesteseesresseessessesseessessessessessesssessesssessessesssens 223
7.2.8.6 [2cap_send_data (/LD, ID=8/6) ...cccccerreeeeererreeienieeeenieeeesresseesessesseessessesssesssssessessesssessessesaens 224
7.2.9 GPIO ZIOUP (IDT9).uuueeuieeeeeeeririesienietete e eereetestestessestesaeseesesseesessessessassessessesessessessessansensensenseseesenses 225
7.2.9.1 gpio_query_logic (/QIOL, IDT9/1) c.cccieirerirrerienieieteteeeiesresteste ettt et sse st st ste e et e e e s ee 226
7.2.9.2 gpio_query_adc (/QADC, IDT9/2) ..ccveieiriererierienieeeeeeeressestessessesaessessesessessessessansessenseseesessenes 227
7.29.3 gPio_set_function (SIOF, ID=9/3) c..ccueieiririerierieieeeeeeeeseesteste e sae e se st ssessa st esae e eseeseesees 228
7.2.9.4 gpio_get_function (GIOF, ID=9/4).....ccuuiririrerienieieteeeesiesiesie ettt et sse st st sae e ne 229
7.2.9.5 EPI0_SEt_driVe (SIOD, IDTI/5) ..ccveeeeeeieiirienienierieniesteteeeressessessesaessesseseesessassessessensessessesseseesenns 229
7.2.9.6 gPI0_get_drive (GIOD, IDT9/6) .c..ccueeriririirierienienieieteteressestestesaeste st eessessessessessesaessesessessenee 230
7.2.9.7 EPI0_SEt_LOZIC (SIOL, IDT/T) cvereieieieierientesiestestet ettt seestestesaesae s sessessesbestesaeneeseeseesees 231
7.2.9.8 gPI0_get_lOGIC (GIOL, IDT9/8)...cveieuierieiireirreriesienieieeeeesessessessessessessessesessessessessensessessesseseesenns 232
User guide 7 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

7.2.9.9 gpio_set_interrupt_mode (SIOL, ID=9/9)..c..cccvieeriiieeeetereeeeesieseete e eeeee e e e sse e sse e aeneas 233
7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10) c..ccueruerueieiririerienienienienieieeeeeressessesseseesaesseaeeesenne 234
7.2.9.11 gpio_set_pwm_mode (SPWM, IDZ9/11)...cccccirerrerieneeieneeeeesieseeesessesssessessesssessessesssessesssenses 234
7.2.9.12 gpio_get_pwm_mode (GPWM, IDZ9/12)cccveererrererieniietenieseesessesseessessessessessesssesssessenses 236
7.2.10 CYSPP ZrouUP (IDT10) ...eeueeueererierienieieieteiteiestestestessestesentesessessessessessessensensesessessessessessensensensensesesses 237
7.2.10.1 P_cysSpP_check (.CYSPPCHECK, IDZ10/1) ..ccceecveeereerieeeerieneeseesieseessensessessessesssessesssessesseessens 237
7.2.10.2 p_cyspp_start ((CYSPPSTART, IDT10/2) ..ccceceecieereeierieeeeieesteeeetesseessessessessesseessessesssessessnsnsens 238
7.2.10.3 p_cyspp_set_parameters ((CYSPPSP, ID=10/3)ccceeiererrrereeienieseeseneseessessesssessessessesseessens 239
7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, IDZ10/4) ..ccceveeerrereeeeniereeieneeeeseessesssessessessesseessens 241
7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)ccceciereeruesereesiesreeeenteseessesseessessessnenens 242
7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)......cccecererrerueruereeeeerenienienieneeneeeeeenessennes 243
7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)....cccevuererreereesrerreeiresreeeessesseessesseesessesseessens 244
7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)cecerrererrerueruerrreereresessessensessenseneesessennes 247
7.2.11 IBEACON ZrOUP (IDT12).uciuieuieeeriieienteieieiteieestetestestestetetent et ssessessessessestenteneesesseesessessesensenseneenessens 248
7.2.11.1 p_ibeacon_set_parameters (IBSP, ID=12/1)ccucvueiieeeiierieeeecieereectesreeeesteeseesaesseeaessessnesens 249
7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2)cccccevererererenrenienieieieeniesressessenseseeneeeenesseenes 250
7.2.12 EAdyStoNe SroUp (IDT13) .eueeuerieieieieieriisiesiesiestenteeetee st srestestesaesaessensesseseesessessessensensensensensesessens 251
7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1)coevereereenerreecieereeeecresreesee e eeessesvnennens 252
7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2)ccceererrenueneeneeinerenrenienieneeneeeeeenessennes 253
7.3 DN oAV o | U U U UPPP 254
7.3.1 ProtOCOL ZrOUP (ID=1).cuueeuerieieieieieeieierieeteseestestetet et et st ssestessessete st et eseeseesessessessesensensenseneenessens 254
7.3.2 SYSEEM GrOUP (IDT2)cueeuieieerereerienieteteteeeiee ettt e bt e st et s s e sbesbe st esbe st e st esesaesbessessessensensentenesseeses 255
7.3.2.1 SYStemM_boot (BOOT, IDT2/1) c..oceeciecieeeeciesteeieste et eteereete st e e este s e ensestesreensessasaseseesaensessesnsanss 255
7.3.2.2 SYStEM_ErrOr (ERR, IDT2/2) ..ccviceeieeieeeecieseetesiestesteseestessesseesse s e essessesseessassesssessessesssessesssenees 256
7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3)coceeveirieeerenreeeesre et eee v e eae e nennas 256
7.3.2.4 system_factory_test_entered (TFAC, ID=2/4) ..uuueereeeeceeseeeesieseetesieeeeesesteseesee e se e senes 257
7.3.2.5 system_dump_blob (DBLOB, ID=2/5)c.ccceeeueeereerreneeteneeeeesteseessessesssessessesssessessssssessessseses 257
7.3.3 DFU ZrOUP (IDT3) .eeveevirierierienieieteteeesessessessessessessenseseesesseesessessessansensensesseseesessessessensensensenseseesessens 258
7.3.3.1 device_firmware_upgrade (DFUE, IDZ3/1)..cc.cccerevirririrenienienienienieteeeeesesressessesseneeneeneeneesenne 258
7.3.4 GAP ZIOUP (IDT4) c.uvneeiieiieieeiisiesieniet ettt et et e ste st esteste e et esesseesassestessastessensesessassessessensansensensesessenses 259
7.3.4.1 gap_Whitelist_entry (WL, IDT4/1) c..cccieirieerienieieieteeeie st ste st sae e se st stesse st e s e saeneesees 259
7.3.4.2 gap_adv_state_changed (ASC, ID=4/2)couvereririririreniesieseenieniesteeeeesesaessessessesseseeeeeesenee 260
7.3.4.3 gap_scan_state_changed (SSC, ID=4/3) ...coivirererieieireniesesiesiesie e eeessessesseseessessesseseeseses 261
7.3.4.4 ZAP_SCAN_TESULL (S, IDTA/A) ettt sttt ettt sttt sa s bbbt se e 261
7.3.4.5 ZAP_CONNECLEA (C, IDTA/5) .euvenrenieieieieeierieereniententete et se st tesae sttt et s sesbesbesbesbe st eneeneeseesenee 263
7.3.4.6 gap_diSCONNECLEA (DIS, IDTA/6) ..cuveueeueeiereieierienienieieeteteeseestessestesaessesseessessessessessessessesesseesenns 264
7.3.4.7 gap_connection_update_requested (UCR, IDZ4/T7) ...ccccuvererenenierieirineniesienieseeneeeeeeesnene 265
7.3.4.8 gap_connection_updated (CU, IDZ4/8)cccuvererereeieereresesiesiesiesseseesessessessessessessessessesenns 266
7.3.4.9 gap_phy_updated(PU, IDT4/9)cccoceiriririerienienieteteteiesiesteste ettt sessesse st estesae e e e s seee 267
7.3.5 GATT SEIVEN BrOUP (IDT5) ittt ettt b st sttt et et sse s b s b sbe st et e stenaeneeseenes 267
7.3.5.1 gatts_diSCOVEr_reSuUlt (DL, ID=5/1) ..cccueirieerierieieeeeeiereseessessessessesseseeessessessessessessessesseseesenns 268
7.3.5.2 gatts_data_written (W, ID=5/2) c..ccuevieiriririerieniereeteteteie ettt ettt sae st et a e se e 269
7.3.5.3 gatts_indication_confirmed (IC, ID=5/3) ...cccccirerierieieieereeniesienienieseeeeeeessessessessesaeseeaeeesenns 270
7.3.5.4 gatts_db_entry_blob (DGATT, IDZ5/4) ...cccueirererieeeieeeeseessessesiessesseseesessessessessessessessessessesenns 271
7.3.6 GATT CLENE GIOUP (IDT6) ..eeeveeeeeeereeeeeieeteetesteeeestesteestes e s eesesseessessesssessessesssessesssensessesssessesssenses 273
7.3.6.1 gattc_disCOVEr_reSUlt (DR, IDT6/1)...ccueirirerierieieieieeeeseestessessessesseseesessessessessensessessesseseesens 273
7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2)cccccererrerenieneenieenenenienienieneeneeeeeeessenne 275
7.3.6.3 gattc_data_received (D, IDT6/3)..cc.ccueieerirerierienieeeteeereseestessesaesaesseseeseesassessessessesseseesessessenes 276
7.3.6.4 gattc_write_response (WRR, IDT6/4)cccevivererierieieeeesesessesiessessessesessessessessessessessessesesenns 277
User guide 8 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

7.3.7 SMP ZIOUP (IDTT) ueeveeeeeieeeeeeieseetesteeeessessesseessesseessesseessessesseessessesssessesssessessesssensesssessessesssessesseeses 277
7.3.7.1 SMP_BONA_ENEIY (B, IDTT/1) cuvieeeeieeteeeeieseetesteetete et et e e eeste s e estesrsestesbasasesessaensessaesnenes 278
7.3.7.2 SMP_pPairing_reqUEStEd (P, IDTT7/2) .cccveceeeeieeeeeerieeeeeeseeeeesteseesessesseesessesssessessssssesssessenees 278
7.3.7.3 SMP_PAIring_reSUlt (PR, IDTT7/3) cviveeieeieeeeteneeterieseeteseeeseesteseeesessesssessessesseessessesssessesssenees 279
7.3.7.4 SMP_encryption_status (ENC, ID=T/4) ..o eceeeeeeeeeetertteeete e ete e te e e ste et s saeaenes 280
7.3.7.5 smp_passkey_display_requested (PKD, ID=T7/5) ...ccceieveririrriererreneneesseseseesseeesssessesseees 281
7.3.7.6 smp_passkey_entry_requested (PKE, IDZT7/6).....c.cceeeevierieeenieneeiesiesreesiesteeeessessessaessnessenes 282
7.3.8 L2CAP GIOUP (IDZ8) oo eeeeeeseesseeesese s seesesssesesasssassessesssesesesesasssssssessasseasssassesees 282
7.3.8.1 [2cap_connection_requested (LCR, ID=8/1)ccovvverirerrierreereniereeienseseessessesssessessessesssessens 283
7.3.8.2 [2cap_connection_response (LC, IDT8/2)ccuecueeeeriieeecienieeeecieseetesteetestesseesaesseesessessnaneens 283
7.3.8.3 [2cap_data_received (LD, IDT8/3) ..cccceecverereeeinieeeeieseeseeseeeeessesseessessessessessesssessesssessessesssens 284
7.3.8.4 [2cap_discONNECted (LDIS, IDZ8/4) ..cuieueecieereeieeieeeeiteeee e steeeetesreestestessessesssessessaesessessnensens 285
7.3.8.5 [2cap_rx_credits_OW (LRCL, IDZ8/5) ...ccveceereeieteeeeieeteeciesreeeetesreetestessessesseessessaesessessnensens 285
7.3.8.6 [2cap_tx_credits_received (LTCR, ID=8/6)ccccerreeruererrresreeeesreseessessessessessesssessesssessesseessens 286
7.3.8.7 [2cap_command_rejected (LREJ, IDZ8/T)..ccivueciriirerirenienienienieeeteieeeseessessessesseseessensenessesnes 287
7.3.9 GPIO ZIOUP (IDT9)..ueeuieiieienieneeieieteeeteteie et te sttt et st st ebesbesbe st et et eneesesaessessessensensensenaenessenses 287
7.3.9.1 gPIO_INEITUPL (INT, IDT/1) cuereieieieieiiriesieriesteste ettt sttt s ettt b et sa e e e e e e seene 287
7.3.10 CYSPP SrouUpP (IDT10) ...ceueeeeririerienieieieteeeesessessessessesessesessessessessessessensensesessessessessessensensensenseseeses 288
7.3.10.1 P_CYSPP_StAtus (LCYSPP, IDZ10/1) .eevierecieereeieneeeeeieseeseeseeeeeresreesessessessessesssessesssessessesseens 288
7.3.11 IBEACON ZrOUP (IDT12).uiiueeiieeiriisienienieieteteeetesiestessestestestesessessessessessensensensesessessessensensensensensesassens 289
7.3.12 EAAyStone Sroup (ID=13) .eueeceereecieieieiirienieriertentetetet et st eressessessete st et esesseesessessessessensensenseneenessens 289
7.4 oYl oo o 1= ST R 289
7.4.1 EZ-Serial SYStEM €ITOr COUESuviiiiiiiiiiiieiieeceecte e ete e cte e te e re e s e e e teste e te s beebeesbaesseessnesnsesnsanns 289
7.4.2 EZ-Serial GATT database validation error COAESoumimirrineeiecereetese et aens 296
7.5 MACEO AEFINITIONS . ..ctieteeieiteeeetecte ettt ettt et re et e te s e et e s be e e e b e eseessesbeessessesseensensessaensenseensenns 297
8 [0 2 [0 B =Y {1 =1 1 T oY 298
8.1 GPIO pin map for sUpPorted MOAUIES.........cceeeeviieiieieieeee ettt ettt sa e eaa e re e enees 298
8.2 GPIO pin map for supported MOAULES.........cceeieiieieeeeeeeeees ettt r e neas 298
8.2.1 EZ-Serial GATT database validation €rror COAESuuimiiiiiniiciecieceeeeeee e eae e 299
8.2.2 PWM OUTPUL PINS c.vveireeiiriieieeseeseestesssesssesssessseesseeseesssesssesssesssasssessssssssesssesssesssesssessseessessesssesss 300
8.2.3 ANALOZ INPUL PINS (ADC) cuveureiieiieiieiieieeiesierientetentetesteseesessessessessessesseteneesessessessessensensensensensensesessens 301
8.3 VT e Yoo o F=Y Wt ToT-] o 11 Ui A L= PSRRI 301
8.3.1 Digital iNterrUPT dEtECHION ..cueeuieieieeeeeet ettt ettt saees 301
8.3.2 ANalog-to-digital CONVEISIONcivuiiiiiieiieieeeteere ettt sttt sae et e be s e e s e ssaesae e 301
9 INfiNEON GATT Profile refere@NnCe ...c.ciuieeieieiiniieiecenioniotecencestossecsscessssssssscsssasssssscsscassssssssscssses 302
9.1 (O] o o T o) 11 LU 302
10 Configuration example reference.......ccccceuiieniiiniiinieninieiciaiiininteiciainsisteiceaceseissecsssssssssanes 303
10.1 FACtory default SETLINGS ...covevieriiieieie ettt ettt b et 303
10.2 Adopted Bluetooth® SIG GATT profile Structure SNIPPEtScecveeereereeereereeeeese et 304
10.2.1 Generic access SEIVICE (OX1800).....cuiuiriereerrerreertesreeeesreereeeesseeseessesseesessesseessessesssessesseessessessenses 304
10.2.2 Generic attribute SEIVICE (OXL8O0L)ueiireiiieiieeeeeeieeeereeceeeeerr e et e e eareeesaeeeesaeeeseeessteeenseeessseesnneees 305
10.2.3 Immediate alert SErvice (OXL1802)ceevevreeeereerreeresreereesreereeseesseesessesseessesseesessesseessesseesessesseessens 305
10.2.4 Link 0SS SEIVICE (OX1803) ...uuviiieuiiicieiiiieeeeeeeeteecsteeeeteeesteecssteesseeessteesasesssseeesssesssesesssessnsesesssessnnes 305
10.2.5 TX POWET SEIVICE (OX1804) ..ecuviereererieeereiresreetesteseesteseessessesseessesseessessasssessessesssessesssessessesssensesssenes 305
10.2.6 CUrrent time SErVICE (OX1805)ccueererveerrieeeirerreeeentesreestesreeeesseeseesesseessessesseessessesssessesseesessessenses 305
10.2.7 Reference time update SErVICe (0X1806)eecvevreereerrereeirenreeieeseeeeessesseesessessessessesssesseessessesesssens 306
10.2.8 Next DST change SErviCe (OX1807)ccurerererrerieriereeeeeeeeessessessessessesseseeseesessassessessessenseseseesessens 306
10.2.9 GlUCOSE SEIVICE (OXLB08) ...ueiiieeiiireeieteeeiteeeeteeeteeeetteeeteeesteeesaseeesseesssbeesseeesssessseeesssessseeesnseesseeas 306
User guide 9 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 < I Nn f| neon
module

Table of contents

10.2.10 Health thermometer Service (OX1809)cc.uviiuiiiiieieeieeree ettt e eereeeeaeeeeseseesreeeseeeeseeesanes 306
10.2.11 Device information SErvice (OXI80A) ...cuievveiieereeriiieeereenreenreeseeeeeereesseenseesseesseesseessssssssesseesseens 307
10.2.12 Heart rate SErVICE (OXI80D)ccuviiirieereeeeeeecree e ceeeeeeteeeetteeeteeeeseeesreeenseseesseeensesessseeensesessseesanes 307
10.2.13 Phone alert status SErvice (OXL8OE)......uiucuriirreieeeeeeeeeeetee et e ereecetteeereeenreeeeseeenseseesseeenseeeseeesanes 307
10.2.14 Battery SEIVICE (OXLBOF)cciecieereeieeieeeeitesreeitesteetestesteetessessaesesssessesseessessesssessessasssessenssensesseansans 308
10.2.15 Blood pressure SErviCe (OX1810)cccuevveruerrerreerrerresrereessesresssessesseessessesssessesssessessesssessesssessassesssans 308
10.2.16 Alert Notification SENVICE (OX1811) ..ciiiviieiieeiereerrtenteeeeeereeereerreenteesteeesreesseeseenseenseesssessneesseeseens 308
10.2.17 Human interface device SErvice (OXI1812).....ccuuiivuieeeeiiierieeeeeieeceeeeereeeereeeeseeenseeeereeesesessseesanes 309
10.2.18 Scan parameters SEIVICE (OX1813) ...cciivieirrerererriereeieseeeessesreeseesseeseessesseessessesssessessesssessesseeses 309
10.2.19 Running speed and cadence SErvice (0X1814)ccuevurererrererierierienienteeesessesiessessessessensensesenessens 309
10.2.20 Cycling speed and cadence SErvice (OX18L6)ccevuereeerererrerrerierrerieeeeesessessessessessessensenseneeseenes 310
10.2.21 Cycling POWET SEIVICE (OXL8L8)..cuueureureueeuirrerierierresienieeetesesseeressessessessessessesessessessessessensensensesesseeses 310
10.2.22 Location and navigation SErvice (OX1819).....cccveriereerererererierieriesienteteeeressessessessessessensensensenessens 310
10.2.23 Body composition SErvice (OXLI81B)cccueeeecrereerreriereereeeseesseeseessesseessessessessessesssessesssessessesssens 311
10.2.24 USEr data SEIVICE (OXL81EC) ..ccuuiciieeieeiereeireenteeeteeeteeeeeeeeesreenseesseeeseeesseesseeseesssesseesseesssesssessenseens 311
10.2.25 Weight SCale SErVICE (OXL81D)..cuiuiieirirrerrerienreteteteteiesseerestessessesteteseesesseesessessessessensensenessessenne 312
10.2.26 Bond management SErvice (OX181E)cecivirerierierieieirisesiesieniesienteteeesessessessessessessensensesessessens 312
10.2.27 Continuous glucose Monitoring SErvice (OXI81F).....ccccuevrerererienierierieieeresesiessessessessesseeeseenes 313
10.2.28 Environmental Sensing SErvice (OXL8L1A)evueruerierieirerinrerrerieniententetesessessessessessessessensenseneesessens 313
10.2.29 HTTP Proxy SErViCe (OX1823)....ccueecueeeeeeireereeitesteetesteseessessesssessesssessessesssessessssssessassssssessessesssessens 315
10.2.30 Apple notification center service (7905F431-B5CE-4E99-A40F-4B1E122D00DO0).....c.c.ccvevurueeuennene 316
GLOSSANY .ivureireieierreraetaeresressessesssssssessessssssssssesassssssssessssssssssssasssssssssssssssssssssssssssessssssssssssssssssassase 317
REVISION NISTOrY..iuiiiiiiiiiiiiiiiiiieiiiiiiiieiiiiieeiiiioiieesioiisecsssioscsessssssccsssssscsssssssssssssssssssssssssssssssssssnsss 319
[0 11 o - 111 = P 320
User guide 10 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Introduction

1 Introduction

This document provides a complete guide to the EZ-Serial platform on Infineon Bluetooth® modules. The guide
covers the following:

e Infineon Serial Port Profile (CYSPP) UART-to-Bluetooth® LE bridge functionality

e GPIO status and control connections

e GAP central and peripheral operation

e GATT server and client data transfer

e L2CAP connections

e Customizable GATT structures

e Security features such as encryption, pairing, and bonding

e Beacon behavior with iBeacon and Eddystone

e APl protocol allowing full control over all of these behaviors from an external host

1.1 How to use this guide

Depending on the context, navigate to the section most relevant to you as follows:

If you want to know... Do this

System description and functional overview See Introduction and Getting started sections
Firmware configuration examples See Operational examples

Complete design examples See Application design examples

API protocol implementations for external MCU See Host APl library

Troubleshooting guides See Troubleshooting guidelines

Reference material See the following sections:

e APl protocol reference
e GPIO reference
e Infineon GATT profile reference

e Configuration example reference

The following approach offers an advantageous method for quickly acquiring familiarity with EZ-Serial
firmware:

Introduction and Getting started provide the functional overview.

Operational examples at least one example that is relevant to the intended design. Follow the described
configuration on a development kit for a true hands-on experience. The following examples provide excellent
out-of-the-box feature demonstrations:

- How to get started in CYSPP mode with zero custom configuration
- How to define custom local GATT services and characteristics

- How to detect and process written data from a remote client

- How to bond with or without MITM protection

- How to configure iBeacon transmissions

- How to update firmware using the DFU bootloader

User guide 11 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Introduction

Application design examples at least one design example that is similar to the type of system you intend to use
an EZ-Serial-based Infineon Bluetooth® module with, especially noting the functional capabilities provided by
the configuration and GPIO connections.

Host API library explains you how the external MCU communicates with the module if you are combining EZ-
Serial with an external host microcontroller.

Troubleshooting guidelines provides you with the guidelines to follow when you have the issues in using the
interface.

Note that the reference material available in this document to allow fast access to additional information and
resources available from Infineon. When in doubt, always consult the API reference for helpful information and
related content concerning any API command, response, or event.

Throughout the guide, you will find API methods referenced in the following format:
gpio_set drive (SIOD, ID=9/5)
These links contain three important parts:

e Proper descriptive name (for example, “gpio_set_direction”), unique among all other methods

e Text-mode name (for example, “SIOD”), applicable when using the API protocol in text mode (see the Using
the API protocol in text mode section)

e Group/method ID values (for example, “9/5”), present in the 4-byte header when using the API protocol in
binary mode (see the Using the API protocol in binary mode section)

Click on any linked API method for detailed reference material in the API protocol reference section.

1.2 Block diagram

The EZ-Serial platform is built on top of Bluetooth® modules from Infineon. Depending on the specific
application, this platform may utilize an external host device such as a microcontroller (MCU) connected to the
module via UART, GPIO pins, or both. Infineon Bluetooth® modules communicate with a remote device using
the Bluetooth® Low Energy (Bluetooth® LE) protocol.

Bluetooth® Module A A

EZ-Serial Firmware

API Protocol Bluetooth® Low-Energy Bluetooth®
H UART |« ”| Parser/Generator Stack M v Radio
Remote
Host ‘ Peer
H GPIO | »> EZ-Serial Platform Manager

Figurel EZ-Serial system block diagram

User guide 12 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Introduction

1.3 Block diagram

EZ-Serial provides an easy way to access the most commonly needed hardware and communication features in
Bluetooth® LE-based applications. To accomplish this, the firmware implements an intuitive APl protocol over
the UART interface and exposes a number of status and control signals through the module’s GPIO pins.

1.3.1 Bluetooth® LE communication features
The firmware has the following Bluetooth® LE-related features:

e Bluetooth®5.0 support on compatible modules

e Central and peripheral connection roles

e Central, peripheral, broadcaster, and observer GAP roles

e Client and server GATT roles

e Customizable GATT database definition

e Direct L2CAP connectivity for maximum throughput

e Encryption, bonding, and protection from man-in-the-middle (MITM) threats
e CYSPP mode for bidirectional serial data transmission

e UART and over-the-air (OTA) bootloader for firmware updates
e iBeacon and Eddystone beaconing

e Remote firmware configuration

o Efficient low-power operation

1.3.2 Hardware and communication features

The EZ-Serial platform also implements a number of features that rely on internal chipset features and local
interfaces:

e Flexible text-mode and binary-mode API protocols

e GPIO reading, writing, and interrupt detection

e On-demand ADC conversion

e Configurable PWM output

e Access to internal AES encryption and decryption engine
e Accesstointernal pseudo-random number generator

e UART wake-on-RX support

Note: The external 32 kHz LPO is mandatory or CYW20822 does not work in Low-power mode.

1.3.3 Development limitations

This build EZ-Serial does not support the customer firmware image. This can only support the customer
firmware update that Infineon released by OTA or UART loader.

For details on where to find these images, see the Latest EZ-Serial firmware image section.

User guide 13 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

2 Getting started

EZ-Serial allows for rapid integration of Bluetooth® LE wireless communication into your designs. Its support

for multiple API protocol formats enables easy testing of functions by typing commands into a serial terminal
from your computer. Once the intended functionality is confirmed, the same behavior can be achieved with a
compact binary protocol on a host microcontroller.

2.1 Prerequisites
For a streamlined experience, ensure that you have the following parts available:

e CYW920822M2P4XX1040-EVK Evaluation Kit
e Computer with serial terminal software such as Tera Term, Realterm, or PuTTY
e Optional: Bluetooth® LE-capable mobile device such as an iPad, iPhone, or Android phone or tablet

The CYW920822M2P4XX1040-EVK Evaluation Kit contains two evaluation boards with built-in USB-to-UART
bridges.

Note: The maximum baud rate of CYW20822 is 1 MHz.

You can control EZ-Serial over a UART interface without additional GPIOs. For more details, see the Application
design examples section. However, we recommend using the CYW920822M2P4XXI040-EVK for the best
experience learning and prototyping due to its comprehensive design and peripheral support.

2.2 Factory default behavior
The following shows the default configuration of EZ-Serial firmware:

UART interface configured for 115200 baud, 8 data bits, no parity, 1 stop bit.

UART flow control disabled (signals from the module are not generated, signals from the host are ignored).
Protocol parser/generator operating in text mode with local echo enabled.

CYSPP serial data transfer profile enabled in autostart mode.

All optional GPIO status/control pin functions are enabled in pull up/down mode (not strong drive).

ok W

When the module is powered on or reset, it will generate the system boot (BOOT, ID=2/1) APlevent. This
is only one example of one APl method used by the platform; see the API protocol reference for details on the
structure and behavior of the API protocol.

The boot event will appear similar to this, if the protocol generator is in the default text mode:

@E,003B,BOOT,E=0101011A,5=05040001,P=0103,H=40,C=01,A=00A050421A63
This text-mode string of data indicates:

@E - an event has occurred.

003B - there are 59 bytes (0x3B) of content to follow

BOOT - the event which occurred is the BOOT event

E=0101011A - the EZ-Serial application version is 1.1.1 build 26 (0x1A)
S=05040001 - the Bluetooth® LE stack component version is 5.4.0 build 1.

P=0001 - the protocol version is 1.0

H=40 - the hardware platform is CYW920822-P4TAI040

No ok wh e

User guide 14 002-39351 Rev. *B
2025-11-12

https://www.infineon.com/cms/en/product/evaluation-boards/cyw920822m2p4tai040-evk/?redirId=268727

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

8. C=01 - the cause for this boot/reset is standard power-cycle or XRES
hardware signal

9. A=00A050421A63 -the random Bluetooth® MAC address of this module is 00:A0:50:42:1A:63.
Note: The version data and MAC address shown here are examples only. Actual values may differ.

Once the system boots, EZ-Serial will automatically start the CYSPP connection process by advertising as
peripheral device based on the configuration. In the peripheral role, the gap_adv state changed (ASC,
1D=4/2) APl event will follow the boot event:

@E, 000E,ASC,S=01,R=03

Inthe centralrole, the gap scan state changed (SSC, ID=4/3) APleventwill occur afterthe boot event,
potentially followed by one or more scan result events:

@E, 000E, SSC, S=01,R=03
@E,0062,S,R=00,A=00A050421650,T=00, S=CE, B=00,D=020106110700A1...

A central-mode scan will continue until it finds a compatible peer, and then EZ-Serial will automatically initiate
a connection and set up the CYSPP data pipe and enter data mode upon completion. To change this behavior,
you must either reconfigure the module usingthe p cyspp set parameters (.CYSPPSP, ID=10/3) API
command.

For more details on CYSPP configuration and behavior, see the following sections:

e Using CYSPP mode
e Cable replacement examples with CYSPP

For more details on GPIO references, see the GPIO reference section.

2.3 Connecting a host device

EZ-Serial communicates with an external host device such as a microcontroller using serial data (UART) and
simple GPIO signals for status and control. Depending on your application, you may need to use one, both, or
neither of these in your final design. The Application design examples section describes each of these use cases.

User guide 15 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.3.1 Connecting the serial interface

You can also connect your own host or USB adapter for UART communication. The module’s UART interface
uses standard true-type logic (TTL) signals, with logic LOW at the GND (0 V) level and logic HIGH at the VDD level
(typically 3.3V or 5V depending on the chosen module power supply). This is necessary for high-throughput
tests, which require flow control.

Note: Do not connect the module directly to RS-232 signals. This will damage the device.

EZ-Serial’s UART interface has two required signals for data and two optional signals for flow control, if
enabled:

e Required: RXD - Receive data (input), connect to host TXD (output)

e Required: TXD - Transmit data (output), connect to host RXD (input)

e Optional: RTS - Module-side flow control (output), connect to host CTS (input)
e Optional: CTS - Host-side flow control (input), connect to host RTS (output)

See the GPIO pin map for supported modules section for pin-to-function correlations.

The default port settings are 115200 baud, 8 data bits, no parity, and one stop bit. Flow control is supported but
must be specifically enabled if desired.

You can change these settings using the system set uart parameters (STU, ID=2/25) APlcommand.
UART transport settings are protected, which means they cannot be written to flash until they have first been
applied to RAM. This prevents unintentional communication lockouts. See the Protected configuration settings
section for details concerning protected settings.

If you experience any problems communicating over the serial interface, see the Troubleshooting guidelines
section for solutions to common issues.

2.3.2 Connecting GPIO pins

EZ-Serial also supports GPIO connections for status signals (output) and control signals (input). These allow
more flexible hardware design choices and more efficient operation than what the serial interface alone
provides.

The firmware provides eight single-function pins for status and control, aside from the two or four pins used for
UART communication. All of these pin functions are enabled by default, but many can be disabled with the
gpio set function (SIOF, ID=9/3) APlcommand. Disabling the special functions on these pins allows
you to use them for GPIO and manual interrupt detection.

Table 1 summarizes the functions provided by these pins. For additional information including module-specific
pin assignments, operational side-effects, and default logic states, see the GPIO pin map for supported
modules section.

User guide 16 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

Table1l GPIO function summary

Pin name Direction | Optional* | Functional description

LP_MODE Input No Low-power mode control. Assert (LOW) to prevent sleep, de-assert
(HIGH) to allow sleep.

CYSPP Input No CYSPP mode control. Assert (LOW) for CYSPP data mode, de-assert

(HIGH) for command mode.

Asserting this pin will begin CYSPP operation in the configured role
even if the CYSPP profile is disabled in the platform configuration. For
more details, see the Using CYSPP mode section.

CONNECTION | Output |Yes Connection indicator. Asserted (LOW) when a Bluetooth® LE
connection is established, de-asserted (HIGH) upon disconnection.
When CYSPP data mode is active with the CYSPP pin in the asserted
(LOW) state, the CONNECTION pin is asserted only when a remote
device has connected and completed the CYSPP GATT data
characteristic subscription, indicating that the bidirectional data pipe
is ready. It is de-asserted when data can no longer flow, either due to
disconnection or because the data characteristic subscription is
ended.

By default, the pins noted as output are not strongly driven, but instead are internally pulled to the indicated
states with approximately 5.6 kQ. This prevents unintentional damage in cases where the initial power-on state
of an externally connected device’s pins could otherwise result in a direct short between opposite supply lines.
Since this can result in unexpected behavior with some external devices that have equal or stronger pulls in
input mode, you can change the drive mode of special-function output pins to use strong drive instead with the
gpio set function (SIOF, ID=9/3) APIcommand.Onlythe UART_TX pin is strongly driven by default,
because it cannot function properly with any other configuration.

For more details on GPIO functionality, see the GPIO reference section.

2.3.3 Connecting the CYW920822M2P4XXI1040-EVK

When using the recommended evaluation kit for prototyping, simply connect the mini-USB cable between your
PC and the main board. Ensure that the EZ-Serial-compatible evaluation module is securely plugged into the
receptacle. This provides power to the module and a communication interface (UART) via the kit’s onboard
PSoC™ 5LP microcontroller. Once you have connected the cable and allowed any necessary drivers to install,
two new virtual COM ports will become available, as shown in Figure 2.

Ed Display adapters
i Firmware
Human Interface Devices
= Keyboards
@ Mice and other pointing devices
3 Monitors
¥ Network adapters
~ #@_Ports (COM & LPT)
HC| UART (COMS)
E Intel(R) Active Management Technology - SOL (COMS50)

I & Peripheral UART (CDM?}I

Figure2 Virtualserial port from CYW920822M2P4XX1040

User guide 17 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

You can then use this serial port in any compatible application on your PC, such as Tera Term, Realterm, or
PuTTY.

Note: Connect the two serial ports with 115200, 8, N, 1. Press SW2 to reset the device and the primary
serial port will output the following BOOT message: @E,003B,BO0T,E=FIRMWARE VERSION,S=SDK
VERSION,P=PROTOCOL VERSION,H=HARDWARE ID,C=BOOT CAUSE,A=DEVICE ADDRESS

2.4 Communicating with a host device

Once you have connected a host to the module via the serial interface, you can send and receive data. EZ-Serial
supports two different modes of communication: command mode (API protocol communication and control)
and CYSPP mode (transparent wireless cable replacement to remote device). The following sections describe
these modes in detail.

The active communication mode depends on the state of the CYSPP pin, which can be one of three options:

e CYSPP pin externally de-asserted (HIGH): command mode (text or binary)
e CYSPP pin externally asserted (LOW): CYSPP mode
o CYSPP pin left floating: command mode until activating CYSPP data pipe, then CYSPP mode

Ensure that the CYSPP pinis in the intended state at boot time to achieve the desired behavior. If you assert this
pin, the API parser and generator become inactive, because all serial data is piped through the Bluetooth® LE
connection (once established). You will experience what appears to be a lack of communication if you attempt
to send APl commands to the module while in CYSPP mode.

24.1 Using the API protocol in text mode

EZ-Serial implements a text-mode API protocol which allows full control of the platform using human-readable
commands, responses, and events. This mode is the default setting from the factory to provide the fastest
possible path to rapid prototyping. Commands are typed using short codes, and responses and events come
back with predictable timing and formats.

2.4.1.1 Text mode protocol characteristics
The text mode protocol has the following general behaviors:

e Commands sent from the host must be terminated with a carriage return (0x0D) or line feed (0x0A) byte, or
both

e Commands begin with ¢/’ (forward slash), ‘S’, ‘G’, or *.” to indicate ACTION, SET, GET, or PROFILE commands,
respectively.

e Commands are always immediately followed by a corresponding response, if they are parsed correctly
e Commands with multiple arguments allow the arguments to be supplied in any order

e Commands with multiple arguments do not require all arguments to be present in most cases; SET
commands with some arguments omitted will leave non-set values unchanged, and ACTION commands
with some arguments omitted will fall back to the default platform settings relevant for those arguments.

User guide 18 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

Commands with syntax errors are followed by the system error (ERR, ID=2/2) APleventwithan error
code indicating the nature of the problem, rather than a response packet (see the Error codes section).

e All numeric data must be entered in hexadecimal notation, without prefixes (“0x”) or signs (“+” or “-”);
negative numbers should be entered in two’s complement form (for example,-1=FF,-16 =F0,-128 = 80)

e All multi-byte numeric data is entered and expressed in big-endian byte order (for example, 0x12345678 is
“12345678”)

e Text command codes and hexadecimal data are not case-sensitive

e New command entry in text mode must start with a printable ASCII character (0x20 - 0x7E), or the byte will
be ignored. This requirement allows a wider range of “dummy” byte options when using wake-on-RX.

e Responses always begin with “@R,” followed by a 16-bit “length” value describing the number of bytes that
come after the four length characters (including the comma), followed by the response text code

e Responses always include a “result” value as the first parameter after the text code, indicating success or
failure

o Events always begin with “@E,” followed by a 16-bit “length” value similar to responses described above
- Responses and events are terminated with carriage return (0x0D) and line feed (0x0A) bytes
- Lines beginning with a “#” symbol are treated as comments and discarded by the parser

2.4.1.2 Text mode APl command categories

There are four main categories of commands in text mode: ACTION, SET, GET, and PROFILE. These all use the
same basic syntax, but execute different types of behavior.

Table 2 Text mode command categories

Category | Features

ACTION | ACTION commands trigger operations that cannot persist across resets or power-cycles, with very
few exceptions. They accomplish things such as connection establishment, querying of GPIO logic
states, entry into advertisement mode, and remote GATT discovery and data transfer.

The exceptions to the “current session only” rule are these:

e system store config (/SCFG, ID=2/4),used towrite all modified settings to flash
immediately

e system factory reset (/RFAC, ID=2/5),used to clearall modified settings and reset the
module

e system write user data (/WUD, ID=2/11),used to write arbitrary userdatatoa
dedicated section of flash

e gatts create attr (/CAC, ID=5/1),used toaddcustom GATT database attributes
e gatts delete attr (/CAD, ID=5/2),used toremove custom GATT database attributes
e smp pair (/P, ID=7/3),usedtoinitiate pairing, resultingin new bonding data stored in

flash
e smp delete bond (/BD, ID=7/2),used todeletean existing bond, altering data stored in
flash
SET SET commands affect configuration settings that control many types of behavior, but do not

typically trigger immediate changes to the operational state like ACTION commands do.

Every argument in a SET command may be stored in non-volatile (flash) memory so that it persists
across power-cycles. Modified settings are stored in RAM only by default, and you must use the
/SCFG command to write them to flash. In text mode, you can also invoke a SET command with a

User guide 19 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

Category | Features

‘S’ after the text code (for example, “SDNS, N=. . .”) to cause that change to be written to both
RAM and flash immediately.

A small number of SET commands also manage protected settings, which are those that can affect
core chipset operation and communication. For these settings, you cannot write changed values
directly to flash without first performing a separate write to RAM only. This prevents accidental
changes that are difficult to undo. For more details on this behavior, see the Protected
configuration settings section.

GET GET commands provide the ability to read all settings that can be changed with SET commands.
There is a corresponding GET command for every SET command found in the protocol with
matching parameters returned in the response.

Like SET commands, GET commands return data from the RAM-stored configuration structure by
default. However, using the ‘S’ after the text code will cause the flash-stored data to be returned
instead.

A few GET commands are similar in name to related ACTION commands such as “GIOL” (get GPIO
logic settings) and “/QIOL” (query GPIO logic state). Keep in mind that GET/SET commands
concern user-defined settings, while ACTION commands concern immediate behavior changes.
Always see the API reference material when in doubt about the intended use and behavior of any
APl method.

PROFILE | PROFILE commands configure the behavior of special built-in behaviors, such as CYSPP data

mode and iBeacon and Eddystone beaconing. Depending on the profile, these commands may
perform actions or get or set configuration values as described for the previous three command

types.

For more information on these command categories and behaviors, see the configuration hierarchy in Factory,
boot, runtime, and automatic settings and the material in API protocol reference.

2.4.1.3 Text mode APl command categories

The easiest way to use text command mode is with a serial terminal application. You can use any application of
this kind, as long as it works with standard serial ports and can be configured to open the port with the proper
baud rate, flow control, and other settings. Figure 3 shows an example session using factory default firmware
and the PuTTY terminal application, starting with the system boot (BOOT, ID=2/1) APleventand
demonstrating a few commands, responses, and other events.

EF COMT1 - PuTTV - O X

Figure3 Text command mode session with PuTTY

User guide 20 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

Table 3 describes the various protocol methods shown in Figure 3.

Table3 Text mode communication example

Direction | Content Detail

<RX @E, 003B,BOOT,E=01010114,5=05040001, |system boot (BOOT, ID=2/1) APlevent
P=0001,H=05,C=01,A=00A050421A63 received:

app =1.1.1 build 26

e stack=5.4.0 build 01

e protocol=1.3

e hardware = CYBLE-2120XX-X0 module
e boot cause = power-on/XRES

e MAC address = 00:A0:50:42:1A:63

«RX €k, 000E,ASC, 5=01,R=03 gap adv_state changed (ASC, ID=4/2) API
event received:

e state=1 (active)
e reason =3 (CYSPP operation)

TX> /ping system ping (/PING, ID=2/1) APlcommand
sent to ping the local module to verify proper
communication.

<RX €R,001D, /PING, 00000000, R=00000003, |system ping (/PING, ID=2/1) APlresponse
F=32D1 received:

e result=0 (success)
e runtime=3seconds
e fraction=13009/32768 seconds

TX> gdn gap _get device name (GDN, ID=4/16) API
command sent to get the configured device
name.

«RX @R, 001E,GDN, 0000, N=EZ- gap _get device name (GDN, ID=4/16) API

Serial 42:1A:63 response received:

e result=0 (success)
e name=“EZ-Serial 42:1A:63”

<RX @E,0035,C,C=01,A=00A050421650,T=00, gap connected (C, ID=4/5) APlevent
I=0006,L=0000,0=0064,B=00 receTved'

e conn_handle=1

e peer=00:A0:50:42:16:50

e addr_type =0 (public)

e interval=6 (7.5 ms)

e slave_latency=0

e supervision_timeout = 0x64 (100 = 1 second)
e bond=0 (not bonded)

<RX @E,001E,w,C=01,H=001B, T=00,D=0200 gatts data written (W, ID=5/2) APlevent
received:

User guide 21 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

Direction | Content Detail

e conn_handle=1

e attr_handle=0x1B (27)
e type=0 (simple write)
e data=2 bytes [0200]

TX> badcmd Invalid APl command sent to demonstrate text
mode error event.

<RX @E,000B,ERR, 0203 system_error (ERR, ID=2/2) APlevent
received:

e reason =0x0203 (Unrecognized Command)

See the reference material in the API protocol reference section for details on each of these APl methods and
text-mode syntax rules.

2.4.2 Using the API protocol in binary mode

EZ-Serial also implements a binary-format API protocol that allows the same control of the platform using
compact binary commands, responses, and events. This mode is typically preferable when controlling the EZ-
Serial-based module from an external microcontroller. The binary byte stream is much easier to parse and
generate from MCU application code than human-readable text strings.

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure
comprises a 4-byte header followed by an optional payload, terminating with a checksum byte. The payload
carries information related to the command, response, or event. If present, this payload always comes
immediately after the header and before the checksum byte.

Table 4 Binary packet structure

Header Payload (optional) Checksum
[0] Type ‘ [1] Length ‘ [2] Group ‘ [3]1D [4...N-1] Parameter(s) [N] Summation

The checksum byte is calculated by starting from 0x99 and adding the value of each header and payload byte,
rolling over back to 0 (instead of 256) to stay within the 8-bit boundary. The checksum byte itself is not included
in the summation process. For the example 4-byte binary packet for the system ping (/PING, ID=2/1) API
command:

CO0 00 02 01
Calculate the checksum as follows:
0x99 + 0xCO + 0x00 + 0x02 + 0x01 = 0x15C

Retain only the final lower 8 bits (0x5C) for the 1-byte checksum value. The final 5-byte packet (including
checksum) is:

CO 00 02 01 5C

The structure above allows a packet parser implementation to know exactly how much data to expectin
advance anytime a new packet begins to arrive, and to calculate the checksum as new bytes arrive.

User guide 22 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

The “Type” byte in the header contains information not only about the packet type (the highest two bits), but
also the memory scope (where applicable), and the highest three bits of the 11-bit “Length” value. For details
on the binary packet format and flow, see the API structural definition in the Protocol structure and
communication flow section.

2.4.2.1 Binary mode protocol characteristics
The binary mode protocol has the following general behaviors:

e Commands sent from the host must begin with a properly formatted 4-byte header
e Commands must contain the number of payload bytes specified in the Length field from the header

e Commands must end with a valid checksum byte, but no additional termination such as NULL or carriage
return

e Commands are always immediately followed by a response, if they are parsed correctly

e Commands require all arguments to be supplied in the binary payload according to the protocol structural
definition, in the right order (no arguments are optional)

e Commands with syntax errors are followed by a system error (ERR, ID=2/2) APleventwithan error
code indicating the nature of the problem, rather than a response packet

e Commands must be fully transmitted within one second of the first byte, or the parser will time out and
return to an idle state after triggering the system error (ERR, ID=2/2) APleventwith atimeouterror
code

e All multi-byte integer data is entered and expressed in little-endian byte order (for example, 0x12345678 is
[78 56 34 12]). Note that this only applies to APl method arguments and parameters with a fixed width—1, 2,
or 4-byte integers, and 6-byte MAC addresses.

e All multi-byte data passed inside a variable-length byte array (uint8a or longuint8a) remains in the original
order provided by the source. This includes UUID data found during GATT discovery. If unsure, consult the
API reference manual to verify the argument data type.

- Response payloads always begin with a 16-bit “result” value as the first parameter, indicating success or
failure of the command triggering the response

- The binary command header includes a single bit in the first byte that performs the same duty as the ‘$’
character in text mode, to cause changed settings to be written to flash immediately instead of just RAM

2.4.2.2 Binary mode APl example

The easiest way to use binary command mode is with a host MCU or other application that has a complete
parser and generator implementation available, such as the host API library provided by Infineon and discussed
in the Host API library section.

However, it is also possible to test individual commands manually with a serial terminal application capable of
entering and displaying binary data. Figure 4 shows an example of this type of test using Realterm, including
hexadecimal representation of data. There is no local echo when binary mode is used, so the screenshot does
not show the command packets sent to the module. To assist in identifying the packet types and boundaries,
responses are colored , events are , and the final checksum byte of each packet is -

User guide 23 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

infineon

88 RealTerm: Serial Capture Program 2.0.0.70 - O X

88 12 82 81 1A 81 81 81 35 68 43 B3 693 61 85 81 63 1A 42 50 AW B8 A
A2 84 82 A1 B3 CO B2 B2 B1 90 0@ B3 B0 BB 60 47 42 Cca 15 B4 18

A@ 12 45 54 2D 53 65 72 69 61 6C 28 34 32 3A 31 41 34 36 33 8@ @F

A5 B4 568 16 42 58 NGO B8 6O B6 BA 6@ B8 64 A8 B8 88 8n 85 B2 84 1F

AB B84 B8 11 22 33 44 86 B2 82 B2 83 a2

Display | Fort | Capture | Fins Send | EchoPart| 120 | 1202 | 12CHisc | Mise | \n| Clear| Freeze| ?|
EOL " Statuz
%cB B 2 1 $5¢ =] [5end ﬂumhels‘ Send ASCII ‘r‘ R | 1 Befme _ | Disconnect
[~ +LF ~ i _|RHED[2)
5c8 8 4 518 $6d] endhunbes| sendagtl | +CF o TR0 1)
o
~ = _|CTS[A)
ﬂ ﬂﬂ Repeats |1 j" [Lteral [Stip Spaces || +o1e SMBUS & ~|DED (1]
Dump File to Port | DSRE)
|c:\temp\capture.t:-:t jJ SendEiIe| x Stng‘ Delaps |0 2|0 = _|Ring (9]
___________ _|BREAK
Hepeats w m | Emar
Char Count:111 CP%0 Port: 7115200 N1 Mon

Figure 4

Note:

Binary command mode session with Realterm

This is helpful for testing, but not an efficient way to communicate in binary mode.

Each binary packet (including the checksum byte) is described in Table 5. For better comparison between text
mode and binary mode, the API transactions demonstrated here are the same as those used in the text mode
example. Note that multibyte integer data such as the 6-byte MAC address and the 16-bit advertisement
interval are transmitted in little-endian byte order.

Table 5 Binary mode communication example
Direction | Content Detail
<RX 80 12 02 01 1A 01 01 01 35 00 |gystem boot (BOOT, ID=2/1) APleventreceived:
03 03 03 01 05 01 63 1A 42 50 .
20 00 3F e app=1.1.1build 26
e stack=3.3.0 build 53
e protocol=1.3
e hardware = CYBLE-2120XX-X0 module
e boot cause = power-on/XRES
e MAC address = 00:A0:50:42:1A:63
<RX 80 02 04 02 01 03 25 gap adv_state changed (ASC, ID=4/2) APlevent
received:
o state=1 (active)
e reason =3 (CYSPP operation)
TX> CO 00 02 01 5cC (notvisible) system ping (/PING, ID=2/1) APlcommand sent
to ping the local module to verify proper communication
User guide 24 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

Direction | Content Detail
<RX co 08 02 01 00 00 03 00 00 00 |system ping (/PING, ID=2/1) APlresponse
47 42 FO received:

e result=0 (success)
¢ runtime=3seconds
o fraction=16967/32768

TX> CO 00 04 10 6D (notvisible) gap_get device name (GDN, ID=4/16) API
command sent to get the configured device name
«RX C0 15 04 10 00 00 12 45 5A 2D | gap get device name (GDN, ID=4/16) API

53 65 72 69 61 6C 20 34 32 3A

31 41 3A 36 33 95 responserecelved.

e result=0 (success)
e name=“EZ-Serial 42:1A:63”

<«RX 80 OF 04 05 04 50 16 42 50 AQ gap_connected (C, ID=4/5) APleventreceived:
00 00 06 00 00 00 64 00 00 37 e handle=4

o peer=00:A0:50:42:16:50

e addr_type =0 (public)

e interval=6 (7.5ms)

e slave_latency=0

e supervision_timeout = 0x64 (100 = 1 second)

e bond =0 (not bonded)

<RX 80 O0A 05 02 04 1F 00 00 04 00 |gatts data written (W, ID=5/2) APlevent
11 22 33 44 FB received:

e conn_handle=4

e attr_handle = 0x1F (31)

e type=0 (simple write)

e data=4bytes [1122 33 44]

TX> CO 00 EE EE 35 (notvisible) Invalid APl command (group and ID bytes set to OXEE)
sent to demonstrate binary mode error event

«RX 80 02 02 02 03 02 24 system error (ERR, ID=2/2) APlevent received:

e reason =0x0203 (Unrecognized Command)

See the reference material in the API protocol reference section for details concerning each of these API
methods and the binary packet format, including information on all header fields and supported data types.

User guide 25 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.4.3 Key similarities and differences between text and binary command
mode

The text-mode and binary-mode protocol formats provided by EZ-Serial each have their own advantages. As a
general guideline, text mode is better for initial development or one-time configuration, while binary mode is a
better choice for production-stage control from an external host device due to the significantly less complex
parser/generator implementation on an external host. The following lists contain important factors to consider
when choosing which mode to use.

Similarities are:

e Both modes access the same internal API functionality. They are not different protocols, only different
formats.

e Both follow the same command/response/event flow
e EZ-Serial supports both simultaneously. There is no need to switch between firmware images.

e Your choice of protocol format only affects local communication with an external host over the wired serial
interface. It does not have any impact on data sent over a wireless Bluetooth® LE connection, or on the type
of host communication used on a remote device (example, another Infineon module running EZ-Serial
firmware).

Differences are:

e Binary multibyte integer data is transmitted in little-endian byte order for more efficient direct memory
structure mapping on most common platforms, while text mode uses big-endian for easier left-to-right
readability

e Binary commands have a one-second timeout, while text mode commands have no timeout

e Binary commands are semantically organized by functional group (system, protocol, GAP, GATT server, and
so on) rather than the four categories used in text mode (ACTION, SET, GET, and PROFILE)

e Binary commands require all arguments in every case, while text mode commands often have optional
arguments that fall back to default/preset values if omitted

e Binary packets include basic checksum validation, while text mode packets do not

e Binary is more efficient for MCU-based communication, while text mode is easier for manual entry in a
terminal

e Binary commands are never echoed back to the host, while text mode commands are (by default)

User guide 26 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.4.4 API protocol format autodetection

EZ-Serial uses text mode for API protocol communication by default, but you can change this setting with the
protocol set parse mode (SPPM, ID=1/1) APlcommand.If “binary” mode is specified and written to
flash, the module will use binary mode automatically on subsequent resets or power-cycles.

The parser also automatically detects whether the external host is using binary or text mode, and temporarily
switches to the detected mode for the active session. The detection logic behaves in the following way:

o Ifthe parserisin text mode, a byte received at any time with the two most significant bits set (0xC0-0xFF)
will switch the parser to binary mode immediately. The “trigger” byte will not be discarded, but will be
processed as the first byte in the command packet. This mechanism is considered safe because no valid
text-mode command begins with a byte that has the highest two bits set.

o Ifthe parserisin binary mode, a byte received when the parser is idle (not mid-command) that is one of the
initial category characters for any of the four types of commands (‘/’, ‘S’, ‘G’, and *.”) will switch the parser to
text mode immediately. The “trigger” byte will not be discarded, but will be processed as the first byte in the
text command string. This mechanism is considered safe because no binary command begins with one of
these characters. Note that this requires the parser to be idle, not in the middle of a packet, because a
binary command packet could easily have one of these characters in its header or payload.

The automatically detected parse mode is not retained across power-cycles, nor is it stored in the same
configuration setting area as a value explicitly set by the protocol set parse mode (SPpM, ID=1/1) API
command. For more detail on this type of temporary configuration, see the Factory, boot, runtime, and
automatic settings section.

2.4.5 Using CYSPP mode

EZ-Serial implements a special CYSPP profile that provides a simple method to send and receive serial data
over a Bluetooth® LE connection. This operational mode is separate from the normal command mode where
the API protocol may be used. When CYSPP data mode is active, any data received from an external host will be
transmitted to the remote peer, and any data received from the remote peer will be sent out through the
hardware serial interface to the external host.

2.4.5.1 Starting CYSPP operation
You can start CYSPP mode using any of these three methods:

e Assert (LOW) the CYSPP pin externally, ensuring that you have configured the desired GAP role. You may
connect this pin to the ground in hardware designs that only require CYSPP operation and never need API
communication.

e Usethep cyspp start (.CYSPPSTART, ID=10/2) APlcommand.You can use thiscommand to enter
CYSPP mode even if the CYSPP profile is disabled in the platform configuration.

e Have aremote GATT client connect and subscribe to the CYSPP acknowledged data characteristic (enabling
indications) or unacknowledged data characteristic (enabling notifications). This method will only enter
CYSPP mode if the CYSPP profile is enabled in the platform configuration.

When starting CYSPP mode locally using either the CYSPP pinorthep cyspp start (.CYSPPSTART,
1D=10/2) APl command, the data pipe will not be immediately available because the remote device must still
connect and set up the proper GATT data subscriptions. If 100% data delivery is required in this context, the
host should monitor the CONNECTION pin to determine when it is safe to begin sending data from the host for
Bluetooth®LE transmission. Once the CONNECTION pin is asserted while the CYSPP pin is also asserted, the
host may send and receive data over CYSPP.

User guide 27 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

Note: Externally asserting (LOW) the CYSPP pin will always begin CYSPP operation, even if the profile has
been disabled in the platform configuration viathe p_cyspp set parameters (.CYSPPSP,
ID=10/3) APl command. If you do not require CYSPP operation, you should ensure that this pin
remains electrically floating or externally de-asserted (HIGH).

2.4.5.2 Sending and receiving data in CYSPP data mode

Once you have started CYSPP mode, the EZ-Serial platform will take care of the rest of the connection process
and data pipe construction on the module side. If you are using modules running EZ-Serial firmware on both
ends of the connection, then simply start CYSPP mode with complementary roles (peripheral on one end,
central on the other), and the modules will automatically connect and prepare the data pipe using the
following processes.

A non-Infineon device such as a Bluetooth® LE-enabled smartphone will frequently be used for one end of the
connection, and you must configure it to follow the same procedure.

For configuration examples in each mode, see the Cable replacement examples with CYSPP section.
If you have configured CYSPP to operate in peripheral mode:

EZ-Serial will begin advertising with configured advertisement settings.

Upon connection, a remote peer must subscribe to one of the two “Data” characteristics:

Acknowledged Data, enable indications (guaranteed reliability).

Unacknowledged Data, enable notifications (faster potential throughput).

Remote peer may optionally subscribe to the “RX Flow Control” characteristic, to allow the server

communicate whether it is safe to write new data or not.

6. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive
data.

7. The data pipe will remain open until the central device disconnects or unsubscribes from the data

characteristic, or the CYSPP pin is de-asserted locally.

ok W

If you have configured CYSPP to operate in central mode:

1. EZ-Serial will begin scanning with configured scan settings, searching for a connectable remote peer that
includes the CYSPP service UUID and matching connection key within its advertisement packet payload.

2. Upon identifying a suitable peer, it will initiate a connection to that peer with configured connection
settings.

3. Upon connection, it will perform a remote GATT discovery to identify the relevant CYSPP service,
characteristic, and descriptor attribute handles, if you have not manually set them already with the
p cyspp _set client handles (.CYSPPSH, ID=10/5) APIcommand.

4. Upon successful completion of GATT discovery, it will subscribe to the configured data characteristic and
the RX Flow Control characteristic (if enabled). Use the client flags setting of the
p_cyspp_set parameters (.CYSPPSP, ID=10/3) APIcommand to control acknowledged vs.
unacknowledged data and RX flow usage.

5. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive
data.

The data pipe will remain open until the peripheral device disconnects, or the CYSPP pin is deasserted locally.

User guide 28 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

2.4.5.3 Exiting CYSPP mode

Once in CYSPP mode, the API parser is logically disconnected from incoming serial data, so you will not be able
to send any commands to the module. However, you can still exit from CYSPP in two ways:

e Deassert (HIGH) the CYSPP pin externally

e Have the remote GATT client unsubscribe from the relevant CYSPP data characteristic (only applies when
the CYSPP pin is not externally asserted)

EZ-Serial returns to command mode if the CYSPP operation ends.

Note: It is not possible to use an APl command to exit from CYSPP data mode, because the API parser is
not available while in this mode. If your design needs to switch between modes on demand,
include external access to the CYSPP pin so you can control the operational mode.

2.4.5.4 Customizing CYSPP behavior for specific needs

While the default behavior is suitable in many cases, there are configuration settings that allow a great deal of
control over this behavior. The following list describes which options can be changed, and how to do so:

1. CYSPP mode uses the system’s configured UART host transport settings for sending and receiving serial
data. To change these settings, use the system set uart parameters (STU, ID=2/25) API
command.

2. CYSPP mode uses the system’s configured radio transmit power setting for all Bluetooth® LE
communication. To change this setting, use the system set tx power (STXP, ID=2/21) API
command.

3. CYSPP mode supports special incoming data packetization modes starting in EZ-Serial v1.1. This helps
make radio transmissions and data delivery more efficient in a variety of use cases. To change these
settings, usethep cyspp set packetization (.CYSPPSK, ID=10/7) APIcommand.

4. When operating in peripheral mode, CYSPP uses the system’s configured advertisement parameters,
including the advertisement and scan response packet content (which may be based on the device name)
and the system’s whitelist. To change these settings, use one or more of the following APl commands:

- gap_set adv_parameters (SAP, ID=4/23)
- gap_set adv_data (SAD, ID=4/19)

- gap_set sr data (SSRD, ID=4/21)

- gap_set device name (SDN, ID=4/15)

5. When operating in central mode, CYSPP uses the system’s configured scanning and connection parameters,
including the system’s whitelist. To change these settings, use one or more of the following APl commands:
- gap set scan parameters (SSP, ID=4/25)

- gap_set conn parameters (SCP, ID=4/27)

User guide 29 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.4.5.5 Understanding CYSPP connection keys

EZ-Serial also supports CYSPP connection keys, which improve usability in environments where multiple
CYSPP-capable devices are operating in an automated configuration. This feature allows an advertising
peripheral device to broadcast an arbitrary 4-byte value that a scanning device can filter against, searching
either for a masked range of devices or a single specific device.

CYSPP connection keys are not set in the factory default configuration; CYSPP peripheral advertisements
contain a “0” key, and CYSPP central scans do not attempt to match any bits. To change this, use the

p _cyspp_set parameters (.CYSPPSP, ID=10/3) APIcommand,and specifically the “local_key”,
“remote_key”, and “remote_mask” arguments of this command as described in the following sections.

2.4.5.6 Using the CYSPP peripheral connection key

The CYSPP peripheral connection key affects only the content of the advertisement packet while the module is
in an advertising state. The CYSPP peripheral role does not include any filtering behavior; filtering is left to the
scanning device that is operating in the CYSPP central role.

When the CYSPP profile is enabled, the platform-managed advertising packet contains a special Manufacturer
Data field to hold the local connection key value. It is not stored elsewhere, such as in a GATT characteristic.
This advertisement packet field has the following structure:

Table6 CYSPP peripheral connection key manufacturer data field structure

Length Type Company ID Connection Key
07 FF b0 bl b0 bl b2 b3

The Company ID value is a 16-bit value that the Bluetooth® SIG assigns to member companies that have
requested them (see resources on Bluetooth® webpage for more details). The factory default value is the
Infineon company identifier, 0x0131, but you can change this with the same command used to change other
CYSPP parameters. Note that both the Company ID and the Connection Key values are broadcast in little-
endian byte order.

Usethep cyspp set parameters (.CYSPPSP, ID=10/3) APlcommand and enterthe desired 32-bit
value for the “local_key” argument to apply a new peripheral connection key. Changes will take effect
immediately, even if the module is already advertising in the CYSPP peripheral role.

Note: EZ-Serial will only incorporate the CYSPP peripheral connection key into the advertising packet if
you have not enabled user-defined advertisement content. If you have configured user-defined
advertisement content instead as described in the How to customize advertisement and scan
response data section, changing this value will have no effect. Ensure that your user-defined
advertisement packet contains an equivalent field to allow scanning devices to filter properly.

Table7 Update CYSPP peripheral key to 0x11223344

Direction Content Effect

TX> -CYSPPSP, L=11223344 Apply new CYSPP configuration

«RX €R,000E, .CYSPPSP, 0000 Response indicates success

User guide 30 002-39351 Rev. *B

2025-11-12

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.4.5.7 Using the CYSPP central connection key and mask

The CYSPP central connection key affects the scanning operation that occurs when CYSPP is active in the
central role and has not yet connected to a remote peer. The central connection key has two parts:

Note: remote_key - the value used for comparison with the peripheral key from the advertisement
packet

Note: remote_mask - the bitmask used to strip away any irrelevant bits from the peripheral key before
comparison

For EZ-Serial to initiate a connection to a CYSPP peripheral device, the “remote_key” value must match with
the advertised peripheral connection key after a logical AND operation with the “remote_mask” value. A mask
with all bits set (“FFFFFFFF”) will require an exact match between the two keys, while a mask with no bits set
(“00000000”) will match any device. The factory default configuration is the all-zero mask, so any CYSPP-
capable peer will match. The mask values between these two extremes provide the option to connect only to
devices within specific segments of the connection key space, much like an IP-based network. Table 8 provides
examples of each case.

Table8 Connection key and mask examples

Remote Key | Remote Mask | Key & Mask | Result

11223344 FFFFFFFF 11223344 | Connect to a device whose key is exactly “11223344”

55667788 FFFFFFOO 55667700 | Connect to any device whose key begins with “556677”

12345789 FFFFO000 12340000 | Connect to any device whose key begins with “1234”

18F7A9CC FFFFOOFF 18F700CC | Connect to any device whose key begins with “18F7” and ends
with “CC”

Any 00000000 00000000 Connect to any device

Usethep cyspp set parameters (.CYSPPSP, ID=10/3) APIcommand and enter the desired 32-bit
values for the “remote_key” and “remote_mask” arguments to apply a new central connection key and mask.
Changes to these values will take effect immediately, even if the module is already scanning in the CYSPP
central role.

Note: If an advertising peripheral device is broadcasting the CYSPP service UUID but does not also have
a Manufacturer Data field containing a connection key in the same advertisement packet, the

value “0” will be substituted for an actual key for the purpose of filtering on the scanning device.

Table 9 Update CYSPP central key to 0x11223344 and require exact matching

Direction Content Effect

TX> .CYSPPSP,R=11223344,M=FFFFFFFF Apply new CYSPP Conﬁguration

<RX €R,000E, .CYSPPSP, 0000 Response indicates success

User guide 31 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

2.4.5.8 CYSPP configuration and pin states

Table 10 describes the relationship between the state of the CYSPP pin and the CYSPP firmware configuration
managed withthep cyspp set parameters (.CYSPPSP, ID=10/3) APIcommand. Note these two key
behaviors concerning hardware control vs. software control:

e Asserting the CYSPP pin externally will always trigger automatic CYSPP operation in the configured role

e CYSPP data mode (where the APl is suppressed and all serial data is channeled to the remote peer)
ultimately depends on the state of the CYSPP pin. EZ-Serial pulls this pin to the appropriate logic level
based on internal CYSPP state changes when CYSPP is enabled, but you can override the pulled state with
an external host or hardware design feature.

Table10 CYSPP configuration and pin relationship

CYSPP pin CYSPP “enable” CYSPP operation

state value in configuration

Floating Disabled Inactive. All advertising, scanning, connections, GATT

(assumed subscriptions, GATT transfers, etc. occur via APl commands and

default) events. CYSPP GATT structure is not visible to a remote client.
Enabled Idle until start. When started viathep_cyspp_start

(.CYSPPSTART, ID=10/2) APlcommand, module will begin
advertising or scanning depending on configured role. APl events
(boot, stage changes, connections, etc.) will be visible over UART
until the CYSPP data connection is opened between the local
device and remote peer. The CYSPP pin will be pulled LOW when
this occurs, at which point the API will be suppressed and the
serial interface may be used only for CYSPP data pipe. This mode
will continue until the remote host disconnects or unsubscribes.

Autostart Automatic. Same behavior as “Enabled” case above, except
(factory default) CYSPP operation begins automatically at boot time and restarts
upon disconnection.
Externally Disabled Inactive. All advertising, scanning, connections, GATT
driven HIGH subscriptions, GATT transfers, etc. occur via APl commands and
(de-asserted) events. CYSPP GATT structure is not visible to a remote client.
Enabled Idle until start, command mode retained. When started via the

p _cyspp_start (.CYSPPSTART, ID=10/2) APIcommand,
module will begin advertising or scanning depending on
configured role. APl events (BOOT, stage changes, connections,
etc.) will be visible over UART. APl communication will continue
throughout the process; CYSPP data from the remote host will
never be raw/transparent unless the host asserts the CYSPP pin.

Autostart Automatic. Same behavior as “Enabled” case above, except
CYSPP operation begins automatically at boot time and restarts
upon disconnection. APl events will continue to be visible while
CYSPP pin is de-asserted (HIGH).

User guide 32 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

CYSPP pin CYSPP “enable” CYSPP operation

state value in configuration

Externally Does not matter Active regardless of firmware configuration. Automatic
driven LOW advertising or scanning will begin at boot time depending on
(asserted) configured role. APl events (boot, state changes, connections,

and so on.) will not be visible over UART, because API
communication is always suppressed when CYSPP pin is
asserted.

2.5 Configuration settings, storage and protection

The EZ-Serial platform provides methods to customize its many built-in functions. It is important to understand
how these settings are stored and changed in different contexts to avoid unexpected behavior.

2.5.1 Factory, boot, runtime, and automatic settings

EZ-Serial implements four different “layers” of configuration data, each of which serves a unique purpose.
Table 11 describes each type of configuration storage in detail.

Table11 Configuration setting storage layers

Layer Details
Factory Description:
(FLASH) Factory-level settings are hard-coded into the firmware image and stored in flash, and cannot

be changed independently by the user. They are used for runtime-level settings until/unless
customized boot-level values exist. Using the system factory reset (/RFAC, ID=2/5)
API command will revert to these values.

Content:

These values contain only platform configuration settings, but no custom GATT structure
definitions or value data.

Data retention during chipset reset: YES
These values are retained upon power cycles and chipset reset conditions.
Data retention during DFU: VERSION-SPECIFIC

These values may change during the DFU process if updating to a new EZ-Serial image with
different factory default values.

Boot Description:

(FLASH) Boot-level settings are set by the user and stored in flash, and applied to the runtime-level area
for active use when the module boots. (If no customized boot-level settings have been set by
the user, the factory-level settings are applied instead upon first boot.) These values can be
modified using APl commands, and they are erased when performing a factory reset.
Content:

These values contain both platform configuration settings and any custom GATT structure
definitions. Actual GATT characteristic values such as those written by a remote client are not
included in this data.

Data retention during chipset reset: YES

These values are retained during power cycles and chipset reset conditions.

Data retention during DFU: YES

User guide 33 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Getting started

Layer Details

These values are retained during the DFU process. Boot-level configuration data is keptin a
special “user data” area of flash, which is excluded during updates to new EZ-Serial firmware

images.
Runtime Description:
(RAM) Runtime-level settings are used as the active configuration set that controls EZ-Serial’s

behavior at all times, with a few exceptions as noted in the following “Automatic” section. API
commands that set or get configuration values access this layer of configuration data unless
explicitly noted otherwise.

Content:

These values contain platform configuration settings, custom GATT structure definitions, and
GATT characteristic values written from a remote client.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions. Any runtime
settings or GATT database structure definitions should be written to flash with the relevant API
command(s) before performing a reset.

Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to
image transfer.

Automatic | Description:

(RAM) Automatic settings are set by the firmware based on detected external behavior, and EZ-Serial
uses these values to augment the settings in the runtime configuration block. Currently, only
one setting falls into this category:

API parse mode (binary or text mode depending on initial packet byte)
Content:

These values contain a very limited subset of auto-detected configuration settings, and do not
include most configuration data or any GATT structure or value data.

Data retention during chipset reset: NO
These values are not retained during power cycles and chipset reset conditions.
Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to
image transfer.

2,5.2 Saving runtime settings in flash

Storing settings in flash memory is critical to allow predictable, long-term customized behavior without
needing to reconfigure each time. EZ-Serial provides two ways to accomplish this:

e Usethesystem store config (/SCFG, ID=2/4) APlcommand to write all current runtime-level
settings to the boot-level configuration. This applies a snapshot of the current configuration to flash in one
step. It is simpler than the alternative if you are unsure which settings have changed between boot-level
and runtime-level values, or if you want to test out a new set of options before making them permanent.

o Setthe “flash” memory scope bit in the binary command packet header when writing new configuration
values with relevant commands, or append the ‘S’ character to command names in text mode. This is
simpler than the alternative if you know exactly which settings need to be changed, since it does not require
the final use of the system store config (/SCFG, ID=2/4) APIcommand afterward.

User guide 34 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Getting started

Note that while the flash memory scope bit (in binary mode) or ‘S’ character (in text mode) may be used with
any command, doing so is only relevant for commands that either read or write configuration values directly.
For other commands, these flags will be silently ignored. For more details on API reference material, see the API
protocol reference section.

To ensure the longest flash memory life, writes to flash should be as infrequent as possible in production-ready
designs. Settings that must be changed frequently should be modified in RAM and only written to flash if
required. Note, the internal chipsets used in the Infineon Bluetooth® modules that run EZ-Serial have a
minimum flash endurance rating of 100,000 cycles.

2.5.3 Protected configuration settings

To help avoid this potential problem, a few settings are classified as protected. This means that they must be
changed at the runtime level only (RAM) before they may be applied to the boot-level (flash) area. Currently,
only one command affects protected settings:

system set uart parameters (STU, ID=2/25)

The changes that are most likely to cause an unintended communication lockout are serial transport
reconfigurations, such as selecting a baud rate that is not supported by the host. To store new values in flash
for protected configuration settings, you must either send the same command twice with the flash memory
scope bit/character used only the second time. This forces the flash write to occur using the new configuration,
which can only occur if communication is still possible.

2.6 Where to find related material

This guide refers to firmware images and example source code files that must be accessed separately from this
document.

2.6.1 Latest EZ-Serial firmware image

You can find the latest available EZ-Serial firmware image files on Infineon’s website:

e AIROC™ Wi-Fi & Bluetooth® EZ-Serial Module Firmware Platform

These images are suitable for bootloader updates over Bluetooth® LE in the case of target devices. For more
details on how to flash these firmware images onto target modules, see the Device firmware update examples
section.

2.6.2 Latest host API protocol library
You can find the latest host API protocol library source code on Infineon’s website:

e AIROC™ Wi-Fi & Bluetooth® EZ-Serial Module Firmware Platform

2.6.3 Comprehensive API reference

While this guide contains many specific functional examples, these are not intended to provide a full reference
to all possible functionality provided by the API. For more details on the API structure and protocol, see the API
protocol reference section.

User guide 35 002-39351 Rev. *B
2025-11-12

https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/?redirId=VL1275&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-software
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/?redirId=VL1275&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-software

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3 Operational examples

EZ-Serial provides a great platform on which to build a wide variety of Bluetooth® LE applications. The
following sections describe many common operations that you can experiment with or combine together to
create the behavior needed for your application.

3.1 System setup examples

These examples demonstrate the basic platform behavior and configuration of the system.

Note: The first example (see Table 14) provides low-level detail and explanation of some API protocol
formatting features, while all other examples assume a basic understanding of the mechanics of
the protocol and will only show example snippets in text format. For detail on the APl methods
used in each case and the binary equivalents of each command, response, and event, see the API
protocol reference section.

3.1.1 How to identify the running firmware and Bluetooth® LE stack version

The EZ-Serial firmware, Bluetooth® LE stack, and protocol version details can be obtained from the APl event
generated at boot time, or on demand using an APl command.

3.1.1.1 Getting version details from boot event

Capture and process the system boot (BOOT, ID=2/1) APleventthatoccurswhen the moduleis powered
on or reset. This event includes the application version, stack version, protocol version, boot cause, and unique
Bluetooth® MAC address.

If the protocol parser/generator is in text mode (factory default), the system boot (BOOT, 1ID=2/1) API
event looks like this:

@E,003B,BOOT,E=0101011A,S5=05040001,P=0001,H=40,C=01,A=00A050421A63

If the protocol parser is in binary mode, this event will be similar to that shown below, expressed in
hexadecimal notation:

Header Payload Checksum
80120201 1A0101013500030303010501631A4250A000 3F

To simplify manual interpretation in this guide, individual parameters within the payload are separately
underlined.

Note: In text mode, multibyte integer data is expressed in big-endian notation, while in binary mode,
multibyte integer data is transmitted in little-endian order.

The payload data in the event text/binary examples shown above is described in Table 12.

User guide 36 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

Table12 Payload details for boot event

Text code | Textdata Binary data Details Interpretation
E “0101011A” 1A010101 EZ-Serial application version | Version 1.1.1 build 26
(0x1A)
S “05040001” 05040001 Bluetooth® LE stack version Version 5.4.0 build 01
P “0001” 0100 API protocol version Version 1.0
H “40” 05 Hardware ID CYW20822
C “01” 01 Cause for boot event Power-cycle/XRES
A “00A050421A63” |63 1A 4250A0 MAC address 00:A0:50:42:1A:63
00

3.1.1.2 Getting version details from boot event

Usethe system query firmware version (/QFV, ID=2/6) APlcommand to requestversion details at
any time. The response to this command contains the same initial information in the system boot (BOOT,
ID=2/1) APl event, but it does not include the boot cause or the module’s Bluetooth® MAC address.

The folllwing shows the text-mode response to this APl command:

@R, 002C, /QFV,0000,E=010402FF, S=05040001,P=0001, H=40

The following shows the binary-mode response packet :

Header Payload Checksum
C00D 0206 0000 FF 02 04 01 01 00 04 0501 00 40 BF TA

To simplify manual interpretation in this guide, individual parameters within the payload are separately
underlined.

3.1.2 How to change the serial communication parameters

Usethe system set uart parameters (STU, ID=2/25) APlcommand to reconfigure the serial interface
used for host communication. This command affects protected settings, and therefore it must be applied in
RAM first before it can be written to flash.

All data entered via text mode must be expressed in hexadecimal notation. Table 13 lists common baud rates
and their hexadecimal equivalents:

Table13 Common UART baud rates and hex equivalents

Baud rate Hex equivalent

300 12C

9,600 2580

19,200 4B00

115,200 (default) 1C200

230,400 38400

460,800 70800

1000000 F4240

User guide 37 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Note: EZ-Serial supports non-standard baud rates not listed in Table 13, and should remain below 3%
clock error due to the use of an internal fractional clock divider. While this is within the tolerance
level required by many UART interfaces, you should measure the actual bit timing with a scope or
logic analyzer to verify that the baud rate is operating within the required tolerance for your host
device.

Note: The USB-to-UART bridge provided by the CYW920822M2P4XX1040-EVK’s PSoC™ 5LP microcontroller
supports configurable baud rates and parity/stop bits, but does not support flow control. It is also
limited to 115200 baud to remain within typical clock tolerances. Connect an external UART device
or MCU to the module’s UART data and flow control pins if you wish to use flow control or faster
baud rates. See the Connecting the serial interface section for detailed instructions and specific
requirements for proper functionality when connecting an external UART device to the
CYW920822M2P4XX1040-EVK.

Note: Selecting a baud rate below 9600 and using API protocol communication can result in a situation
where EZ-Serial generates APl response and event packets faster than the UART interface can
transmit them to the host. If this occurs, data will flow continuously out of the module, but it will
not respond to incoming commands. The most likely trigger for this situation is a scan started with
gap start scan (/S, ID=4/10),orautostarting CYSPP client mode operation (which also
begins a scan). Performing a scan in a busy environment will generate scan result events rapidly
and continuously.

Possible workarounds include:

e Ifusing CYSPP, keep the CYSPP pin externally asserted to suppress APl output
e If possible, select a faster baud rate
o |If possible, reduce the quantity of devices in the environment to decrease scan result frequency

Table14 Example 1: Set UART to 9600 baud, no parity, flow control enabled, and store in flash

Direction | Content Effect

TX> STU,B=2580, F=1 Set new UART parameters (RAM only) - “38400” decimal is “9600” hex
<RX @R, 0009,STU, 0000 | Response indicates success

Change host UART parameters to match the new settings here before sending additional data

TX> STUS Write UART settings to flash

<RX @R, 000R,8TUS, 0000 | Response indicates success

Note the use of the command “STUS$” with no additional arguments. In text mode, most SET commands have
no required arguments, allowing you to change only the desired settings. Optional arguments that are omitted
will not be modified, because the EZ-Serial platform substitutes the current runtime values as if you had
supplied all of them.

In the above example, the “baud,” “flow,” and “parity” settings are stored in RAM with the first command, and
then the second command writes to flash whichever runtime values are affected by the
system set uart parameters (STU, ID=2/25) API command.

User guide 38 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table1l5 Example 2: Set UART to 115200 baud, no parity, flow control disabled, and store in RAM only

Direction Content Effect

TX> STU,B=1C200,F=0 Apply new UART parameters
<RX €R,0009,STU, 0000 Response indicates success
3.1.3 How to change the device name and appearance

Usethe gap set device name (SDN, ID=4/15) APIcommand to seta new friendly device name at any
time, andthe gap set device appearance (SDA, ID=4/17) APIcommand to setanew appearance
value.

EZ-Serial uses the device name and appearance to populate the GAP service’s name and appearance
characteristic values in the GATT database. If EZ-Serial is allowed to automatically manage the advertisement
and scan response data content (default behavior), then it will also include up to 29 bytes of the device name in
the scan response packet. (The limit of 29 bytes is due to a Bluetooth® LE specification limit on the maximum
scan response payload, which is 31 bytes; the other two bytes are needed for the field length and field type
values that are part of the device name field.)

Note: EZ-Serial limits the device name length to 64 bytes to minimize internal SRAM requirements.
Using EZ-Serial’s special macro codes, described in the Macro definitions section, you can enter a single text

string that is expanded internally to include module-specific values - in this case, the Bluetooth® MAC address.

The device appearance value is a 16-bit field made up of a 10-bit and 6-bit subfield. Allowed values are defined
by the Bluetooth® SIG and can be found at Bluetooth® webpage.

Changes made to the device name and appearance values take effect immediately. They are written to the local
GATT characteristics for these two values (always present), and the device name is updated in the scan
response packet if user-defined advertisement content has not been enabled with the
gap_set adv parameters (SAP, ID=4/23) APlcommand.

Table16 Example 1: Set device name with partial MAC address incorporation

Direction | Content Effect

TX> SDN$,N=EZ-Serial Set new device name in flash using 4™, 5™, and 6™ MAC bytes
5M4:5M5:5M6 (module-specific)

«RX @R, 000A,SDNS, 0000 Response indicates success

This configured name will result in an actual name of “EZ-Serial E3:83:5F” assuming the module in use has a
MAC address of 00:A0:50:E3:83:5F (asis used in other examples throughout this document).

Table 17 Example 2: Set device appearance to “Generic Computer” (0x0080)

Direction Content Effect

X~ SDAS,A=0080 Set new appearance value in flash

«RX €R, 0004, 5DAS, 0000 Response indicates success

User guide 39 002-39351 Rev. *B

2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.14 How to change the output power

Usethe system set tx power (STXP, ID=2/21) APlcommand to seta new radio transmit power level.
The argument to this command is not the dBm value directly, but rather a set of predefined values representing
a fixed range from -18 dBm to +3 dBm. Table 18 lists each allowed value.

Table18 Supported TX power output options

Argument Power level
-20 dBm
-10 dBm

-6 dBm

-4 dBm
-2dBm
(default) 0dBm
2dBm

4 dBm

o |INjoojg | |WIN |

See each module’s datasheet for details about these restrictions.

Table19 Example 1: Set output power to -6 dBm

Direction Content Effect

TX> STXP, P=3 Set new TX power (RAM only)
<RX €R,000A,STXP, 0000 Response indicates success
3.1.5 How to manage Sleep states

EZ-Serial manages transitions between active CPU and sleep states automatically. It chooses the mode requiring
the lowest safe power consumption according to the current operational state and configuration, including
transitioning into sleep mode between Bluetooth® LE radio events (advertising, scanning, or while connected).
Table 20 provides a high-level summary of the four power states used by the platform.

Table20 EZ-Serial power states

Power mode | Current range (typical), | Wake-up | Description
Vdd=3.3Vto5.0V time

Active 235 uA n/a CPU and all peripherals are active.

Sleep 222 yA 0 CPU Idle. Bluetooth® LE Deep Sleep. This state is
useful when data need to be processed but does not
need to be transmitted.

Deep Sleep | 6.5 pA 12 ms 128 KB SRAM retained. All register/flip-flop states are
retained. Digital I/O’s will hold the state.

Hibernate 2.5pA 180 ms Powers down system memory. It retains only a
minimal amount of flip-flop state.

EZ-Serial uses the maximum allowed sleep level based on combined data from the system-wide sleep setting,
CYSPP data mode sleep setting (if CYSPP data mode is active), PWM output state, and LP_MODE pin state.

User guide 40 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

In outline form, the Sleep state logic follows this process:

1. Ifthe LP_MODE pin is asserted, remain in active mode. Otherwise:
2. Select the lowest value (0 = no sleep, 1 =normal sleep, 2 = deep sleep) among the following:

a) The system sleep level is configured with the system set sleep parameters (SSLP, ID=2/19) API
command.

b) The CYSPP-specific sleep levelis configured with thep cyspp set parameters (.CYSPPSP,
ID=10/3) APl command, if the CYSPP data pipe is open (connected and in CYSPP data mode).

c) Normal sleep if high-resolution PWM output is enabled with the gpio set pwm mode (SPWM,
1D=9/11) APl command.

Note: EZ-Serial does not allow changes to the sleep level calculation hierarchy order. For example, if
CYSPP sleep level is “2” (Deep Sleep) but system-wide sleep is level “1”, then the system-wide
setting will override the CYSPP setting because it is a lower value. EZ-Serial will always select the
lowest applicable value for the current operational state.

3. This fine-grained level of control over sleep mode selection in various operational states allows you to
achieve the most efficient power consumption supported by your application design. For example, you may
allow Deep Sleep at all times except when the CYSPP data pipe is open, to easily avoid potential initial-byte
data corruption at high baud rates. For more details, see the Avoiding UART data loss or corruption due to
Deep Sleep transition section.

3.1.,5.1 Configuring the system-wide sleep level

Configure the system-wide sleep level using the system set sleep parameters (SSLP, ID=2/19) API
command. When sleep is not prevented by asserting the LP_MODE pin, this value is the first “default” sleep
level limit applied when calculating which sleep mode to use.

Active PWM output will limit the effective maximum sleep level in any state to normal sleep (value =1) if
another setting is net even lower than this. If the CYSPP data pipe is open (connected and in CYSPP data mode),
then the CYSPP-specific sleep level may further limit the effective maximum sleep level.

EZ-Serial allows only normal sleep (value = 1) as the factory default system-wide sleep level, for a simpler out-
of-the-box experience concerning UART communication. However, you can change this to allow Deep Sleep to
significantly improve average current consumption. Ensure that your application can properly work within this
mode before applying it; for more details, see the Avoiding UART data loss or corruption due to Deep Sleep
transition section.

Table21 Example 1: Change system-wide sleep level to Deep Sleep

Direction Content Effect
TX> SSLP, L=2 Set new system sleep level to “Deep Sleep”
«RX €R,000A,SSLP, 0000 Response indicates success

Transmissions to the module now require a preceding dummy byte for wake-on-RX, or proper use of the
LP_MODE pin as described in the Preventing sleep with the LP_MODE section.

User guide 41 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.1.5.2 Configuring the CYSPP data mode sleep level

Configure the CYSPP data mode sleep level usingthep cyspp set parameters (.CYSPPSP, ID=10/3)
APl command. When sleep is not disabled using the LP_MODE pin, this value is the second limit applied when
calculating which sleep mode to use. The system-wide sleep level takes precedence over the CYSPP sleep level.
Further, PWM output will limit the effective maximum sleep level in any state to normal sleep (value = 1),
regardless of other settings.

Setting the CYSPP data mode sleep level to normal sleep (value = 1) or no sleep (value = 0) ensures that EZ-
Serial does not use a sleep level beyond that setting whenever a CYSPP data pipe is open (connected and in
CYSPP data mode). The factory default setting for this option is to allow Deep Sleep (value =2), but keep in
mind that factory defaults also set the system-wide sleep level limit to normal sleep (value = 1), which prevents
Deep Sleep at all times unless you reconfigure it.

For using CYSPP mode in the peripheral role with legacy systems that cannot use either the LP_MODE pin or
preceding dummy bytes, one possible compromise for improved power consumption is to set the system-wide
sleep level to Deep Sleep and the CYSPP data mode sleep level to normal sleep. The CPU will sleep aggressively
until a remote peer opens the CYSPP data pipe, at which point the CPU will use only normal sleep so that the
wired external host does not need any special sleep/wake transition control.

Table22 Example 1: Limit CYSPP-specific sleep level to normal sleep

Direction Content Effect
TX> -CYSPPSP, P=1 Set the new CYSPP sleep level to “normal sleep”
<RX @R, 000E, CYSPPSP, 0000

3.1.5.3 Preventing sleep with the LP_MODE pin

Assert (LOW) the LP_MODE control pin to prevent the module from sleeping. Properly asserting and deasserting
this pin surrounding host-to-module UART transmissions provides the most efficient power consumption while
still allowing Deep Sleep at all other times. For more details, see the Avoiding UART data loss or corruption due

to Deep Sleep transition section.

3.1.5.4 Preventing activity with the ATEN_SHDN pin

Not implemented.

3.1.5.5 Avoiding UART data loss or corruption due to Deep Sleep transition

Allowing Deep Sleep provides the best average power consumption. However, because the UART peripheral
cannot operate in Deep Sleep mode, supporting UART communication while also allowing Deep Sleep requires
special consideration. It takes approximately 12 ms for the CPU to transition from Deep Sleep to fully awake,
and any UART data sent during this time will be lost.

The UART peripheral will start processing the data after detecting N bytes upon waking, potentially leading to
persistent bit misalignment and the reporting of incorrect data to the API parser. Table 23 shows how many
bytes can wake up the device from Deep Sleep.

Infineon recommends that use a GPIO to exit from low-power mode.

User guide 42 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table23 Example 1: Limit CYSPP-specific sleep level to normal sleep
baud rate (bit/s) Dummy length (bytes)

300 1

9600 1

19200 2

115200 9

230400 18

460800 35

1000000 75

3.1.6 How to perform a factory reset

You can perform a factory reset using either GPIO signals or an APl command.

EZ-Serial will generate the system factory reset complete (RFAC, ID=2/3) APleventimmediately
after erasing all settings, and before performing the final module reset to boot to the factory default state. The
platform generates this event using the previously configured parser and transport mode. While this event is
typically not processed by an external host during a hardware-triggered factory reset, it helps to verify the
intended flow when controlling the module via software.

After the reset completes, the system boot (BOOT, ID=2/1) APleventwill occur with the “cause”
parameter indicating a factory reset.

3.1.6.1 Factory reset via APl command

To trigger a factory reset over the serial interface, use the system factory reset (/RFAC, ID=2/5) API

command.

Table24 Example 1: Perform a factory reset

Direction| Content Effect

TX> /REFAC Trigger factory reset

<RX @R, 000B, /RFAC, 0000 Response indicates success

<«RX @E, 0005, RFAC Event indicates factory reset
completed

Short delay while chipset reset and boot process occurs

<RX @E, 003B,BOOT,E=0101011A,5=05040001,P=0001, H=40, Eventindicatesthatsystem has

C=05,2=00A050421A63 rebooted, cause is set to 0x05

(factory reset)

User guide 43 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.2 Cable replacement examples with CYSPP

EZ-Serial’s CYSPP implementation provides a simple way to use a Bluetooth® LE connection to manage a
bidirectional stream of serial data. Both ends of the connection must support CYSPP, including the ability to
either provide or make use of the CYSPP GATT structure for data flow. The EZ-Serial firmware can operate as
either a GAP peripheral and CYSPP server device (typical when communicating with a smartphone) or as a GAP
central and CYSPP client device (typical when communicating with a second module running EZ-Serial
firmware).

See the Using CYSPP mode section for a description of how CYSPP mode behaves generally and how it affects
APl communication.

3.2.1 How to get started in CYSPP mode

The factory default configuration in peripheral auto-start mode. With this configuration, the module begins
advertising as soon as it has power.

If you are using the CYW920822M2P4XX1040-EVK for evaluation, perform the following steps:

e Open the kit-provided COM port in your terminal software of choice, being sure to use the correct port
settings. If you have not changed any settings previously using the APl commands, the defaults are 115200
baud, 8 data bits, no parity, 1 stop bit, and no flow control.

e Touse CYSPP in central/client mode, send command “.CYSPPSPS$,G=1,E=1" by COM port

e Connect to the EZ-Serial module from a compatible remote peer as described in the Using CYSPP mode
section, or activate another CYSPP-capable peripheral if running the local test module in central mode as
described in the previous step

e Waitforthep cyspp status (.CYspp, ID=10/1) APleventto appear with the LSB setindicating the
data channel is ready. The final status event should appear as one of the following:
QE, 000C, .CYSPP, 5=21

e Send and receive data as desired.
If you are using a custom design:

e EZ-Serial uses the role configured in the firmware usingthep cyspp set parameters (.CYSPPSP,
1D=10/3) APl command. EZ-Serial uses the peripheral role with factory default settings.

e Connect the module’s UART_RX pin to the external host’s UART_TX pin
e Connect the module’s UART_TX pin to the external host’s UART_RX pin

e OPTIONAL: Assert (LOW) the CYSPP pin to force CYSPP data mode in the hardware, preventing APl usage or
output

e Apply power to the module, or reset it with the hardware reset pin
e Ifyou have asserted (LOW) the CYSPP pin externally:

Monitor the CONNECTION pin to detect when the remote peer has connected and the GATT data subscription is
complete.

Once the CONNECTION pin goes low, you can send and receive data from the host to the remote peer over the
module’s serial connection.

o Ifthe CYSPP pinis left floating:

User guide 44 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Wait forthep cyspp status (.CYSPP, ID=10/1) APleventto appear with the LSB setindicating the data
channel is ready. The final status event should appear as one of the following:

e QE,000C, .CYSPP, S=05(runningin peripheral role)
e @E,000C,.CYSPP,S=15(runningin centralrole)

Send and receive data as desired.

Note: If you externally de-assert (HIGH) the CYSPP pin, EZ-Serial will never enter CYSPP data mode even
if a remote peer has connected and all CYSPP mode data pipe preparations have completed. The
remote peer may use CYSPP on its end normally, but all data transfers and status updates will
appear on the local EZ-Serial end as APl events to be processed normally.

3.2.1.1 How to start CYSPP in peripheral mode

EZ-Serial’s factory default configuration automatically starts CYSPP operation in the peripheral role after
booting. To establish a CYSPP data pipe, simply scan and connect from a remote device, then subscribe to RX
flow control (optional) and the desired acknowledged or unacknowledged data characteristic as described in
the Sending and receiving data in CYSPP data mode section.

A second EZ-Serial module running in CYSPP central/client mode will perform all required client-side steps
automatically. As of version 1.1, EZ-Serial shows all GATT events relating to CYSPP setup until the CYSPP data
pipe is fully opened.

Table25 Example 1: Complete boot and CYSPP connection process in peripheral mode

Direction | Content Effect

<RX @E, 003B,BOOT,E=0101000A, S=05040001,P=0001, |Bootevent
H=40,C=01,A=00A050421A63

<RX @E,000E,ASC,5=01,R=03 CYSPP-triggered advertisement started

TX> -CYSPPSPS, P=1,G=1, Configure peripheral into CYSPP mode
E=2,R=11223344,M=FFFFFFFF

<RX @R, 000F, .CYSPPSP$, 0000 Response

<RX ¢E,0035,C,C=01,A=00A050E3835F, T=00, Connection established with remote
I=0006,L=0000,0=0064,B=00 device

<RX @E, 0012, PU,C=01,T=01,R=01 Phy update event

<RX ¢E,000E,ASC,5=00,R=03 Advertisement stop

<«RX @E,001A,wW,C=01,H=0018,T=00,D=0200 Remote client writes [02 00] to Client

Characteristic Configuration Descriptor
for RX flow control to enable indications
from that characteristic

«RX €E,000C, .CYSPP, 5=21 CYSPP status update (0x04):
0x04: Subscribed to RX flow control
<RX @E, 001A,W,C=04,H=001B, T=00,D=0200 Remote client writes [02 00] to Client

Characteristic Configuration Descriptor
for unacknowledged data to enable
notifications from that characteristic

«RX @E,000C, .CYSPP, S=25 CYSPP status update

The host may now send data to the module for delivery to the remote peer, received data comes from peer.

User guide 45 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.2.1.2 How to start CYSPP in central mode

Following are the steps of how to start CYSPP mode automatically.

This assumes you have already configured the peripheral device in CYSPP mode and auto start enabled after
boot.”

Table26 Example 1: Complete boot and CYSPP connection process in central mode

Direction | Content Effect

TX> -CYSPPSPS, P=1,G=1, E=2,R=11223344, Configure Central role and auto-start
M=FFFFFFFF

<RX @R, 000F, .CYSPPSPS$, 0000 Response

TX> /RBT Central role reboot

«RX @E, 003B,BOOT,E=0101000A,S=05040001, Boot event
P=0001,H=40,C=04,A=00A050E3835F

<RX QE, 000E, SSC, S=01,R=03 CYSPP-triggered scan started

<RX €E,006C,S,R=00,A=EA5B51311E93,T=01, | Scan result (advertisement fields separated for
S=B2 . .

’ ier interpretation
B=00,D=020106110700A10C2000080A9EE2 | -o>'© terpretation)
1115A13333336507FF310144332211, P=01
,C=00

<RX QE, 000E, SSC, S=00,R=03 CYSPP-triggered scan stopped

<RX €E,0035,C,C=00,A=00A050421A63,T=00, | Connection established with remote device
I=0006,L=0000,0=0064,B=00

<RX ¢E,0029,DR,C=00,H=0012,R=0000,T=280 | GATT discovery result (0x1800)
0,
P=00,U=0028

<RX €E,0029,DR,C=00,H=0013,R=0000,T=280 | GATT discovery result (0x1801)
0,
P=00,U=0328

<RX €E,0045,DR,C=00,H=0014,R=0000,T=280 | GATT discovery result (CYSPP service)
0,
P=00,U=00A10C2000089A9EE21115A13333
3365

<RX ¢E,0029,DR,C=00,H=0015,R=0000, GATT discovery result
T=2902,P=00,U=0229

<RX ¢E,0029,DR,C=00,H=0016,R=0000, GATT discovery result
T=2803,P=00,U=0328

<RX @E,0045,DR,C=00,H=0017,R=0000, T=000 GATTdiscovery result
0,Pp=00,
U=00A20C2000089A9EE21115A133333365

<«RX @E,0029,DR,C=00,H=0018,R=0000, T=290 GATTdiscoveryresu[t
2,P=00,U=0229

<«RX @E,0029,DR,C=00,H=0019,R=0000, T=280 GATTdiscoveryresu[t
3,P=00,U=0328

«RX @E,0045,DR,C=00,H=001A,R=0000, T=000 GATTdiscovery result
0,P=00,U=03A10C2000089A9EE21115A133
333365

«RX @E,0029,DR,C=00,H=001B,R=0000, T=290 GATTdiscovery result
2,P=00,U=0229

<RX €E,0010,RPC,C=04,R=060A Remote procedures complete

User guide 46 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

The host may now send data to the module for delivery to the remote peer, received data comes from the peer.

33 GAP peripheral examples

GAP peripheral operation is one of the most common use cases for Bluetooth® LE designs, since it is usually the
simplest way to communicate with a smartphone operating as a central device.

The Bluetooth® specification defines different types of roles for the devices on each end of a Bluetooth® LE link:

e Linklayer
- Master - device that initiates a connection (always GAP central)
- Slave - device that accepts a connection (always GAP peripheral)
e GAP layer
Central - device that initiated a connection (always LL master)

Peripheral - device that accepted a connection (always LL slave)

Broadcaster - device that is advertising in a non-connectable state

Observer - device that is scanning without initiating a connection
e GATT layer
- Client - device that accesses data from a remote GATT server
- Server - device that provides attribute data to be accessed remotely

Link layer roles are defined at the moment that a connection is initiated based on which side initiates the
connection.

The GAP layer provides four different roles, two of which involve connections (central and peripheral) and two
of which are connectionless (broadcaster and observer). The link layer and GAP layer roles are closely related,
particularly when a connection is involved.

The GATT layer role is independent of other behavior. A single device may even perform GATT duties in both the
client and server roles. A common example of this is an iOS device providing the Apple Notification Center
Service as a GATT server, even though it is connected to a peripheral device and acting as a GATT client to that
device.

3.3.1 How to advertise as peripheral device

Advertising is the Bluetooth® LE activity that allows scanning devices to observe and connect to peripherals. It
is required for a connection to be initiated, but it may also be done in a non-connectable way (called
“broadcasting”). EZ-Serial supports non-connectable broadcasting even while connected.

EZ-Serial gives you full control over when and how to advertise by using the gap start adv (/A, ID=4/8)
APl command and the gap set adv parameters (SAP, ID=4/23) APlcommand.

When the advertising state changes, the gap_adv_state changed (AsSc, ID=4/2) APleventoccurs. This

event includes the new state as well as a code showing the reason why the state changed.

Note: If you do not have any automatic advertisement timeout set, advertisements will continue until
you explicitly stop them or a remote device initiates a connection.

User guide 47 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

In text mode, all arguments to the gap _start adv (/A, ID=4/8) APIcommand are optional. Any supplied
arguments will be used only for the immediate advertisement that begins as a result of the command, while
any omitted arguments will fall back to the values configured by the gap set adv_parameters (SAP,
I1D=4/23) APl command. You can see these values at any time by using the gap get adv parameters
(GAP, ID=4/24) APlcommand.

Table27 Example 1: Start advertising with preconfigured default parameters

Direction Content Effect

TX> /A Begin advertising with preconfigured defaults

<RX €R,0008,/A,0000 Response indicates success

«RX CE,000E,ASC,5=01,R=03 | Eventindicates advertising state changed to “active”

Table28 Example 2: Start advertising with custom parameters

Direction | Content Effect

TX> /RA,M=1,T=0,I=A0,C=6,F=0,0=1E | Begin advertising with custom arguments

<RX €R,0008,/A,0000 Response indicates success

<RX @E, 000E, ASC, S=01,R=00 Event indicates advertising state changed to “active”
3.3.2 How to stop advertising as a peripheral device

To explicitly stop advertising, use the gap_stop _adv (/AX, ID=4/9) APlcommand,or open aconnection to
the module from a remote Bluetooth® LE central device.

Table29 Example 1: Stop advertising

Direction | Content Effect

TX> /AX Stop advertising

<RX €R,0009, /AX, 0000 Response indicates success

<RX @E, 000E,ASC, 5=00,R=00 | Eventindicates advertising state changed to “inactive” due to user
request

3.3.3 How to customize advertisement and scan response data

You can customize the content of the main advertisement payload and scan response payload with the
gap_set adv data (SAD, ID=4/19) andgap set sr data (SSRD, ID=4/21) APIcommands,
respectively.

Note: If you intend to use user-defined advertisement content, you must explicitly enable this in the
advertisement parameters. Normally, the EZ-Serial platform manages the content in the
advertisement and scan response packets automatically based on the platform configuration,
including the device name and which profiles are enabled. If you set custom content but do not
configure EZ-Serial to use that content, advertisement and scan response payloads will remain
automatically managed.

User guide 48 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

Key features and requirements for customizing data:

e Each of the advertisement and scan response packet payloads may have a maximum of 31 bytes. Thisis a
Bluetooth® LE specification limit.

e Advertisement data in both packets should follow the correct [Length, Type, Value...] format required by the
Bluetooth® specification. Malformed data within advertisements can prevent proper scanning by remote
devices. The Length value does not include itself, but does include the Type byte and all bytes in the
remaining Value data.

e Each packet may contain as many fields as will fitin 31 bytes. Place multiple fields one right after the other
with no special separator. Since each field begins with a “length” value, a scanning device is always able to
properly identify the end of each field.

e Advertisement packets include the Bluetooth® connection address (public or random) outside of the
payload data. This does not count towards the 31-byte limit.

e The main advertisement packet is always transmitted while advertising. It typically includes things like
connectable flags, important supported service UUIDs, and a custom manufacturer data field. Place any
data that is critical for the remote device to see inside the main advertisement packet.

e The scan response packet is only transmitted when a remote device is performing an active scan. During an
active scan, the scanning device sends a scan request to any discovered advertising device immediately
after receiving the main advertisement packet. The scan response packet typically includes the friendly
name of the advertising device, and occasionally also includes transmit power, more manufacturer data, or
other useful but less critical data that a remote scanning device may not need to see.

Detailed information on approved field types and their intended contents can be found in the Bluetooth®
specification. Table 30 lists the fields that are most commonly used:

Table30 Common advertisement field types

Type | Description Value

0x01 Flags field - 1 byte of data 1 byte (bitfield)

0x02 Partial list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x03 Complete list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x04 Partial list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x05 Complete list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x06 Partial list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x07 Complete list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x08 | Shortened local name 0-29 bytes (Text string)

0x09 Complete local name 0-29 bytes (Text string)

Ox0A | TX power level 1 byte (dBm as signed integer)
OxFF Manufacturer data 3-29 bytes (company ID + data)

EZ-Serial does not validate advertisement or scan response payload content, and the underlying Bluetooth® LE
stack has only limited validation on the Flags field. Ensure that any customized data within either of these
packets is correctly formatted. While the module will transmit whatever payload data is configured, scanning
devices may not correctly identify your device if the data is malformed or missing (especially the Flags field).

User guide 49 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

The stack requires that the Flags field, if present, must have the final two bits set so that they match the
Discovery Mode setting used when starting advertisements. For Bluetooth® LE-only devices that do not support
“classic” BR/EDR Bluetooth® behavior, this means that the flag byte will almost always be one of these three
values:

e 0x04: Non-discoverable/broadcast-only (common for beacon-only devices)
e 0x06: General discoverable (most common for connectable devices)
Seegap start adv (/A, ID=4/8) APlcommand for additional reference on discoverable modes.

Table 31 provides examples for reference:

Table31 Examples of well-formed advertisement fields

Byte content Field description

02 01 06 Length:2 bytes

Type: Flags (0x01)

Value: LE General Discoverable Mode, BR/EDR Not Supported

05 02 09 18 OD 18 Length:5 bytes

Type: Complete list of 16-bit UUIDs for supported GATT services (0x02)
Value: 0x1809 (Health Thermometer), 0x180D (Heart Rate)

07 08 57 69 64 67 65 74 Length:?bytes
Type: Shortened local name (0x08)
Value: “Widget”

09 FF 31 01 AA BB CC DD Length:g bytes

EE FF
Type: Manufacturer data (0xFF)

Value: Company ID = 0x0131 (Infineon Semiconductor)
Data= [AA BB CC DD EE FF]

These four example fields require 25 bytes when combined, including each of the four Length values. They can
be placed in a single advertisement packet if desired:

02 01 06 05 02 09 18 OD 18 07 08 57 69 64 67 65 74 09 FF 31 01 AA BB CC DD EE FF

Here, the shortened name is included in the same packet as the more critical information. This is uncommon,
but not prohibited. The name typically goes in the scan response packet because there it cannot fit into the
advertisement packet, but any field may be in any location as long as the scanning device knows what to
expect.

User guide 50 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table32 Example 1: Set custom advertisement and scan response data

Direction | Content Effect

TX> SAP, F=2 Enable user-defined advertisement and scan response content
<RX €R,0009,5AP, 0000 Response indicates success

TX> SAD,D=050209180D18 Set new advertisement content (RAM only), Flags, and 16-bit

UUID fields. The firmware adds the 020106 header automatically
for General discoverable and also adds the 020104 header
automatically for Non-discoverable/broadcast-only.

<RX €R,0009,SAD, 0000 Response indicates success

TX> SSRD, D=0708576964676574 | Set new scan response content (RAM only), Complete local name
field

<RX @R, 000A, SSRD, 0000 Response indicates success

Table33 Example 2: Set advertisement and scan response data to a value similar to factory defaults

Direction| Content Effect

TX> SAP, F=1 Enable user-defined
advertisement and scan response
content

«RX @R, 0009, 5AP,0000 Response indicates success

TX=> SAD,D=110700a10c2000089%9a%ee21115a133333365 Set new advertisement content

(RAM only) The firmware adds the
020106 header automatically for
General discoverable and also
adds the 020104 header
automatically for Non-
discoverable/broadcast-only.

<RX @R, 0009, SAD, 0000 Response indicates success

TX= SSRD, D=1309455a2d53657269616c2045333a38333a3546 | Set new scan response content
(RAM only)

<RX @R, 000A, SSRD, 0000 Response indicates success

3.4 GAP central examples

Running as a GAP central allows you to scan for and connect to remote peripheral devices. You can also operate
as a GAP observer by scanning without any subsequent connection attempts. For more details on various link-
layer, GAP, and GATT roles, see the GAP central examples section.

User guide 51 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.4.1 How to scan for peripheral devices

Usethegap start scan (/S, ID=4/10) APlcommand to begin scanning for devices. Scanning is not
required before initiating a connection, but doing so helps to identify potential connection targets or ensure
that known or compatible peripherals are nearby and connectable.

Note: If you do not have any automatic scan timeout set, then scanning will continue until you explicitly
stop it. Scanning will not automatically resume when a connection is terminated unless CYSPP is
enabled in the central role. Otherwise, you must implement this behavior in your application logic
as needed.

Note: Stop scanning before you can initiate an outgoing connection to a remote peer. Requesting a
connection with gap connect (/C, I1D=4/1) while scanning will resultin an error.

In text mode, all arguments to the gap_start scan (/S, ID=4/10) APIcommand are optional. Any
supplied arguments will be used only for the immediate scan started as a result of the command, while any
omitted arguments will fall back to the values configured by the gap set scan parameters (SSP,
1D=4/25) APl command. You can see these values at any time by using the gap_get scan parameters
(GSP, ID=4/26) APlcommand.

After you start scanning, EZ-Serial will begin generating gap _scan result (S, ID=4/4) APleventseach
time a new advertisement packet is seen from a remote device. The same advertising device will generate
multiple scan results until duplicate filtering is enabled in the scan parameters.

Passive vs. Active Scanning:

e During a passive scan, EZ-Serial will not send scan requests to devices to ask for the “follow-up” scan
response packet. In this mode, each device generates only one event for each detected advertisement
packet. Passive scans use less power on average, since the transmitter remains inactive and the receiver is
not intentionally reactivated for a second time for the same device.

e Duringan active scan, EZ-Serial sends a scan request to obtain additional information from the remote
peripheral. In this mode, the Bluetooth® LE stack may generate two events for each device detected during
a scan. However, the remote device may not send the scan response packet, or the local device may not
receive it due to adverse RF conditions, so a second scan result event is not guaranteed. Active scans use
more power than passive scans, and result in brief transmission bursts in between receive operations.

Note: Due to, the precise timing required by the Bluetooth® LE protocol and the way active scans behave,
a large number of actively scanning devices in the same vicinity can result in none of the scanning
devices successfully obtaining a scan response from an advertising device. If two or more scanning
devices transmit a scan request on the same channel within the same ~150 us window
immediately after the main advertisement packet, the advertising device will not be able to parse
the request and will not send a response to either device. This unlikely but possible issue does not
occur while performing a passive scan.

User guide 52 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table34 Example 1: Start passive scanning with preconfigured default parameters

Direction | Content Effect

TX> /S Begin scanning with preconfigured defaults

<RX €R,0008,/5,0000 Response indicates success

<RX €k, 000E,SSC,5=01,R=00 Event indicates the scanning state has changed to

“Active” due to user request

<RX @E,0052,5,R=00,A=00A050E3835E,T | Eventindicates scan result from 00:A0:50:E3:83:5E,
;Sgégzgéégzgg;g;gjgégg;ég;g;gg normal adhpacket, RSSI -47 dBm (0xB1), Flags field
1,Cc=00 and 128-bit UUID

Table35 Example 2: Start a 5-second active scan with duplicate filtering enabled

Direction | Content Effect

TX> /S,M=1,A=1,D=1,0=5 Begin “observation” scanning, active
mode, 5-second timeout, duplicate
filter enabled

<RX @R, 0008,/s,0000 Response indicates success

<RX @E, 000E, SSC, S=01,R=00 Event indicates the scanning state
has changed to “active” due to user
request

<RX @E, 0052,5,R=00,A=00A050E3835E, T=00, 5=D1,B=00 | Eventindicates scan result from

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F, 00:A0:50:E3:83:5E, ad packet, RSSI -

F=01,C=00 47 dBm (0xB1), Flags field and 128-
bit UUID
<RX @E, 004E, S,R=04,A=00A050E3835E, T=00, S=D1,B=00 | Event indicates scan result from
22350233207565666C6F772037383A4 6353A4236, 00:A0:50:E3:83:5E, scan response
! packet, RSSI -47 dBm, Local name
field
<RX ¢E,000E,SSC,5=00,R=02 Event indicates the scanning state
has changed to “stopped” due to
configured timeout (5 seconds)
User guide 53 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.4.2 How to stop scanning for peripheral devices

To explicitly stop scanning, use the gap_stop scan (/SX, ID=4/11) APIcommand, orinitiate a connection
request to a remote device using the gap _connect (/C, ID=4/1) APlcommand.

Note: Itis possible for additional gap scan _result (S, ID=4/4) APleventsto occur betweena
successful response to the gap _stop scancommand and the gap scan state changed
event (“SSC” in text mode), due to the brief amount of time that it takes the stack to process the
request and change states. Please ensure that your application logic will not fail in this case.

Table36 Example 1: Stop scanning

Direction | Content Effect

TX> /SX Stop scanning

<RX €R,0009,/5%,0000 Response indicates success

<RX €E,000E, SSC,5=00,R=00 | Event indicates the scanning state has changed to “inactive” due to
user request

3.4.3 How to connect to a peripheral device

Usethe gap connect (/C, ID=4/1) APlcommand to initiate a connection to a remote device based on its
Bluetooth® connection address. The Bluetooth® connection address (also commonly referred to as a MAC
address) is a made up of the 6-byte device address and a 1-byte value indicating the address type. To initiate a
connection, the module must be in a disconnected state (not advertising, scanning, connecting, or connected).

Note: At this time, the Infineon Bluetooth® stack supports one active connection at a time. To transfer
data to and from multiple devices quickly, you must establish and tear down connections in rapid
succession. With a fast advertisement interval on peripheral devices and a fast connection interval
while connected, it is possible to perform many connect-transfer-disconnect cycles per second.

Addresses may be either public or random. Public addresses do not change, while random addresses change
on some period determined by the device employing privacy measures (typically at least every few minutes).
The use of random addresses, also called private addresses, reduces the possibility of passive profiling by a
remote device. For example, iOS devices always use random addressing for Bluetooth® LE operations. EZ-Serial
supports both types, and uses public addressing by default. For more information on this topic and how to
configure EZ-Serial to use random addressing, see the How to use peripheral and central privacy section.

When a Bluetooth® LE device initiates a connection request, it does not immediately transmit anything. Rather,
it must first scan until it receives a connectable advertisement packet from the target device. This is why a
peripheral device must be in an advertising state to accept a connection. The full connection process includes
the following steps:

Target peripheral device is advertising in a connectable state.

Central device begins scanning for advertisements from a target peripheral device.
Central device detects advertisement and responds with connection request.

Peripheral device receives connection request and responds with a connection response.
Connection is fully established.

oA W

The API command used to initiate a connection includes arguments for scan parameters, because scanning is
the first operation that the stack must perform on the GAP central device during a connection process.

User guide 54 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table37 Example 1: Connect to a remote device using default connection parameters

Direction | Content Effect

™ /C,A=00A050E3835E,T=0 (0O:public,1l random) Initiate connection

<RX €R,000D,/C,0000,C=00 Response indicates
success

<RX @E,0030,C,H=04,A=00A050E3835E, T=00, I=0010,L=0000,0=0064 | Event indicates that
connection opened

3.4.4 How to cancel a pending connection to a peripheral device

Usethe gap cancel connection (/CX, ID=4/2) APIcommand to cancela pendingoutgoingconnection
request. This only applies when the connection is not yet open and you have not received the gap _connected
(C, ID=4/5) APl event.If you need to close an open connection, use the gap disconnect (/DIS,

1D=4/5) APl command.

Table38 Example 1: Cancel a pending connection to a remote device

Direction Content Effect

TX> /CX Cancel pending connection

<RX €R,0009,/CX, 0000 Response indicates success

<RX ¢E,0010,DIS,C=00,R=091F Event indicates connection canceled
3.4.5 How to disconnect from a peripheral device

Usethe gap disconnect (/DIS, 1ID=4/5) APlcommand to close an active connection to a remote device.
This only applies when the connection is already fully established, and should not be used to cancel a pending
outgoing connection. In that case, use the gap cancel connection (/CX, ID=4/2) APIcommand.

Table39 Example 1: Disconnect from a remote device

Direction| Content Effect

TX> /DIS Disconnect from peer

<RX €R,000A, /DTS, 0000 Response indicates success

«RX @E,0010,DIS,C=0,R=0916 | Event indicates that connection closed, reason=0x0916
(intentional local closure)

User guide 55 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.5 GATT server examples

Bluetooth® LE data transfer operations between two connected devices most often occur through the GATT
layer, with a server on one side and a client on the other side. The GATT server makes use of a predefined
attribute structure, which the client may remotely discover and use as needed. The GATT server defines what
data is available and how it may be accessed, and has limited ability to push data to the client if the client has
subscribed to receive these types of updates.

3.5.1 How to define custom local GATT services and characteristics

EZ-Serial implements a dynamic GATT structure that can be modified at runtime and stored in flash. Note that
the structure itself is the part that is stored in flash; values stored within data characteristics (other than default
values defined when creating new entries) are stored in RAM only, and do not persist across power-cycles or
resets.

The EZ-Serial platform contains a few predefined GATT elements in the factory default configuration. EZ-Serial
requires these for correct operation, and they cannot be removed or modified. However, additional structural
elements are entirely customizable.

A GATT structure is fundamentally made up of individual attributes, each of which has a unique numeric
handle, a UUID that is 16 bits, 32 bits, or 128 bits wide, and a value container. Attribute handles start at 1 and
may go up to OxFFFF (65535). No two attributes may have the same handle. The gatts create attr (/CAC,
1D=5/1) APl command will automatically choose the next available attribute handle and report the value in
the response after a successful command.

Note: Modifications to the custom GATT structure require flash write operations, which can potentially
disrupt Bluetooth® LE connectivity. Therefore, you should only make changes to the GATT
database while there is no active Bluetooth® LE connection to avoid the possibility of a connection
loss.

3.5.1.1 Understanding custom GATT limitations

The dynamic GATT implementation in EZ-Serial contains some built-in entries to provide the required EZ-Serial
functionality, leaving the remaining space available for custom entries.

Attempting to create a new custom attribute that exceeds any of these bounds will generate an error result
indicating the nature of the limitation. For more details, see the Error codes section.

3.5.1.2 Building custom services and characteristics

The GATT database is made up of one or more primary services. Each primary service has a service declaration
(UUID 0x2800) and includes one or more characteristics. Each characteristic has a characteristic declaration
(UUID 0x2803) and a value attribute (any UUID not in the above list), and often has additional characteristic-
related descriptors in the 0x2900 range.

UUIDs indicate the purpose of each attribute, but may be (and often are) repeated through the complete
database. For example, a database containing three services will contain three separate attributes that all have
the UUID 0x2800, which is the official “Primary Service Declaration” UUID defined by the Bluetooth® SIG.

Table 40 lists notable predefined structural definition UUIDs from the Bluetooth® SIG.

User guide 56 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

infineon

Table40 Bluetooth® SIG structural UUIDs

uuID Description

0x2800 Primary Service Declaration
0x2801 Secondary Service Declaration
0x2802 Include Declaration

0x2803 Characteristic Declaration

0x2900 Characteristic Extended Properties
0x2901 Characteristic User Description
0x2902 Client Characteristic Configuration
0x2903 Server Characteristic Configuration
0x2904 Characteristic Format

0x2905 Characteristic Aggregate Format

Further details on these and other official identifiers can be found on the Bluetooth® SIG webpage.

When defining GATT elements at runtime, you must enter each attribute in the correct order based on the
desired structure. Any entries that do not conform to the correct order requirement will be rejected with a
validation error. The only case where a validation warning is allowed is when you define a new service or
characteristic declaration and have not yet entered the subsequent attributes that must follow. You can use the
gatts validate db (/VGDB, ID=5/3) APlcommand atany time to perform an integrity check on the
current GATT structure to see whether additional attributes are expected.

The required order for each complete characteristic definition (declaration, value, and optional descriptors) is
dictated by the internal Bluetooth® LE stack as follows:

Table4l Required characteristic attribute order

Order uuiD Description Required
#1 0x2803 Characteristic Declaration Yes

#2 <custom> Characteristic Value Yes

#3 0x2900 Characteristic Extended Properties No

#4 0x2901 Characteristic User Description No

#5 0x2902 Client Characteristic Configuration No

#6 0x2903 Server Characteristic Configuration No

#7 0x2904 Characteristic Format No

#8 0x2905 Characteristic Aggregate Format No

Any optional attributes may be omitted as long as all provided attributes are supplied in the above order.

After adding all attributes by gatts create attr (/CAC, ID=5/1),Youneed tosend

gatts service active (/SACT, ID=5/16) toactivate these attributes.

For details on how to use custom GATT creation APl commands to add support for Bluetooth® SIG official
services such as Device Information, Health Thermometer, and others, see the Adopted Bluetooth® SIG GATT
profile structure snippets section and the API reference material for gatts create attr (/CAC, ID=5/1).

User guide

57

002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/specifications/assigned-numbers/generic-attribute-profile

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.5.1.3 Choosing the correct GATT permissions

It is critical to use correct permissions when defining any custom GATT structural elements. See the Adopted
Bluetooth® SIG GATT profile structure snippets section, for example, definitions, and you may notice certain
patterns. Here are the recommended guidelines for the most common entries:

e Service declarations (type = 0x2800)
- Read permissions = 0x01, to allow structure discovery (no encryption/authentication)
- Write permissions = 0x00, to prevent attempted changes
- Characteristic properties = 0x00, because they do not apply
e Characteristic declarations (type = 0x2803)
- Read permissions = 0x01, to allow structure discovery (no encryption/authentication)
- Write permissions = 0x00, to prevent attempted changes
- Characteristic properties = <actual properties>
e Characteristic value attributes (type = 0x0000)
- Read permissions = <actual permissions>
- Write permissions = <actual permissions>
- Characteristic properties = <actual properties, matching 0x2803 declaration>
e Characteristic user description attributes (type = 0x2901)
- Read permissions = 0x01, to allow reading description
- Write permissions = 0x00, to prevent attempted changes
- Characteristic properties = 0x02 (read)
e Client characteristic configuration attributes (type = 0x2902)
- Read permissions = 0x01, to allow reading current client flags
- Write permissions = 0x01, to allow configuring new client flags
- Characteristic properties = 0x0A (read + write)

In general, structural elements such as service and characteristic declarations should be read-only, but should
have no particular security restrictions on them. This ensures that a connected client is able to discover the
database structure correctly, even if additional security is required to execute read and/or write operations on
the characteristic value attributes. Some Android devices are known to have problems during discovery if the
declaration descriptors themselves have extra security requirements.

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit, or the command will be
rejected with an error result.

User guide 58 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.5.2 How to list local GATT services, characteristics, and descriptors

Listing the local GATT structure can be helpfulin certain cases, even though it is typically the remote GATT
structure that requires discovery (see the How to discover a remote server’s GATT structure section). This is
especially true since you can dynamically change the local GATT structure at runtime. EZ-Serial provides three
commands for local discovery, each of which provides output equivalent to its “remote discovery” counterpart.

Local discovery differs from remote discovery in two key ways:

e Local discovery is instant and deterministic, while remote discovery is not. Remote discovery generates an
unknowable number of result events over a relatively slow Bluetooth® LE connection, with completion
indicated via the gattc remote procedure complete (RPC, ID=6/2) APlevent.In contrast, local
discovery returns the known result count as part of the response to the discovered request, and then
generates exactly that many discovery result events without a final “complete” event (which would be
redundant).

- When discovering local descriptors, the output includes some extra information in the results that is not
provided during an equivalent remote descriptor discovery process. Specifically:
All descriptors include the “properties” value. In remote results, this will always be 0.

- Service declarations include the end handle. In remote results, this will always be 0.

- Characteristic declarations include the value attribute handle. In remote results, this will always be 0.

3.5.2.1 Discovering local GATT services

Usethegatts discover services (/DLS, ID=5/6) APlcommand to obtain a list of services in the local
GATT database.

Table42 Example 1: Local GATT service discovery with factory default structure (no custom attributes)

Direction | Content Effect
TX> /DLS Request to discover all local services
«RX €R, 0011, /DLS, 0000, C=0002 Response indicates success, 2 records to follow
<RX @E, 0040, DL, H=0012, R=001B, Service 65333333-A115-11E2-9E9A-

g;g gz(-)\g 6c;8 8 089A9ER21115A133333365 0800200CA100, start=18 (0x12), end=27 (0x1B)
<RX @E, 0040, DL, H=001C, R=0022, Service 65333333-A115-11E2-9E9A-

g;g ggg (,)ng8 8 E) 89AOEE21115A133333365 0800200CA200, start=28 (0x1C), end=34 (0x22)

User guide 59 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

Operational examples

3.5.2.2

Discovering local GATT characteristics

Usethegatts discover characteristics (/DLC, ID=5/7) APIcommand to obtain a list of
characteristics in the local GATT database.

Table43 Example 1: Local GATT characteristic discovery with factory default structure (no custom
attributes)

Direction| Content Effect

TX> /DLC Request to discover all local characteristics

<RX €R,0011,/DLC,0000,C=0005 Response indicates success, 5 records to follow

<RX ¢E,0040,DL,H=0013,R=0014,T=2803,P=28, | Char0x6533...A101, decl handle=0x13, value
U=01A10C2000089A9EE21115A133333365 handle=0x14, perm=0x028

<RX ¢E,0040,DL,H=0016,R=0017,T=2803,P=14, | Char0x6533...A102, decl handle=0x16, value
U=02A10C2000089A9EE21115A133333365 handle=0x17, perm=0x14

<RX @E,0040,DL,H=0019,R=001A,T=2803,P=20, |Char0Ox6533...A103, decl handle=0x19, value
U=03A10C2000089A9EE21115A133333365 handle=0x1A perm=0x20

<RX @E,0040,DL,H=001D,R=001E, T=2803, P=28, | Char 0x6533...A201, decl handle=0x1D, value
U=01A20C2000089A9EE21115A133333365 handle=0x1E perm=0x28

<RX ¢E,0040,DL,H=0020,R=0021,T=2803,P=28, | Char0x6533...A202, decl handle=0x20, value
U=02A20C2000089A9EE21115A133333365 handle=0x21, perm=0x28

3.5.2.3 Discovering local GATT descriptors

Usethegatts discover descriptors (/DLD, ID=5/8) APlcommand to obtain a list of descriptorsin
the local GATT database.

Table44 Example 1: Local GATT descriptor discovery with factory default structure (no custom
attributes)

Direction| Content Effect

TX> /DLD Request to discover all local descriptors

«RX €R,0011,/DLD,0000,C=0011 Response indicates success, 17 records to

follow

<RX @E,0024,DL,H=0012,R=001B, T=2800,P=00, | UUID 0x2800 (Primary Service), start=0x12,
u=0028 end=0x1B

<RX ¢E,0024,DL,H=0013,R=0014,T=2803,P=28, | YUID 0x2803 (Characteristic), decl=x013, value
U=0328 handle=0x14

<RX @E,0040,DL,H=0014,R=0000,T=0000,P=28, | yUID 0x6533...A101 (CYSPP), handle=0x14,
U=01A10C2000089A9EE21115A133333365 perm=0x28

Additional records are omitted for brevity

«RX @E,0024,DL,H=001C,R=0022,T=2800,P=00, | UUID 0x2800 (Primary Service), start=0x1C,
u=0028 end=0x22

<RX ¢E,0024,DL,H=001D,R=001E, T=2803, P=28, | YUID 0x2803 (Characteristic), decl=0x1D, value
u=0328 handle=0x1E, perm=0x28

«RX ¢E,0040,DL, H=001E,R=0000, T=0000, P=28, | yUID 0x6533...A201, handle=0x1E, perm=0x28
U=01A20C2000089A9EE21115A133333365

User guide 60 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

Operational examples

Direction| Content Effect

<RX @E,0024,DL,H=001F,R=0000, T=2902, P=0A, | UUID 0x2902 (CCCD), handle=0x1F, perm=0x0A
U=0229

<RX ¢E,0024,DL,H=0020,R=0021,T=2803,P=28, | YUID 0x2803 (Characteristic), decl=0x20, value
u=0328 handle=0x21, perm=0x28

<RX ¢E,0040,DL,H=0021,R=0000,T=0000,P=28, | UUID 0x6533...A202, handle=20x217,
U=02A20C2000089A9EE21115A133333365 perm=0x28

<RX ¢E,0024,DL, H=0022,R=0000,T=2902, P=0A, | UUID 0x2902 (CCCD), handle=0x22, perm=0x0A
U=0229

3.5.3 How to read and write local GATT attribute values

Read and write local GATT values using the gatts_read handle (/RLH, ID=5/9) and
gatts write handle (/WLH, ID=5/10) APlcommands, respectively.

These commands work like their remote client-side counterparts, except that client-level permissions and
access restrictions do not apply. It is always possible to locally read any attribute, and always possible to write
any attribute that supports the write operation. Some attributes, such as service and characteristic
declarations, contain only constant data (stored in flash) that is not meant to be modified with a typical GATT
write command. If you intend to change the structure of the GATT database itself, use the

gatts create attr (/CAC, ID=5/1) andgatts delete attr (/CAD, ID=5/2) APlcommands.

3.5.3.1

Reading local GATT data

You can read the value of a local attribute using the gatts read handle (/RLH, ID=5/9) APlcommand.
EZ-Serial will return the current value in the response.

Note: User-managed attributes have no RAM-backed data storage, so there is never any data to read.
Attempting to read this type of characteristic will generate an error resulting in the response.

Table45 Example 1: Read local characteristic CCCD value (create a TX power service (10.2.5) before
testing read local attribute value)

Direction | Content Effect

%> /CAC, T=2800, R=01, W=00, C=00, Add a new attribute (TX Power Service) to
L=0000, D=0418 the local GATT structure

«RX €r, 0018, /CAC, 0000, H=0023, V=0001 Response indicates success

TX> /CAC, T=2803, R=01, W=00, C=02, Add a new characteristic declaration to the
L=0000, D=072A local GATT structure

«RX €R, 0018, /CAC, 0000, H=0024, V=0001 Response indicates success

X /CAC, T=0000, R=01, wW=00, C=02, Add a new characteristic value to the local
L=0001, D= GATT structure

<RX €r, 0018, /CAC, 0000, H=0025, V=0000 Response indicates success

TX> /CAC, T=2902, R=01, W=01, C=0A, Add a CCCD to the local GATT structure
L=0002, D=

«RX €r, 0018, /CAC, 0000, H=0026, V=0000 Response indicates success

TX> /SACT GATT service active

<RX €R, 000B, /SACT, 0000 Response indicates success

User guide 61 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Direction | Content Effect

TX> /RLH, H=26 Read attribute with handle = 0x26

«RX €R, 0011, /RLH, 0000, D=0000 Response indicates success, hex data is
“0000”

3.5.3.2 Writing local GATT data

You can write the value of a local RAM-backed attribute using the gatts write handle (/WLH, ID=5/10)
APl command. This command replaces any existing data in the attribute and is limited by the maximum length
of the attribute in the GATT structure.

Note: User-managed attributes have no RAM-backed data storage, so there is no destination for storing
written data. Attempting to write this type of characteristic will generate an error resulting in the
response. Also, service and characteristic declarations (0x2800 range) are stored in flash, and
cannot be changed with this command.

Writing data does not automatically push a notification or indication packet to a remote client, even if the client
has subscribed to either of these types of pushed updates. See the How to notify and indicate data to a remote
client section for details on how to push data.

Table46 Example 1: Write “0200” to CCCD in TX power service (followed the stepsin 3.5.3.1 example 1
to create a TX power service (10.2.5) first.

Direction | Content Effect

TX> /WLH,H=26,D=0200 Write “0200” (hex) into an attribute with handle = 0x26
«RX €R,000A, /WLH, 0000 Response indicates success

X~ /RLH, H=26 Read attribute with handle = 0x26 to verify

«RX €R,0011,/RLH,0000,D=0200 | Response indicates success, data shows expected value
3.5.4 How to notify and indicate data to a remote client

Notifying and indicating both allow a server to push updates to a client without the client specifically
requesting the latest values. These transfer mechanisms provide an efficient way to send real-time updates
without constant polling from the client side, saving power for use cases such as remote sensors or any
interrupt-driven activities.

Notifications and indications both transmit data from the server to the client, but notifications are
unacknowledged, while indications are acknowledged. You can transmit multiple notifications during a single
connection interval, but you can only transmit one indication every two connection intervals (one interval for
the transmission and one for the acknowledgment).

Although the server decides when to push data to the client using these methods, the client retains ultimate
control over whether the server may transmit at all, via the use of “subscription” bits for each type of transfer.
All GATT characteristics that support either the “notify” or “indicate” operation must have a “Client
Characteristic Configuration Descriptor” (CCCD) within the set of attributes making up the complete
characteristic structure. For example, the “Service Changed” characteristic (UUID 0x2A05) within the “Generic
Attribute” service (UUID 0x1801) is made up of three separate attributes:

User guide 62 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

Operational examples

Table47 Service changed GATT characteristic structure

Handle uuID Description

0x0009 0x2803 Characteristic Declaration

0x000A 0x2A05 Service Change Value Attribute

0x000B 0x2902 Client Characteristic Configuration Descriptor (CCCD)

This characteristic supports the “indicate” operation. For a client to subscribe to indications, it must set Bit 1
(0x02) of the value in the CCCD. This descriptor holds a 16-bit value, so the correct operation on the client side
is to write [02 00] to handle 0x000B.

For characteristics that support the “notify” operation, the correct subscription flag is Bit 0 (0x01). Notification
and indication subscriptions do not persist across multiple connections.

3.5.4.1

Notifying data to a remote client

Usethegatts notify handle (/NH, ID=5/11) APIcommand to notify datato aremote client. Usea
handle corresponding to a value attribute for a characteristic for which the remote client has already
subscribed to notifications by writing 0x0001 to the relevant CCCD.

Note: Notifying data to a client requires an active connection.

Table48 Example 1: Notify a four-byte value to a client manually (create a Glucose service (10.2.9)
before starting this example)

Direction Content Effect

x> /NH, H=25,D=41424344 Notify “ABCD” (hex) via attribute with handle =23 (0x17)

«RX €R,0009, /NH, 0000 Response indicates success

3.5.4.2 Indicating data to a remote client

Usethegatts indicate handle (/IH, ID=5/12) APIcommand toindicate datato aremote client. Usea
handle corresponding to a value attribute for a characteristic for which the remote client has already
subscribed to indications by writing 0x0002 to the relevant CCCD.

Note: Indicating data to a client requires an active connection.

Table49 Example 1: a four-byte value to a client manually (create a Glucose service (10.2.9) before
starting this example)

Direction Content Effect

X /IH,H=2D,D=41424344 Write “ABCD” (hex) via attribute with handle = 0x14(0x0A)

<RX €R,0009,/1H,0000 Response indicates success

<RX @E,000F, IC,C=01,H=002D | Event indicates that client has confirmed receipt of data

User guide 63 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.5.5 How to detect and process written data from a remote client

Write operations from a remote GATT client will generate the gatts data written (W, ID=5/2) APlevent,
containing the handle and value data as well as the remote connection handle from the device that initiated
the request. This event will only occur if the write succeeds and was not blocked due to incorrect permissions,
insufficient encryption or authentication levels, or invalid length or offset.

If the type parameter of this event has the high bit (0x80) set, this means that you must manually respond to the
write operation with the gatts send writereq response (/WRR, ID=5/13) APIcommand. Thisoccurs
for user-managed characteristics, or if you have globally disabled automatic write responses using the
gatts_get parameters (GGSP, ID=5/15) APlcommand.

3.6 GATT client examples

EZ-Serial provides GATT client operational support through a variety of API methods. All methods described in
the following sections require an active connection to a remote peer device, and will generate an error result if
attempted without one.

3.6.1 How to discover a remote server’s GATT structure

EZ-Serial’s remote GATT discovery methods function the same as the local discovery methods, with the
addition of a connection handle in the discovery result output. For an overview of some of the behavioral
differences between local and remote GATT discovery, see How to list local GATT services, characteristics, and
descriptors.

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit, or the command will be
rejected with an error result.

Note: Remote discovery procedures often complete with a final result code of 0x060A rather than
0x0000. This does not indicate a problem, but only means that the final internal request to find
more data in the specified start/end range yielded no further results. This is a logical indicator to
the client that it should terminate the discovery process. You can avoid this result code by
specifying start and end range values in the discovery request command, which do not result in a
final search in an empty range on the server. However, these start and end values are typically not
available before performing the discovery in the first place.

User guide 64 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.6.1.1 Discovering remote GATT services

Usethe gattc discover services (/DRS, ID=6/1) APlcommand to obtain a list of services in the
remote GATT database on a connected peer device.

Table50 Example 1: Remote GATT service discovery on an EZ-Serial peer device with factory default
configuration

Direction| Content Effect
TX> /DRS Request to discover all remote
services
<RX €R,000A, /DRS, 0000 Response indicates success
<RX @E,0029,DR,C=00,H=0001,R=0009, T=2800, P=00,U=0018 | Service 0x1800, start=1, end=9
<RX @E,0029,DR,C=00,H=000A,R=000A, T=2800,P=00,U=0118 | Service Oxl801’start:10’ end=10
(0x0A)
«RX @E, 0045,DR,C=00,H=000B,R=0011,T=2800, P=00, Service OxAQE7...9062, start=11
U=62905C36B7C4DC8F8241B575398DE7AO (OXOB) end217 (OXll)
«RX @E, 0045,DR,C=04,H=001C,R=0022,T=2800, P=00, Service 0x6533...A200, start=28
U=00A20C2000089A9EE21115A133333365 (0x1C), end=34 (0x22)
«RX @E,0010,RPC,C=04,R=060A Remote procedures complete

3.6.1.2 Discovering remote GATT characteristics

Usethegattc discover characteristics (/DRC, ID=6/2) APIcommand to obtain a list of
characteristics in the remote GATT database on a connected peer device.

Table51 Example 1: Remote GATT characteristic discovery on an EZ-Serial peer device with factory
default configuration

Direction| Content Effect
TX> /DRC Request to discover all remote
characteristics

«RX €R, 0004, /DRC, 0000 Response indicates success

<RX ¢E,0029,DR,C=00,H=0002,R=0003,T=2803,P=02, | Char0x2A00, decl handle=2, value
U=002a handle=3, perm=0x02

«RX ¢E,0029,DR,C=00,H=0004,R=0005,T=2803,P=02, | Char0x2A01, decl handle=4, value
U=012a handle=5, perm=0x02

«RX ¢E,0029,DR,C=00,H=0006,R=0007,T=2803,P=02, | Char 0x2A04, decl handle=6, value
U=042a handle=7, perm=0x02

«RX @E,0029,DR,C=000,H=0008,R=0009,T=2803, P=02, Char 0x2AC9, decl handle=8, value
U=Co2a handle=9, perm=0x02

<RX @E,0029,DR,C=00,H=000C,R=000D, T=2803,P=14, | Char 0x040C...3002, decl handle=12,
U=300225EE8263EAABC2F78AF007650C04 value handle=13, perm=0x14

<RX @E,0045,DR,C=00,H=000F,R=0010,T=2803, P=2A, | Char0xCB91...2BE5, decl handle=15,
U=2BE545B07D406B87FBDB8030D6B091CR value handle=16, perm=0x2A

User guide 65 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

Operational examples

<RX @E,0045,DR,C=00,H=001D,R=001E, T=2803,P=28, | Char0x6533...A101, decl handle=1D,
U=01A10C2000089A9EE21115A133333365 vMuehandk=lE,penn=0x28
<RX @E,0045,DR,C=00,H=0020,R=0021,T=2803,P=28, | Char0x6533...A202, decl handle=32,
U=02A20C2000089A9EE21115A133333365 wﬂuehandk=33,penn=0x28
<RX @E,0010,RPC,C=04,R=060A Remote procedures complete, 0x060A =
no attributes found in last search
request
3.6.1.3 Discovering remote GATT descriptors

Usethegattc discover descriptors (/DRD, ID=6/3) APlcommand to obtain a list of descriptorsin
the remote GATT database on a connected peer device.

Table52 Example 1: Remote GATT descriptor discovery on an EZ-Serial peer device with factory
default configuration
Direction| Content Effect
TX> /DRD Request to discover all remote
descriptors
<RX €R,000A, /DRD, 0000 Response indicates success
<RX €E,0024,DR,C=00,H=0001,R=0000,T=2800,P=00, | UUID 0x2800 (Primary Service), start=1
U=0028
<RX @E,0024,DR,C=00,H=0002,R=0000,T=2803, P=00, | UUID 0x2803 (Characteristic), decl=2
U=0328
<RX @E,0024,DR,C=00,H=0003,R=0000,T=0000,P=00, | UUID 0x2A00 (Device Name), handle=3
U=002A
Additional records are omitted for brevity
<RX ¢E,0029,DR,C=00,H=001C,R=0000,T=2800,P=00, | UUID 0x2800 (Primary Service), start=28
U=0328
<RX ¢E,0029,DR,C=00,H=001D,R=0000,T=2803, P=00, | YUID 0x2803 (Characteristic), decl=29
U=0328
<RX ¢E,0045,DR,C=00,H=001E,R=0000,T=0000,P=00, | yYUID 0x6533...A201, handle=30
U=01A20C2000089A9EE21115A133333365
<RX ¢E,0029,DR,C=00,H=001F,R=0000,T=2902, P=00, | YUID 0x2902 (CCCD), handle=31
U=0229
«RX @E,0029,DR,C=00,H=0020,R=0000,T=2803,P=00, | UUID 0x2803 (Characteristic), decl=32
U=0328
«RX ¢E,0045,DR,C=00,H=0021,R=0000,T=0000,P=00, | yYUID 0x6533...A202, handle=33
U=02A20C2000089A9%EE21115A133333365
«RX @E,0029,DR,C=00,H=0022,R=0000,T=2902,P=00, | UUID 0x2902 (CCCD), handle=34
U=0229
<RX @E,0010,RPC,C=00,R=060A Long remote procedures complete,
0x060A = no attributes found in last
search request
User guide 66 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.6.2 How to read and write remote GATT attribute values

Reading and writing local GATT values may be accomplished with the gattc read handle (/RRH,
ID=6/4) and gattc write handle (/WRH, ID=6/5) APlcommands, respectively.

3.6.3 How to detect notified or indicated values from a remote GATT server

A remote GATT server may push data updates to a client at unpredictable times, if the client has subscribed to
notifications or indication on a supported remote GATT server characteristic. When this occurs, EZ-Serial
generatesthe gattc data received (D, ID=6/3) APleventwiththe connection handle, attribute handle,
and value data.

To receive notifications or indications from a remote server, you must first subscribe to the relevant type of
data updates by writing a special value to the attribute called the Client Characteristic Configuration Descriptor
(CCCD). This attribute always has a UUID of 0x2902, and is a separate attribute relative to the characteristic
declaration (UUID 0x2803) or characteristic value (custom UUID).

Usually, the CCCD attribute has a handle value that is +1 or +2 from the characteristic value attribute. You can
usethegattc discover descriptors (/DRD, ID=6/3) APlcommand to obtain a list of descriptors and
identify which attributes you need to use. For example, a remote server structure might contain something like
the following:

e Handle 0x0017, UUID 0x2803: Characteristic Declaration Descriptor
e Handle 0x0018, UUID 0x2A46: Characteristic Value Descriptor (“New Alert” characteristic)
e Handle 0x0019, UUID 0x2902: Client Characteristic Configuration Descriptor

With this structure, you can subscribe to notifications for this characteristic by writing the 16-bit value 0x0001
to the attribute with handle 0x0019. Remember, you must write this value as a little-endian integer [01 00]. To
unsubscribe from receiving notifications, simply write the value 0x0000 to the same CCCD attribute.

Subscribing to indications requires the same procedure, but you must use the value 0x0002 instead of 0x0001.

The CCCD attribute with UUID 0x2902 will only be present for characteristic that support either notifications or
indications. Whether you should enable notifications or indications depends on which of those two GATT
methods is implemented on the server side. For official, adopted characteristics, you can find this information
on the Bluetooth® SIG developer website. For proprietary/custom characteristics, see the whatever
documentation or reference material is made available from the product developer.

User guide 67 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.7 Security and encryption examples

EZ-Serial supports built-in Bluetooth® security technologies for safeguarding sensitive data transmitted
wirelessly, including privacy and encryption.

3.7.1 How to use peripheral and central privacy

GAP privacy randomizes the Bluetooth® connection address visible to remote devices in while in certain
operating modes. Use the smp _set privacy mode (SPRV, ID=7/9) APlcommand to enable ordisable
peripheral or central privacy. Enabling privacy in each mode causes the Bluetooth® connection address used in
related states to be random (private) instead of fixed (public). This can make passive profiling by a remote
observer more difficult.

Peripheral privacy affects the Bluetooth® connection address broadcast during advertisements, which the
remote central device may log or use for a scan request or connection request. Central privacy affects the
Bluetooth® connection address used for scan requests or connection requests when scanning for or
communicating with a remote device.

Once enabled, EZ-Serial will randomize the private address on the interval configured by the
smp_set privacy mode (SPRV, ID=7/9) APlcommand.

Table53 Example 1: Enable peripheral and central privacy

Direction Content Effect

TX> SPRVS, M=3 Enable central and peripheral privacy, store in flash
«RX €R,000B, SPRVS, 0000 Response indicates success

3.7.2 How to bond with or without MITM protection

Bonding between two devices requires first generating and exchanging encryption keys and then permanently
storing encryption data along with information required to identify the bonded device and reuse the same keys
again in the future. The mechanics of pairing depend on which side (master or slave) initiates the pairing
request, and the I/O capabilities of each side.

Note: While the Bluetooth® specification allows pairing (generation and exchange of encryption keys)
without bonding (permanent storage of encryption data), most common smartphones, tablets,
and computer operating systems require performing both at the same time if you need encryption.
The encryption-only arrangement (no bonding) is supported only between modules that support
pairing without bonding.

The Bluetooth® specification provides a random passkey generation/display/comparison mechanism for
preventing man-in-the-middle (MITM) attacks during the pairing process. EZ-Serial supports pairing with or
without MITM protection enabled. The factory default settings apply the so-called “just works” method, with no
passkey entry and no MITM protection. You can set local I/O capabilities with the i o argument of the

smp_set security parameters (SSBP, ID=7/11) API command.

User guide 68 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7.2.1

Understanding I/O capabilities

infineon

The 1/0 capabilities of each peer involved in a pairing process affects the resulting security type (authenticated
vs. unauthenticated) and the exact nature of which events and commands must be used on each side. Table 54

describes all possible /0 arrangements and the resulting behavior and authentication level.

Table54 1/0 capabilities and pairing behavior
Initiator
Responder DisplayOnly Display+YesNo KeyboardOnly Nolnput+NoOutput | Keyboard+Display
DisplayOnly Just Works Just Works Passkey Entry: Just Works Passkey Entry:
Responder Responder
displays displays
Initiator inputs Initiator inputs
(Unauthenticated) (Unauthenticated) (Authenticated) (Unauthenticated) (Authenticated)
Display+YesNo Just Works Just Works Passkey Entry: Just Works Passkey Entry:
Responder Responder
displays displays
Initiator inputs Initiator inputs
(Unauthenticated) | (Unauthenticated) | (Authenticated) (Unauthenticated) (Authenticated)
KeyboardOnly Passkey Entry: Passkey Entry: Passkey Entry: Just Works Passkey Entry:
Initiator displays Initiator displays Initiator inputs Initiator displays
Responder inputs Responder inputs Responder inputs Responder inputs
(Authenticated) (Authenticated) (Authenticated) (Unauthenticated) (Authenticated)
Nolnput+NoOutput | Just Works Just Works Just Works Just Works Just Works
(Unauthenticated) (Unauthenticated) (Unauthenticated) (Unauthenticated) (Unauthenticated)
Keyboard+Display Passkey Entry: Passkey Entry: Passkey Entry: Just Works Passkey Entry:
Initiator displays Initiator displays Responder Initiator displays
Responder inputs Responder inputs displays Responder inputs
Initiator inputs
(Authenticated) (Authenticated) (Authenticated) (Unauthenticated) (Authenticated)

The information in the above table comes from the Bluetooth® Core Specification. Combinations reporting
“unauthenticated” do not support MITM protection mechanisms.

Note:

Smartphones, tablets, and computers all support full Keyboard+Display 1/0 capabilities. Also,

when a smartphone has connected as a central device (the one opening the connection), typically
the smartphone OS will not allow the peripheral to act as the pairing initiator. The peripheral can
request pairing using the smp pair (/P, ID=7/3) APlcommand, butthe smartphone will
reject the request and immediately initiate its own request instead after first confirming with an
on-screen prompt whether to proceed with pairing. When this happens, you will see the

smp pairing requested (P, ID=7/2) APleventfollowimmediately after yourlocal pairing
request command. The EZ-Serial peripheral device will then be operating in the “responder” role

describe above.

002-39351 Rev. *B
2025-11-12

User guide 69

EZ-Serial firmware platform user guide for CYW20822 module

infineon

Operational examples

The following table describes the local APl command and event flow that you should expect when using EZ-
Serial with some common configurations and remote peer devices. All APl sequences shown here assume that
the “autoaccept incoming pairing” flag bit is set. If it is not set, you must manually accept incoming requests
with the smp_send pairreq response (/PR, ID=7/5) APlcommand anytime the

smp_pairing requested (P, ID=7/2) eventoccurs. For more information, see the Controlling automatic
pairing request acceptance section.

Table55 EZ-Serial API flow in common 1/0O capability configurations
Remote peer
Local l/O Role Smartphone EZ-Serial with keyboard+display (1=4)
DisplayOnly Initiator N/A, smartphone takes initiator role TX: smp pair (/P, ID=7/3)
(1=0) RX:
smp passkey display requested
(PKD, ID=7/5)
[enter passkey in remote EZ-Serial to
finish]
Responder RX: smp pairing requested (P, RX: smp pairing requested (P,
ID=7/2) ID=7/2)
RX: smp passkey display requested RX:
(PKD, ID=7/5) smp passkey display requested
o (PKD, ID=7/5)
[enter passkey on smartphone to finish] [enter passkey in remote EZ-Serial to
finish]
Display+YesNo Initiator N/A, smartphone takes initiator role TX:smp _pair (/P, ID=7/3)
(I=1) RX:
smp passkey display requested
(PKD, ID=7/5)
[enter passkey in remote EZ-Serial to
finish]
Responder RX: smp pairing requested (P, RX: smp pairing requested (P,
ID=7/2) ID=7/2)
RX: smp passkey display requested RX:
(PKD, ID=7/5) smp passkey display requested
[enter passkey on smartphone to finish] (PKD, ID=7/5)
[enter passkey in remote EZ-Serial to
finish]
KeyboardOnly Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)
(1=2) [passkey displayed in remote EZ-Serial]
RX:
smp passkey entry requested
(PKE, ID=7/6)
Responder RX: smp pairing requested (P, RX: smp_pairing requested (P,

ID=7/2)
[passkey displayed on smartphone]

RX: smp passkey entry requested
(PKE, ID=7/6)

TX: smp_send passkeyreq response
(/PE, ID=7/6)

ID=7/2)
[passkey displayed in remote EZ-Serial]
RX:

smp passkey entry requested
(PKE, ID=7/6)

TX:
smp_send passkeyreq response
(/PE, ID=7/6)

User guide

70

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Remote peer

Nolnput+NoOutput Initiator N/A, smartphone takes initiator role TX: smp pair (/P, ID=7/3)
(1=3) [process completes without interaction]
Responder RX: smp pairing requested (P, RX: smp_pairing requested (P,
ID=7/2) ID=7/2)
[process completes without interaction] [process completes without interaction]
Keyboard+Display Initiator N/A, smartphone takes initiator role TX: smp _pair (/P, ID=7/3)
(1=4) RX:

smp passkey display requested
(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]
Responder RX: smp pairing requested (P, RX: smp pairing requested (P,
ID=7/2) ID=7/2)
[passkey displayed on smartphone] [passkey displayed in remote EZ-Serial]
RX: smp passkey entry requested RX:
(PKE, ID=7/6) smp passkey entry requested

TX: smp_send passkeyreq response (PKE, ID=7/6)

(/PE, ID=7/6) TX:

smp send passkeyreq response
(/PE, ID=7/6)

3.7.2.2 Controlling automatic pairing request acceptance

EZ-Serial’s default behavior is to accept all compatible pairing requests that come in from other devices.
However, your application may benefit from having more control over the pairing process. To change this, clear
Bit 0 (0x01) of the f1ags valueinthe smp set security parameters (SSBP, ID=7/11) APlcommand.
Subsequent pairing requests will generate the smp_pairing requested (P, ID=7/2) APlevent,andyou
must respond with the smp send pairreq response (/PR, ID=7/5) APl command to acceptor rejectthe
request.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

Table56 Example 1: Disable automatic acceptance of incoming pairing requests, store in flash, then
pair from a remote peer

Direction | Content Effect

> SSBPS, F=0 Clear Bit 0 (autoaccept)

€RX €R,000B, SSBPS, 0000 Response indicates success, stored in flash

<RX ¢e,001B,P,C=01,M=01,B=01,K=10,P=00 | Eventindicates incoming pairing request

x> /PR, R=0 Send pairing request response with “0” result
(accept)

<RX €R,0009, /PR, 0000 Response indicates success

<RX @E,001B,B,B=03,A=00A050E3835F, T=00 | Eventindicates new bond entry created

«RX ¢E, 000F, PR,C=01,R=0000 Event indicates the pairing process completed
successfully

User guide 71 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.7.2.3 Pairing and bonding in “just works” mode without MITM protection

The simplest way to bond requires no special passkey entry or display. If your device has no input or output
capabilities, you must use this mode for pairing since MITM protection requires numeric display or entry (or
both) to function correctly.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

Table57 Example 1: Configure a simple pairing without MITM protection, then initiate pairing

Direction| Content Effect

> SSBP,M=10,I=3 Set “No Input / No Output” I/O, no MITM protection

«RX @R, 000A,55BP, 0000 Response indicates success

TX> /P Initiate pairing request to remote peer

«RX €R,0008,/P,0000 Response indicates success

<RX ¢E,001B,B,B=03,A=00A050421C63,T=00 | Event indicates new bond entry created

<RX ¢E,000F, PR,C=00,R=0000 Event indicates the pairing process completed
successfully

3.7.2.4 Pairing and bonding with full 1/O capabilities and MITM protection

If your design includes a numeric display or keypad (or both), you can enable MITM protection for improved
security during pairing. In this configuration, you must either display a passkey to the user or allow the user to
enter a passkey, depending on the exact I/O capabilities and which side initiates pairing and which side
responds. For more details, see the Understanding 1/0 capabilities section.

Note: All API events relating to passkey entry or display use hexadecimal formatting. However, user
entry and display must use decimal format, including any necessary leading zeros for a full 6-digit
value. Ensure that your application uses a decimal format for any user interactions involving the
passkey.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

Table 58 Example 1: Configure keyboard+display I/O capabilities and MITM protection, then initiate

pairing
Direction| Content Effect
x> SSBP,M=12,I=4 Set “Keyboard+Display” 1/0, enable MITM protection
<RX @R, 000A,55SBP,0000 Response indicates success
TX> /P Initiate pairing request to remote peer
<RX €R,0008,/P,0000 Response indicates success
«RX EEégolBrPIC=001M=02IB=011K=101 Event indicates incoming pairing request
<RX @E, 0014, PKD,C=00,P=00017266 Event indicates passkey display (17266 hex = 094822

dec)

User guide 72 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Direction | Content Effect
<RX @E,001B,B,B=03,A=00A050421C63, |Eventindicates new bond entry created
T=00
<RX @E,000F, PR,C=00,R=0000 Event indicates the pairing process completed
successfully

3.7.2.5 Pairing and bonding with a fixed passkey

If your application requires it, EZ-Serial supports the configuration of a fixed passkey to be used during the
pairing process instead of either no passkey or a random one. You can choose a fixed 6-digit value between
000000 and 999999 using the smp_set fixed passkey (SFPK, ID=7/13) APIcommand and configuring
the local /O capabilities to the “Display Only” value with the smp_set security parameters (SSBP,
1D=7/11) APl command. During pairing, EZ-Serial will generate the smp passkey display requested
(PKD, ID=7/5) APleventcontaining the value configured here. The remote peer must then enter this key to
pair successfully.

Note: The fixed passkey will take effect only if you enable fixed passkey use by setting Bit 1 (0x02) of the
security flags parameter and set the “Display Only” I/O capabilities value (0x00) using the
smp set security parameters (SSBP, ID=7/11) APIcommand.Ifboth of these
conditions are not met, then the stack will revert to the default behavior of using a random
passkey.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

Table59 Example 1: Configure “123456” fixed passkey value and required 1/O capabilities, then pair
from a remote peer

Direction| Content Effect

TX> SSBP,M=12,1=0,F=3 Set “Display Only” 1/0, enable fixed passkey use
flag bit (0x02)

<RX @R, 000A,SSBP, 0000 Response indicates success

TX> SFPK, P=1E240 Set a fixed passkey value (1E240 hex = 123456 dec)

<RX @R, 000A, SFPK, 0000 Response indicates success

<RX ¢E,001B,P,C=00,M=12,B=01,K=10,P=01 | Eventindicates incoming pairing request

<RX @E, 0014, PKD,C=00,P=0001E240 Event indicates passkey display (1E240 hex =
123456 dec)

«RX ¢E,001B,B,B=03,A=76C880C3F154,T=01 | Eventindicates new bond entry created

«RX ¢E, 000F, PR,C=00,R=0000 Event indicates the pairing process completed
successfully

User guide 73 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.7.3 How to use out-of-band pairing

EZ-Serial supports the use of out-of-band (OOB) encryption key sharing for added security during pairing with
compatible devices. Use the smp generate oob data (/GOOB, ID=7/7) APlcommand to generate OOB

data based on a 16-byte input key. Use the same key on the remote device to generate matching OOB data in

order to successfully pair using out-of-band key exchange.

Ensure that you generate OOB data on both sides of the connection before initiating the pairing process on
either side.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using the
smp generate oob data (/GOOB, ID=7/7) APlcommand.Ifyou set OOB data and then
attempt to pair with a device that does not support OOB pairing, or that does not have the correct
matching key set, pairing will always fail. To clear OOB data and revert to the standard pairing
and key generation/exchange process, either reset the module via hardware or software or use the
smp clear oob data (/CO0OB, ID=7/8) APlcommand.

Note: Most smartphones and tablets available at the time of this publication do not support out-of-band
pairing for Bluetooth® LE connections. The example shown here works between two Infineon
Bluetooth® LE modules running EZ-Serial firmware.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation.

Table60 Example 1: Apply OOB key on two devices and initiate pairing

Device | Direction| Content Effect

#1 TX=> /GOOB, K=00112233445566778899AABBCCDDEEFF | Generate new OOB data with a
128-bit key

#1 <RX €R,000B, /GOOB, 0000 Response indicates success

#2 TX=> /GOOB, K=00112233445566778899AABBCCDDEEFF | Generate new OOB data with a
128-bit key

#2 <RX €R,000B, /GOOB, 0000 Response indicates success

#1 TX> /P, K=10 Pair without bonding, security
type=1, key size=16

#1 <RX €R,0008,/P,0000 Response indicates success

#1 «RX @k, 000F, PR,C=00,R=0000 Event indicates that pairing
completed successfully

#2 «RX €k, 000F, PR,C=01,R=0000 Event indicates that pairing
completed successfully

User guide 74 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.7.4 How to encrypt and decrypt arbitrary data

The EZ-Serial platform exposes the internal AES encryption engine via two simple APl commands to allow
encryption and decryption of arbitrary data. Use the system aes encrypt (/AESE, ID=2/9) API
command to encrypt data, and the system aes decrypt (/AESD, ID=2/10) APlcommand to decrypt
data.

The encryption and decryption processes require a 16-byte key to initialize the engine, followed by 16 bytes of
data to process. Supply the key for every new operation. The combination of both parts of input data is
transmitted in a single argument to the relevant encryption or decryption command:

e Bytes 0-15=16-byte key
e Bytes 16-31=16-byte data to encrypt or decrypt

In the following example, the text-mode input data blob is broken apart for clarity. However, the actual
command requires all data in a single nonbroken command.

Table61 Example 1: Encrypting 8 bytes of cleartext data

Direction | Content Effect

TX.) /AESE,I = 00112233445566778899AABBCCDDEEFF Request encryption of
41424344454647484950515253545556 “ABCDEFGHIPQRSTUV” data with a

simple key

<RX €R,002E, /AESE, 0000, 0= Response indicates success, cyphertext
48F5051A5DBFAC460601E3665D2D20CB returned

Table62 Example 2: Decrypting 8 bytes of cyphertext data

Direction| Content Effect

TX> /RESD, I= Request decryption of cyphertext data with input

00112233445566778899AABBCCDDEEFF

48F5051A5DBFAC460601E3665D2D20CB key matching encryption command

«RX €R,002E, /AESD, 0000, Response indicates success, cleartext returned
0=41424344454647484950515253545556

User guide 75 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.8 iBeacon examples

EZ-Serial provides simple configuration commands for beacon broadcast management. Most Bluetooth® LE-
based beaconing technologies require only a specially formed advertisement packet, but implementing this
manually requires additional tracking and modification of advertising behavior and does not allow scheduled
interleaving with other types of behavior simultaneously.

3.8.1 How to configure iBeacon transmissions

Usethep ibeacon set parameters (.IBSP, ID=12/1) APIcommand to configure automated iBeacon
broadcast packets based on a supplied UUID and major/minor ID set.

Note: The UUID supplied in the configuration command will be added to the advertisement packet
exactly as entered, with the same byte order. In contrast, the major and minor values are
interpreted as fixed-length 16-bit integers and subject to the typical rules for text and binary mode
byte ordering.

Official iBeacon specifications are available from the iBeacon page on Apple’s developer webpage.

Table63 Example 1: Enable auto-start iBeacon broadcasting with sample IDs at 100 ms interval, store

in flash
Direction | Content Effect
TX> -IBSPS, E=02, I=00A0, Set iBeacon configuration
U=00112233445566778899AABBCCDDEEFF, J=1111,N=2222
<RX €R,000C, .IBSPS, 0000 Response indicates success
3.8.2 How to configure Eddystone transmissions

Usethep eddystone set parameters (.EDDYSP, ID=13/1) APlcommand to configure automated
Eddystone broadcast packets based on a supplied configuration set. EZ-Serial currently supports Eddystone-
UID and Eddystone-URL frames, but does not support Eddystone-TLM frames (beacon telemetry data).

Official Eddystone beacon specifications are available from Google’s Eddystone GitHub page.

Table64 Example 1: Enable auto-start Eddystone broadcasting of “http://www.Infineon.com/” URL at
100 ms interval

Direction | Content Effect

TX> -EDDYSP, E=02, I=00A0, T=10, | Set Eddystone configuration with scheme and encoding
D=006379707265737307

<RX €R, 000D, .EDDYSP, 0000 Response indicates success

User guide 76 002-39351 Rev. *B

2025-11-12

https://developer.apple.com/ibeacon/
https://github.com/google/eddystone

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

3.9 Performance testing examples

This section covers techniques to achieve optimal performance in specific contexts.

3.9.1 How to maximize throughput to a remote peer

Throughput concerns how much data you can move across a link within a specific period of time, usually
expressed in bytes per second or bits per second (8 bits per byte). In the case of Bluetooth® LE, the following
guidelines will help improve average throughput:

1. Minimize the connection interval. The Bluetooth® LE specification allows 7.5 ms minimum connection
interval. Data transfers are specifically timed during Bluetooth® LE connections, and more frequent
transfers mean higher potential throughput.

a) When operating in the GAP central role, you can determine the connection interval when initiating the
connection with the gap _connect (/c, 1D=4/1) APlcommand, or afterwards with a connection
update request using the gap_update conn parameters (/UCP, ID=4/3) APlcommand.

b) When operating in the GAP peripheral role, the remote central determines the initial interval, and you
must request an update with the gap_update conn parameters (/UCP, ID=4/3) APIcommand
after connecting. The remote peer (master/central device) may either accept or reject this request. Note
that if the remote peer rejects the request, it will not notify the requesting device; the only evidence of the
reject will be the lack of a subsequent gap connection updated (CU, ID=4/8) APlevent.

2. Maximize the payload size for GATT transfers. It takes much longer to send 20 one-byte packets than one 20-
byte packet, due to the low transmission duty cycle required by the Bluetooth® LE protocol. If your
application has five 16-bit sensor measurement values that are used to the remote peer on the same
interval, use a single characteristic to provide all 10 bytes at once rather than using five separate
characteristics.

3. Use unacknowledged transfers. You can push more unacknowledged data through in a single connection
interval than you can with acknowledged transfers. A typical acknowledged data transfer requires two full
connection intervals to complete (one for the transfer and one for the acknowledgment), but multiple
unacknowledged transfers can be used in sequence within the same interval—up to one packet every
1.25 ms, if supported by the remote client. Typically, standalone full-stack modules cannot buffer and
process data quite this fast, but it is often possible to achieve something near this level of throughput. Note
that making this change may require additional application logic to provide a packet delivery/retry request
mechanism.

a) For client-to-server transfers, use the “write-no-response” operation instead of “write.”
b) For server-to-client transfers, use the “notify” operation instead of “indicate.”
These actions will help increase the observed throughput, but will simultaneously increase power

consumption. Keep this trade-off in mind to choose the right balance between power consumption and
throughput.

User guide 77 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

Table65 Example 1: Request a connection parameter update to 7.5 ms interval, no latency, 1 sec

timeout

Direction | Content Effect

TX> /UCP, I=8,L=0,0=64 Request connection update to 10ms (8 * 1.25
ms), no slave latency, 1-second supervision
timeout

<RX @R, 000A, /UCP, 0000 Response indicates success, request sent to
remote peer

<RX ¢E,001D,CU, H=04,1=0008,1L=0000,0=0064 | Eventindicates new connection parameters
accepted

3.9.1.1 How to maximize throughput to an iOS device

Apple devices began supporting Bluetooth® LE technology with the iPhone 4S and iOS 5. iOS devices have
additional limitations on top of those mandated in the Bluetooth® specification.

The following additional guidelines apply for maximizing iOS throughput:

e When operating in the GAP central role, the latest iOS devices limit the minimum connection interval of
30 ms (or 11.25 ms when connecting to HID devices). If the peripheral requests a shorter connection interval
than this, the iOS device will reject the request.

e iOS devices limit unacknowledged GATT data transfers (write-no-response or notify) to a maximum of four
per connection interval, according to widespread observations

e i0S 5 added support for GAP peripheral role operation, which includes support for 7.5 ms intervals as
required by the Bluetooth® specification. However, switching GAP roles may not be suitable depending on
other application requirements, and requires a notably different mobile app development approach with its
own side effects.

See the Core Bluetooth® Programming Guide on the Apple Developer website for official guidelines.

Table66 Example 1: Request a connection parameter update to 30 ms interval, no latency, 1 sec

timeout

Direction| Content Effect

X~ /UCP,1=18,L=0,0=64 Request connection update to 30 ms (24 * 1.25
ms), no slave latency, 1-second supervision
timeout

<RX €R,000A, /UCP, 0000 Response indicates success, request sent to
remote peer

<RX @E, 001D, CU, H=04, I=0010,1=0000,0=0064 | Event indicates new connection parameters
accepted

User guide 78 002-39351 Rev. *B

2025-11-12

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.9.1.2 How to maximize throughput to an android device

Android devices officially began supporting Bluetooth® LE technology with the 4.3 release, though 4.4 and
onward greatly improved stability and supported functionality.

The following additional guidelines apply for maximizing Android throughput:

e Through 4.4.2, Android supported only a single connection interval of 48.75 ms

e Version 4.4.3 and later support intervals down to 7.5 ms when requested by the remote device, though the
default interval is still 48.75 ms when first establishing the connection

Newer android handsets allow up to six unacknowledged GATT transfers in a single connection interval.

3.9.2 How to minimize power consumption

You can reduce power consumption by making the Bluetooth® LE radioactive as infrequently as your
application allows. The specific actions described in this section will help decrease average consumption, but
will also decrease potential throughput. Keep this trade-off in mind to choose the right balance between power
consumption and throughput.

If you have not already done so, ensure that the best possible CPU sleep mode for your application is
configured as described in the How to manage Sleep states section. This will ensure that the CPU is not taking
more power than necessary. If the CPU is fully or partially awaking more often than necessary, the relative
improvements possible using the methods described in the following sections may not make a notable
difference.

3.9.2.1 How to minimize power consumption while broadcasting
To reduce power consumption in an advertising state:

e Maximize the advertisement interval while broadcasting. The Bluetooth® LE specification allows advertising
at any interval between 20 ms and 10240 ms. Increasing the interval means fewer transmissions within a
given time period. For example, a device advertising at 500 ms will use roughly 20% of the power required
by that same device advertising at 100 ms. Use the gap _set adv parameters (SAP, ID=4/23) API
command to change the default advertisement interval, or the gap start adv (/A, 1D=4/8) API
command to use a non-default interval at the moment you enter an advertising state.

Side effects:

- Scanning devices are less likely to detect each advertisement packet, due to the reduced probability of
the scanning device actively receiving on the same channel at the same time as the advertisement
transmission occurs

- Connections may take longer to establish, since this process begins with the same scanning process and
requires detection of a connectable advertisement packet from the target device

e Do notuse all three advertisement channels. The Bluetooth® LE spectrum dedicates three channels to
advertisement packets, spread across the 2.4 GHz Bluetooth® RF spectrum to help ensure reception in busy
RF environments. Most Bluetooth® LE devices advertise on all three channels, but you can selectively
advertise on only one or two of these channels using the gap set adv parameters (SAP, ID=4/23) or
gap_start _adv (/A, ID=4/8) APIcommands.Advertisingon only one channel requires roughly 33% of
the power needed when using all three.

Side effects:

User guide 79 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

- Scanning devices are less likely to detect advertisement packets for the same reason as above—there are
fewer advertisement packets being transmitted, which reduces the probability of actively receiving on
the correct channel at the correct time

- The advertising device cannot combat RF interference as effectively. If you enable only one
advertisement channel, but that portion of the RF spectrum is extremely congested, then a scanning
device may not be able to detect advertisement packets at all even if the timing lines up correctly

e If connections are not required, use a non-connectable/non-scannable mode. When a peripheral device is
connectable (accepting new connections) or scannable (accepting scan request packets while advertising),
the Bluetooth® LE radio switches to a receiving state for approximately 150 usec after every advertisement
packet to listen for a connection request or scan request packet. When using all three advertising channels,
this means three complete TX-RX cycles occur repeatedly at the configured advertisement interval. If a
peripheral device only needs to broadcast (example, in a beaconing state for iBeacon or Eddystone
applications), you can configure a broadcast-only advertising mode with the gap set adv parameters
(SAP, ID=4/23) orgap start adv (/A, ID=4/8) APlcommands. This prevents the radio from
switching into a receiving state after each transmission, saving both time and power.

Side effects:

- Any data configured in the scan response packet payload will never be transmitted. Most often, this is the
friendly device name.

e Minimize the advertisement and/or scan response data payload length. Regardless of the configured
advertisement interval, the advertisement payload also has a significant effect on the amount of time spent
on transmissions. The advertisement payload may be between 0 and 31 bytes, and the Bluetooth® LE RF
protocol uses a symbol rate of 1 Mbit/sec, which translates to 8 pusec per byte. The fixed encapsulation and
overhead data in every advertisement or scan response packet takes roughly 140 psec to transmit, but the
payload can add up to 248 psec to this duration. In other words, a 31-byte payload (~390 usec) requires
twice as much transmission time as a 7-byte payload (~195 psec).

In most cases, the application design requires very specific content in the advertisement payload. However,
you should optimize this as much as possible if low-power consumption is critical for performance. You can
configure custom advertisement data content with the gap set adv data (SAD, ID=4/19) and
gap_set adv parameters (SAP, ID=4/23) APlcommands,as described inthe How to customize
advertisement and scan response data section.

3.9.2.2 How to minimize power consumption while broadcasting
To reduce power consumption in a connected state:

e Maximize the connection interval. The Bluetooth® LE specification allows a connection interval from 7.5 ms
to 4000 ms.

- When operating in the GAP central role, you can determine the connection interval when initiating the
connection, or afterwards with a connection update request

- When operating in the GAP peripheral role, the remote central determines the initial interval, and you
must request an update after connecting if you need to change it. The remote peer may either accept or
reject this request.

e Use non-zero slave latency. While this only affects power consumption on the slave/peripheral device
during a connection, the slave latency setting can drastically improve power efficiency in many
applications. This setting controls how many connection intervals the slave may skip if it has no data to
send to the connected master device. Once the allowed number of intervals have occurred, the slave must
respond regardless of whether it has any new data to send. The slave may respond at any interval.

User guide 80 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Operational examples

With the default “0” slave latency setting, the slave must acknowledge the master’s connection
maintenance packets at every interval. In applications requiring infrequent data transfers, this wastes a
great deal of power. Increasing the slave latency value to “3” allows the slave to respond every four intervals
instead of every interval, for an average power reduction of 75% while connected. Applications such as
environmental sensors and human input devices can benefit greatly from non-zero slave latency.

The slave latency value may not be higher than the maximum number that allows the calculated value for
[conn_interval X slave_latency] to remain below the supervision_timeout value, since otherwise the
connection would time out regularly.

Side effects:

- If the slave has no data to send, the master must wait until the slave latency period passes before it can
send or request data to or from the slave. The slave will not be aware of any requests from the master
until it enables its radio again. This can result in noticeable delays especially when using long connection
intervals. For example, a 500 ms connection interval and slave latency setting of “3” could create a
master-to-slave response delay of up to two full seconds. To mitigate this, select a balanced combination
of connection interval and slave latency values that provides acceptable master-side delay and slave-side
power consumption.

- Non-zero slave latency interval increases the possibility of a connection timeout in non-optimal RF
environments. The master will trigger a supervision timeout condition if it does not receive an
acknowledgement from the slave before the timeout period elapses. The master will re-send any
connection maintenance packet that is not acknowledged, but if the slave has already switched back to a
low-power state between required response intervals, the master’s attempted retries may be ignored for
too long. To mitigate this, select a longer supervision timeout, shorter connection interval, and/or lower
slave latency value to achieve required connection stability in the target environment.

e Use unacknowledged transfers. Acknowledged transfers involve more data sent over the air to handle the
acknowledgement. This results in higher average consumption. If you do not need application-level data
transfer confirmations, use unacknowledged methods instead.

- For client-to-server transfers, use the “write-no-response” operation instead of “write.”
- For server-to-client transfers, use the “notify” operation instead of “indicate.”

3.9.3 How to communicate using an L2CAP channel

Using L2CAP eliminates the overhead and optional upper-layer acknowledgements involved with GATT-based
communication. Instead of using structured attributes, L2CAP provides a single data stream for raw transfers.

L2CAP uses a credit-based system for managing data flow. Upon connection or at any point afterwards, the
receiving end of a data channel grants a certain number of credits to the transmitting side. The transmitting
side may send exactly that many packets (regardless of length) before it must wait for additional credits. EZ-
Serial provides the following APl methods to work with this credit-based system:

e 12cap send credits (/LSC, ID=8/5) command forthe receivingside to send credits to the
transmitting side

e l2cap rx credits low (LRCL, ID=8/5) eventon the receivingside when the transmittingside has
few or no credits remaining

e l2cap tx credits received (LTCR, ID=8/6) eventon the transmittingside when it has received
additional credits

The following example assumes that you have already connected the two devices together and paired. An
active connection is required for any type of L2ZCAP operations. Registering a PSM only needs to be done once
per session; it will persist even after link closure until the module is reset.

User guide 81 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Table67 Example 1: Open L2CAP connection between two devices and send data (pairing required)

Device | Direction| Content Effect

#1 TX> /LRP,N=43,W=0 Register PSM on channel 43, watermark=0

#1 «RX €R,000A, /LRP, 0000 Response indicates success

#2 TX> /LRP,N=73,W=0 Register PSM on channel 73, watermark=0

#2 <RX €R, 0004, /LRP, 0000 Response indicates success

#1 TX> /LC,C=0,R=73,L=41,T=17,P=17, Open L2CAP connection, 3 TX credits for peer
7=3

#1 «RX €R,0009, /LC, 0000 Response indicates success

#2 <RX @E,002C, LCR,C=01,N=0041,1=0073, | Eventindicates incoming L2CAP connection
M=0017,P=0017,2=0000

#2 X~ /LCR,C=0,N=41,R=0,M=17,P=17,2=3 | Accept connection, 3 TX credits for peer

#2 «RX €R,000A, /LCR, 0000 Response indicates success

#2 <RX ¢E,002B,1LC,C=01,R=0000,N=0040, | Eventindicates connection established
M=0017,P=0017, Z=0003

#1 <RX ¢E,002B,LC,C=00,R=0000,N=0041, | Eventindicates connection request accepted
M=0017,P=0017,
7=0003

#1 X~ /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 «RX €R,0009, /LD, 0000 Response indicates success

#2 <RX ¢E,0017,1LD,N=0040,D=0411223344 | Event indicates 4-byte data packet received

#1 > /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 <RX €R,0009, /LD, 0000 Response indicates success

#2 «RX ¢E,0017,LD,N=0040,D=0411223344 | Event indicates 4-byte data packet received

#1 X /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 <RX €R,0009, /LD, 0000 Response indicates success

#2 <RX ¢E,0017,1LD,N=0040,D=0411223344 | Event indicates 4-byte data packet received

#2 <RX ¢E, 0018, LRCL,C=00,N=0040,2=0000 | Event indicates that peer has zero credits

remaining

#2 TX> /LSC,N=40,2=3 Send 3 transmit credits to peer

#2 <RX @R, 000A,LSC, 0000 Response indicates success

#1 <RX ¢E, 0018, LTCR,C=00,N=0041,2=0003 | Event indicates additional credits received

User guide 82 002-39351 Rev. *B

2025-11-12

infineon

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Operational examples

3.10 Device firmware update examples

EZ-Serial provides multiple methods for updating or replacing firmware on the module. These methods are
described in the following sections. See the Latest EZ-Serial firmware image section for information on where
to find the latest EZ-Serial firmware images.

3.10.1 How to use the DFU Bootloader over UART

See the steps mentioned in the following knowledge base article:

e How to upgrade CYW20822 module firmware via UART

3.10.2 How to upgrade firmware Over the Air (OTA)
See the steps mentioned in the following knowledge base article:

e How to upgrade CYW20822 module firmware with OTA

User guide 83 002-39351 Rev. *B
2025-11-12

https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-upgrade-CYW20822-module-firmware-via-UART/ta-p/655728
https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-upgrade-CYW20822-module-firmware-with-OTA/ta-p/660734

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Application design examples

4 Application design examples

The examples in this section describe the hardware design and platform configuration necessary for some
common types of applications. You can use any of these exactly as described for your design or modify as
needed.

4.1 Smart MCU host with 4-wire UART and full GPIO connections

This design takes allows maximum functionality with an external host microcontroller, including efficient sleep
state control and optional CYSPP communication.

4.1.1 Hardware design
Include the following design elements in your hardware:

e Module UART_TX pin to host UART RX pin

e Module UART_RX pin to host UART TX pin

e Module UART_CTS pin to host UART RTS pin

e Module UART_RTS pin to host UART CTS pin

e Module CYSPP and LP_MODE pins to digital output host GPIOs

e Module CONNECTION pins to high-impedance digital input host GPIOs

4.1.2 Module configuration

Most configuration settings will depend on your communication requirements. However, you may wish to
make one or more of the following changes:

e Change device name with gap set device name (SDN, ID=4/15)

e Change CYSPP connection key and/or security requirements withp cyspp set parameters
(.CYSPPSP, ID=10/3)

e Enable system-wide Deep Sleep with system set sleep parameters (SSLP, ID=2/19)

o Enable flow control and optionally change UART parameters with system set uart parameters (STU,
ID=2/25)

4.1.3 Host configuration

The external host must match EZ-Serial’s configured UART communication. With factory default settings, this
will be 115200,8/N/1 with no flow control. However, you should enable and use flow control if the host supports
it.

Use the host API library described in the Host API library section to facilitate easy APl communication between
the host and the module, making sure to properly assert and de-assert the module’s LP_MODE pin as described
in the Avoiding UART data loss or corruption due to Deep Sleep transition section if you have enabled system-
wide Deep Sleep.

Monitor the CONNECTION signal for a simple indicator of Bluetooth® LE connectivity without needing to parse
all possible API events from the module. This can be especially helpful when using CYSPP mode.

User guide 84 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Application design examples

4.2 Dumb terminal host with CYSPP and simple GPIO state indication

This design takes advantage of the factory default EZ-Serial configuration and support for automatic CYSPP
connectivity. It is best suited for applications where the external host cannot or does not need to impose any
control over the EZ-Serial platform via APl commands or events.

4.2.1 Hardware design
Include the following design elements in your hardware:

e Module CYSPP pin to GND if CYSPP mode configured.
e Module UART_TX pin to host UART RX pin
e Module UART_RX pin to host UART TX pin
e Optional for flow control:
- Module UART_CTS pin to host UART RTS pin
- Module UART_RTS pin to host UART CTS pin
e Optional for connectivity status

4.2.2 Module configuration

The factory default configuration provides most of the behavior required. However, you may wish to make one
or more of the following changes:
e Change device name with gap_set device name (SDN, ID=4/15)

o Change CYSPP connection key and/or security requirements withp cyspp set parameters
(.CYSPPSP, ID=10/3)

e Change system sleep settings with system set sleep parameters (SSLP, ID=2/19)
e Change UART baud or other parameters with system set uart parameters (STU, ID=2/25)

4.2.3 Module configuration

The external host must match EZ-Serial’s configured UART communication. With factory default settings, this
will be 115200,8/N/1 with no flow control.

If the host supports a simple “enable” control line for whether or not it is safe to send data, use the module’s
CONNECTION pin. This signal will be asserted (LOW) only when the CYSPP data pipe is fully established.

4.3 Module-only application with beacon functionality

This design requires no special external hardware and only minimal initial configuration to define the type of
beaconing desired.

4.3.1 Hardware design

For correct operation, the module only requires power to the supply pins. You may also wish to include test pad
or header access to the UART interface and status pins such as CONNECTION during prototyping, as this can
greatly simplify debugging if necessary.

User guide 85 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Application design examples

4.3.2 Module configuration
Make the following changes from the factory default configuration:

o Disable CYSPP mode withp cyspp set parameters (.CYSPPSP, ID=10/3)
e Enable system-wide Deep Sleep mode with system set sleep parameters (SSLP, ID=2/19)
e Configure non-connectable (broadcast-only) with gap _set adv parameters (SAP, ID=4/23)

e Configure desired beaconingwithp ibeacon set parameters (.IBSP, ID=12/1) or
p_eddystone set parameters (.EDDYSP, ID=13/1)

4.3.3 Host configuration

The simple automatic beacon design does not require any host hardware, and therefore needs no host
configuration.

User guide 86 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Host API library

5 Host API library

The host library implements a protocol parser/generator that communicates with the EZ-Serial firmware using
the API protocol. The provided library is written in standard C and wraps all APl methods into easy-to-use
command functions or response/event callbacks. This section describes how to use the library as designed,
how to port it to other platforms, or how to create your own library if the provided code is not suited for direct
use or porting for any reason.

5.1 Host API library overview

5.1.1 High-level architecture

The host library communicates with the EZ-Serial firmware platform, providing the host side of the
command/response/event communication mechanism that the module implements. The host must perform
the following over the UART interface:

Read and parse incoming data (may be either response or event packets)
Validate packets using checksum

Trigger application-defined callbacks when incoming packets arrive
Generate and send outgoing data (command packets)

Hw b

The protocol parser and generator on the module side strictly follow these rules:

e Events may be generated by the module at any time
e Every command received from the host will immediately generate a response

e Anevent generated (example by a GPIO interrupt) while a command is being processed will not interrupt
the command-response packet flow, but will be sent out after the response packet is sent

The parser and generator on the host side must operate under these assumptions.

5.1.2 Host library design

Host communication with an EZ-Serial-based module requires only that the incoming module-to-host byte
stream is processed correctly, and that the outgoing host-to-module byte stream is properly formatted. To
simplify this and provide a convenient layer of abstraction, the host API library provides a simple “parse”
function for incoming bytes, and “wrapper” command functions which convert named parameter lists into
binary packets ready for transmission.

Other than expecting standard C compiler functionality and little-endian byte order, the library is intentionally
platform-agnostic. The source of incoming data does not matter; the internal methods only process the data
after it arrives. The destination of outgoing data also does not matter; the internal methods only perform
packetization and buffering of data so that it is ready to transmit. This improves portability, since UART
peripherals are accessed differently on different platforms, and a single library cannot provide support across
all (or even very many) platforms if the UART peripheral implementation is built into the library itself.

User guide 87 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Host API library

5.2 Implementing a project using the host API library

5.2.1 Basic application architecture
Any host application which uses the EZ-Serial API library must follow the same basic behavior:

Set up UART peripheral for incoming and outgoing data.
Assign hardware-specific input/output callback methods.
Monitor UART for incoming data, and send to parser.
Handle event/response packets sent to callback handler.
Call command wrapper functions as needed for application.

AR S o

This process is shown in the following flowchart:

Boot

Initialize

| Setup UART peripheral |

| Assign UART TX function |

| Assign event handler function |

T HostAPILibrary |

w
Custom application behavior

Ezs_cmd_...()

UART TX call

| Non-blocking app code |

| Send APl commands as needed |

ParseByte ()

Event handler
call

UART RX?

No

Sleep (optional) |

Figure5 EZ-Serial host API library application flow

The host API library contains the core parsing and generating functions necessary to translate incoming data
into callbacks and command function calls into binary packets.

User guide 88 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Host API library

5.2.2 Exposed API functions

The generic host APl implementation written in C provides the following methods:

Function Description

EZSerial Init Initializes parser and callback functions used for event
handling, serial output, and serial input

EZSerial Parse Processes incoming bytes and triggers event callback function
when response or event packet is successfully processed

EZSerial FillPacketMetaFromBinary | Fills binary packet metadatain ezs_packet_t structure based
on 4-byte binary packet header content (used internally within
EZSerial_Parse)

EZSerial SendPacket Sends binary packet and checksum byte using host-specific
output callback function
EzSerial WaitForPacket Reads data using host-specific input callback function in a

blocking or non-blocking way depending on timeout argument
(calls EZSerial_Parse as part of its functionality)

The application is responsible for providing implementation functions for three methods, assigned to the
following function pointers:

Function Description

EZSerial AppHandler Called whenever a valid incoming packet is observed.

This is strictly required in all cases. It is a core element of
abstracting incoming packets into callback functions.

EZSerial HardwareOutput Called whenever the APl generator needs to send data to the
module over UART.

This is required if you intend to use the EZSerial_SendPacket
method, or the ezs_cmd_... macros which also use that method.
If you will be manually sending well-formed binary command
packet data directly from your own application, this may be
assigned as NULL.

EZSerial HardwareInput Called whenever the API parser needs to read data from the
module over UART.

This is required if you intend to use the EZSerial_WaitForPacket
method, or the EZS_WAIT_... or EZS_CHECK_... macros which
also use that method. If you will be manually calling the
EZSerial_Parse method after reading bytes in over UART, this
may be assigned as NULL.

User guide 89 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Host API library

5.2.3 Command macros

To simplify binary packet creation, the library implements packet builder macros which match the protocol
definitions for each command method. For example:

e czs cmd system ping/()

e ezs cmd system reboot ()

e czs cmd gap_start adv(mode, type, interval, channels, filter, timeout)

Commands that fall into the SET/GET categories and may access flash memory for retrieving or storing setting
data have two separate command functions for each:

¢ RAM:ezs cmd gatts set parameters(flags)
e Flashiezs fcmd gatts set parameters(flags)

To substantially reduce flash usage, these are defined as macros which make use of a single function that
accepts variable arguments:

e ezs output result t ezs cmd va(uintl6é index, uint8 memory, ...)

This single method uses the supplied command table index (defined in the library header file as an enumerated
list) and the packed binary protocol structure definition to determine how many arguments are needed for any
given command and what their data types are.

This macro-based approach means it is not possible for to perform type checking at compile time, but it also
means that the entire command generator implementation uses a tiny quantity of flash memory (well under
one kByte as measured on one 8-bit MCU).

5.2.4 Convenience macros

If the hardware-specific input and output functions are correctly defined, the library also provides macros to
further abstract common behavior into simpler code.

Function Description

EZS_SEND AND WAIT (CMD, TIMEOUT) | Sendsacommand andthencallsEzS WAIT FOR RESPONSE.

EzS_WAIT_FOR_PACKET (TIMEOUT) CallsEzserial WaitForPacket with type setto any.
EZS_WAIT_FOR_RESPONSE (TIMEOUT) CallsEzserial WaitForPacket with type setto response.
EZS_WAIT_FOR_EVENT (TIMEOUT) CallsEzserial WaitForPacket with type setto event.
EZS_CHECK_FOR_PACKET () Wrapper forEZs WAIT FOR PACKET (0),a non-blocking attempt

to read data.

The assignable “return value” (evaluated expression result) for all of these macros is a pointer to an
ezs_packet_t object. If the process fails at any point for any reason—timeout, command transmission failure,
incoming packet in progress, etc.—then the pointer value will be 0 (NULL).

User guide 90 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Host API library

5.3 Porting the host API library to different platforms

Since the API protocol uses a packet byte stream, the API host library expects matching byte ordering and
packet structure mapping in order to avoid any extra processing overhead. The module (and low-level
Bluetooth® spec) uses little-endian byte ordering, so the host must as well for all multi-byte integer data.

The example application code provided with the library to demonstrate EZ-Serial APl usage includes a block of
code which can verify proper support and configuration of byte ordering and structure packing. While it is not
possible to provide a single, comprehensive cross-platform implementation of a structure packing macro due
to variations between compilers, it is possible to definitively test whether the existing code will work properly.
This can quickly identify and avoid potential problems that are otherwise very difficult to troubleshoot.

No special C extensions are used; tested compilers are GCC or GCC-compliant and follow the default C89 ruleset
since no additional extensions are enabled.

5.4 Using the API definition JSON file to create a custom library
The JSON schema used for the API definition has the following structure:

1. info (single dictionary)
a) date - Definition revision date
b) version - API protocol definition version
2. groups (list of dictionaries) [...
a) 1d - Numeric ID assigned to group
b) name - Alpha name assigned to group (for example, “gap”)
¢) commands (list of dictionaries) [...
i. id-NumericID assigned to command
ii. name - Alpha name assigned to command (for example, “start_adv”)
iii. flashopt - Boolean flagindicating flash storage for settings
iv. parameters (listofdictionaries)]...

type - Data type (for example, “uint16”)

name - Alpha name assigned to parameter (for example, “mode”)
textname - text-mode equivalent (for example, “M”)

required - Boolean flag indicating optional or required parameter
format - Intended data presentation format (for example, “string” or “hex”)
default - Fixed default value if optional parameter

ok Wb

v. returns (listofdictionaries)[...see parameters...]
vi. references (singledictionary)

1. commands (dictionary)
2. events (dictionary)

d) events (list of dictionaries) [...see commands...]

User guide 91 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Troubleshooting guidelines

6 Troubleshooting guidelines

EZ-Serial is designed to be as robust and intuitive as possible, but it is always possible for something to go
wrong. The following instructions can help narrow down the cause of failure in identify solutions in some cases.

6.1 UART communication issues
If you are unable to send or receive data as expected over the UART interface, perform the following steps:

1. Ensure VDD, VDDR, and GND pins are properly connected (VDDR also requires power).
2. Ensure VDD and VDDR have a stable supply within the supported range (typically 3V -5V).
3. Ensure UART data pins are properly connected:
- Module UART_RX to host TX
- Module UART_TX to host RX
4. If flow control is enabled or expected, ensure the UART flow control pins are properly connected:
- Module UART_RTS to host CTS
- Module UART_CTS to host RTS
5. Ensure the CYSPP pinis floating or HIGH to avoid entry into CYSPP mode. When CYSPP is active, API

communication is disabled, and this can appear as a non-communicative state until a connection is
established.

6. Drive or strongly pull the LP_MODE pin LOW to disable sleep mode. This is not necessary in most cases, but
it can help eliminate potential uncertainty during testing. For more details, see the Avoiding UART data loss
or corruption due to Deep Sleep transition section.

7. Reset the module and monitor the UART_TX pin during the boot process. If the module boots normally
(CYSPP pin de-asserted), the system boot (BOOT, ID=2/1) APleventshould occur atthe configured
baud rate and in the configured protocol mode. With factory default settings, these values are 115200 baud
and text mode. If possible, verify activity using an oscilloscope or a logic analyzer.

8. If attempting to communicate using the API protocol, ensure that your command packet structures are
correct per the definitions in the Protocol structure and communication flow section.

9. Ifyou are sending commands in binary mode and the commands in use have any variable-length arguments
(data type of uint8a or longuint8a), ensure that the argument has the correct <length> [datao,
datai, ..., datay] format. Omittingthe length byte will cause the API parser to interpret the packet
incorrectly.

10. If you are experiencing data corruption or loss on module-to-host transfers and using the
CYW920822M2P4XX1040-EVK with the “KitProg3” firmware on the PSoC™ 5LP MCU acting as the USB-to-
UART bridge, ensure that you have the latest version of PSoC™ Programmer and have updated the KitProg3
firmware on the CYW920822M2P4XXI040-EVK according to the PSoC™ Programmer user guide.

User guide 92 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Troubleshooting guidelines

6.2 Bluetooth® LE connection issues
If you are unable to connect to or from a remote device, perform the following steps:

1. If attempting to initiate a connection to a remote peripheral/slave device:

a) Ensure that the local device is in an idle state, not advertising or scanning or connected to another
device. You can stop these various operations with the gap_stop adv (/ax, ID=4/9) APIcommand,
gap_stop scan (/SX, ID=4/11) APlcommand,and gap disconnect (/DIS, ID=4/5) API
command, respectively. Note that the factory default configuration will automatically boot into an
advertising state due to CYSPP settings.

b) Ensure the remote device is advertising in a connectable state. Try scanning with the gap _start scan
(/s, 1ID=4/10) APIcommand in “observation” mode to monitor for all advertising devices.

c) Ensure the remote device is not too far away or in any other situation resulting in very low signal strength.
Scanning as described in (a) will also reveal this with observation of scan result RSSI values.

d) Ensure you have specified the correct Bluetooth® connection (MAC) address and address type (public or
private). A connection attempt with the right Bluetooth® address but the wrong address type will fail.

e) Ensure you are in the correct state to initiate a connection (idle, not advertising, scanning, connecting, or
connected already).

f) Try connecting to a different peripheral/slave device to see whether the problem persists.

2. If attempting to initiate a connection from a remote central/master device:

a) Ensure the module is advertising in a connectable state. Start advertising specifically in the “connectable,
undirected” mode using the gap_start adv (/A, ID=4/8) APIcommand,and watch for the expected
gap_adv_state changed (ASC, ID=4/2) APleventindicatingthatthe state actually changed to
“active.”

b) Ensure you have set properly formed custom advertising data with gap_set adv _data (SaD,
1D=4/19) if you have disabled automatic advertising packet management with
gap_set adv parameters (SAP, ID=4/23).Advertisement packetswithouta standard “Flags” field
(usually [02 01 06]) will not appear in a generic scan. For more details, see the How to customize
advertisement and scan response data section.

6.3 GPIO signal issues

If you are not observing the expected behavior for GPIO input and/or output signals, perform the following
steps:

1. Ensure that the pins you have connected are correct based on your chosen module. See the GPIO pin map
for supported modules section for per-device pin map details.

2. If aspecial-function pin is not generating or responding to an external signal as expected, ensure that the
function is enabled usingthe gpio set function (SIOF, ID=9/3) APlcommand. Note thatall
functions are enabled in the factory default configuration and should not need to be re-enabled in order to
work out of the box.

3. If aspecial-function output pin is not sufficiently driving a connected external device’s input logic, ensure
that the “strong drive” mode is enabled for that functional pin by using the gpio set function (SIOF,
1D=9/3) APl command.

User guide 93 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7 API protocol reference

This section describes the APl protocol that EZ-Serial uses. This protocol allows an external host to control the
module, in addition to any GPIO signals involved in the design. The protocol follows a strict set of rules to make
deterministic host-side behavior possible.

The material in this revision of the User Guide describes version 1.3 of the API protocol.
7.1 Protocol structure and communication flow

7.1.1 API protocol formats

EZ-Serial implements a unified set of functionality that can be accessed using either text or binary API
communication. These two formats cover the same feature set, and do not offer more or less control in any way
(with the exception of optional argument support in text mode, described in the following sections).

7.1.1.1 Text format overview

The text protocol definition is comprised entirely of printable ASCII characters for ease of use in terminal
software. Response and Event packets sent from the module shall end with “\r\n” characters (0x0D, 0x0A).
Commands sent to the module may end with either or both. Unlike the binary mode described below, the text
protocol does not contain any checksum data or have a command entry timeout.

7.1.1.2 Binary format overview

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure
comprises a 4-byte header, followed by an optional payload of up to 2047 bytes (length specifier field is 11 bits
wide).

No currently defined binary packet contains more than 520 payload bytes at this time, and very few contain
more than 48. The API reference material in the API protocol data types section lists every fixed or
minimum/maximum length value for all commands, responses, and events within the protocol.

The payload carries information related to the command, response, or event. If present, this payload always
comes immediately after the header. All data in the payload will be contained within one or more of the
datatypes specified in the API protocol data types section.

To simplify the implementation of parsers and generators both inside the firmware and on external host
microcontrollers, any packet may have a maximum of one variable-length data member (byte array or string),
and if present, it must be the last element in the payload.

7.1.2 API protocol data types

The data types implemented for individual parameters/arguments in the API protocol are described below,
including representative text and binary examples.

In both text and binary modes, all negative numbers are represented in two’s complement form. In this form,
the most significant bit is the sign bit, which indicates a negative number if set. The remaining bits count
upward from the bottom of the selected (positive or negative) range. For example, the value 0x80 is the bottom
of the “int8” range, -128.

User guide 94 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Table 68 API protocol data types

Type Bytes | Description

Example

uint8 1 Unsigned 8-bit integer.
range is 0 to 255.

Text mode:

e “10”=0x10, decimal 16

e “OA” =0x9A, decimal 154
Binary mode:

e [10]=0x10,decimal 16
e [9A]=0x9A, decimal 154

int8 1 Signed 8-bit integer.
range is -128 to 127.

Text mode:

e “10”=0x10, decimal 16

o “9A” =0x9A, decimal -102
Binary mode:

e [10]=0x10,decimal 16

e [9A]=0x9A, decimal -102

uintle 2 Unsigned 16-bit integer.

range is 0 to 65,535.

Text mode:

e “1234” =0x1234, decimal 4,660

e “9ABC” =0x9ABC, decimal 39,612
Binary mode: (little-endian)

e [3412]=0x1234, decimal 4,660

e [BC9A]=0x9ABC, decimal 39,612

intle 2 Signed 16-bit integer. Text mode:
Range is -32,768 to e “1234” =0x1234, decimal 4,660
32,767. “9ABC” = 0x9ABC, decimal -25,924
Binary mode: (little-endian)
e [3412]=0x10,decimal 4,660
e [BC9A]=0x9ABC, decimal -25,924
uint3z 4 Unsigned 32-bit integer. | Text Mode:
rangeis 0 to e “12345678” =0x12345678, decimal 305,419,896
4,294,967,295. « “9ABCDEF0” = 0x9ABCDEFO, decimal 2,596,069,104
Binary Mode: (little-endian)
e [78563412]=0x12345678, decimal 305,419,896
e [FODEBC9A]=0x9ABCDEFO0, decimal 2,596,069,104
int32 4 Signed 32-bit integer. Text Mode:

range is-2,147,438,648
to 2,147,483,647.

o “12345678” =0x12345678, decimal 305,419,896

e “OABCDEF0” = 0x9ABCDEFO, decimal -1,698,898,192
Binary Mode: (little-endian)

e [78563412]=0x12345678, decimal 305,419,896

e [FODEBC9A]=0x9ABCDEF0, decimal -1,698,898,192

macaddr 6 48-bit MAC address. Text Mode:
e “112233AABBCC”=11:22:33:AA:BB:CC
User guide 95 002-39351 Rev. *B

2025-11-12

(infineon

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Type Bytes | Description Example
Binary Mode: (little-endian)
e [CCBBAA332211]=11:22:33:AA:BB:CC
uint8a 1+ Array of uint8 bytes, Text Mode: (length omitted, detected automatically)
with prefixed one-byte | o «41424344” = Length 4, Data [41 42 43 44]
length value. Supported | | «;155334455” = [ength 5, Data [1122 3344 55]
length is 0-255 bytes.)
Binary Mode:
o [0441424344]=Ln.4,[41424344]
e [051122334455]=Ln.5,[1122334455]
longuint8a |2+ Array of uint8 bytes, Text Mode: (length omitted, detected automatically)
with prefixed two-byte |4 ©41424344” = Length 4, Data [41 42 43 44]
length value. Supported | | «; 1573344557 = | ength 5, Data [1122334455
length is 0-65535 bytes.)
Binary Mode:
e [040041424344]=Length4,Data[41424344]
e [05001122334455]=Length5,Data[1122334455]
The 16-bit length prefix in binary mode is transmitted in
little-endian byte order, so the value 0x0005 is sentas [05
00].
string 1+ Stringof uint8 bytes, | These two datatypes are represented in binary exactly the
with prefixed one-byte | same way as uint8a and longuint8a data, but in text mode
length value. Lengthis | they are entered and displayed exactly as-is, with the
0-255 bytes. assumption that they contain printable ASCII characters.
longstring |2+ String of uint8 bytes, An example of a string value entered and displayed in this
with prefixed two-byte | Way is the Device Name value.
length value. Length is
0-65535 bytes.
7.1.3 Binary format details
7.1.3.1 Byte ordering and structure packing

The protocol implements a collection of common data types representing signed and unsigned integers, arrays
of binary bytes, arrays of printable characters, and certain technology-specific data (6-byte MAC address).

In text mode, all data except string/longstring values are represented as ASCIl hexadecimal characters, without
a leading “0x” or other prefix. For example, the decimal value 154 is shown or entered as “92”. Leading zeros
may be omitted. Also, in text mode, all multi-byte integer and MAC address data shall be entered in big-endian
byte order. For example, the value 0x1234 is entered or displayed as “1234”. The MAC address
11:22:33:AA:BB:CC is entered or displayed as “112233AABBCC”.

In binary mode, all multi-byte integers and MAC address data must be transmitted serially in little-endian byte
order. For example, the value 0x1234 is two bytes transmittedas [34 12], andthe MAC address
11:22:33:AA:BB:CC is six bytes transmittedas [CC BB AA 33 22 11 1.

The Bluetooth® Low Energy specification mandates little-endian byte order internally, so data from the stack is
naturally presented to the application layer in this byte order. Further, many common embedded processors
use little-endian data storage, including the ARM Cortex-MO0 in Infineon Bluetooth® modules. As a result, host

User guide

96 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

MCU firmware can read in a serial byte stream into a contiguous SRAM buffer, and define a structure like the
following:

typedef struct {
uintl6 app;
uint32 stack;
uintl6 protocol;
uint8 hardware;
uint8 cause;
macaddr address;

} ezs evt system boot t;

The host MCU application can directly map this structure onto the packet buffer in memory with no additional
byte-swap operations. Accessing any one of the structure members will give correct access to the data in the
packet. This arrangement allows for minimal flash usage and CPU execution time.

7.1.3.2 Binary packet header

Table 69 describes the binary packet 4-byte header structure:

Table 69 Binary packet header structure

Byte | Field(s) Description
0 [7:6] - Type Type: The “Type” field is a 2-bit value (MSB aligned) indicating whether the
[5:4] - Memory packet is a command, response, or event. Options are as follows:

[2:0] - Length MSB | 00: RESERVED
01: RESERVED

10: Event (module-to-host)

11: Response (module-to-host), and Command (host-to-module)

Protocol methods follow this convention when the “Type” value is aligned
properly:

Commands sent to the module begin with 0xC0

Responses sent to the host begin with 0xC0

Events sent to the host begin with 0x80

Memory: The “Memory” field is a 2-bit value (MSB aligned) indicating whether a
command sent accesses the runtime value stored in RAM, or the boot value
stored in flash. This field is ignored for commands which do not read or write
configuration data stored in either flash or RAM. Options are as follows:

e 00: Runtime (RAM)

e 01:Boot (Flash)

e 10: RESERVED

e 11:RESERVED

The values stored in RAM and flash may be the same, if the user has not modified

the runtime value separately from the boot value since the last power-on or
reset.

Length MSB:

The length MSB field contains the upper three bits of the payload length value
(11 bits total).

User guide 97 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Byte | Field(s) Description

The “Type”, “Memory”, and “Length MSB” bitfields are positioned within Byte 0
as follows: 0b TTMM 0LLL

The remaining bit in the middle is currently reserved and should always be set to
zero.

1 Length LSB This value indicates the number of bytes in the payload. It may be 0 to indicate
no payload, or any value up to the 11-bit maximum of 2047 (combining the LSB
and MSB fields together).

Typically, packets fit easily within a 64-byte buffer. However, a few packets such
as local GATT reads and writes may potentially be much longer than this.
Protocol methods which may require or generate atypically long packets shall be
documented specifically.

2 Group ID All protocol methods are organized into logically separate groups, such as GAP,
GATT server, L2CAP, CYSPP, etc. This byte represents the group ID, between 0
and 255.

Asingle group ID applies to all commands, responses, and events within that
group.

3 Method ID Within each group and packet type, every protocol method has a unique ID
between 0 and 255. Command/response pairs always have matching IDs.
Command/response pairs and events are separate collections and may have
overlapping method IDs, each in a set starting from 0.

7.2 APl commands and responses

All commands and responses implemented in the API protocol are described in detail below. APl events are
documented separately in the APl events section. A master list of all possible error codes resulting from
commands can be found in the Error codes section.

Important things to note about the reference material in the following sections:

1. The 16-bit “result” code is common to every response, and always occupies the same position in the packet
(immediately after the binary header or text name). For simplicity, this “result” field is omitted from each list
of response parameters in the tables below.

2. The “Text” column in each “Command Arguments” table contains the text code for each argument.
Required arguments have a red asterisk (*) next to their text codes. Optional arguments in text mode will
not have a red asterisk.

3. Allcommand arguments are required in binary mode, due to the fact that binary parsing depends on
predictable argument position and byte width for proper data identification and unpacking.
4. The “Command-Specific Result Codes” list appearing for some commands do not include some errors that
may result from command entry or protocol format mistakes. These common errors include:
- 0x0203 - EZS_ERR PROTOCOL UNRECOGNIZED COMMAND
- 0x0206 - EZS ERR PROTOCOL SYNTAX ERROR
- 0x0207 - EZS ERR PROTOCOL COMMAND TIMEOUT
- 0x0209 - EZS_ERR PROTOCOL INVALID CHECKSUM
- 0x020A - EZS_ERR PROTOCOL INVALID COMMAND LENGTH
- 0x020B - EZS_ERR PROTOCOL INVALID PARAMETER COUNT

User guide 98 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

0x020C
0x020D
0x020E
0x020F
0x0210

EZS_ERR_PROTOCOL INVALID PARAMETER VALUE
EZS_ERR_PROTOCOL MISSING REQUIRED ARGUMENT
EZS_ERR_PROTOCOL INVALID HEXADECIMAL DATA
EZS_ERR_PROTOCOL INVALID ESCAPE_ SEQUENCE
EZS_ERR_PROTOCOL INVALID MACRO SEQUENCE

See the Error codes section for details on these and other error codes.

Commands and responses are broken down into the following groups:

e Protocol Group (ID=1)

e System Group (ID=2)

e DFU Group (ID=3)

e GAP Group (ID=4)

e GATT Server Group (ID=5)
e GATT Client Group (ID=6)
e SMP Group (ID=7)

e L2CAP Group (ID=8)

e GPIO Group (ID=9)

e CYSPP Group (ID=10)

e iBeacon Group (ID=12)

e Eddystone Group (ID=13)

7.2.1

Protocol group (ID=1)

infineon

Protocol methods allow you to change the way the API protocol operates while communicating with an
external host over the serial interface.

The following are the commands within this group:

e protocol set parse mode (SPPM, ID=1/1)

e protocol get parse mode (GPPM, ID=1/2)

e protocol set echo mode (SPEM, ID=1/3)

e protocol get echo mode (GPEM, ID=1/4)

Events within this group are documented in the Protocol group (ID=1) section.

User guide

929

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)

Configure new protocol parse mode. In binary mode, all APl packets to and from the module must use a binary
format with a fixed header and payload structure, as described in the reference material. In text mode, all
commands, responses, and events use a human-readable format that is suitable for typing in a terminal. For
more details, see the Protocol structure and communication flow section.

Note: When the protocol mode is changed with this command, the effect is immediate. The response
packet returned will come in the newly configured format, not the previous format.

Binary header

Type Length Group ID Note
CMD co 01 01 01 None
RSP Cco 02 01 01 None
Text info
Text name Response length Category Note
SPPM 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M New parse mode:
e 0=Text mode (factory default)
e 1=Binary mode

Response parameters
None.
Related commands

e protocol get parse mode (GPPM, ID=1/2)

User guide 100 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.1.2

Obtain current protocol parse mode.

Binary header

protocol_get_parse_mode (GPPM, ID=1/2)

Type Length Group ID Note
CMD co 00 01 02 None
RSP co 03 01 02 None
Text info
Text name Response length Category Note
GPPM 0x000F GET None
Command arguments
None.
Response parameters
Data type Name Text Description
uint8 mode M Current parse mode:
e 0=Text mode (factory default)
e 1=Binary mode
Related commands
e protocol set parse mode (SPPM, ID=1/2)

7.2.1.3

Configure new protocol echo mode.

protocol_set_echo_mode (SPEM, ID=1/3)

The protocol echo mode applies when using text mode API protocol over UART to communicate with the
module. Enabling echo will result in each input byte being sent back to the host after it is parsed. Local echo
may be desirable during a terminal session, but it is typically simpler disable it for MCU communication so that
the MCU only needs to parse response and event data.

Note:

Binary header

Local echo does not apply in CYSPP data mode, regardless of the protocol format in use. It only
affects communication over the UART interface when using the API protocol in text mode.

Type Length Group ID Note
CMD Co 01 01 03 None
RSP co 02 01 03 None
Text info
Text name Response length Category Note
SPEM 0x000A SET None
User guide 101 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

Data type Name Text Description
uint8 mode M New echo mode:
0 =Disabled
1=Enabled (factory default)

Response parameters

None.

Related commands
e protocol get echo mode (GPEM, ID=1/4)

7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

Obtain current protocol echo mode.

Binary header

Type Length Group ID Note
CMD Cco 00 01 04 None
RSP Cco 03 01 04 None
Text info
Text name Response length Category Note
GPEM 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description
uints8 mode M Current echo mode:
0 = Disabled
1=Enabled (factory default)

Related commands

e protocol set echo mode (SPEM, ID=1/3)

User guide 102 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.2.2 System group (ID=2)

System methods relate to the core device and describe functionality such as boot status, setting or obtaining
device address info, and resetting to an initial state.

The following are the commands within this group:

e system ping (/PING, ID=2/1)

e system reboot (/RBT, ID=2/2)

e system dump (/DUMP, ID=2/3)

e system store config (/SCFG, ID=2/4)

e system factory reset (/RFAC, ID=2/5)

e system query firmware version (/QFV, ID=2/6)
e system query unique id (/QUID, ID=2/7)

e system query random number (/QRND, ID=2/8)
e system aes encrypt (/AESE, ID=2/9)

e system aes decrypt (/AESD, ID=2/10)

e system write user data (/WUD, ID=2/11)

e system read user data (/RUD, ID=2/12)

e system set bluetooth address (SBA, ID=2/13)
e system get bluetooth address (GBA, ID=2/14)
e system set eco parameters (SECO, ID=2/15)

e system get eco parameters (GECO, ID=2/16)

e system set wco parameters (SWCO, ID=2/17)

e system get wco parameters (GWCO, ID=2/18)

e system set sleep parameters (SSLP, ID=2/19)
e system get sleep parameters (GSLP, ID=2/20)
e system set tx power (STXP, ID=2/21)

e system get tx power (GTXP, ID=2/22)

e system set transport (ST, ID=2/23)

e system get transport (GT, ID=2/24)

e system set uart parameters (STU, ID=2/25)

e system get uart parameters (GTU, ID=2/26)

e system force hibernation (/SLEEP, ID=2/29)

Events within this group are documented in the System group (ID=2) section.

User guide 103 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.1 system_ping (/PING, ID=2/1)
Test APl communication.

Pinging the module verifies that the host and the module can communicate properly in APl mode. The module
should immediately generate a well-formed response to this command if communication is working correctly.
Host-side initialization routines often begin with this step.

The runtime values returned in the response to this command are calculated based on the built-in 32768 Hz
watch clock oscillator (WCO) that is used to manage low-power operation of the Bluetooth® Low Energy stack.
No external hardware is required for this functionality.

Note: Pinging the module does not serve any purpose other than to verify proper communication, or to
obtain runtime since reset. You do not need to ping at reqular intervals to keep a connection alive
or prevent the module from entering low-power states. The platform automatically maintains
Bluetooth® LE connections unless commanded otherwise. See the How to manage Sleep states
section for Sleep behavior detail.

Binary header

Type Length Group ID Note
CMD co 00 02 01 None
RSP co 0A 02 01 None
Text info
Text name Response length Category Note
/PING 0x0021 ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 runtime R Number of seconds since boot

uint32 fraction F Fraction of a second (units are 1/32768)

User guide 104 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.2 system_reboot (/RBT, ID=2/2)

Reboot module.

A module reboot takes effect immediately. Any configuration settings not stored in flash will revert to their
boot-level values, and any active connections will be terminated without clean closure (remote peer will detect
a supervision timeout). See the Saving runtime settings in flash section for details about how to store settings
in flash to make them persist across reboots and power-cycles.

Binary header

Type Length Group ID Note
CMD co 00 02 02 None
RSP Co 02 02 02 None
Text info
Text name Response length Category Note
/RBT 0x000A ACTION None

Command arguments

None.

Response parameters
None.

Related commands

e system store config (/SCFG, ID=2/4) -Used to store all configuration items in flash before
rebooting, if desired.

Related events

e system boot (BOOT, ID=2/1) -Occursonce the reboot process completes.

User guide 105 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.3 system_dump (/DUMP, ID=2/3)

Dump current device configuration or state information.

Performing a system dump will generate a sequence of system dump blob (DBLOB, ID=2/5) APlevents,
each containing up to 16 bytes, until all data transmission is complete. You can provide this information for
troubleshooting if requested by Infineon support staff.

Binary header

Type Length Group ID Note
CMD co 01 02 03 None
RSP Cco 04 02 03 None
Text info
Text name Response length Category Note
/DUMP 0x0012 ACTION None

Command arguments

Data type Name Text Description

uints type T Type of information to dump:
e 0=Runtime configuration data (default)

1=Boot-level configuration data

2 = Factory-level configuration data

Response parameters

Data type Name Text Description
uintlé length L Number of bytes to be dumped

Related commands
e system store config (/SCFG, ID=2/4)

Related events
e system dump blob (DBLOB, ID=2/5)

User guide 106 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.4 system_store_config (/SCFG, ID=2/4)

Store all configuration settings into flash.

This command applies all runtime settings into the boot-level configuration area stored in non-volatile flash.
See the Configuration settings, storage and protection section for details about different configuration areas.

Note: This command briefly halts CPU execution, and may cause a connectivity loss for any open
connections if this occurs during a precise moment when low-level Bluetooth®LE interrupts
require processing. If possible, only use this command while not connected to avoid this potential

issue.

Binary header

Type Length Group ID Note
CMD co 00 02 04 None
RSP Co 02 02 04 None
Text info
Text name Response length Category Note
/SCFG 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related commands

e system factory reset (/RFAC, ID=2/5)

7.2.2.5 system_factory_reset (/RFAC, ID=2/5)

Reset all settings to factory defaults and reboot.

This command reverts all configuration settings back to the values stored in the factory default area. After

applying these default values, the system reboots immediately.

Note: If you have configured custom serial communication settings using the system set transport
(ST, I1D=2/23) APlcommand, using this command will undo these changes and may prevent
working communication until you reconfigure your host device to the factory default transport
settings. See the Factory default behavior section for details about these settings.

Binary header

Type Length Group ID Note
CMD Cco 00 02 05 None
RSP Cco 02 02 05 None
User guide 107 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Text info
Text name Response length Category Note
/RFAC 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related events
e system factory reset complete (RFAC, ID=2/3) -Occurs after the settings are reset
e system boot (BOOT, ID=2/1) - Occurs afterthe system reboots

Example usage

e Section Factory reset via APl command

7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)
Query EZ-Serial firmware version info.

This command provides the same version details that the system boot (BOOT, ID=2/1) eventcontains.

Binary header

Type Length Group ID Note
CMD co 00 02 06 None
RSP co 0D 02 06 None
Text info
Text name Response length Category Note
/QFV 0x002C ACTION None

Command arguments

None.

Response parameters

Data type Name Text | Description
uint32 app E Application version number (0x0100010E = 1.0.1 build 14)
uint32 stack S Bluetooth® LE stack version number (0x030200FA = 3.2.0 build 250)
uintlé protocol |P API protocol version number (0x0101=1.1)
uint8 hardware |H Hardware identifier:
0X40 = CYW920822-P4TAI040_P4EPI040
User guide 108 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Related events
e system boot (BOOT, ID=2/1)

7.2.2.7 system_query_unique_id (/QUID, ID=2/7)

Query EZ-Serial module unique identifier. This command is not implemented.

The module’s unique identifier comes from factory-stored data in the chipset’s supervisory flash (SFLASH) area.
The four bytes returned are:

e Die X position

e DieY position

e Die wafer number
e Dielot number

Binary header

Type Length Group ID Note
CMD Cco 00 02 07 None
RSP Co 07 02 07 None
Text info
Text name Response length Category
/QUID 0x0016 ACTION
Command arguments
None.
Response parameters
Data type | Name | Text| Description
uint8a id U Unique ID (1 length byte equal to 0x04, followed by 4 data bytes)
uints8a data type requires one prefixed “length” byte before binary parameter
payload
7.2.2.8 system_query_random_number (/QRND, ID=2/8)

Query random number generator for 8-byte pseudo-random sequence.

This command provides simple access to the random number generator in the Infineon Bluetooth® module’s

chipset. The query always provides exactly eight bytes of random data.

Note:

This pseudo-random generation mechanism is FIPS PUB 140-2 compliant.

Binary header

Type Length Group ID Note
CMD Co 00 02 08 None
RSP Cco 0B 02 08 None
User guide 109 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Text info
Text name Response length Category Note
/QRND 0x001E ACTION None

Command arguments

None.

Response parameters

Data type | Name | Text| Description
uint8a data |D Random 8-byte sequence (1 length byte equal to 0x08, followed by 8 data bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload
7.2.2.9 system_aes_encrypt (/AESE, ID=2/9)

Generate AES-encrypted cyphertext using provided key, initialization info, and cleartext.

This command provides access to the internal hardware AES engine inside the Infineon Bluetooth® module’s
chipset. The encryption process takes a 16-byte key to initialize the engine, and can encrypt 16 bytes at a time.
Encrypted data may be decrypted with the system aes decrypt (/AESD, ID=2/10) APlcommand,using
the same key and nonce.

Binary header

Type Length Group ID Note

CMD Cco 1D 02 09 None
RSP Cco 12 02 09 None
Text info
Text name Response length Category Note
/AESE 0x2E ACTION None
Command arguments
Data type | Name Text Description
uint8a in_struct | I* Input structure (32 bytes):

Bytes 0-15 = 16-byte Key

Bytes 16-31 = Clear text

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

User guide 110 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Data type | Name| Text| Description

uint8a out |O Cyphertext output (16 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands
e system aes decrypt (/AESD, ID=2/10)

Example usage
e See How to encrypt and decrypt arbitrary data

7.2.2.10 system_aes_decrypt (/AESD, ID=2/10)
Generate AES-decrypted plaintext using provided key, initialization info, and cyphertext.

This command provides access to the internal hardware AES engine inside the Infineon Bluetooth® module’s
chipset. The decryption process takes a 16-byte key decrypt 16 bytes at a time. Cleartext data may be
encrypted with the system aes encrypt (/AESE, ID=2/9) APIcommand,and later decrypted using this
APl command with the same key and nonce.

Binary header

Type Length Group ID Note
CMD Co 1D 02 0A None
RSP Co 12 02 0A None
Text info
Text name Response length Category Note
/AESD O0x2E ACTION

Command arguments

Data type | Name Text | Description
uint8a in_struct | I* Input structure (32 bytes):
Bytes 0-15 = 16-byte Key
Bytes 16-31 = Cyphertext data to be decrypted
Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.
User guide 111 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Data type | Name| Text| Description

uint8a out |O Cleartext output (16 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands
e system aes encrypt (/AESE, ID=2/9)

Example usage
e See How to encrypt and decrypt arbitrary data

7.2.2.11 system_write_user_data (/WUD, ID=2/11)

Write arbitrary data to the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows writing 1-
32 bytes to any position within this 256-byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if
you are writing 32 bytes of data, the specified “offset” argument must be 224 (0xEOQ) or less.

Binary header

Type| Length | Group | ID | Note
CMD |CO |04-23 |02 0B | Variable-length command payload, minimum of 4 (0x4), maximum of 35

(0x23)
RSP |CO |02 02 0B | None
Text info
Text name Response length Category Note
/WUD 0x000A ACTION None.

Command arguments

Data type Name | Text | Description

uintlé6 offset | O* Offset (0-255)
uint8a data D* Data to write (1-32 bytes)
Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

User guide 112 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
e system read user data (/RUD, ID=2/12)

7.2.2.12 system_read_user_data (/RUD, ID=2/12)

Read arbitrary data from the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows reading 1-
32 bytes from any position within this 256-byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if
you are reading 32 bytes of data, the specified “offset” argument must be 224 (OxEQ) or less.

Binary header

Type| Length| Group | ID | Note
CMD |CO 03 02 0C | None
RSP |[CO |03 02 0C | Variable-length response payload, minimum of 3 (0x3), maximum of 35
(0x23)
Text info

Text name | Response length | Category | Note

/RUD 0x000D-0x004D | ACTION | Variable-length response payload, minimum of 13 (0xD),
maximum of 77 (0x4D)

Command arguments

Data type Name Text Description
uintlé6 offset o* Offset (0-255)
uint8 length L* Number of bytes to read (1-32)

Response parameters

Data type | Name | Text| Description

uint8a data |D Data read (1-32 bytes)

uint8a data type requires one prefixed “length” byte before binary parameter
payload

Related commands
e system write user data (/WUD, ID=2/11)

User guide 113 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13)

Configure a new Bluetooth® address.

This address will be visible to remote scanning or connected devices, as long as the module is not operating
with privacy enabled. EZ-Serial uses a fixed public or static random address by default, which is generated
dynamically based on unique properties of the chipset inside each module (including wafer/die data).
Normally, you do not need to change the Bluetooth® address using this command.

Note: When privacy is enabled, remote peer devices will see a random address instead of the fixed
address. Central or peripheral privacy is not the same as encryption. See related commands and

example usage for detail.

Note: EZ-serial received this command, it will return an error code 0x0111 in response package. It means
that you need reset the device to make the address available.

Binary header

Type Length Group ID Note
CMD Co 06 02 oD None
RSP Cco 02 02 0D None
Text info
Text name Response length Category Note
SBA 0x0009 SET None

Command arguments

Data type | Name Text | Description

macaddr | address | A New Bluetooth® address. Set all six 0x00 bytes to revert to factory-provided
address.

Response parameters

None.

Related commands

e system get bluetooth address (GBA, ID=2/14)
e smp set privacy mode (SPRV, ID=7/9)

e smp query random address (/QRA, ID=7/4)

Example usage

e See How to use peripheral and central privacy

User guide 114 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14)

Obtain the current Bluetooth® address.

Binary header

Type Length Group ID Note
CMD Co 00 02 OE None
RSP Co 08 02 OE None
Text info
Text name Response length Category Note
GBA 0x0018 GET None

Command arguments

None.

Response parameters

Data type Name Text Description
macaddr address A Current Bluetooth® address

Related commands

e system set bluetooth address (SBA, ID=2/13)
e smp query random address (/QRA, ID=7/4)

e smp set privacy mode (SPRV, ID=7/9)

7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19)

Configure new system-wide sleep settings.

EZ-Serial automatically enters the most low-power sleep mode available in order to maintain required activity
(including Bluetooth® LE communication, PWM output, and UART output). While Deep Sleep mode provides the
best power efficiency, it also restricts certain operations:

e UART RXrequires one or more “dummy” bytes due to the 25 us CPU wake-up time
e High-resolution PWM output cannot operate since the high-frequency clock is stopped

Note: Enabling Deep Sleep with this APl command can result in a seemingly non-responsive UART. To
address this, prefix all transmissions from the host to the module with one or more 0x00 bytes to
ensure that the CPU has enough time to wake up. See the How to manage Sleep states section for

detail.
Binary header
Type Length Group ID Note
CMD co 01 02 13 None
RSP co 02 02 13 None
User guide 115 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Text info

Text name Response length Category Note
SSLP 0x000A SET None
Command arguments

Data type Name Text Description

uints8 level L New maximum system-wide sleep level:

e 0=Sleepdisabled
e 1=Normalsleep when possible (factory default)
e 2=Deep Sleep when possible

Response parameters

None.

Related commands

e system get sleep parameters (GSLP, ID=2/20)

e gpio set pwm mode (SPWM, ID=9/11) - Configure PWM output

e p cyspp set parameters (.CYSPPSP, ID=10/3) - Configure new CYSPP parameters, including
CYSPP data mode sleep level

Example usage

e See Configuring the system-wide sleep level

7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20)

Obtain the current system-wide sleep settings.

Binary header

Type Length Group ID Note
CMD Co 00 02 14 None
RSP Co 03 02 14 None
Text info
Text name Response length Category Note
GSLP 0x000F GET None

Command arguments

None.

User guide

116

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Data type Name Text Description

uints8 level L Current maximum system-wide sleep level:
0=Sleep disabled
1=Normal sleep when possible (factory default)

2 = Deep Sleep when possible

Related commands

e system set sleep parameters (SSLP, ID=2/19)

7.2.2.17 system_set_tx_power (STXP, ID=2/21)

Configure new transmit power for all outgoing radio communications.

This power setting affects all transmissions, including advertising, scan requests and connection requests, and
all packets sent during an active connection. Changes take effectimmediately, as soon as the next transmitted
packet begins.

Binary header

Type Length Group ID Note
CMD co 01 02 15 None
RSP co 02 02 15 None
Text info
Text name Response length Category Note
STXP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 power P New transmit power:

e 1=-20dBm

e 2=-10dBm

e 3=-6dBm

e 4=-4dBm

e 5=-2dBm

e 6=0dBm (factory default)
e 7=+2dBm

e 8=+4dBm

Response parameters

None.

Related commands
e system get tx power (GTXP, ID=2/22)

User guide 117 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.18 system_get_tx_power (GTXP, ID=2/22)

Obtain current transmit power for all outgoing radio communications.

Binary header

Type Length Group ID Note
CMD co 00 02 16 None
RSP co 03 02 16 None
Text info
Text name Response length Category Note
GTXP 0x000F GET None

Command arguments

None.

Response parameters

Datatype |Name |Text | Description

uint8 power |P Current transmit power:

e 1=-20dBm

e 2=-10dBm (default/maximum for CYBLE-2X20XX-X1)

e 3=-6dBm (default/maximum for CYBLE-224110-00 and CYBLE-224116-01)
e 4=-4dBm

e 5=-2dBm

e 6=0dBm (factory default)

e 7=+2dBm

e 8=+4dBm

Related commands
e system set tx power (STXP, ID=2/22)

User guide 118 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.2.19 system_set_transport (ST, ID=2/23)

Configure new host communication interface.

This command configures the interface used for wired external host communication. If a change is successful,
EZ-Serial will send the response packet in the original configuration, and then switch to the new transport
interface.

Note: The current EZ-Serial release supports only the UART transport interface. No other options are
available.

Binary header

Type Length Group ID Note
CMD Cco 01 02 17 None
RSP Cco 02 02 17 None
Text info
Text name Response length Category Note
ST 0x0008 SET None

Command arguments

Data type Name Text Description

uint8 interface I New host transport interface:
1=UART (factory default)

Response parameters
None.
Related commands

e system get transport (GT, ID=2/24)
e system set uart parameters (STU, ID=2/25)

User guide 119 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.2.20

Obtain the current host transport setting.

Binary header

system_get_transport (GT, ID=2/24)

Type Length Group ID Note
CMD co 00 02 18 None
RSP co 03 02 18 None
Text info
Text name Response length Category Note
GT 0x000D GET None
Command arguments
None.
Response parameters
Data type Name Text Description
uints interface I Current host transport interface:
0 = reserved
1= UART (factory default)
Related commands
e system set transport (ST, ID=2/23)
e system get uart parameters (GTU, ID=2/26)

User guide

002-39351 Rev. *B
2025-11-12

120

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.2.21 system_set_uart_parameters (STU, ID=2/25)

Configure new UART settings for host communication.

This command configures the UART peripheral behavior used for wired external host communication when the
host transport interface is set to “UART” with the system set transport (ST, ID=2/23) APlcommand.If
a change is successful, EZ-Serial will send the response packet using the original configuration, and then apply
the new UART settings.

Note: This command affects protected settings, which means you cannot immediately apply changes to
flash. In order to store new settings in non-volatile memory, you must send the command once
without the flash storage bit/flag, and then re-send the same command again with the flash
storage bit/flag set. This prevents accidental permanent communication lock-out resulting from
flash-stored settings that the connected host cannot use. For more details, see the Protected
configuration settings section.

Note: If you have Deep Sleep enabled using the system set sleep parameters (SSLP,

1D=2/19) APl command and you are relying on UART data reception to wake the module from
Deep Sleep, the number of dummy bytes needed for wake-up depends on the baud rate chosen,
and the recommended dummy byte depends on whether you have enabled even parity or not. For

more details, see the Avoiding UART data loss or corruption due to Deep Sleep transition section.

Note: Selecting a baud rate below 9600 and using API protocol communication can result in a situation
where EZ-Serial generates APl response and event packets faster than the UART interface can
transmit them to the host. If this occurs, data will flow continuously out of the module, but it will
not respond to incoming commands. The most likely trigger for this is by activating a scan with
gap start scan (/S, ID=4/10) or starting CYSPP client mode operation (which also begins

a scan), which generate scan result events rapidly.

This non-responsive behavior will be improved in a future release, but may be worked around by one of the
following:

e Ifusing CYSPP, keep the CYSPP pin externally asserted to suppress APl output
e If possible, select a faster baud rate
o |If possible, reduce the quantity of devices in the environment to decrease the scan result count

Binary header

Type Length Group ID Note
CMD Co 0A 02 19 None
RSP co 02 02 19 None
Text info
Text name Response length Category Note
STU 0x0009 SET None
User guide 121 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

Data type | Name Text | Description

uint32 baud B UART baud rate (Recommand baudrates:
300,9600,19200,115200,230400,460800,1000000):

e Minimum =300 baud (0x12C)
e Factory default = 115,200 baud (0x1C200)
¢ Maximum = 1,000,000 baud (0xf4240)

uints autobaud A Auto-detect UART baud rate at boot:
0 =Disabled (factory default, must always be disabled in current version)

uints autocorrect | C Auto-correct UART clock to compensate for wide temperature variation:
0 =Disabled (factory default, must always be disabled in current version)
uints8 flow F UART RTS/CTS flow control:
e 0=Disabled (factory default)
e 1=Enabled
uints databits D | UART data bits:

e 7=7data bits
e 8=38data bits (factory default, must always be 8 in current version)
e 9=9data bits

uints parity P UART parity:

e 0=Disabled (factory default, must always be disabled in current version)
e 1=0dd parity

e 2=Even parity

uint8 stopbits S UART stop bits:

e 1=1stop bit (factory default, must always be 1 in current version)
e 2=1.5stop bits

e 3=2stop bits

e 4=25stop bits

e 5=3stop bits

e 6=23.5stop bits

e T7=4stop bits

Response parameters

None.

Related commands
e system set transport (ST, ID=2/23)
e system get uart parameters (GTU, ID=2/26)

Example usage
e See How to change the serial communication parameters
e See Avoiding UART data loss or corruption due to Deep Sleep transition

User guide 122 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.2.22

system_get_uart_parameters (GTU, ID=2/26)

Obtain the current UART settings for host communication.

Binary header

Type Length Group ID Note
CMD Cco 00 02 1A None
RSP Cco ocC 02 1A None
Text info
Text name Response length Category Note
GTU 0x0032 GET None
Command arguments
None.
Response parameters
Datatype | Name Text | Description
uint32 baud B UART baud rate:
e Minimum =300 baud (0x12C)
e Factory default =115,200 baud (0x1C200)
e Maximum =2,000,000 baud (0x1E8480)
uints autobaud |A Auto-detect UART baud rate at boot:
0 = Disabled (factory default, must always be disabled in current version)
uint8 autocorrect | C Auto-correct UART clock to compensate for wide temperature variation:
0 = Disabled (factory default, must always be disabled in current version)
uint8 flow F UART RTS/CTS flow control:
e 0=Disabled (factory default)
e 1=Enabled
uints databits D UART data bits:
e 7=7Tdata bits
e 8=28data bits (factory default, must always be 8 in current version)
e 9=9data bits
uints parity P UART parity:
e 0=Disabled (factory default, must always be disabled in current version)
e 1=0dd parity
e 2=Even parity
uints stopbits S UART stop bits:
e 1=1stop bit (factory default, must always be 1 in current version)
e 2=1.5stop bits
e 3 =2stop bits
User guide 123 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description

e 4=2.5stop bits
e 5=3stop bits

e 6=3.5stop bits
e 7=4stop bits

Related commands
e system get transport (GT, ID=2/24)
e system set uart parameters (STU, ID=2/25)

7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29)

Forced hibernation mode

Binary header

Type Length Group ID Note
CMD Cco 04 02 1D None
RSP co 02 02 1D None
Text info
Text name Response length Category Note
/SLEEP 0x000C ACTION None

Command arguments

Data type Name Text Description

uint32 timeout T Wake up timeout in ms
0 =disabled (default)

Response parameters

None.

Related commands

None.

7.2.3 DFU group (ID=3)

DFU methods relate to the firmware update process, using wired UART transfer.
The following is the command within the DFU group:

e dfu_reboot (/CDFU, ID=3/1)

Events within this group are documented in the DFU group (ID=3) section.

User guide 124 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.3.1 dfu_reboot (/CDFU, ID=3/1)

Reboot into DFU mode.
Note: There must be a S followed this command.

This command reboots into the bootloader environment, to begin a local or remote device firmware update
(DFU) procedure. Using this command will immediately stop any current activity, and any configuration
settings not stored in flash will be lost.

See the Device firmware update examples section for details concerning DFU operation.

Binary header

Type Length Group ID Note
CMD Cco 01 03 01 None
RSP Cco 02 03 01 None
Text info
Text name Response length Category Note
/CDFU 0x000B ACTION None

Command arguments

Data type Name Text Description
uint8 mode M* DFU boot mode:
1=Allow only UART bootloading

Response parameters

None.

Related events
e dfu_boot (DFUE, ID=3/1)

Example usage

e See Device firmware update examples

User guide 125 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.2.4 GAP group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning and advertising, connection establishment, and connection maintenance.

The following are the commands within the GAP group:

e gap connect (/C, ID=4/1)

e gap cancel connection (/CX, ID=4/2)

e gap update conn parameters (/UCP, ID=4/3)

e gap send connupdate response (/CUR, ID=4/4)

e gap disconnect (/DIS, ID=4/5)

e gap add whitelist entry (/WLA, ID=4/6)

e gap delete whitelist entry (/WLD, ID=4/7)

e gap start _adv (/A, ID=4/8)

e gap stop_adv (/AX, ID=4/9)

e gap start scan (/S, ID=4/10)

e gap stop scan (/SX, ID=4/11)

e gap query peer address (/QPA, ID=4/12)

e gap query rssi (/QSS, ID=4/13)

e gap query whitelist (/QWL, ID=4/14)

e gap set device name (SDN, ID=4/15)

e gap get device name (GDN, ID=4/16)

e gap set device appearance (SDA, ID=4/17)

e gap get device appearance (GDA, ID=4/18)

e gap set adv_data (SAD, ID=4/19)

e gap get adv _data (GAD, ID=4/20)

e gap set sr data (SSRD, ID=4/21)

e gap get sr data (GSRD, ID=4/22)

e gap set adv parameters (SAP, ID=4/23)

e gap get adv parameters (GAP, ID=4/24)

® gap set scan parameters (SSP, ID=4/25)

® gap get scan parameters (GSP, ID=4/26)

e gap set conn parameters (SCP, ID=4/27)

e gap get conn parameters (GCP, ID=4/28)

e gap set adv legacy coded phy parameters (SACP, ID=4/29)
e gap get adv legacy coded phy parameters (GACP, ID=4/30)
e gap start legacy coded adv (/CA, ID=4/31)

e gap stop legacy coded adv(/CAX, ID=4/32)

e gap set scan legacy coded parameters (SSCP, ID=4/33)
e gap get scan legacy coded parameters (GSCP, ID=4/34)
e gap start legacy coded scan (/CS, ID=4/35)

e gap stop legacy coded scan (/CSX, ID=4/36)

e gap phy update (/UP, ID=4/37)

e gap set extended adv _data (SEAD, ID=4/38)

User guide 126 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

e gap get extended adv_data (GEAD, ID=4/39)
¢ gap set extended scan response data (SERD, ID=4/40)
¢ gap get extended scan response data (GERD, ID=4/41)

Events within this group are documented in the GAP group (ID=4) section.

7.2.4.1 gap_connect (/C, ID=4/1)
Initiate a connection to a remote device.

In order for this command to succeed, EZ-Serial must not have other ongoing Bluetooth® LE activity. In other
words:

e The module must not be advertising. Use gap _stop adv (/AX, ID=4/9) tostop,if necessary.
e The module must not be scanning. Use gap_stop scan (/SX, ID=4/11) tostop, if necessary.

e The module must not be connected already. Use gap disconnect (/DIS, ID=4/5) to disconnect, if
necessary.

After starting the connection process, the module will begin scanning for a connectable advertisement packet

from the target device. This will continue until it succeeds, or until the connection attempt is canceled with the
gap_cancel connection (/CX, ID=4/2) APIcommand,orthe connection scantimeout period expires (if
it has been set).

When sending this command in text mode, all omitted arguments except address and type will default to

the values set using the gap _set conn parameters (SCP, ID=4/27) APIcommand.

Note: If scan timeout is set to zero, the connection attempt will persist forever until it succeeds or it is
cancelled intentionally. The supervision timeout parameter governs link loss detection
after a connection is established, and does not affect the connection attempt itself.

Binary header

Type Length Group ID Note
CMD Co 13 04 01 None
RSP co 03 04 01 None
Text info
Text name Response length Category Note
/C 0x000D ACTION None

Command arguments

Data type | Name Text | Description

macaddr | address A Target connection address:
Set all 0x00 bytes to use directed connection for whitelisted devices

uint8 type T Address type:
e 0=Public(User set address)
e 1=Random/private (Device-generated address)

User guide 127 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Data type | Name Text | Description

uintlé interval I Connection interval (1.25 ms units):
e Minimum =0x0006 (6 * 1.25 ms=7.5ms)
e Maximum =0x0C80 (3200 * 1.25 ms =4 seconds)

uintl6 slave_latency L Slave latency (connection interval count):
e Minimum =0, no intervals skipped

e Maximum depends on interval and supervision timeout, such

that: [interval * slave latency] <
supervision timeout

uintl6 supervision_timeout | O Supervision timeout (10 ms units):
e Minimum =0x000A (10 * 10 ms =100 ms)
e Maximum =0x01F4 (500 * 10 ms =5 seconds)

uintle scan_interval Vv Connection scan interval (625 s units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uintl6 scan_window W Connection scan window (625 s units):
e Minimum =0x0004 (4 * 0.625 ms=2.5ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)

e Factory default = 0x0100 (256 * 0.625 ms = 160 ms) cannot be
greaterthan scan _interval

uintl6 scan_timeout M Connection scan timeout (seconds):
e Otodisable

Response parameters

Data type | Name Text | Description

uint8 conn_handle |C Handle assigned to new pending connection

(always 0 in current release due to internal Bluetooth® LE stack
functionality, final non-zero connection handle will be presentin
connection event occurring after the connection is established)

Related commands
e gap connect (/CX, ID=4/2)
e gap disconnect (/DIS, ID=4/5)

Related events
e gap connected (C, ID=4/5) -Occurswhen anoutgoingconnection attemptsucceeds

Example usage

e SeeHow to connect to a peripheral device

User guide 128 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.2 gap_cancel_connection (/CX, ID=4/2)
Cancel a pending connection attempt.

Use this command to manually end a pending connection attempt to a remote peer device which you
previously initiated with the gap connect (/C, ID=4/1) APIcommand. Thiscommand takes no
parameters because it is not possible to have more than one pending outgoing connection attempt at a time.

Note: This command only applies when ending a connection attempt that has not succeeded yet. To
close an established connection, use the gap _disconnect (/DIS, ID=4/5) APlcommand

instead.

Binary header

Type Length Group ID Note
CMD co 00 04 02 None
RSP Co 02 04 02 None
Text info
Text name Response length Category Note
/CX 0x0009 ACTION None

Command arguments

None.

Response parameters
None.
Related commands

e gap connect (/C, ID=4/1)
e gap disconnect (/DIS, ID=4/5)

Related events

e gap connected (C, ID=4/5)

Example usage

e See How to cancel a pending connection to a peripheral device

User guide 129 002-39351 Rev. *B
2025-11-12

infineon

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.3 gap_update_conn_parameters (/UCP, ID=4/3)

Request a connection parameter update for an active connection.

Use this command to change the connection interval, slave latency, and supervision timeout for an active
connection. If the parameter update is successful, EZ-Serial will generate the gap_connection updated
(Cu, 1D=4/8) APl event after applying new parameters. This will only occur if one or more of the parameters
changes from its previous value.

The behavior following this command depends on the link-layer role (master or slave) of the device which
initiated the request. The master device has final authority over connection parameters.

If used while in the master role (connection to peer initiated locally):

e New connection parameters will always be applied

e Remote peer (slave) will generate gap connection updated (CU, ID=4/8) eventifrunningEZ-Serial

e Localdevice will generate gap connection updated (CU, ID=4/8) eventafter new parameter
application

If used while in the slave role (connection from peer initiated remotely):

e New connection parameters must be confirmed by the master

e Remote peer (master) will generate gap connection update requested (UCR, ID=4/7) eventif
running EZ-Serial

e Remote peer (master) must use gap_send connupdate response (/CUR, ID=4/4) command if
running EZ-Serial

e Localdevice will generate gap connection updated (CU, ID=4/8) eventif masteraccepts parameters

Binary header

Type Length Group ID Note

CMD Cco 07 04 03 None

RSP Cco 02 04 03 None

Text info

Text name Response length Category Note

JUCP 0x000A ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle C Handle of connection to update
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintlé interval I* Connection interval

uintlé slave_latency L* | Slave latency

uint1l6é supervision_timeout | O* | Supervision timeout

User guide 130 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

API protocol reference

Response parameters
None.
Related commands

e gap connect (/C, ID=4/1)
e gap send connupdate response (/CUR, ID=4/4)

Related events
e gap connection update requested (UCR, ID=4/7)
e gap connection updated (CU, ID=4/8)

7.2.4.4 gap_send_connupdate_response (/CUR, ID=4/4)

Accept or rejects a connection update request.

Use this command after receiving the gap_connection_update_requested (UCR, ID=4/7) API event, which

indicates that a connected slave has requested a connection parameter update.

Binary header

Type Length Group ID Note
CMD co 02 04 04 None
RSP co 02 04 04 None
Text info
Text name Response length Category Note
/CUR 0x000A ACTION None

Command arguments

Datatype | Name Text | Description

uint8 conn_handle | C Handle of connection for which to send response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 response R* | Response:
0 = Accept (new parameters will be applied)
1 = Reject (new parameters will not be applied)

Response parameters

None.

Related commands

e gap update conn parameters (/UCP, ID=4/3)

Related events

e gap connection update requested (UCR, ID=4/7)

User guide 131

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.5 gap_disconnect (/DIS, ID=4/5)

Close an open connection to a remote device.

Use this command to cleanly close a2n established connection with a remote peer device. The connection must
first have been fully opened, indicated by the gap_connected (C, ID=4/5) APl event.

Note: This command only applies when closing a connection that is fully open. To cancel a pending
connection attempt, use the gap_cancel_connection (/CX, ID=4/2) APl command instead.

Binary header

Type Length Group ID Note
CMD Cco 01 04 05 None
RSP Co 02 04 05 None
Text info
Text name Response length Category Note
/DIS 0x000A ACTION None

Command arguments

Datatype | Name Text | Description

uint8 conn_handle | C Handle of connection to disconnect
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

Response parameters
None.
Related commands

e gap connect (/C, ID=4/1)
e gap cancel connection (/CX, ID=4/2)

Related events
e gap disconnected (DIS, ID=4/6)

User guide 132 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.6 gap_add_whitelist_entry (/WLA, ID=4/6)
Add a new Bluetooth® address to the whitelist.

The whitelist is an optional filter for determining which remote peers are allowed to connect, or which the local
module may try to connect to. When whitelist filtering is active, any devices which are not on the whitelist will
not be allowed to connect with the module. You can control whitelist filter usage during advertising, scanning,
or outgoing connect attempts.

Note: You can only use this command while disconnected. Changes to the whitelist are not allowed
during a connection.

Each whitelist entry is made up of two parts: the peer's Bluetooth® address, and the type of address (public or
private). You must specify the correct address type for each peer based on the type of address it is using. This
information is available in scan results and connection details.

Note: The Bluetooth® LE stack in EZ-Serial automatically mirrors the bonded device list into the whitelist.
This behavior accommodates the most common use case for the whitelist, and you may not need

any manual additions or removals from the whitelist.

Binary header

Type Length Group ID Note
CMD co 07 04 06 None
RSP co 03 04 06 None
Text info
Text name Response length Category Note
J/WLA 0x000F ACTION None

Command arguments

Data type Name Text Description
macaddr address A* Bluetooth® address
uint8 type T Address type:

0 =Public (default)
1=Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

Command-specific result codes:

None.

User guide 133 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands

e gap connect (/C, ID=4/1) -Connectto any whitelisted device by setting target address to all 0x00
bytes

e gap delete whitelist entry (/WLD, ID=4/7)

e gap query peer address (/QPA, ID=4/12)

e gap set adv parameters (SAP, ID=4/23) -Configurewhitelist/filter for advertising

e gap set scan parameters (SSP, ID=4/25) - Configure whitelist filter for scanning

Related events
e gap scan result (S, ID=4/4) -Contains Bluetooth®address and type details prior to connecting
e gap connected (C, ID=4/5) -Contains Bluetooth® address and type details after connecting

7.2.4.7 gap_delete_whitelist_entry (/WLD, ID=4/7)

Remove a Bluetooth® address from the whitelist.

Use this command to remove a specific device from the whitelist if it is already present. Specify all 0x00 bytes
for the address or leave the argument off in text mode to remove all entries from the whitelist. For details on
whitelist behavior, See the documentation for the gap _add whitelist entry (/WLA, ID=4/6) API
command.

Binary header

Type Length Group ID Note
CMD Cco 07 04 07 None
RSP Cco 03 04 07 None
Text info
Text name Response length Category Note
/WLD 0x000F ACTION None

Command arguments

Data type Name Text Description
Macaddr address A Bluetooth® address
uint8 type T Address type:

0 = Public (default)
1=Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

Related commands
e gap add whitelist entry (/WLA, ID=4/6)

User guide 134 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.8 gap_start_adv (/A, ID=4/8)
Start legacy advertising.

This command begins advertising using the specified parameters, or using the pre-configured default
advertising parameters if in text mode and some arguments are omitted. EZ-Serial must not already be
advertising in order for this command to succeed. However, it is possible to advertise and scan simultaneously.

If you have enabled beaconing (iBeacon or Eddystone) with the p_ibeacon_set_parameters (.IBSP, ID=12/1) API
command or the p_eddystone_set_parameters (.EDDYSP, ID=13/1) APl command, EZ-Serial will automatically
rotate between enabled advertisement payloads.payloads, with each payload active for one second.

EZ-Serial will generate the gap_adv_state_changed (ASC, ID=4/2) APl event when the advertising state changes.

Note: You can start advertising while connected only if you specify “0” (broadcast-only) for the mode
argument. The Bluetooth® LE stack does not support being connected and connectable at the
same time.

Note: When using the “scannable, undirected” type or “non-connectable, undirected” setting for the

type argument, the advertisement interval must be 100 ms (0xA0) or greater, per the Bluetooth®
specification. Shorter intervals than this will result in an error response.

Binary header

Type Length Group ID Note
CMD Cco OF 04 08 None
RSP co 02 04 08 None
Text info
Text name Response length Category Note
/A 0x0008 ACTION None

Command arguments

Datatype |Name Text | Description

uint8 mode M Discovery mode:
e 0=Non-discoverable/broadcast-only
e 1=General discovery

uint8 type T Advertisement type:

e 0=Connectable, undirected

e 1=Connectable, directed

e 2=Scannable, undirected

e 3 =Non-connectable, undirected

uintle interval I Advertisement interval (625 us units):
e Minimum =0x0020 (32 * 0.625 ms =20 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)

User guide 135 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Datatype |Name Text | Description

uint8 channels C Advertisement channel selection bitmask (at least one bit must be set):
e Bit0(0x1) =Channel 37
e Bit1(0x2) =Channel 38
e Bit2(0x4) =Channel 39

uint8 filter F Advertisement filter policy:

e 0=Scanrequest and connect request from any

e 1=Scan request whitelist-only, connect request from any
e 2=Scanrequest from any, connect request whitelist-only
e 3 =Scanrequest and connect request whitelist-only

uintl6 timeout 0] Advertisement timeout (seconds):
0 to disable
macaddr directAddr |A Directed advertisement address
uint8 directAddr |Y Directed address type(if using directed advertisement mode):
Type e 0:BLE_ADDR_PUBLIC

e 1:BLE_ADDR_RANDOM

Response parameters

None.

Related commands

e gap stop_adv (/AX, ID=4/9)

e gap set adv_data (SAD, ID=4/19)

e gap set sr data (SSRD, ID=4/21)

e gap set adv parameters (SAP, ID=4/23)

Related events
e gap_adv_state_changed (ASC, 1D=4/2)

Example usage

e See How to advertise as peripheral device

User guide 136 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.9 gap_stop_adv (/AX, ID=4/9)
Stop advertising.

This command immediately stops advertising if it is currently active. Note that advertising may have started as
aresultofthegap start adv (/A, ID=4/8) orgap_start legacy coded adv (/CA, ID=4/31) API
command, or due to specific configuration settings (GAP parameters, CYSPP profile, iBeacon, or Eddystone)
that automatically begin advertising.

EZ-Serial will generate the gap _adv state changed (ASC, ID=4/2) APleventwhen the advertising state
changes.

Binary header

Type Length Group ID Note
CMD Cco 00 04 09 None
RSP Cco 02 04 09 None
Text info
Text name Response length Category Note
JAX 0x0009 ACTION None

Command arguments

None.

Response parameters
None.

Related commands
e gap start _adv (/A, ID=4/8)

Related events
e gap adv_state changed (ASC, ID=4/2)
7.2.4.10 gap_start_scan (/S, 1D=4/10)

Start scanning.

This command begins scanning using the specified parameters, or using the pre-configured default scan
parameters if in text mode and some arguments are omitted. EZ-Serial must not already be scanning in order
for this command to succeed. However, it is possible to advertise and scan simultaneously.

EZ-Serial will generate the gap_scan state changed (SSC, ID=4/3) APleventwhen the scanningstate
changes.

Binary header

Type Length Group ID Note
CMD Co 0A 04 0A None
RSP Co 02 04 0A None
User guide 137 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Text info
Text name Response length Category Note
/S 0x0008 ACTION None

Command arguments

Data type | Name Text | Description
uint8 mode M Discovery mode:
e 0=0bservation mode
e 1=General discovery mode (default)
uintl6 interval || Scan interval (625 ys units):
e Minimum =0x0004 (4 * 0.625 ms =2.5ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
uintl6 window | W Scan window (625 ps units):
e Minimum =0x0004 (4 * 0.625 ms =2.5ms)
e Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default =0x0100 (256 * 0.625 ms = 160 ms) cannot be greater than
interval
uint8 active A Active scanning:
e 0=Passive scanning (default)
e 1=Active scanning
uint8 filter F Whitelist filter policy:
e 0=Accept all advertising packets (default)
e 1=Acceptonly from whitelisted devices
e 2=Acceptonly from devices sending directed advertisements to this device
(not support)
e 3 =Acceptonly from whitelisted devices sending directed advertisements to
this device. (not support)
uint8 nodupe |D Duplicate filter policy:
e 0=Disable duplicate result filtering (default)
e 1=Enable duplicate result filtering
uintl6 timeout | O Scan timeout (seconds):
e 0Otodisable. Only discovery mode (0 = Observation mode) supports
continuous scanning (timeout = 0)
o OxO0A (default)

Response parameters

None.

User guide 138 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Related commands
(/SX, ID=4/11)

(sSSP,

® gap stop scan

® gap set scan parameters ID=4/25)

Related events
e gap_scan_state_changed (SSC, ID=4/3)
e gap_scan_result (S, ID=4/4)

7.2.4.11 gap_stop_scan (/SX, ID=4/11)

Stop scanning.

This command immediately stops scanning if it is currently active. Note that advertising may have started as a
result of the gap start scan (/S, ID=4/10) orgap start legacy coded scan (/CS, ID=4/35) API
command, or due to specific configuration settings (particularly the CYSPP profile settings if the central role is

enabled).

EZ-Serial will generate the gap_scan_state_changed (SSC, ID=4/3) API event when the scanning state changes.

Binary header

Type Length Group ID Note
CMD Cco 00 04 0B None
RSP Cco 02 04 0B None
Text info
Text name Response length Category Note
/SX 0x0009 ACTION None

Command arguments

None.

Response parameters
None.

Related commands

e gap start scan (/S, ID=4/10)

Related events
e gap_scan_state_changed (SSC, ID=4/3)

User guide 139

002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.4.12 gap_query_peer_address (/QPA, ID=4/12)

Query remote peer Bluetooth® address.

This command provides returns the Bluetooth® address of the currently connected remote peer device. An
active connection is required in order to use this command successfully.

Binary header

Type Length Group ID Note
CMD Co 01 04 0C None
RSP co 09 04 0C None
Text info
Text name Response length Note
/QPA 0x001E None

Command arguments

Data type

Name

Text

Description

uint8

conn_handle | C

Handle of connection for which to query remote peer address
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

Response parameters

Data type Name Text Description
macaddr address A Peer Bluetooth® address
uint8 address_type T Address type

Related commands

e gap connect

® gap query rssi

(/¢C,
(/Qss,

ID=4/1)
ID=4/13)

7.2.4.13 gap_query_rssi (/QSS, 1D=4/13)

This command provides returns the remote signal strength indication (RSSI) value detected in the packet
received most recently from the currently connected remote peer device. An active connection is required in
order to use this command successfully.

Note:

RSSlI values in real-world environments often fall in the -50 dBm to -70 dBm range. An RSS! value at
this level does not necessarily indicate a poor connection.

The RSSI value returned in the response is expressed as a signed 8-bit integer. In text mode, it will appearin
two’s complement form. Positive numbers in this form fall in the range [0, 127] and are as they appear.
Negative numbers fall in the range [128, 255] and should have 256 subtracted from them to obtain the real

value.

User guide

002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Examples:

e 0x03=+3dBm
e OxFF=-1dBm

e O0xFO=-16dBm
e 0xC5=-59dBm

(OXFF=255-256=-1)
(0XFO =240 - 256 =-16)
(0xC5=197 - 256 = -59)

Binary header

Type Length Group ID Note
CMD co 01 04 oD None
RSP co 03 04 0D None
Text info
Text name Response length Note
/QSS 0x000F None
Command arguments
Datatype | Name Text | Description
uint8 conn_handle | C Handle of connection for which to query signal strength

(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

Response parameters

Data type

Name | Text

Description

int8

rssi R

RSSI value in dBm (between -85 and +5), or 0 if used while not connected

Related commands

® gap query peer address

(/QPA, ID=4/12)

7.2.4.14 gap_query_whitelist (/QWL, ID=4/14)

Request a list of whitelisted devices.

This command provides access to the current whitelist. The response from this command includes the number
of devices on the whitelist, and the response will be followed by that many gap_whitelist_entry (WL, ID=4/1) API
events which provide details for each entry.

Binary header

Type Length Group ID Note
CMD Co 00 04 OE None
RSP Co 03 04 OE None
Text info
Text name Response length Category Note
/QWL 0x000F ACTION None
User guide 141 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 count C Whitelist entry count

Related commands
e gap add whitelist entry (/WLA, ID=4/6)
e gap delete whitelist entry (/WLD, ID=4/7)

Related events

e gap_whitelist_entry (WL, ID=4/1)

7.2.4.15 gap_set_device_name (SDN, ID=4/15)
Configure a new device name.

This is typically a UTF-8 string value that is stored in the Device Name characteristic (UUID 0x2A00) in the local
GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP service is mandatory for all
Bluetooth® Smart devices, and the Device Name characteristic is a mandatory part of the GAP service.

Using this command affects the value in the local GATT server Device Name characteristic, and the local name
field in the automatically managed scan response packed used for advertising.

Binary header

Type | Length | Group | ID | Note

CMD |CO 01-41 |04 OF | Variable-length command payload, minimum of 1 (0x01), maximum of 65

(0x41)
RSP |CO |02 04 OF | None
Text info
Text name Response length Category Note
SDN 0x0009 SET None
Command arguments
Data type Name |Text | Description
string name |N New device name (0-64 bytes, raw ASCII data when in text mode)

Response parameters

None.

Related commands

e gap get device name (GDN, ID=4/16)

User guide 142 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Example usage
e See How to change the device name and appearance

7.2.4.16 gap_get_device_name (GDN, ID=4/16)

Obtain the current device name.

Binary header

Type | Length | Group | ID | Note
CMD | CO 00 04 10 | None
RSP |CO |03-43 |04 10 | Variable-length response payload, minimum of 3 (0x03), maximum of 67
(0x43)
Text info

Text name | Response length | Category| Note

GDN 0x000C-0x004C GET Variable-length response payload, minimum of 12 (0x0C),
maximum of 76 (0x4C)

Command arguments

None.

Response parameters

Data type Name |Text | Description

String name |N Current device name (0-64 bytes, raw ASCII data when in text mode)

Related commands

e gap set device name (SDN, ID=4/15)
7.2.4.17 gap_set_device_appearance (SDA, ID=4/17)

Configure a new device name.

Define the device appearance value. This is a 16-bit value which is stored in the Appearance characteristic
(UUID 0x2A01) in the local GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP
service is mandatory for every Bluetooth® Smart device, and the Appearance characteristic is a mandatory part
of the GAP service.

Using this command affects the value in the local GATT server Device Appearance characteristic.

Binary header

Type Length Group ID Note
CMD Cco 02 04 11 None
RSP Co 02 04 11 None
User guide 143 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Text info
Text name Response length Category Note
SDA 0x0009 SET None

Command arguments

Data type Name Text | Description

uintl6 appearance A New device appearance value (factory default is 0x0000)

Response parameters

None.

Related commands

e gap get device appearance (GDA, ID=4/18)

7.2.4.18 gap_get_device_appearance (GDA, ID=4/18)

Obtain the current device appearance value.

Binary header

Type Length Group ID Note
CMD Cco 00 04 12 None
RSP Cco 04 04 12 None
Text info
Text name Response length Category Note
GDA 0x0010 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uintlé appearance A Current device appearance value

Related commands

e gap set device appearance (SDA, ID=4/17)

User guide 144 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.19 gap_set_adv_data (SAD, ID=4/19)

Configure new custom advertisement packet data.

Define a new byte sequence for the primary advertisement packet data payload. This content will be visible to
all scanning devices performing a passive or active scan when the Infineon Bluetooth® moduleisin an
advertising state.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined
data with the gap set adv parameters (SAP, ID=4/23)APlcommand.Ifyou only set

custom data but do not enable user-defined content, the data here will remain unused.

Binary header

Type | Length | Group | ID | Note

CMD |CO |01-20 |04 13 | Variable-length command payload, minimum of 1 (0x01), maximum of 32

(0x20)
RSP Cco 02 04 13 | None
Text info
Text name Response length Category Note
SAD 0x0009 SET None

Command arguments

Datatype | Name | Text| Description

uint8a data |D New advertisement payload data (0-31 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Response parameters

None.

Related commands

e gap start adv (/A, ID=4/8)

e gap get adv data (GAD, ID=4/20)

e gap set sr data (SSRD, ID=4/21)

e gap set adv parameters (SAP, ID=4/23)

Example usage

e See How to customize advertisement and scan response data

User guide 145 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.20 gap_get_adv_data (GAD, ID=4/20)

Obtain the current custom advertisement packet data.

Binary header

Type | Length | Group | ID | Note
CMD | CO 00 04 14 | None
RSP |CO |[03-22 |04 14 | Variable-length response payload, minimum of 3 (0x03), maximum of 34
(0x22)
Text info

Text name | Response length | Category| Note

GAD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0x0D),
maximum of 75 (0x4B)

Command arguments

None.

Response parameters

Datatype | Name| Text| Description

uint8a data |D Current advertisement payload data (0-31 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands

e gap set adv data (SAD, ID=4/19)

7.2.4.21 gap_set_sr_data (SSRD, ID=4/21)
Configure new custom scan response packet payload.

This command defines a new byte sequence for the scan response packet. This content will be visible to all
scanning devices performing an active scan when the Infineon Bluetooth® module is in a scannable advertising
state.

Note: EZ-Serial automatically manages scan response content unless you enable the use of user-defined
data with the gap set adv parameters (SAP, ID=4/23)APlcommand.Ifyou only set

custom data but do not enable user-defined content, the data here will remain unused.

Binary header

Type | Length | Group | ID | Note

CMD |CO 01-20 |04 15 | Variable-length command payload, minimum of 1 (0x01), maximum of 32
(0x20)

RSP | CO 02 04 15 | None

User guide 146 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Text info
Text name Response length Category Note
SSRD 0x000A SET None

Command arguments

Data type | Name| Text| Description

uint8a data |D New scan response payload data (0-31 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Response parameters

None.

Related commands

e gap start adv (/A, ID=4/8)

e gap set adv _data (SAD, ID=4/19)

e gap get sr data (GSRD, ID=4/22)
e gap set adv parameters (SAP, ID=4/23)

Example usage

e See How to customize advertisement and scan response data

7.2.4.22 gap_get_sr_data (GSRD, ID=4/22)

Obtain the current custom scan response packet data.

Binary header

Type | Length | Group | ID | Note
CMD | CO 00 04 16 | None
RSP |CO |[03-22 |04 16 | Variable-length response payload, minimum of 3 (0x03), maximum of 34
(0x22)
Text info

Text name | Response length | Category| Note

GSRD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0xD),
maximum of 75 (0x4B)

Command arguments

None.

User guide 147 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Datatype | Name| Text| Description

uint8a data |D Current scan response payload data (0-31 bytes)
Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands
e gap set sr data (SSRD, ID=4/21)

7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23)

Configure new default advertisement parameters.

These parameters will be used when sending the gap _start adv (/a, 1D=4/8) APlcommand in text mode
without specifying non-default arguments.

The parameters are synchronized with gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29) API
command.

Note: Setting Bit 0 (0x01) of the flags value using this command will enable automatic advertisement on
boot, as described. However, advertisements may automatically start even if this bit is cleared if
the enable setting of CYSPP, iBeacon, or Eddystone is set to the “enable + autostart” setting.
Factory default settings include this value for the CYSPP feature.

Binary header

Type Length Group ID Note
CMD co 10 04 17 None
RSP co 02 04 17 None
Text info
Text name Response length Category Note
SAP 0x0009 SET None

Command arguments

Datatype | Name Text | Description

uint8 mode M Discovery mode:
e 0=Non-discoverable/broadcast-only
e 1=General discovery (factory default)

uint8 type T Advertisement type:

e 0=Connectable, undirected (factory default)
e 1=Connectable, directed

e 2=Scannable, undirected

¢ 3 =Non-connectable, undirected

User guide 148 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Datatype | Name Text | Description
uintlé interval I Advertisement interval (625 us units):
e Minimum =0x0020 (32 * 0.625 ms =20 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0030 (48 * 0.625 ms =30 ms)
uint8 channels C Advertisement channel selection bitmask:
e Bit0(0x1) =Channel 37
e Bit1(0x2) =Channel 38
e Bit2(0x4) =Channel 39
Note: At least one bit must be set, factory default is all 0x07 (all bits
set).
uint8 filter L Advertisement filter policy:
e 0=Scanrequestand connect request from any (factory default)
e 1=Scan request whitelist-only, connect request from any
e 2=Scanrequest from any, connect request whitelist-only
e 3 =Scanrequest and connect request whitelist-only
uintl6 timeout 0 Advertisement timeout (seconds):
e 0todisable (factory default)
uints flags F Advertisement behavior flags bitmask:
e Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection
e Bit1(0x2) = Use custom advertisement and scan response data
Note: Factory default = 0x00 (no bits set).
macaddr directAddr |A Directed advertisement address
uint8 directAddr |Y Directed address type(if using directed advertisement mode):
Type e 0:BLE_ADDR_PUBLIC
e 1:BLE_ADDR_RANDOM
Response parameters
None.
Related commands
e gap start _adv (/A, ID=4/8)

e gap get adv parameters

User guide

(GAP, ID=4/24)

149 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24)

Obtain the current advertisement parameters.

Binary header

Type Length Group ID Note
CMD co 00 04 18 None
RSP co 12 04 18 None
Text info
Text name Response length Category Note
GAP 0x0044 GET None

Command arguments

None.

Response parameters

Datatype |Name Text | Description

uint8 mode M Discovery mode:
e 0=Non-discoverable/broadcast-only
e 1=General discovery (factory default)

uint8 type T Advertisement type:

e (0-3forlegacy adv, 4-5 for periodic adv, 6-A for extended adv)
e 0x00 = Legacy: Connectable, undirected (factory default)
e 0x01=Legacy:Connectable, directed

e 0x02=Legacy:Scannable, undirected

e 0x03 = Legacy:Non-connectable, undirected

e 0x04 = Periodic: Undirected

e 0x05 = Periodic: Directed

e 0x06 = Extended: Undirected connectable

e 0x07 = Extended: Directed connectable

e 0x08 = Extended: Non-connectable, non-scannable

e 0x09 = Extended: Non-connectable, scannable

e 0x0A =Extended: Non-connectable anonymous directed

uintl6 interval I Advertisement interval (625 us units):

e Minimum =0x0020 (32 * 0.625 ms =20 ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0030 (48 * 0.625 ms =30 ms)

uint8 channels C Advertisement channel selection bitmask:
e Bit0(0x1)=Channel 37
e Bit1(0x2)=Channel 38

User guide 150 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Datatype | Name Text | Description
e Bit2(0x4) = Channel 39
Note: At least one bit must be set, factory default is all 0x07 (all bits
set).
uint8 filter L Advertisement filter policy:
e 0=Scanrequest and connect request from any (factory default)
e 1=Scanrequest whitelist-only, connect request from any
e 2=Scanrequest from any, connect request whitelist-only
e 3 =Scanrequest and connect request whitelist-only
uintl6 timeout 0 Advertisement timeout (seconds):
e 0todisable (factory default)
uint8 flags F Advertisement behavior flags bitmask:
e Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection
e Bit1(0x2) = Use custom advertisement and scan response data
Note: Factory default = 0x00 (no bits set).
macaddr directAddr Directed advertisement address
uint8 directAddr |Y Directed address type(if using directed advertisement mode):
Type e (0:BLE_ADDR_PUBLIC
e 1:BLE_ADDR_RANDOM

Related commands

e gap_set_adv_parameters (SAP, ID=4/23)

7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25)

Configure new default scan parameters.

These parameters will be used when sending the gap start scan (/S, ID=4/10) APIcommand in text
mode without specifying non-default arguments.

Binary header

Type Length Group ID Note
CMD co 0A 04 19 None
RSP co 02 04 19 None
Text info
Text name Response length Category
SSP 0x0009 SET
User guide 151 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

(infineon

Data type | Name Text | Description
uint8 mode M Discovery mode:
e 0=0Observation mode
e 1=General discovery mode (factory default)
uintlé interval || Scan interval (625 s units):
e Minimum =0x0004 (4 * 0.625 ms=2.5ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
uintl6 window | W Scan window (625 ps units):
e Minimum =0x0004 (4 * 0.625 ms=2.5ms)
e Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
e Cannot be greaterthan interval
uint8 active A Active scanning:
e 0=Passive scanning (factory default)
e 1=Active scanning
uint8 filter F Whitelist filter policy:
e 0=Accept all advertising packets (factory default)
e 1=Acceptonly from whitelisted devices
e 2=Acceptonly from devices sending directed advertisements to this device
(not support)
e 3 =Acceptonly from whitelisted devices sending directed advertisements to
this device (not support)
uint8 nodupe |D Duplicate filter policy:
e 0=Disable duplicate result filtering (factory default)
e 1=Enable duplicate result filtering
uintl6 timeout | O Scan timeout (seconds):
e OxO0A (factory default)

Response parameters

None.

Related commands
e gap start scan (/S, ID=4/10)
e gap get scan parameters (GSP, ID=4/26)

User guide 152

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.26 gap_get_scan_parameters (GSP, 1D=4/26)

Obtain the current scan parameters.

Binary header

Type Length Group ID Note
CMD Cco 00 04 1A None
RSP Cco ocC 04 1A None
Text info
Text name Response length Category Note
GSP 0x0032 GET None

Command arguments

None.

Response parameters

Datatype | Name Text | Description

uint8 mode M Discovery mode:
e 0=0bservation mode
e 1=General discovery mode (factory default)

uintl6 interval || Scan interval (625 ps units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uintl6 window | W Scan window (625 ps units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannotbe greaterthan interval

uint8 active A Active scanning:
e 0=Passive scanning (factory default)
e 1=Active scanning

uint8 filter F Whitelist filter policy:

e 0=Accept all advertising packets (factory default)

e 1=Acceptonly from whitelisted devices

e 2=Accept only from devices sending directed advertisements to this device

e 3 =Accept only from whitelisted devices sending directed advertisements to
this device

User guide 153 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

uint8 nodupe |D Duplicate filter policy:
e 0=Disable duplicate result filtering (factory default)
e 1=Enable duplicate result filtering

uintl6 timeout | O Scan timeout (seconds):
e 0x0A (factory default)

Related commands

® gap set scan parameters (SSP, ID=4/25)

7.2.4.27 gap_set_conn_parameters (SCP, 1D=4/27)

Configure new default connection parameters.

These parameters will be used when sending the gap _connect (/C, 1ID=4/1) APlcommand in text mode
without specifying non-default arguments.

Binary header

Type Length Group ID Note
CMD Cco ocC 04 1B None
RSP Cco 02 04 1B None
Text info
Text name Response length Category Note
SCP 0x0009 SET None

Command arguments

Data type | Name Text | Description

uintl6 interval I Connection interval (1.25 ms units):
e Minimum =0x0006 (6 * 1.25 ms = 7.5 ms, factory default)
¢ Maximum =0x0C80 (3200 * 1.25 ms =4 seconds)

uintl6 slave_latency L Slave latency (connection interval count):
e Minimum =0, no intervals skipped (factory default)

e Maximum depends on interval and supervision timeout, such
that: [interval * slave latency] <
supervision timeout

uintl6 supervision_timeout | O Supervision timeout (10 ms units):

e Minimum = 0x000A (10 * 10 ms =100 ms)

e Maximum =0x01F4 (500 * 10 ms = 5 seconds)

e Factory default = 0x064 (100 * 10 ms = 1 second)

uintl6 scan_interval Vv Connection scan interval (625 s units):

¢ Minimum =0x0004 (4 * 0.625 ms =2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default =0x0100 (256 * 0.625 ms = 160 ms)

User guide 154 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Data type | Name Text | Description

uintl6 scan_window W Connection scan window (625 s units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannotbe greaterthan scan interval

uintle scan_timeout M Connection scan timeout (seconds):
e 0todisable (factory default)

Response parameters

None.

Related commands

e gap connect (/C, ID=4/1)

e gap update conn parameters (/UCP, ID=4/3)
e gap get conn parameters (GCP, ID=4/28)

7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28)

Used to get the current default connection parameters.

Binary header

Type Length Group ID Note
CMD Cco 00 04 1C None
RSP co OE 04 1C None
Text info
Text name Response length Category Note
GCP 0x0033 GET None

Command arguments

None.

Response parameters

Data type | Name Text | Description

uintl6 interval I Connection interval (1.25 ms units):
e Minimum =0x0006 (6 * 1.25 ms = 7.5 ms, factory default)
e Maximum =0x0C80 (3200 * 1.25 ms = 4 seconds)

uintlé slave_latency L Slave latency (connection interval count):
e Minimum =0, no intervals skipped (factory default)

User guide 155 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Data type | Name Text | Description
e Maximum depends on interval and supervision timeout, such
that: [interval * slave latency] <
supervision timeout
uintl6 supervision_timeout | O Supervision timeout (10 ms units):
e Minimum =0x000A (10 * 10 ms =100 ms)
e Maximum =0x01F4 (500 * 10 ms = 5 seconds)
o Factory default = 0x064 (100 * 10 ms = 1 second)
uintl6 scan_interval Vv Connection scan interval (625 ps units):
e Minimum =0x0004 (4 * 0.625 ms =2.5ms)
e Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
uintl6 scan_window W Connection scan window (625 s units):
e Minimum =0x0004 (4 * 0.625 ms = 2.5 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default =0x0100 (256 * 0.625 ms = 160 ms)
e Cannotbe greaterthan scan interval
uintle scan_timeout M Connection scan timeout (seconds):
e 0todisable (factory default)

Related commands

e gap set conn parameters (SCP, ID=4/27)

7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)
Configure new default advertisement parameters for legacy, extended or periodic advertisement.

These parameters will be used when sending the gap_start_adv (/A, ID=4/8) or gap_start_legacy_coded_adv
(/CA, 1D=4/31) APl commands in text mode without specifying non-default arguments.

The parameters are synchronized with gap_get_adv_parameters (GAP, ID=4/24) APl command.

Binary header

Type Length Group ID Note
CMD Co 17 04 1D None
RSP co 02 04 1D None
Text info
Text name Response length Category
SACP 0x000A SET
User guide 156 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

Data Name Text | Description
type
uint8 Adv_mode P Advertisement mode:

e 0=Legacy (factory default)
e 1=Extended
e 2=Periodic

uint8 Disc_mode M Discovery mode:
e 0=Non-discoverable/broadcast-only
e 1=General discovery (factory default)

uint8 type T Advertisement type:

e (0-3forlegacy adv, 4-5 for periodic adv, 6-A for extended adv)
e 0x00 = Legacy: Connectable, undirected (factory default)
e 0x01=Legacy:Connectable, directed

e 0x02 = Legacy:Scannable, undirected

e 0x03=Legacy:Non-connectable, undirected

e 0x04 = Periodic: Undirected

e 0x05 = Periodic: Directed

e 0x06 = Extended: Undirected connectable

e 0x07 = Extended: Directed connectable

e 0x08 = Extended: Non-connectable, non-scannable

e 0x09 = Extended: Non-connectable, scannable

e 0x0A = Extended: Non-connectable anonymous directed

uint8 Primary_phy H PHY:
e 0=1M (factory default)
e 1=2M
e 2=Coded
uintl6 interval I Advertisement interval (625 us units):

e Minimum =0x0020 (32 * 0.625 ms =20 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0030 (48 * 0.625 ms =30 ms)

uint8 channels C Advertisement channel selection bitmask:
e Bit0(0x1) =Channel 37
e Bit1(0x2)=Channel 38
e Bit2 (0x4)=Channel 39

Note: At least one bit must be set, factory default is all 0x07
(all bits set).

User guide 157 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Data
type

Name

Text

Description

uint8

filter

Advertisement filter policy:

e 0=Scanrequest and connect request from any (factory default)
e 1=Scan request whitelist-only, connect request from any

e 2=Scanrequest from any, connect request whitelist-only

e 3=Scanrequest and connect request whitelist-only

uintl6

timeout

Advertisement timeout (seconds):
e 0todisable (factory default)

uint8

flags

Advertisement behavior flags bitmask:

e Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection

e Bit1(0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).

macaddr

directAddr

Directed advertisement address

uint8

directAddr
Type

Directed address type(if using directed advertisement mode):
e 0:BLE_ADDR_PUBLIC
1: BLE_ADDR_RANDOM

uint8

Secondary_phy

PHY:

e 0=1M (factory default)
e 1=2M

e 2=Coded

uint8

Secondary_max_skip

Maximum number of advertising events the controller can skip
before sending the AUX_ADV_IND packets.

o 0:that AUX_ADV_IND PDUs shall be sent prior each advertising
events (factory default)

uint8

Secondary_SID

Advertising SID

e Minimum: 0x00

e Maximum: OxOF

e Factory default = 0x00

Uintl6

Periodic _interval

Advertisement interval (1.25 ms units):
e Minimum=20ms

e Maximum=81.91875s

e Factory default =30 ms

Response parameters

None.

User guide

158

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands

e gap start _adv (/A, ID=4/8)

e gap start legacy coded adv(/CA, ID=4/31)

e gap get adv_legacy coded phy parameters (GACP, ID=4/30)

7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)

Obtain the current advertisement parameters for all advertisement modes.

Binary header

Type Length Group ID Note
CMD Co 00 04 1E None
RSP Cco 19 04 1E None
Text info
Text name Response length Category Note
GACP 0x0065 GET None

Command arguments

None.

Response parameters

Data Name Text | Description
type
uint8 Adv_mode P Advertisement mode:

e 0=Legacy (factory default)
e 1=Extended
e 2 =Periodic

uint8 Disc_mode M Discovery mode:
e 0=Non-discoverable/broadcast-only

e 1=General discovery (factory default)

User guide 159 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data Name Text | Description
type
uint8 Type T Advertisement type:

e (0-3forlegacy adv, 4-5 for periodic adv, 6-A for extended adv)
e 0x00 = Legacy: Connectable, undirected (factory default)
e 0x01=Legacy:Connectable, directed

e 0x02=Legacy:Scannable, undirected

e 0x03=Legacy:Non-connectable, undirected

e 0x04 = Periodic: Undirected

e 0x05 = Periodic: Directed

e 0x06 = Extended: Undirected connectable

e 0x07 = Extended: Directed connectable

e 0x08 = Extended: Non-connectable, non-scannable

e 0x09 = Extended: Non-connectable, scannable

e 0x0A =Extended: Non-connectable anonymous directed

uint8 Primary_phy H PHY:
e 0=1M (factory default)
e 1=2M
e 2=Coded
uintl6 Interval I Advertisement interval (625 us units):

e Minimum =0x0020 (32 * 0.625 ms =20 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0030 (48 * 0.625 ms =30 ms)

uint8 Channels C Advertisement channel selection bitmask:
e Bit0(0x1) =Channel 37
e Bit1(0x2)=Channel 38
e Bit2(0x4) =Channel 39

Note: At least one bit must be set, factory default is all 0x07
(all bits set).
uint8 Filter L Advertisement filter policy:

e 0=Scanrequestand connect request from any (factory default)
e 1=Scan request whitelist-only, connect request from any

e 2=Scanrequest from any, connect request whitelist-only

e 3=Scanrequest and connect request whitelist-only

uintl6 Timeout 0 Advertisement timeout (seconds):
e 0todisable (factory default)

User guide 160 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data Name Text | Description
type
uint8 Flags F Advertisement behavior flags bitmask:

e Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection

e Bit1(0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).
macaddr | directAddr A Directed advertisement address
uint8 directAddr Y Directed address type(if using directed advertisement mode):
Type e 0:BLE_ADDR_PUBLIC
e 1:BLE_ADDR_RANDOM
uint8 Secondary_phy E PHY:
e 0=1M (factory default)
e 1=2M
e 2=Coded
uint8 Secondary_max_skip | S Maximum number of advertising events the controller can skip

before sending the AUX_ADV_IND packets.

e 0:that AUX_ADV_IND PDUs shall be sent prior each advertising
events (factory default)

uint8 Secondary_SID D Advertising SID

e Minimum: 0x00

e Maximum: OxOF

e Factory default = 0x00

Uintl6 Periodic_interval N Advertisement interval (1.25 ms units):
e Minimum=20ms

e Maximum=281.91875s

e Factory default =30 ms

Related commands
e gap set adv parameters (SAP, ID=4/23)
e gap set adv legacy coded phy parameters (SACP, ID=4/29)

User guide 161 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.31 gap_start_legacy_coded_adv (/CA, ID=4/31)

Start advertising for legacy or extended or periodic advertisement.

Function is the same as gap_start_adv (/A, ID=4/8), EZ-Serial will generate the gap_adv_state_changed (ASC,
ID=4/2) APl event when the advertising state changes.

Binary header

Type Length Group ID Note
CMD Co 16 04 1F None
RSP Cco 02 04 1F None
Text info
Text name Response length Category Note
/CA 0x0009 ACTION None

Command arguments

Data Name Text | Description
type
uint8 Adv_mode P Advertisement mode:

e 0=Legacy (factory default)
e 1=Extended
e 2=Periodic

uint8 Disc_mode M Discovery mode:
e 0=Non-discoverable/broadcast-only
e 1=General discovery (factory default)

uint8 type T Advertisement type:

e (0-3forlegacy adv, 4-5 for periodic adv, 6-A for extended adv)
e 0x00 = Legacy: Connectable, undirected (factory default)
e 0x01=Legacy:Connectable, directed

e 0x02 = Legacy:Scannable, undirected

e 0x03 = Legacy:Non-connectable, undirected

e 0x04 = Periodic: Undirected

e 0x05= Periodic: Directed

e 0x06 = Extended: Undirected connectable

e 0x07 = Extended: Directed connectable

e 0x08 = Extended: Non-connectable, non-scannable

e 0x09 = Extended: Non-connectable, scannable

e 0x0A =Extended: Non-connectable anonymous directed

User guide 162 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Data
type

Name

Text

Description

uint8

Primary_phy

PHY:

e 0=1M (factory default)
e 1=2M

e 2=Coded

uintl6

interval

Advertisement interval (625 ps units):

e Minimum =0x0020 (32 * 0.625 ms =20 ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0030 (48 * 0.625 ms =30 ms)

uint8

channels

Advertisement channel selection bitmask:
e Bit0(0x1) =Channel 37
e Bit1(0x2)=Channel 38
e Bit2(0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07

(all bits set)

uint8

filter

Advertisement filter policy:

e 0=Scanrequest and connect request from any (factory default)
e 1=Scan request whitelist-only, connect request from any

e 2=Scanrequest from any, connect request whitelist-only

e 3 =Scanrequest and connect request whitelist-only

uintl6

timeout

Advertisement timeout (seconds):
e 0todisable (factory default)

macaddr

directAddr

Directed advertisement address

uint8

directAddr
Type

Directed address type(if using directed advertisement mode):
e 0:BLE_ADDR_PUBLIC
e 1:BLE_ADDR_RANDOM

uint8

Secondary_phy

PHY:

e 0=1M (factory default)
e 1=2M

e 2=Coded

uint8

Secondary_max_skip

Maximum number of advertising events the controller can skip
before sending the AUX_ADV_IND packets.

0: that AUX_ADV_IND PDUs shall be sent prior each advertising
events (factory default)

uint8

Secondary_SID

Advertising SID

e Minimum: 0x00

e Maximum: OxOF

e Factory default = 0x00

User guide

163

002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

infineon

Data Name Text | Description

type

Uintl6 Periodic_interval N Advertisement interval (1.25 ms units):
e Minimum=20ms
e Maximum=281.91875s
e Factory default =30 ms

Response parameters

None.

Related commands

¢® gap_
¢® gap_
¢ gap_
¢ gap_

stop_adv (/AX, ID=4/9)

set _adv_data (SAD, ID=4/19)
set sr data (SSRD, ID=4/21)

set adv parameters (SAP,

ID=4/23)

e gap stop legacy coded adv(/CAX, ID=4/32)

e gap set adv legacy coded phy parameters (SACP, ID=4/29)

Related events

e gap_adv_state_changed (ASC, ID=4/2)

User guide

164

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.32 gap_stop_legacy_coded_adv(/CAX, ID=4/32)
Stop advertising.
This command immediately stops advertising if it is currently active.

Function is the same as gap_stop_adv (/AX, ID=4/9), EZ-Serial will generate the gap_adv_state_changed (ASC,
ID=4/2) APl event when the advertising state changes.

Binary header

Type Length Group ID Note
CMD Co 00 04 20 None
RSP Cco 02 04 20 None
Text info
Text name Response length Category Note
JCAX 0x000A ACTION None

Command arguments

None.

Response parameters
None.
Related commands

e gap start _adv (/A, ID=4/8)
e gap start legacy coded adv (/CA, ID=4/31)

Related events
e gap_adv_state_changed (ASC, ID=4/2)

User guide 165 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33)
Configure new default scan parameters with coded phy related.

These parameters will be used when sending the gap_start_scan (/S, ID=4/10) or gap_start_legacy_coded_scan
(/CS, ID=4/35) APl commands in text mode without specifying non-default arguments.

Binary header

Type Length Group ID Note
CMD Co OF 04 21 None
RSP co 02 04 21 None
Text info
Text name Response length Category Note
SSCP 0x000A SET None

Command arguments

Data type | Name Text | Description

uint8 mode M Discovery mode:
e 0=0Observation mode
e 1=General discovery mode (factory default)

uintl6 interval I Scan interval (625 s units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uintl6 window w Scan window (625 s units):

e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannot be greater than interval

uint8 active A Active scanning:
e 0=Passive scanning (factory default)
e 1=Active scanning

uint8 filter F Whitelist filter policy:
e 0=Accept all advertising packets (factory default)
e 1=Acceptonly from whitelisted devices

e 2=Acceptonly from devices sending directed advertisements to this
device

e 3 =Acceptonly from whitelisted devices sending directed
advertisements to this device

User guide 166 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

(infineon

Data type | Name Text | Description
uint8 nodupe D Duplicate filter policy:
e 0=Disable duplicate result filtering (factory default)
e 1=Enable duplicate result filtering
uintl6 timeout 0] Scan timeout (seconds):
e Ox0A (factory default)
uint8 phy P PHY:
e Bit0(0x1)=1M
e Bit1(0x2)=Coded
uintl6 coded_interval |C Scan interval (625 s units):
e Minimum =0x0004 (4 * 0.625 ms=2.5ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
uintl6 Coded_window | E Scan window (625 s units):
e Minimum =0x0004 (4 * 0.625 ms=2.5ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)
e Cannot be greater than interval
Response parameters
None.
Related commands
e gap start scan (/S, ID=4/10)
® gap get scan parameters (GSP, ID=4/26)
e get scan legacy coded parameters (GSCP, ID=4/34)
e gap start legacy coded scan (/CS, ID=4/35)

7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)

Obtain the current scan parameters with coded phy related.

Binary header

Type Length Group ID Note
CMD Cco 00 04 22 None
RSP co 11 04 22 None
Text info
Text name Response length Category Note
GSCP 0x0046 GET None
User guide 167 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

None.

Response parameters

Data type | Name Text | Description

uint8 mode M Discovery mode:
e 0=0Observation mode
e 1=General discovery mode (factory default)

uintl6 interval I Scan interval (625 ps units):

e Minimum=0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uintl6 window w Scan window (625 s units):

e Minimum=0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannot be greater than interval

uint8 active A Active scanning:
e 0=Passive scanning (factory default)
e 1=Active scanning

uint8 filter F Whitelist filter policy:
e 0=Accept all advertising packets (factory default)
e 1=Acceptonly from whitelisted devices

e 2=Acceptonly from devices sending directed advertisements to this
device

e 3 =Accept only from whitelisted devices sending directed
advertisements to this device

uint8 nodupe D Duplicate filter policy:
e 0=Disable duplicate result filtering (factory default)
e 1=Enable duplicate result filtering

uintl6 timeout 0 Scan timeout (seconds):
e OxOA (factory default)
uint8 phy P PHY:

e Bit0(0x1)=1M
e Bit1(0x2)=Coded

uintl6 coded C Scan interval (625 s units):

interval « Minimum =0x0004 (4 * 0.625 ms = 2.5 ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

User guide 168 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Name Text | Description

coded E Scan window (625 s units):

window e Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannot be greater than interval

Data type
uintle

Related commands
® gap set scan parameters (SSP, ID=4/25)
e set scan legacy coded parameters (SSCP, ID=4/33)

7.2.4.35 gap_start_legacy_coded_scan(/CS, ID=4/35)

Start scanning with coded phy parameters.

Function is the same as gap_start_scan (/S, ID=4/10), EZ-Serial will generate the gap_scan_state_changed (SSC,
ID=4/3) APl event when the scanning state changes.

Binary header

Type Length Group ID Note
CMD Cco OF 04 23 None
RSP Co 02 04 23 None
Text info
Text name Response length Category
/CS 0x0009 ACTION
Command arguments
Data type | Name Text | Description
uint8 mode M Discovery mode:
e 0=0Observation mode
e 1=General discovery mode (default)
uintl6 interval I Scan interval (625 ps units):
e Minimum =0x0004 (4 * 0.625 ms =2.5 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default =0x0100 (256 * 0.625 ms = 160 ms)
uintle window W Scan window (625 s units):
e Minimum =0x0004 (4 * 0.625 ms =2.5 ms)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms) cannot be greater
than interval
uint8 active A Active scanning:
e 0=Passive scanning (default)
User guide 169 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description
e 1=Active scanning

uint8 filter F Whitelist filter policy:
e 0=Accept all advertising packets (default)
e 1=Acceptonly from whitelisted devices

e 2=Acceptonly from devices sending directed advertisements to this
device (not support)

e 3 =Acceptonly from whitelisted devices sending directed
advertisements to this device.(not support)

uint8 nodupe D Duplicate filter policy:
e 0=Disable duplicate result filtering (default)
e 1=Enable duplicate result filtering

uintl6 timeout 0 Scan timeout (seconds):

e 0todisable. Only discovery mode (0 = Observation mode) supports
continuous sanning (timeout = 0). 0x0A (default)

uint8 phy P PHY:

e Bit0(0x1)=1M

e Bit1(0x2)=Coded

uintl6 coded C Scan interval (625 ps units):

interval e Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uintl6 coded E Scan window (625 ps units):

window e Minimum =0x0004 (4 * 0.625 ms=2.5ms)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
e Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

e Cannot be greater than interval

Response parameters

None.

Related commands

e gap stop scan (/SX, ID=4/11)

® gap set scan parameters (SSP, ID=4/25)

e get scan legacy coded parameters (GSCP, ID=4/34)
e gap stop legacy coded scan (/CSX, ID=4/36)

Related events
e gap_scan_state_changed (SSC, ID=4/3)
o gap_scan_result (S, ID=4/4)

User guide 170 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36)
Stop scanning.

Function is the same as gap_stop_scan (/SX, ID=4/11), EZ-Serial will generate the gap_scan_state_changed
(SSC, ID=4/3) APl event when the scanning state changes.

Binary header

Type Length Group ID Note
CMD Co 00 04 24 None
RSP co 02 04 24 None
Text info
Text name Response length Category Note
JCSX 0x000A ACTION None

Command arguments

None.

Response parameters

None.

Related commands
e gap start scan (/S, ID=4/10)
e gap start legacy coded scan (/CS, ID=4/35)

Related events
e gap_scan_state_changed (SSC, ID=4/3)

7.2.4.37 gap_phy_update (/UP, ID=4/37)
Request a PHY update for an active connection.

Binary header

Type Length Group ID Note
CMD Co 04 04 25 None
RSP co 02 04 25 None
Text info
Text name Response length Category Note
JUP 0x0009 ACTION None
User guide 171 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

Datatype | Name Text | Description

uint8 conn_handle |C Handle of connection to update
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uint8 TX_phy T* | PHY bit:

e 0x00=Any

e Bit0(0x1)=1M

o Bit1(0x2)=2M

e Bit2(0x4) =Coded
uint8 RX_phy R* | PHY:

e 0x00=Any

e Bit0(0x1)=1M

o Bit1(0x2)=2M

e Bit2(0x4)=Coded
uint8 Phy_option |[O* |PHY:

e 0=No preferred coding when transmitting on the LE Coded PHY.

e 1=Prefersthat S=2 coding
e 2=Prefersthat S=8 coding

Response parameters
None.

Related commands

e gap connect (/C, ID=4/1)

Related events
e gap_phy_updated (PU, ID=4/9)

7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38)

Configure new custom advertisement packet data for extended or periodic advertisement mode. The
maximum extended data length is 1270 bytes.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined
data with the gap set adv parameters (SAP, ID=4/23) or
gap set extended adv data (SEAD, ID=4/38) APlcommand.Ifyou only set custom data
but do not enable user-defined content, the data here will remain unused.

Note: Not supported in version 1.0.x.x, please use gap set adv data (SAD, ID=4/19)API
command instead.

Note: Default advertising data [02 01 06] is set.

User guide 172 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Binary header

Type Length Group ID Note
CMD |CO 04 26 Variable-length command payload, minimum of 1 (0x01),
maximum of 251(0xFB)
RSP Co 04 26 None
Text info
Text name Response length Category Note
SEAD 0x000B SET None

Command arguments

Data | Name Text Description
type
uint8 | type T Type:

e O=Eraseall
e 1=Append advertisement data

uint8a | data D New extended advertisement payload data (0-251 bytes),
should be a valid advertisement payload format

Note: uint8a data type requires one prefixed
“length” byte before binary parameter
payload.

Response parameters

None.

Related commands

e gap start _adv (/A, ID=4/8)

e gap set adv parameters (SAP, ID=4/23)

e gap set adv legacy coded phy parameters (SACP, ID=4/29)
e gap start legacy coded adv(/CA, ID=4/31)

e gap get extended adv _data (GEAD, ID=4/39)

User guide 173 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.39 gap_get_extended_adv_data (GEAD, ID=4/39)

Obtain the current custom advertisement packet data for extended or periodic advertisement mode.

Note: Not supported in version 1.0.x.x, please use gap _get adv _data (GAD, ID=4/20) APl
command instead.

Binary header

Type Length Group ID Note
CMD co 04 39 None
RSP co 04 39 Variable-length response payload, minimum of 3 (0x03),
maximum of 1653 (0x675)

Text info

Text Response length Category Note

name

GEAD GET Variable-length response payload, minimum of 13 (0x0D),
maximum of 3373 (0xCF1)

Command arguments

None.

Response parameters

Data Name Text Description
type
uint8a | data D Current advertisement payload data (3-1270 bytes)

Default data is 020106

Note: uint8a data type requires one prefixed
“length” byte before binary parameter
payload.

Related commands
gap set extended adv_data (SEAD, ID=4/38)

User guide 174 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40)

Configure new custom scan response packet payload for extended or periodic advertisement mode. The
maximum extended data length is 1270 bytes.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined
data with the gap set adv parameters (SAP, ID=4/23) or
gap set extended adv data (SEAD, ID=4/38)APlcommand.Ifyou only setcustom data
but do not enable user-defined content, the data here will remain unused.

Note: Not supported in version 1.0.x.x, please use gap set sr data (SSRD, ID=4/21) APl
command instead.

Binary header

Type Length Group ID Note
CMD |CO 04 26 Variable-length command payload, minimum of 1 (0x01),
maximum of 251(0xFB)
RSP Cco 04 26 None
Text info
Text name Response length Category Note
SERD SET None

Command arguments

Data Name Text Description
type
uint8 type T Type:

e 0O=Eraseall
e 1=Append advertisement data

uint8a | data D New extended advertisement payload data (0-251 bytes),
should be a valid advertisement payload format

Note: uint8a data type requires one prefixed
“length” byte before binary parameter
payload.
Response parameters
None.
User guide 175 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Related commands

e gap start _adv (/A, ID=4/8)

e gap set adv parameters (SAP, ID=4/23)

e gap set adv legacy coded phy parameters (SACP, ID=4/29)
e gap start legacy coded adv(/CA, ID=4/31)

e gap get extended scan response data (GERD, ID=4/41)

7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41)

Obtain the current custom scan response packet data for extended or periodic advertisement mode.

Note: Not supported in version 1.0.x.x, please use gap get adv data (GAD, ID=4/20) API
command instead.

Binary header

Type Length Group ID Note
CMD co 04 39 None
RSP Co 04 39 Variable-length response payload, minimum of 3 (0x03),
maximum of 1653 (0x675)

Text info

Text Response length Category Note

name

GERD GET Variable-length response payload, minimum of 13 (0x0D),
maximum of 3373 (0xCF1)

Command arguments:

None.

Response parameters

Data Name Text Description

type

Unit8a |data D Current advertisement payload data (0-1270 bytes)

Note: uint8a data type requires one prefixed

“length” byte before binary parameter
payload.

Related commands

e gap set extended scan response data (SERD, ID=4/40)

User guide 176 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.2.5 GATT server group (ID=5)

GATT server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the local GATT structure.

The following are the commands within this group:

e gatts create attr (/CAC, ID=5/1)

e gatts delete attr (/CAD, ID=5/2)

e gatts validate db (/VGDB, ID=5/3)

e gatts store db (/SGDB, ID=5/4)

e gatts dump db (/DGDB, ID=5/5)

e gatts discover services (/DLS, ID=5/6)

e gatts discover characteristics (/DLC, ID=5/7)
e gatts discover descriptors (/DLD, ID=5/8)

e gatts read handle (/RLH, ID=5/9)

e gatts write handle (/WLH, ID=5/10)

e gatts notify handle (/NH, ID=5/11)

e gatts indicate handle (/IH, ID=5/12)

e gatts send writereq response (/WRR, ID=5/13)
e gatts set parameters (SGSP, ID=5/14)

e gatts get parameters (GGSP, ID=5/15)

e gatts service active (/SACT, ID=5/16)

e gatts service handle reset (/RSHL, ID=5/17)

Events within this group are documented in GATT server group (ID=5).

7.2.5.1 gatts_create_attr (/CAC, ID=5/1)

Add a new custom attribute to the local GATT structure.

The new attribute will be given the next available handle. All handles are assigned sequentially. Attributes must
be added in order, and will always be appended to the next available position in the GATT structure.

New attributes must be entered such that the database always has a valid structure, other than possibly being
incomplete while adding other required attributes. EZ-Serial will reject new attribute creation attempts which
would result in an invalid structure and provide a validity report code from the list in EZ-Serial GATT database
validation error codes.

See the How to define custom local GATT services and characteristics and Adopted Bluetooth® SIG GATT profile
structure snippets sections for detailed instructions and example usage, including important guidelines for
permission settings.

Note: Always configure structural declarations (types 0x2800 and 0x2803) to have unrestricted read
permissions (0x01) and no write permissions (0x00) to ensure that clients can properly discover the
basic GATT database structure. Special security requirements should only be applied to
characteristic value attributes or, in limited cases, related configuration descriptors.

User guide 177 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Usethegatts dump db (/DGDB, ID=5/5) APlcommand to listthe currentlocal GATT database entriesina
format similar to what this command requires.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be
deleted or modified. These attributes occupy the handle range from 1 (0x0001) to 34 (0x0022).
Therefore, the first custom attribute created in a factory default state will receive the handle value
35 (0x0023).

Note: Additions to the GATT structure are not effective and stored in flash immediately until sending
gatts_service_active (/SACT, ID=5/16) APl command.
The internal CPU is occupied for approximately 15 ms during each flash write operation, and
during this time no other activity will be processed (UART or Bluetooth® LE communication). Any
UART data sent during this brief window will be lost. Therefore, you should only modify the GATT
structure while disconnected, and you should allow a gap of at least 20 ms between the end of one
APl command and the beginning of a new one. If you have enabled hardware flow control using
the system set uart parameters (STU, ID=2/25) APlcommand, EZ-Serial will block
incoming data flow during flash writes to prevent serial data corruption or loss.

Binary header

Type | Length | Group | ID | Note

CMD Co 09 05 01 | Variable-length command payload, value specified is minimum
RSP Cco 06 05 01 | None

Text info

Text name Response length Category Note

/CAC 0x0018 ACTION None

Command arguments

Datatype |Name Text | Description
uintl6 type T* | Attribute type:
e 0x2800 = Primary Service Declaration

e 0x2801 = Secondary Service Declaration

e 0x2802 = Include Declaration

e 0x2803 = Characteristic Declaration

e 0x2900 = Characteristic Extended Properties descriptor
e 0x2901 = Characteristic User Description descriptor

e 0x2902 = Client Characteristic Configuration descriptor
e 0x2903 = Server Characteristic Configuration descriptor
e 0x2904 = Characteristic Format descriptor

e 0x2905 = Characteristic Aggregate Format descriptor

e 0x0000 = Characteristic value attribute or user-defined structure
with SRAM value storage (auto-managed)

e 0x0001 = Characteristic value attribute or user-defined structure
with no value storage (user-managed)

User guide 178 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Datatype |Name Text | Description
uint8 read_permissions | R* | Attribute read permissions:
e Bit0(0x01) = Read permitted
e Bit1(0x02) = Encryption required
e Bit 2 (0x04) = Authentication required
e Bit 3 (0x08) = Authorization required
e Bit4 (0x10) = LE secure connection authentication required
e Bits 5-7 (0XEO) = RESERVED
uint8 write_permissions | W* | Attribute write permissions:
e Bit0(0x01) = Write permitted
e Bit1(0x02) = Encryption required
e Bit 2 (0x04) = Authentication required
e Bit 3 (0x08) = Authorization required
e Bit4 (0x10) = LE secure connection authentication required
e Bit5-7 (OXEQ) = RESERVED
uint8 char_properties C* | Characteristic properties (byte 1)
e Bit0(0x01) =Broadcast
e Bit1(0x02) = Read
e Bit 2 (0x04) = Write without response
e Bit 3 (0x08) = Write
e Bit4 (0x10) = Notify
e Bit5(0x20) = Indicate
e Bit 6 (0x40) = Signed write
e Bit 7 (0x80) = Extended properties (requires 0x2900 descriptor)
uintlé length L* | Maximum length.
longuint8a | data D* | Data (UUID or default attribute value where applicable)
Note: longuint8a data type requires two prefixed
“length” bytes before binary parameter payload.
Response parameters
Data type Name Text Description
uintl6 handle H New attribute handle (0x0023-0xFFFF)
uintlé valid v GATT database validity status
Related commands
e gatts delete attr (/CAD, ID=5/2)
e gatts validate db (/VGDB, ID=5/3)
e gatts dump db (/DGDB, ID=5/5)

User guide

179

(infineon

002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Related events
o gatts_db_entry_blob (DGATT, ID=5/4)

Example usage
e See How to define custom local GATT services and characteristics
e See Adopted Bluetooth® SIG GATT profile structure snippets

7.2.5.2 gatts_delete_attr (/CAD, ID=5/2)

Remove one or more attributes from the GATT structure. CYW20822 device only supports remove a service
handle, if specpic the handle number is not a service handle, it will report an error.

If you use this command without a handle in text mode or you supply handle value 0 in either text or binary
mode, then the highest attribute number (most recently added) will be removed. If you supply a non-zero
handle, then the attribute with that handle and all higher handles will be removed.

After removing an attribute with this command, the local GATT database may no longer be strictly valid. See
the EZ-Serial GATT database validation error codes section for possible validity states. Use the gatts dump db
(/DGDB, 1ID=5/5) APlcommand to list the current local GATT database entries.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be
deleted or modified. These attributes occupy the handle range from 1 (0x0001) to 34 (0x0022).
Therefore, you cannot delete any attribute with a handle value less than 34 (0x0022).

Note: Removals from the GATT structure are set the service to invisible and is stored in flash once the

“result” value in the response indicates success. The deleted handle numbers would be blocked
until send gatts_service_handle_reset (/RSHL, ID=5/17) APl command.

The internal CPU is occupied for approximately 15 ms during each flash write operation, and
during this time no other activity will be processed (UART or Bluetooth® LE communication). Any
UART data sent during this brief window will be lost. Therefore, you should only modify the GATT
structure while disconnected, and you should allow a gap of at least 20 ms between the end of one
APl command and the beginning of a new one. If you have enabled hardware flow control using
the system set uart parameters (STU, ID=2/25) APlcommand, EZ-Serial will block
incoming data flow during flash writes to prevent serial data corruption or loss.

Binary header

Type Length Group ID Note
CMD Co 02 05 02 None
RSP co 08 05 02 None
Text info
Text name Response length Category Note
/CAD 0x001F ACTION None
User guide 180 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Command arguments

Data type Name Text | Description

uintl6 handle H Attribute handle to remove (includes all higher attributes)

Response parameters

Data type Name Text | Description

uintl6 count C Number of attributes deleted from GATT structure
uintl6 next_handle H Next available attribute handle after removal
uintl6 valid Y GATT database validity status

Related commands

e gatts create attr (/CAC, ID=5/1)
e gatts validate db (/VGDB, ID=5/3)
e gatts dump db (/DGDB, ID=5/5)

7.2.5.3 gatts_validate_db (/VGDB, ID=5/3)

Check to ensure the custom GATT structure has no malformed or missing elements.

Use this command to check for errors in the custom GATT structure configured in EZ-Serial. The dynamic GATT
implementation automatically tests for validity issues when making changes to the structure with the

gatts create attr (/CAC, ID=5/1) andgatts delete attr (/CAD, ID=5/2) APIcommands,but
this command will provide the same test result upon request without making or attempting any modifications.
See the EZ-Serial GATT database validation error codes section for possible validity states.

EZ-Serial allows only one non-valid state, indicated by the

GATTS DB VALID WARNING NOT ENOUGH ATTRIBUTES code (0x0001).Thisnon-validstateis
unavoidable during custom attribute creation, since attributes must be added one at a time, and every new
service or characteristic requires multiple attributes. All other non-valid states prevent the addition of a custom
attribute in the first place. Therefore, running this command should only result in a valid state (0x0000) or the
warning state noted here (0x0001).

Note: If EZ-serial received error code 0x0111 in response package means that you need to reset the
device to make the settings available.

Binary header

Type Length Group ID Note
CMD co 00 05 03 None
RSP co 04 05 03 None
Text info
Text name Response length Category Note
/VGDB 0x0012 ACTION None

Command arguments

None.

User guide 181 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Response parameters

Data type Name Text Description

uintl6 valid v GATT database validity status
Related commands

e gatts create attr (/CAC, ID=5/1)

e gatts delete attr (/CAD, ID=5/2)

e gatts dump db (/DGDB, ID=5/5)

7.2.5.4

gatts_store_db (/SGDB, ID=5/4)

Store the current custom GATT structure in flash.

Note:

This command has been deprecated and has no effect when used. As of the latest firmware build,

GATT database changes are always written instantly to flash when using either
gatts create attr (/CAC, ID=5/1) or gatts delete attr (/CAD, ID=5/2).

Binary header

Type Length Group ID Note
CMD co 00 05 04 None
RSP co 02 05 04 None
Text info
Text name Response length Category Note
/SGDB 0x000B ACTION None
Command arguments
None.
Response parameters
None.
Related commands
e gatts create attr (/CAC, ID=5/1)
e gatts delete attr (/CAD, ID=5/2)
e gatts validate db (/VGDB, ID=5/3)
e gatts dump db (/DGDB, ID=5/5)

User guide

182

002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.5.5 gatts_dump_db (/DGDB, ID=5/5)
List current local GATT database attributes.

This command produces a seriesof gatts db entry blob (DGATT, ID=5/4) APlevents,one foreach
attribute in the current local GATT database. The output is similar to that of the

gatts discover descriptors (/DLD, ID=5/8) APIcommand,butinaformatthat more closely matches
the input parameters of the gatts create attr (/CAC, ID=5/1) APlcommand.

You can choose to dump only those attributes in the user-definable range (0x001D and above), or include fixed
attributes as well (0x0001 and above) for complete reference.

Binary header

Type Length Group ID Note
CMD Cco 01 05 05 None
RSP Cco 04 05 05 None
Text info
Text name Response length Note
/DGDB 0x0012 None

Command arguments

Name

Data type Text | Description

uint8

Include fixed attributes:
e 0=Start from handle 0x0023, do not include fixed attributes (default)
e 1=Startfrom handle 0x0012

include_fixed |F

Response parameters

Data type Name Text

uintl6

Description

count C Number of entries to be returned

Related commands

e gatts create attr (/CAC, ID=5/1)

e gatts delete attr (/CAD, ID=5/2)

e gatts validate db (/VGDB, ID=5/3)

e gatts discover descriptors (/DLD, ID=5/8)

Related events
o gatts_db_entry_blob (DGATT, ID=5/4)

002-39351 Rev. *B
2025-11-12

User guide 183

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.5.6 gatts_discover_services (/DLS, ID=5/6)

Request a list of all services in the local GATT structure which the attribute handle is reported from 0x12.

This allows convenient discovery of services within the local GATT database. This command does not require
an active connection, since it concerns only local resources. Normally, you should not need to use this
command except during development, since the application should already know all relevant details about its
own local GATT structure. To find all services in the local database, use “0” for both arguments, or explicitly set
0x0001 and OxFFFF for the beginning and end handles.

Thegatts discover result (DL, ID=5/1) APleventsresultingfrom thiscommand have the same
format as the client-side gattc_discover result (DR, ID=6/1) eventswhich resultfrom the
gattc discover services (/DRS, ID=6/1) APIcommand fordiscovering remote GATT services.

For local GATT database information that more closely matches the input format required for the
gatts create attr (/CAC, ID=5/1) APlcommand,usethegatts dump db (/DGDB, ID=5/5) API
command instead.

Binary header

Type Length Group ID Note
CMD co 04 05 06 None
RSP co 04 05 06 None
Text info
Text name Response length Category Note
/DLS 0x0011 ACTION None

Command arguments

Data type Name Text Description
uintlé begin B Handle to begin searching (minimum from 0x12)
uintl6 end E Handle to end searching (inclusive)

Response parameters

Data type Name Text Description

uintl6 count C Number of entries to be returned

Related commands

e gatts dump db (/DGDB, ID=5/5)

e gatts discover characteristics (/DLC, ID=5/7)
e gatts discover descriptors (/DLD, ID=5/8)

Related events
e gatts_discover_result (DL, 1D=5/1)

Example usage

e See How to list local GATT services, characteristics, and descriptors

User guide 184 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit, or the command will be
rejected with an error result.

7.2.5.7 gatts_discover_characteristics (/DLC, ID=5/7)

Request a list of all characteristics in the local GATT structure which the attribute handle is reported from 0x12

This allows convenient discovery of characteristics within the local GATT database. This command does not
require an active connection, since it concerns only local resources. Normally, you should not need to use this
command except during development, since the application should already know all relevant details about its
own local GATT structure. To find all characteristics in the local database, use “0” for both arguments, or
explicitly set 0x0001 and OxFFFF for the beginning and end handles.

The gatts_discover_result (DL, ID=5/1) APl events resulting from this command have the same format as the
client-side gattc_discover_result (DR, ID=6/1) events which result from the

gattc discover characteristics (/DRC, ID=6/2) APlcommand for discovering remote GATT
characteristics.

For local GATT database information that more closely matches the input format required for the
gatts create attr (/CAC, ID=5/1) APIcommand,usethegatts dump db (/DGDB, ID=5/5) API
command instead.

Binary header

Type Length Group ID Note
CMD Cco 06 05 07 None
RSP co 04 05 07 None
Text info
Text name Response length Category Note
/DLC 0x0011 ACTION None

Command arguments

Datatype |Name |Text|Description

uintl6 begin | B Handle to begin searching (minimum from 0x12)

uintl6 end E Handle to end searching (inclusive)

uintl6 service |S Service UUID filter (0 for all) - currently not implemented in firmware, setto 0

Response parameters

Data type Name Text Description
uintl6 count C Number of entries to be returned
User guide 185 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands

e gatts dump db (/DGDB, ID=5/5)

e gatts discover services (/DLS, ID=5/6)

e gatts discover descriptors (/DLD, ID=5/8)

Related events
e gatts_discover_result (DL, 1D=5/1)

Example usage

e See How to list local GATT services, characteristics, and descriptors

7.2.5.8 gatts_discover_descriptors (/DLD, ID=5/8)
Request a list of all descriptors in the local GATT structure which the attribute handle is reported from 0x12

This allows convenient discovery of descriptors within the local GATT database. This command does not
require an active connection, since it concerns only local resources. Normally, you should not need to use this
command except during development, since the application should already know all relevant details about its
own local GATT structure. To find all descriptors in the local database, use “0” for both arguments, or explicitly
set 0x0001 and OxFFFF for the beginning and end handles, respectively.

The gatts_discover_result (DL, ID=5/1) APl events resulting from this command have the same format as the
client-side gattc_discover_result (DR, ID=6/1) events which result from the gattc _discover descriptors
(/DRD, 1ID=6/3) APlcommand for discovering remote GATT descriptors.

For local GATT database information that more closely matches the input format required for the
gatts create attr (/CAC, ID=5/1) APIcommand,usethegatts dump db (/DGDB, ID=5/5) API
command instead.

Binary header

Type Length Group ID Note
CMD co 08 05 08 None
RSP co 04 05 08 None
Text info
Text name Response length Category Note
/DLD 0x0011 ACTION None

Command arguments

Data type Name Text | Description
uintlé begin B Handle to begin searching (minimum from 0x12)
uintl6 end E Handle to end searching (inclusive)
uintl6 service S Service UUID filter (0 for all)
(Ignored in current release, set to 0)
uintl6 characteristic C Characteristic UUID filter (0 for all)
(Ignored in current release, set to 0)

User guide 186 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

infineon

Data type Name Text Description

uintl6 count C Number of entries to be returned

Related commands

e gatts dump db (/DGDB, ID=5/5)

e gatts discover services (/DLS, ID=5/6)

e gatts discover characteristics (/DLC, ID=5/7)

Related events
e gatts_discover_result (DL, 1D=5/1)

Example usage

e See How to list local GATT services, characteristics, and descriptors

7.2.5.9 gatts_read_handle (/RLH, ID=5/9)

Read the value of an attribute in the local GATT server.

This command does not require an active connection, since it concerns only local resources. To read a value
from a remote attribute on a connected peer, use the gattc_read handle (/RRH, ID=6/4) APlcommand

instead.

Binary header

Type | Length | Group |ID | Note

CMD Cco 02 05 09 | None
RSP Co 04+ 05 09 | Variable-length response payload, value specified is minimum
Text info

Textname | Response length | Category | Note

/RLH 0x000D+ ACTION | Variable-length response payload, value specified is minimum

Command arguments

Data type | Name Text | Description

uintleé attr_handle | H* | Handle of attribute to read value from, which attributes handle is from 0x23,

not include fixed attributes

Response parameters

Datatype |Name| Text| Description

longuint8a |data |D Data read from attribute.

binary parameter payload.

Note: longuint8a data type requires two prefixed “length” bytes before

User guide 187

002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

infineon

API protocol reference

Related commands
(/WLH,
(/RRH,

ID=5/10)
ID=6/4)

e gatts write handle

e gattc read handle

7.2.5.10 gatts_write_handle (/WLH, ID=5/10)

Write a new value to an attribute in the local GATT server.

This command does not require an active connection, since it concerns only local resources. To write a value to
aremote attribute on a connected peer, use the gattc _write handle (/WRH, ID=6/5) APlcommand.

Note:

Writing data to a local characteristic value attribute will not automatically trigger a notification or

indication of that data to a connected client, even if the client has subscribed to notifications or
indications fo the characteristic. This command only affects the value stored locally in RAM if the
client performs a GATT read operation later. To push data to a client that subscribed to
notifications or indications, use the gatts notify handle (/NH, ID=5/11) or

gatts indicate handle (/IH, ID=5/12) APlcommand

Binary header

Type | Length | Group | ID | Note
CMD Co 04 05 OA | Variable-length command payload, value specified is minimum
RSP Co 02 05 0A | None
Text info
Text name Response length Category Note
/WLH 0x000A ACTION None
Command arguments
Datatype |Name Text | Description
uintl6 attr_handle | H* | Handle of attribute to write new value to, which attributes handle is from
0x23, not include fixed attributes
longuint8a | data D* | New data to write to attribute.
Note: longuint8a data type requires two prefixed “length” bytes
before binary parameter payload.
Response parameters
None.
Related commands
e gatts read handle (/RLH, ID=5/9)
e gatts notify handle (/NH, ID=5/11)
e gatts indicate handle (/IH, ID=5/12)
e gattc write handle (/WRH, ID=6/5)

User guide 188

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.5.11 gatts_notify_handle (/NH, ID=5/11)

Notify a new attribute value to a remote GATT client.

Note: This command does not change any locally stored values for the notified attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts write handle (/WLH,
ID=5/10) APl command.

Binary header

Type | Length | Group |ID | Note

CMD Co 06 05 0B | Variable-length command payload, value specified is minimum
RSP co 02 05 0B | None

Text info

Text name Response length Category Note

/NH 0x0009 ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle | C Connection handle to use for notification
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintlé attr_handle | H* | Handle of attribute to notify
uint8a data D* | Data to push to remote client via notification.
Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters
None.
Related commands

e gatts write handle (/WLH, ID=5/10)
e gatts indicate handle (/IH, ID=5/12)

User guide 189 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.5.12 gatts_indicate_handle (/IH, ID=5/12)

Indicate a new attributes value to a remote GATT client.

If successful, pushing an indicated value to a remote client will resultin the gatts indication confirmed
(1c, ID=5/3) APl eventoccurring after the client acknowledges the transfer.

Because this method requires client acknowledgement, you cannot attempt another GATT operation until this
confirmation event arrives. A single acknowledged transfer requires two connection intervals: one for the
actual data transfer, and one for the acknowledgement. Using this type of transfer has effects on potential
throughput; see the How to maximize throughput to a remote peer section for details on alternative design
choices.

Note: This command does not change any locally stored values for the indicated attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts write handle (/WLH,

ID=5/10) APl command.

Binary header

Type | Length | Group |ID | Note

CMD Co 06 05 0C | Variable-length command payload, value specified is minimum
RSP co 02 05 0C | None

Text info

Text name Response length Category Note

/IH 0x0009 ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle | C Connection handle to use for indication
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintle attr_handle | H* | Handle of attribute to indicate
uint8a data D* | Datatoindicate.
Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

User guide 190 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Related commands

e gatts read handle (/RLH, ID=5/9)

e gatts write handle (/WLH, ID=5/10)
e gatts notify handle (/NH, ID=5/11)

e gattc confirm indication (/CI, ID=6/6) - Used onremote clientto confirm receipt of the
indication

Related events

e gatts indication confirmed (IC, ID=5/3)-Occurson the server afterthe remote client confirms
receipt of indicated data

e gattc data received (D, ID=6/3) -Occurson the remote client when indicated data is received

7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13)

Respond to a GATT client’s acknowledged write request.

Use this command after receivinga gatts data written (W, ID=5/2) APleventanacknowledged request
to write data to a local GATT server attribute (the event’s t ype parameter will be 0x80). Sending a response
value of zero indicates success, while any non-zero value indicates an error. Values 0x01 through Ox7F are errors
defined in the Bluetooth® specification, while values 0x80 through OxFF are user-defined errors.

EZ-Serial will automatically respond to write requests unless Bit 0 of the GATT server behavior flags is cleared
using the flags field inthe gatts set parameters (SGSP, ID=5/14) APlcommand,or ifthe
characteristic being written has Bit 24 set for user data management in the GATT database structure entry
created with the gatts create attr (/CAC, ID=5/1) APlcommand.

Binary header

Type Length Group ID Note
CMD co 02 05 0D None
RSP Cco 02 05 0D None
Text info
Text name Response length Category Note
/WRR 0x000A ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle |C Connection handle to use for response
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uint8 response R* | GATT result code for response:
e 0=Success
e 0x01-0x7F = Error from Bluetooth® specification

e 0x80-0xFF = Error from application (user-defined)

User guide 191 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

None.

Related commands
e gattc write handle (/WRH, ID=6/5)

Related events
e gatts data written (W, ID=5/2)

7.2.5.14 gatts_set_parameters (SGSP, ID=5/14)

Configure new GATT server parameters.

Binary header

Type Length Group ID Note
CMD Co 01 05 OE None
RSP Co 02 05 OE None
Text info
Text name Response length Category Note
SGSP 0x000A SET None

Command arguments

Data type Name | Text | Description

uints flags F GATT server behavior flags bitmask:
e Bit0(0x01) =Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set).

Response parameters

None.

Related commands

e gatts send writereq response (/WRR, ID=5/13) - Necessary to use for acknowledged client writes
if flags BitOis clear

e gatts get parameters (GGSP, ID=5/15)

User guide 192 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.5.15 gatts_get_parameters (GGSP, ID=5/15)

Obtain current GATT server parameters.

Binary header

Type Length Group ID Note
CMD co 00 05 OF None
RSP co 03 05 OF None
Text info
Text name Response length Category Note
GGSP 0x000F GET None

Command arguments

None.

Response parameters

Data type Name | Text | Description

uint8 flags |F GATT server behavior flags bitmask:
Bit 0 (0x01) = Enable automatic response to acknowledged writes
NOTE: Factory default is 0x01 (all bits set)

Related commands
® gatts set parameters (SGSP, ID=5/14)

7.2.5.16 gatts_service_active (/SACT, ID=5/16)

After adding all attributes by the gatts_create_attr command, externally must send the gatts_service_active
command to apply. After applying, the attribute added by the gatts_create_attr command will be stored in
flash.

Binary header

Type Length Group ID Note
CMD co 00 05 10 None
RSP Co 02 05 10 None
Text info
Text name Response length Category Note
/SACT 0x000B ACTION None

Command arguments

None.

User guide 193 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

None.

Related commands
e gatts create attr (/CAC, ID=5/1)

7.2.5.17 gatts_service_handle_reset (/RSHL, ID=5/17)

This command reorders the attribute handles, and removed the deleted attribute handles which are deleted by
the gatts_delete_attr command.

Binary header

Type Length Group ID Note
CMD co 00 05 10 None
RSP co 02 05 10 None
Text info
Text name Response length Category Note
/RSHL 0x000B ACTION None

Command arguments

None.

Response parameters
None.
Related commands

e system reboot (/RBT, ID=2/2)
e gatts delete attr (/CAD, ID=5/2)

User guide 194 002-39351 Rev. *B
2025-11-12

infineon

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.6 GATT client group (ID=6)

GATT client methods relate to the client role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the GATT structures on remote devices, and can only be used while a
device is connected.

The following are the commands within this group:

e gattc discover services (/DRS, ID=6/1)

e gattc discover characteristics (/DRC, ID=6/2)
e gattc discover descriptors (/DRD, ID=6/3)

e gattc read handle (/RRH, ID=6/4)

e gattc write handle (/WRH, ID=6/5)

e gattc confirm indication (/CI, ID=6/6)

e gattc set parameters (SGCP, ID=6/7)

e gattc get parameters (GGCP, ID=6/8)

Events within this group are documented in GATT Client Group (ID=6).

7.2.6.1 gattc_discover_services (/DRS, ID=6/1)

Request a list of GATT services from a connected remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts discover services (/DLS, ID=5/6) APlcommand.

Note: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait for the gattc remote procedure complete (RPC, ID=6/2) APlevent to indicate that
the discovery procedure is finished.

Binary header

Type Length Group ID Note

CMD Cco 05 06 01 None
RSP Cco 02 06 01 None
Text info
Text name Response length Category Note
/DRS 0x000A ACTION None
Command arguments
Data type | Name Text | Description
uint8 conn_handle | C Connection handle to use for discovery

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)
uintl6 begin B Handle to begin searching
uintl6 end Handle to end searching (inclusive)
User guide 195 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

e gatts discover services (/DLS, ID=5/6)

e gattc discover characteristics (/DRC, ID=6/2)
e gattc discover descriptors (/DRD, ID=6/3)

Related events
e gattc discover result (DR, ID=6/1)
e gattc remote procedure complete (RPC, ID=6/2)

Example usage
e See How to discover a remote server’s GATT structure.

7.2.6.2 gattc_discover_characteristics (/DRC, ID=6/2)

Request a list of GATT characteristics from a connected remote GATT server.

infineon

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts discover characteristics (/DLC, ID=5/7) APIcommand.

Note: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) APl event to indicate that the

discovery procedure is finished.

Binary header

Type Length Group ID Note
CMD Co 07 06 02 None
RSP Co 02 06 02 None
Text info
Text name Response length Note
/DRC 0x000A None

Command arguments

Data type | Name Text | Description

uint8 conn_handle |C Connection handle to use for discovery

functionality, set to 0)

(Ignored in current release due to internal Bluetooth® LE stack

uintl6 begin B Handle to begin searching
uintl6 end E Handle to end searching (inclusive)
uintl6 service S Service UUID filter (0 for all)

(Ignored in current release, set to 0)

User guide 196

002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

e gatts discover characteristics (/DLC, ID=5/7)
e gattc discover services (/DRS, ID=6/1)

e gattc discover descriptors (/DRD, ID=6/3)
Related events

e gattc discover result (DR, ID=6/1)

e gattc remote procedure complete (RPC, ID=6/2)

Example usage
e See How to discover a remote server’s GATT structure

7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3)

Request a list of GATT attribute descriptors from a connected remote GATT server.

infineon

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts discover descriptors (/DLD, ID=5/8) APlcommand.

Note:

Because this command works with remote data, it cannot determine the number of records to be

returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait forthe gattc remote procedure complete (RPC, ID=6/2) APlevent to indicate that

the discovery procedure is finished.

Binary header

Type Length Group ID Note

CMD Co 09 06 03 None
RSP Co 02 06 03 None
Text info
Text name Response length Category Note
/DRD 0x000A ACTION None
Command arguments
Data type | Name Text | Description
uint8 conn_handle |C Connection handle to use for discovery

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)
uintl6 begin B Handle to begin searching
uintl6 end Handle to end searching (inclusive)
uintl6 service Service UUID filter (0 for all)

(Ignored in current release, set to 0)
User guide 197 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

infineon

uintl6 characteristic | T Characteristic UUID filter (0 for all)
(Ignored in current release, set to 0)

Response parameters

None.

Related commands

e gatts discover descriptors (/DLD, ID=5/8)

e gattc discover services (/DRS, ID=6/1)
e gattc discover characteristics (/DRC, ID=6/2)

Related events
e gattc discover result (DR, ID=6/1)
e gattc remote procedure complete (RPC, ID=6/2)

Example usage
e See How to discover a remote server’s GATT structure

7.2.6.4 gattc_read_handle (/RRH, ID=6/4)

Read the value of an attribute on a remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To read a value
from the local GATT structure instead, use the gatts read handle (/RLH, ID=5/9) APIcommand.

Binary header

Type Length Group ID Note
CMD Cco 03 06 04 None
RSP co 02 06 04 None
Text info
Text name Response length Category Note
/RRH 0x000A ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle |C Connection handle to use for read operation

functionality, set to 0)

(Ignored in current release due to internal Bluetooth® LE stack

uintlé attr_handle H* | Handle of remote attribute to read

Response parameters

None.

User guide 198

002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Related commands
e gattc write handle (/WRH, ID=6/5)

Related events

e gattc remote procedure complete (RPC, ID=6/2) -Occurs if the client read operation fails
(parameters include error code)

e gattc data received (D, ID=6/3) -Occursifthe client read operation succeeds

7.2.6.5 gattc_write_handle (/WRH, ID=6/5)

Write a new value to an attribute on a remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To write a value
to the local GATT structure instead, usethe gatts write handle (/WLH, ID=5/10) APIcommand.

Binary header

Type | Length | Group | ID | Note

CMD Co 06 06 05 | Variable-length command payload, value specified is minimum
RSP Cco 02 06 05 | None

Text info

Text name Response length Category Note

/WRH 0x000A ACTION None

Command arguments

Datatype |Name Text | Description

uint8 conn_handle | C Connection handle to use for write operation
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintl6 attr_handle H* | Handle of remote attribute to write

uint8 type T Type of write to perform:
0 = Simple write - acknowledged (default)
1= Write without response - unacknowledged

longuint8a | data D* | New data to write

Note: longuinté8a data type requires two prefixed “length”
bytes before binary parameter payload.

Response parameters

None.

Related commands
e gattc read handle (/RRH, ID=6/4)
e gatts send writereq response (/WRR, ID=5/13)

User guide 199 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Related events

e gatts data written (W, ID=5/2) -Occurson the remote server after using this command on the local
client

e gattc remote procedure complete (RPC, ID=6/2) - Occursonce the writeis acknowledged, if
using acknowledged write type

7.2.6.6 gattc_confirm_indication (/Cl, ID=6/6)
Confirm an indication from a remote GATT server.

This command confirms receipt of indicated data from a remote server. Indicated data is pushed from a server
to a client after the client has subscribed to indications for a desired characteristic and that characteristic’s
value has changed. Indicated data will arrive viathe gattc data received (D, ID=6/3) APlevent,and
you must use this command to manually confirm the indication if the source parameter of that event shows
indication with manual confirmation needed. See the event documentation for detail.

EZ-Serial will automatically confirm indications unless Bit 0 of the GATT client behavior flags is cleared using
the flags fieldinthe gattc set parameters (SGCP, ID=6/7) APlcommand.

Note: Ifindicated data arrives and requires manual confirmation, you must use this command to
confirm it before performing any other GATT operations.

Binary header

Type Length Group ID Note
CMD co 01 06 06 None
RSP co 02 06 06 None
Text info
Text name Response length Category Note
/Cl 0x0009 ACTION None

Command arguments

Datatype | Name Text | Description

uint8 conn_handle | C Connection handle to use for confirmation
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

Response parameters

None.

Related commands
e gatts indicate handle (/IH, ID=5/12) -Usedonaremote GATT server toindicate data to a client

e gattc set parameters (SGCP, ID=6/7) - Configure local GATT client parameters, including auto-
confirm behavior

User guide 200 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related events

e gatts indication confirmed (IC, ID=5/3) -Occursonaremote GATT server after confirming
indication on the client

e gattc data received (D, ID=6/3) -Occurson the local GATT client when a remote server indicates
data

7.2.6.7 gattc_set_parameters (SGCP, ID=6/7)

Configure new GATT client parameters.

Binary header

Type Length Group ID Note
CMD Cco 01 06 07 None
RSP Cco 02 06 07 None
Text info
Text name Response length Category Note
SGCP 0x000A SET None

Command arguments

Datatype | Name | Text | Description

uint8 flags | F GATT client behavior flags bitmask:
Bit 0 (0x01) = Enable automatic confirmation of remote GATT server indications

Note: Factory default is 0x01 (all bits set).

Response parameters

None.

Related commands

e gattc confirm indication (/CI, ID=6/6) - Necessary to use forindicated dataif £1lags BitOis
clear
e gattc get parameters (GGCP, ID=6/8)

User guide 201 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.6.8 gattc_get_parameters (GGCP, ID=6/8)

Get current GATT client parameters.

Binary header

Type Length Group ID Note
CMD co 00 06 08 None
RSP co 03 06 08 None
Text info
Text name Response length Category Note
GGCP 0x000F GET None

Command arguments

None.

Response parameters

Datatype | Name | Text | Description

uint8 flags | F GATT client behavior flags bitmask:
Bit 0 (0x01) = Enable automatic confirmation of remote GATT server indications

Note: Factory default is 0x01 (all bits set).

Related commands
e gattc set parameters (SGCP, ID=6/7)

User guide 202 002-39351 Rev. *B
2025-11-12

infineon

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7 SMP group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used
for working with privacy, encryption, pairing, and bonding between two devices.

The following are the commands within this group:

e smp query bonds (/QB, ID=7/1)

e smp delete bond (/BD, ID=7/2)

e smp pair (/P, ID=7/3)

e smp query random address (/QRA, ID=7/4)

e smp send pairreq response (/PR, ID=7/5)

e smp send passkeyreq response (/PE, ID=7/6)
e smp generate oob data (/GOOB, ID=7/7)

e smp clear oob data (/COOB, ID=7/8)

e smp set privacy mode (SPRV, ID=7/9)

e smp get privacy mode (GPRV, ID=7/10)

e smp set security parameters (SSBP, ID=7/11)
e smp get security parameters (GSBP, ID=7/12)
e smp set fixed passkey (SFPK, ID=7/13)

e smp get fixed passkey (GFPK, ID=7/14)

Events within this group are documented in SMP group (ID=7).

7.2.7.1 smp_query_bonds (/QB, ID=7/1)

Request a list of bonded devices.

This command accesses the current bonded device list. Bonded devices are those which have previously paired
(exchanged encryption data) and bonded (stored the exchanged encryption data).

The response from this command includes the number of bonded devices, and the response will be followed by
that many smp_bond entry (B, ID=7/1) APl eventsthat provide details for each device.

Note: EZ-Serial currently supports a maximum of 3 bonded devices at the same time. To bond with
additional devices after all four bond slots are full, you must delete one of the existing bonds with
the smp delete bond (/BD, ID=7/2)APlcommand.

Binary header

Type Length Group ID Note
CMD Co 00 07 01 None
RSP co 03 07 01 None
Text info
Text name Response length Category Note
/QB 0x000E ACTION None
User guide 203 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 count C Bond entry count

Related commands

e smp pair (/P, ID=7/3) -Createsanew bond entry if pairing process succeeds with bonding enabled

Related events

e smp bond entry (B, ID=7/1) - Occursonce for each bonded device after requesting bond list

7.2.7.2 smp_delete_bond (/BD, ID=7/2)

Remove a bonded device.

This command removes the stored encryption key data for a device that has previously paired (exchanged
encryption data) and bonded (stored the exchanged encryption data).

Binary header

Type Length Group ID Note
CMD Co 07 07 02 None
RSP Cco 03 07 02 None
Text info
Text name Response length Category Note
/BD 0x000E ACTION None

Command arguments

Data type Name Text Description
Macaddr address A* Bluetooth® address
uint8 type T Address type:

0 = Public (default)
1=Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated bond entry count

Related commands
e smp query bonds (/QB, ID=7/1)
e smp pair (/P, ID=7/3) -Createsanew bond entry if pairing process succeeds with bonding enabled

User guide 204 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.3 smp_pair (/P, ID=7/3)

Initiate pairing process with a connected device.
Note: EZ-Serial currently supports a maximum of 3 bonded devices at the same time. To bond with
additional devices after all three bond slots are full, you must delete one of the existing bonds with

the smp _delete bond (/BD, ID=7/2) APlcommand.

Binary header

Type Length Group ID Note
CMD Co 05 07 03 None
RSP Co 02 07 03 None
Text info
Text name Response length Category Note
/P 0x0008 ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle | C Connection handle to use for pairing
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uint8 mode M Security level setting reported to peer:
e 0x10=Mode 1, Level 1 - No security

e 0x11=Mode 1, Level 2 - Unauthenticated pairing with encryption (no
MITM,
factory default)

e 0x12=Mode 1, Level 3 - Authenticated pairing with encryption (with
MITM)

e 0x13=Mode 1, Level 4 - LE Secure Connections (reported by remote
peers only, not locally implemented in current EZ-Serial firmware)

e 0x21=Mode 2, Level 2 - Unauthenticated pairing with data signing (no
MITM)

e 0x22=Mode 2, Level 3 - Authenticated pairing with data signing (with
MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10).
uint8 pairprop P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

User guide 205 002-39351 Rev. *B
2025-11-12

infineon

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type | Name Text | Description

Note: Factory default is 0x00 (no bits set).

Response parameters

None.

Related commands
e smp send pairreq response (/PR, ID=7/5) - Usewhenremote device initiates pairing and auto-
accept flag bitis not disabled

e smp_ send passkeyreq response (/PE, ID=7/6) - Useif MITM protection is enabled and pairing
requires passkey entry

e smp set security parameters (SSBP, ID=7/11) - Use to configure default security settings

Related events

e smp pairing requested (P, ID=7/2) -Occurswhenremote device initiates pairing

e smp pairing result (PR, ID=7/3) -Occurswhen pairing processcompletes (success or failure)

e smp encryption status (ENC, ID=7/4) -Occurswhen encryption status changes during a pairing
process

e smp passkey display requested (PKD, ID=7/5) -Occurswhen pairing process requires displaying
a passkey to the user

e smp passkey entry requested (PKE, ID=7/6) -Occurswhen pairing process requires the user to
enter a passkey

7.2.7.4 smp_query_random_address (/QRA, ID=7/4)

Request the current local random address.

When peripheral or central privacy is enabled with the smp set privacy mode (SPRvV, 1ID=7/9) API
command, the Bluetooth® connection address visible to remote devices while advertising or scanning will be
random (private) instead of the fixed (public) Bluetooth® address that can be configured or obtained using the
system set bluetooth address (SBA, ID=2/13) and system get bluetooth address (GBA,
1D=2/14) APl commands. This type of privacy helps to avoid profiling by a passive eavesdropper.

Binary header

Type Length Group ID Note
CMD co 00 07 04 None
RSP co 08 07 04 None
Text info
Text name Response length Category
/QRA 0x0019 ACTION
User guide 206 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

macaddr address A Random address

Related commands

e smp set privacy mode (SPRV, ID=7/9)

7.2.7.5 smp_send_pairreq_response (/PR, ID=7/5)
Send a response to a pairing request from a remote device.

EZ-Serial will automatically accept pairing requests unless Bit 0 of the security behavior flags is cleared using
the flags field inthe smp_set security parameters (SSBP, ID=7/11) APIcommand. If the auto-
accept feature is disabled, use this command to manually accept or deny a remotely initiated pairing process.

Binary header

Type Length Group ID Note
CMD co 03 07 05 None
RSP co 02 07 05 None
Text info
Text name Response length Category Note
/PR 0x0009 ACTION None

Command arguments

Datatype | Name Text | Description

uint8 conn_handle |[C Connection handle to use for sending response
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintl6 response R* | Response (0 = accept, non-zero = reject)

Response parameters

None.

Related commands
e smp_pair (/P, ID=7/3) -Used toinitiate pairing

Related events
e smp pairing requested (P, ID=7/2) - Occurswhen aremote device requests pairing

e smp pairing result (PR, ID=7/3) -Occurs after a pairing process completes (successfully or
otherwise)

User guide 207 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.6 smp_send_passkeyreq_response (/PE, ID=7/6)
Send a passkey value back to a remote device that requested it.

Use this command after receiving the smp _passkey entry requested (PKE, ID=7/6) APlevent,orwhen
I/O capabilities are set to “Display + Yes/No” to indicate acceptance after receiving the
smp_passkey display requested (PKD, ID=7/5) APlevent.

Binary header

Type Length Group ID Note
CMD co 05 07 06 None
RSP Cco 02 07 06 None
Text info
Text name Response length Note
/PE 0x0009 None

Command arguments

Data type | Name Text | Description

uint8 conn_handle | C Connection handle to use for sending response
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uint32 passkey P* | Passkey value (000000-999999, 0x0 - 0xOF423F)

Response parameters
None.

Related commands
e smp pair (/P, ID=7/3)

Related events
e smp passkey display requested (PKD, ID=7/5)
e smp passkey entry requested (PKE, ID=7/6)

User guide 208 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.7 smp_generate_oob_data (/GOOB, ID=7/7)

Generate out-of-band data for pairing.

EZ-Serial supports the use of out-of-band (OOB) encryption key sharing for added security during pairing with
compatible devices. This command does not directly set OOB data. Instead, it generates OOB data based on a
16-byte input key. You must use the same key on the remote device to generate matching OOB data in order to
successfully pair using out-of-band key exchange.

Ensure that you generate OOB data on both sides of the connection before initiating the pairing process on
either side.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using this
command. If you set O0B data and then attempt to pair with a device that does not support 0OB
pairing, or that does not have the correct matching key set, pairing will always fail. To clear OOB
data and revert to the standard pairing and key generation/exchange process, either reset the
module via hardware or software or use the smp clear oob data (/CO0B, ID=7/8) APl

command.

Binary header

Type Length Group ID Note
CMD co 13 07 07 None
RSP Co 02 07 07 None
Text info
Text name Response length Category Note
/GOOB 0x000B ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle | C Connection handle to use for applying OOB data
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uint8a key K* | 16-byte key with which to generate OOB data.

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.

Response parameters

None.

Related commands
e smp clear oob data (/COOB, ID=7/8)

Example usage

e See How to use out-of-band pairing

User guide 209 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.8 smp_clear_oob_data (/COOB, ID=7/8)

Clear previously set out-of-band data for pairing.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using the
smp generate oob data (/GOOB, ID=7/7) APlcommand.Ifyou set OOB data and then
attempt to pair with a device that does not support OOB pairing, or that does not have the correct
matching OOB security data set, pairing will always fail. To clear OOB data and revert to the
standard pairing and key generation/exchange process, use this command or else reset the
module via hardware or software.

Binary header

Type Length Group ID Note
CMD Cco 01 07 08 None
RSP Cco 03 07 08 None
Text info
Text name Response length Category Note
/COOB 0x0010 ACTION None

Command arguments

Datatype | Name Text | Description

uint8 conn_handle |C Connection handle to use for applying OOB data
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

Response parameters

Response parameters

Data type Name Text Description

uint8 Conn_handle C Connection handle

Related commands
e smp generate oob data (/GOOB, ID=7/7)

User guide 210 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.9 smp_set_privacy_mode (SPRV, ID=7/9)

Configure new privacy settings.

Use this command to enable or disable peripheral or central privacy. Enabling privacy in each mode causes the
Bluetooth® connection address used in related states to be random (private) instead of fixed (public). This can
make passive profiling by a remote observer more difficult.

Peripheral privacy affects the Bluetooth® connection address broadcast during advertisements, which the
remote central device may log or use for a scan request or connection request. Central privacy affects the
Bluetooth® connection address used for scan requests or connection requests when scanning for or
communicating with a remote device.

Binary header

Type Length Group ID Note
CMD co 03 07 09 None
RSP co 02 07 09 None
Text info
Text name Response length Category Note
SPRV 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M Privacy mode bitmask:
e Bit0(0x01) = Enable peripheral privacy
e Bit1(0x02) = Enable central privacy

Note: Factory default is 0x00 (no bits set).

uintl6 interval I Randomization interval (seconds)
e Max:41400 (11.5 hours)

Response parameters

None.

Related commands

e smp get privacy mode (GPRV, ID=7/10)

User guide 211 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.7.10

Obtain current privacy settings.

Binary header

smp_get_privacy_mode (GPRV, ID=7/10)

Type Length Group ID Note

CMD Co 00 07 0A None
RSP Co 05 07 0A None
Text info
Text name Response length Category Note
GPRV 0x0016 GET None
Command arguments
None.
Response parameters
Data type Name Text Description
uint8 mode M Privacy mode bitmask:

e Bit0(0x01) = Enable peripheral privacy

e Bit1(0x02) = Enable central privacy

Note: Factory default is 0x00 (no bits set)
uintl6 interval I Randomization interval (seconds)

Related commands

e smp set privacy mode (SPRV, ID=7/9)

7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11)

Configure new security and bonding parameters.

These parameters will be used when the smp pair (/p, ID=7/3) APlcommand is used without specifying
non-default arguments. These values are reported to the remote device as part of the pairing process and affect
the type of key generation and exchange that takes place during pairing and bonding.

Note: Changing the I/0 capabilities will affect the command/event flow necessary to complete a pairing
and bonding process. See the the related commands and events for details concerning each one’s
use. Also, MITM protection requires I/0 capabilities other than “No Input + No Output” in order to
function correctly.

002-39351 Rev. *B
2025-11-12

User guide 212

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Binary header

Type Length Group ID Note
CMD Co 06 07 0B None
RSP Co 02 07 0B None
Text info
Text name Response length Category Note
SSBP 0x000A SET None

Command arguments

Data type | Name Text | Description

uint8 mode M Security level setting reported to peer:
e 0x10=Mode 1, Level 1 - No security

e 0x11=Mode 1, Level 2 - Unauthenticated pairing with encryption (no MITM,
factory default)

e 0x12=Mode 1, Level 3 - Authenticated pairing with encryption (with MITM)

e 0x13=Mode 1, Level 4 - LE Secure Connections (reported by remote peers
only, not locally implemented in current EZ-Serial firmware)

e 0x21=Mode 2, Level 2 - Unauthenticated pairing with data signing (no MITM)
e 0x22=Mode 2, Level 3 - Authenticated pairing with data signing (with MITM)

uint8 bonding | B Bond during pairing process:
(Ignored in current release due to internal Bluetooth® LE stack functionality, set
to 1 always)

uint8 keysize | K Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10).

uint8 pairprop | P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Note: Factory default is 0x00 (no bits set).

uint8 io I I/O capabilities:

e 0=Display Only - ability to convey a 6-digit number to user

e 1=Display + Yes/No - display and the ability to have user indicate “yes” or
“no

”»

e 2=Keyboard Only - ability for the user to enter ‘0’ through ‘9’ and “yes” or
“no

”»

e 3=NoInput+ No Output - no ability to display or input anything (factory
default)

e 4 =Keyboard + Display - ability to provide full numeric input and display

User guide 213 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

uint8 flags F Security behavior flags bitmask:
e Bit 0 (0x01) = Enable auto-accept for incoming pairing requests
e Bit1(0x02) = Enable use of fixed passkey during pairing

Note: Factory default is 0x01.

Response parameters

None.

Related commands

e smp pair (/P, ID=7/3)

e smp send pairreq response (/PR, ID=7/5)

e smp send passkeyreq response (/PE, ID=7/6)
e smp get security parameters (GSBP, ID=7/12)
e smp set fixed passkey (SFPK, ID=7/13)

Related events

e smp pairing requested (P, ID=7/2)

e smp pairing result (PR, ID=7/3)

e smp encryption status (ENC, ID=7/4)

e smp passkey display requested (PKD, ID=7/5)
e smp passkey entry requested (PKE, ID=7/6)

7.2.7.12 smp_get_security_parameters (GSBP, ID=7/12)

Obtain current security and bonding parameters.

Binary header

Type Length Group ID Note
CMD Co 00 07 0C None
RSP Co 08 07 0C None
Text info
Text name Response length Category Note
GSBP 0x0028 GET None

Command arguments

None.

User guide 214 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Datatype | Name Text | Description

uint8 mode M Security level setting reported to peer:
e 0x10=Mode 1, Level 1 - No security

e 0x11=Mode 1, Level 2 - Unauthenticated pairing with encryption (no MITM,
factory default)

e 0x12=Mode 1, Level 3 - Authenticated pairing with encryption (with MITM)

e 0x21=Mode 2, Level 2 - Unauthenticated pairing with data signing (no
MITM)

e 0x22=Mode 2, Level 3 - Authenticated pairing with data signing (with MITM)

uint8 bonding | B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack functionality,
set to 1 always)

uint8 keysize |K Encryption key size (7-16), value ignored if pairing initiated by slave device
Note: Factory default is 16 bytes (0x10).
uint8 pairprop | P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Note: Factory default is 0x00 (no bits set).

uint8 io [I/O capabilities:

e 0=Display Only - ability to convey a 6-digit number to user

e 1=Display +Yes/No - display and the ability to have user indicate “yes” or
“no

”»

e 2=Keyboard Only - ability for the user to enter ‘0’ through ‘9’ and “yes” or
“no

”»

e 3=No Input+ No Output - no ability to display or input anything (factory
default)

e 4 =Keyboard + Display - ability to provide full numeric input and display

uint8 flags F Security behavior flags bitmask:
e Bit 0 (0x01) = Enable auto-accept for incoming pairing requests
e Bit 1(0x02) = Enable use of fixed passkey during pairing

Note: Factory default is 0x01.

Related commands

e smp set security parameters (SSBP, ID=7/11)

User guide 215 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.7.13 smp_set_fixed_passkey (SFPK, ID=7/13)

Configure new fixed passkey value.

While the Bluetooth® specification describes that the passkey should be randomized during pairing, you can
configure a fixed (non-random) 6-digit passkey between 000000 and 999999 using this command and
configuring the local I/O capabilities to the “Display Only” value. During pairing, EZ-Serial will generate the
smp_passkey_display_requested (PKD, ID=7/5) API event containing the value configured here. The remote
peer must then enter this key in order to pair successfully.

Note: The fixed passkey defined here will only take effect if you enable fixed passkey use by setting Bit 1
(0x02) of the security flags parameter and set the “Display Only” I/O capabilities value (0x00) using
the smp set security parameters (SSBP, ID=7/11)APlcommand.Ifboth of these
conditions are not met, then the stack will revert to the default behavior of using a random

passkey.

Binary header

Type Length Group ID Note
CMD Cco 04 07 0D None
RSP Cco 02 07 0D None
Text info
Text name Response length Category Note
SFPK 0x000A SET None.

Command arguments

Data type Name Text | Description

uint32 passkey P Fixed passkey value
e Minimum =0 (‘000000’ decimal entry during pairing)
e Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0.

Response parameters

None.

Related commands

e smp pair (/P, ID=7/3)

e smp send pairreq response (/PR, ID=7/5)

e smp get fixed passkey (GFPK, ID=7/14)

e smp set security parameters (SSBP, ID=7/11)

User guide 216 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related events

e smp pairing requested (P, ID=7/2)

e smp pairing result (PR, ID=7/3)

e smp encryption status (ENC, ID=7/4)

e smp passkey display requested (PKD, ID=7/5)

Example usage
e See Pairing and bonding with a fixed passkey

7.2.7.14 smp_get_fixed_passkey (GFPK, ID=7/14)

Obtain current fixed passkey value.

Binary header

Type Length Group ID Note
CMD Co 00 07 OE None
RSP Co 06 07 OE None
Text info
Text name Response length Category Note
GFPK 0x0015 GET None

Command arguments

None.

Response parameters

Data type Name Text | Description

uint32 passkey P Fixed passkey value
e Minimum =0 (‘000000’ decimal entry during pairing)
e Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0.

Related commands
e smp set fixed passkey (SFPK, ID=7/13)

User guide 217 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.8 L2CAP group (ID=8)

L2CAP methods relate to the Logical Link Control and Adaptation Protocol layer of the Bluetooth® stack. These
methods are used for working directly with low-level data transfer between two connected devices.

The following are the commands within this group:

e 1l2cap connect (/LC, ID=8/1)

e 1l2cap disconnect (/LDIS, ID=8/2)

e l2cap register psm (/LRP, ID=8/3)

e l2cap_send connreq_response (/LCR, ID=8/4)
e l2cap send credits (/LSC, ID=8/5)

e 1l2cap send data (/LD, ID=8/6)

Events within this group are documented in L2CAP group (ID=8).

7.2.8.1 12cap_connect (/LC, ID=8/1)

Open adirect L2CAP channel to a connected device.

EZ-Serial provides one extra dedicated L2CAP channel for connection-oriented communication, bypassing the
GATT/ATT layers of the stack. L2CAP connections use a credit-based flow control mechanism, where the

receiving side grants a certain number of credits to the transmitting side to control its ability to send data over
the open channel. For further details, see the example usage in How to communicate using an L2CAP channel.

Note: Most consumer smartphones and tablets available at the time of this publication do not support
direct L2CAP connectivity. You must use standard GATT-based APIs to communicate with these
devices.

Binary header

Type Length Group ID Note
CMD Co 0B 08 01 None
RSP Cco 02 08 01 None
Text info
Text name Response length Category Note
/LC ACTION None
User guide 218 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Command arguments

Datatype | Name Text | Description

uint8 conn_handle | C Connection handle to use for L2CAP channel
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintl6 remote R* | Remote Protocol Service Multiplexer (PSM)

uintl6 local L* | Local Protocol Service Multiplexer (PSM)

uintlé mtu T* | Maximum Transmission Unit (MTU)

uintl6 mps P* | Maximum Payload Size (MPS), must be less than or equal to MTU
uintlé credits Z* | Transmission credits initially granted to remote device

Response parameters

None.

Related commands
e 1l2cap disconnect (/LDIS, ID=8/2)

e 12cap register psm (/LRP, ID=8/3) -Useon both localand remote devices to register a PSM before
initiating a connection

e 12cap send connreq response (/LCR, ID=8/4) -Useon theremote device to acceptorrejecta
connection request

Related events

e 12cap connection requested (LCR, ID=8/1) - Occurson theremote device after requesting a
connection

e 12cap connection response (LC, ID=8/2) -Occurs locally after a remote device responds to a
connection request

Example usage

e See How to communicate using an L2CAP channel

User guide 219 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.8.2 12cap_disconnect (/LDIS, ID=8/2)

Close a previously opened L2CAP channel.

Binary header

Type Length Group ID Note
CMD co 02 08 02 None
RSP Co 02 08 02 None
Text info
Text name Response length Category Note
/LDIS 0x000B ACTION None

Command arguments

Data type Name Text Description

uintl6 channel N* Local PSM channel to disconnect

Response parameters

None.

Related commands
e l2cap connect (/LC, ID=8/1)

Related events
e l2cap disconnected (LDIS, ID=8/4)

Example usage
¢ See How to communicate using an L2CAP channel

User guide 220 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.8.3

Register a new L2CAP PSM channel.

12cap_register_psm (/LRP, ID=8/3)

You must use this command before initiating an L2CAP connection to a remote device. The remote device must
also have the same command (or equivalent) run prior to the connection attempt. The low credit watermark
value controls at which point the local device will generate the [2cap_rx_credits_low (LRCL, ID=8/5) APl event,

signaling that you should send additional credits to allow continued data flow.

Binary header

Type Length Group ID Note
CMD co 04 08 03 None
RSP co 02 08 03 None
Text info
Text name Response length Category Note
/LRP 0x000A ACTION None
Command arguments
Data type Name Text Description
uintlé channel N* Local PSM channel to register
uintl6 watermark W Low credit watermark (default =0)

Response parameters

None.

Related commands
e l2cap connect (/LC, ID=8/1)

Related events

e [2cap_rx_credits_low (LRCL, ID=8/5) - Occurs locally when the remote device’s transmit credits reach the

watermark level

Example usage

e See How to communicate using an L2CAP channel

User guide

221

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.8.4 |2cap_send_connreq_response (/LCR, ID=8/4)

Respond to an incoming L2CAP connection request.

Binary header

Type Length Group ID Note
CMD co 0B 08 04 None
RSP co 02 08 04 None
Text info
Text name Response length Category Note
/LCR 0x000A ACTION None

Command arguments

Data type | Name Text | Description

uint8 conn_handle |[C Connection handle to use for L2CAP response
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintl6 channel N* | Remote Protocol Service Multiplexer (PSM)

uintl6 response R* Response (0 = accept, non-zero = reject)

uintle mtu M* | Maximum Transmission Unit (MTU)

uintl6 mps P* | Maximum Payload Size (MPS), must be less than or equal to MTU
uintl6 credits Z* | Transmission credits initially granted to remote device

Response parameters

None.

Related commands
e 12cap connect (/LC, ID=8/1) -Used toinitiate an L2CAP connection

Related events

e [2cap_connection_requested (LCR, ID=8/1) - Occurs locally when a remote device initiates an L2CAP
connection

e |2cap_connection_response (LC, ID=8/2) - Occurs on the remote device after sending the response to a
connection request

Example usage

e See How to communicate using an L2CAP channel

User guide 222 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.8.5 12cap_send_credits (/LSC, ID=8/5)

Send additional transmission credits for L2CAP channel.

Use this command if you receive the [2cap_rx_credits_low (LRCL, ID=8/5) API event, indicating that the remote
end of a given L2CAP channel has few or no credits remaining to send data. You can also use this command
preemptively to keep the remote device from running out of credits. The remote device will be unable to send
more data if it runs out of credits until the local device grants additional credits with this command.

Binary header

Type Length Group ID Note
CMD Co 04 08 05 None
RSP Co 02 08 05 None
Text info
Text name Response length Category Note
/LSC 0x000A ACTION None

Command arguments

Data type Name Text Description
uintl6 channel N* Channel ID
uintle credits Z* Credits

Response parameters

None.

Related commands

e l2cap connect (/LC, ID=8/1) -Used on theinitiating side to grant first block of credits to the remote
device

e 12cap send connreq response (/LCR, ID=8/4)

Related events

e |2cap_data_received (LD, ID=8/3)

e |2cap_rx_credits_low (LRCL, ID=8/5)

e |2cap_tx_credits_received (LTCR, ID=8/6)

Example usage

¢ See How to communicate using an L2CAP channel

User guide 223 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.8.6 |2cap_send_data (/LD, ID=8/6)

Send data over an open L2CAP channel.

Each transmission with this command uses one TX credit, regardless of length. To maximize throughput, make
sure you fill the packet with as many bytes as possible based on the data available in your transmission buffer.

Binary header

Type | Length | Group |ID | Note

CMD Co 05 08 06 | Variable-length command payload, value specified is minimum
RSP co 02 08 06 | None

Text Info

Text name Response length Category Note

/LD 0x0009 ACTION None

Command arguments

Datatype |Name Text | Description

uint8 conn_handle | C Connection handle over which to send data
(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 0)

uintl6 channel N* | Channel ID over which to send data
longuint8a | data D* | Data (0-23 bytes)
Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Response parameters

None.

Related events

e |2cap_data_received (LD, ID=8/3) - Occurs on the remote device after data arrives

Example usage

e See How to communicate using an L2CAP channel

User guide 224 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.2.9 GPIO group (ID=9)

GPI0 methods relate to the physical pins on the module.
The following are the commands within this group:

e gpio query logic (/QIOL, ID=9/1)

e gpio query adc (/QADC, ID=9/2)

e gpio set function (SIOF, ID=9/3)

e gpio get function (GIOF, ID=9/4)
(SIOD, ID=9/5
(GIOD, ID=9/6

e gpio set logic (SIOL, ID=9/7
(GIOL, ID=9/8

e gpio_set drive)
e gpio get drive)
)
e gpio get logic)
e gpio set interrupt mode (SIOI, ID=9/9)
e gpio get interrupt mode (GIOI, ID=9/10)
e gpio set pwm mode (SPWM, ID=9/11)
e gpio get pwm mode (GPWM, ID=9/12)

Events within this group are documented in GPIO group (ID=9)

GPIO API Method Guidelines

All GP10 methods follow the same basic argument pattern for port and pin selection and modification (except
for those relating to PWM and ADC behavior, which use channel numbers for predefined pins). These API
methods have the following features in common:

e Theinitialport (“P”) argument is a zero-based index for the port number
e If present, the following mask (“M”) argument is a bitmask for selecting which pins to modify
e If present, all additional arguments are also bitmasks to apply to the selected pin range

e SET command responses return the af fected (“A”) parameter, a bitmask showing which pins were
affected

Some ports do not have all pins physically exposed on the module. If you select any non-exposed pins, the
command processor will silently ignore them (they will be cleared from the mask value and the affected
return value).

Some pins have special functions assigned to them and enabled by default from the factory. If you select any
special-function pins for modification, the command processor will store the new values in the general
configuration settings, but the new values will not take effect unless you disable the special functions on those
pinsusing the gpio set function (SIOF, ID=9/3) APIcommand. See GPIO reference for details about
which pins have these functions and how to disable them.

Using bitmasks for selection and new value application allows a single command to affect multiple pinsin a
complex way. Many single operations would otherwise require multiple commands. The following example
illustrates how one gpio set logic (SIOL, ID=9/7) APlcommand can setalternating logic state output
levels across Port 2 on the CYBLE-212019-00 module. Note that the CYBLE-212019-00 module does not expose
P2.1,P2.5,or P2.7.

User guide 225 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

e Command received:

SIOL, P=2,M=FF, L=AA

Port: 2

Pins: FF (select all)

Logic: AA (0b10101010)
Result:
P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0
HIGH LOW HIGH LOW HIGH LOW HIGH LOW

e Command processor clears bits from the selection mask for any non-exposed pins to avoid unexpected
behavior

Result:
P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0
X X X
e Logic states applied, response sent:
@R, 000F, SIOL, 0000,A=5D
Result: 0000 (success)
Affected: 5D (01011101)
P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0
N/A LOW N/A LOW HIGH LOW N/A LOW
7.2.9.1 gpio_query_logic (/QIOL, ID=9/1)

Read the active low/high logic state of pins on the selected port.

See GPIO pin map for supported modules for a pin map table showing pin availability.
Note: This command returns immediate logic state of the pins on the specified port by reading that
port’s status register. This may be different from the pulled/driven states that you have configured
using the gpio set logic (SIOL, ID=9/7)APlcommand, due to external drive signals and
strengths. To obtain the configured logic output settings rather than the immediate logic states,
use the gpio get logic (GIOL, ID=9/8) APlcommand.

Binary header

Type Length Group ID Note
CMD co 01 09 01 None
RSP co 03 09 01 None
Text info
Text name Response length Category Note
/QIOL 0x0010 ACTION None
User guide 226 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Command arguments

Data type Name Text Description
uint8 Pin p* Pin number
Response parameters

Data type Name Text Description

uint8 logic L Pin logic mask (set bit for high, clear for low)

Related commands

e gpio set logic (SIOL, ID=9/7) -Use to setoutput/pull logic state internally (may be overridden by
external connections)

e gpio get logic (GIOL, ID=9/8) - Use to getoutput logic settings (not the same as actual logic levels)

Related events

e gpio_interrupt (INT, ID=9/1) - Includes port logic state at moment interrupt occurred

7.2.9.2

gpio_query_adc (/QADC, ID=9/2)

Read the immediate analog voltage level on the selected channel.

EZ-Serial provides a single dedicated ADC input pin (ADC) for reading analog voltages. The ADC supports an
input voltage range of 0 V minimum to VBAT maximum. Use this command to perform a single ADC conversion.
Once the conversion completes, the module will transmit the result back in response parameters.

You can use the ADC pin as a normal digital GPIO, but performing an analog read with this command will
reconfigure the pin back to a high-impedance analog input state.

See GPIO pin map for supported modules for a pin map table showing ADC pin assignment.

Binary header

Type Length Group ID Note
CMD Co 02 09 02 None
RSP Cco 14 09 02 None
Text info
Text name Response length Category Note
/QADC 0x0037 ACTION None
Command arguments
Data type Name Text Description
uint8 channel N* ADC channel (4 only)
uint8 reference R Voltage reference for conversion

(Ignored in current release, set to 0)

User guide 227 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text | Description

uintl6 value A Raw ADC conversion value, 0 — 1023(0x0 - OX7FF)
uint32 uvolts U Scaled ADC result in microvolts, 0 - VBAT

uint32 voltage R Scaled ADC result in volts. format: IEEE-754
uintlé offset o ADC offset

uint32 gain c ADC gain. format: IEEE-754

R = gain*(raw + offset*2)/4=0.25 * (C * (A+ (O * 2)))

U=R*1000000

7.2.9.3

gpio_set_function (SIOF, ID=9/3)

Configure new special function assignment on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks

work.
Note:

Binary header

Only P13 supports to configure to GPIO mode.

(infineon

Type Length Group ID Note
CMD Co 03 09 03 None
RSP Co 03 09 03 None
Text info
Text name Response length Category Note
SIOF 0x000F SET None
Command arguments
Data type Name Text Description
uint8 Pin p* GPIO Pin number
uint8 enable Pin function mask (1 to enable, 0 to disable)
uint8 drive D Pin function drive mode
Response parameters
Data type Name Text Description
uint8 affected A 1 for affected, 0 for unaffected
Related commands
e gpio get function (GIOF, ID=9/4)

User guide

228

002-39351 Rev. *B

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.9.4 gpio_get_function (GIOF, ID=9/4)
Get current special function assignment on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

Type Length Group ID Note
CMD co 01 09 04 None
RSP co 04 09 04 None
Text info
Text name Response length Category Note
GIOF 0x0014 GET None

Command arguments

Data type Name Text Description
uint8 Pin p* GPIO Pin number

Response parameters

Data type Name Text | Description
uint8 enable E Pin function (1 indicates enabled, 0 indicates disabled)
uint8 drive D Pin function drive mode

Related commands

e gpio set function (SIOF, ID=9/3)

7.2.9.5 gpio_set_drive (SIOD, ID=9/5)

Configure new drive mode for selected pins. This command is not implemented.

Using the last four arguments of this command, you can configure every possible drive mode supported by the
chipset. describes each resulting drive mode from all combinations:

Table70 GPIO Drive mode table

Drive Mode Index Drive mode

Analog input, high impedance

Digital input, high impedance

Digital input, pull-up

Digital output, strong drive

Digital output, open-drain drives high

|| WI|N | |O

Digital output, open-drain drives low

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

User guide 229 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Binary header

Type Length Group ID Note
CMD Co 06 09 05 None
RSP co 03 09 05 None
Text info
Text name Response length Category Note
SIOD 0x000F SET None
Command arguments
Data type Name Text Description
uint8 Pin p* Pin number
uint8 drive D GPIO Pin drive mode
Response parameters
Data type Name Text Description
uint8 affected A 1 for affected, 0 for unaffected)
Related commands
e gpio get drive (GIOD, ID=9/6)

7.2.9.6

gpio_get_drive (GIOD, ID=9/6)

Get current new drive mode for selected pins. This command is not implemented.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

Type Length Group ID Note
CMD Co 01 09 06 None
RSP Co 06 09 06 None
Text info
Text name Response length Category Note
GIOD 0x001E GET None
Command arguments
Data type Name Text Description
uint8 pin p* GPIO Pin number
Response parameters
Data type Name Text Description
uint8 drive D GPIO Pin drive mode
User guide 230 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
e gpio set drive (SIOD, ID=9/5)

7.2.9.7 gpio_set_logic (SIOL, ID=9/7)
Configure new output logic for selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

Note: This command sets new drive/pull logic levels by writing to the data register of the selected port.
Depending on the configured drive mode and external connections, the logic levels in the port
status register may not match with the new configured state. Make sure you have configured the
correct function behavior, drive mode, and external signals if the gpio query logic

(/010L, 1D=9/1) APlcommand reports an unexpected state.

Binary header

Type Length Group ID Note
CMD co 02 09 07 None
RSP co 03 09 07 None
Text info
Text name Response length Category Note
SIoL 0x000F SET None

Command arguments

Data type Name Text Description
uint8 pin p* GPIO Pin number
uint8 logic L Pin logic (1 for high, 0 for low)

Response parameters

Data type Name Text Description
uint8 affected A 1 for affected, 0 for unaffected

Related commands
e gpio get logic (GIOL, ID=9/8)

User guide 231 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.9.8 gpio_get_logic (GIOL, ID=9/8)
Obtain current output logic for selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
Note: This command does not return the immediate logic level of any pins. Instead, it returns the
configured logic values set using the gpio set logic (SIOL, ID=9/7) APlcommand. To

obtain the actual logic states reported by the port status register, use the gpio query logic
(/QIOL, ID=9/1)APlcommand instead.

Binary header

Type Length Group ID Note
CMD Cco 01 09 08 None
RSP Cco 03 09 08 None
Text info
Text name Response length Note
GIOL 0x000F None

Command arguments

Data type Name Text Description
uint8 pin Pin* GPIO Pin number

Response parameters

Data type Name Text Description

uint8 logic L Pin logic (1 for high, 0 for low)

Related commands
e gpio query logic (/QIOL, ID=9/1)
e gpio set logic (SIOL, ID=9/7)

User guide 232 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.9.9 gpio_set_interrupt_mode (SIOIl, ID=9/9)
Configure new edge detection interrupt settings on selected pins.

Use this command to enable or disable edge change interrupts on available pins. All exposed pins support both
rising and falling edge detection, reported via the gpio_interrupt (INT, ID=9/1) API event.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

Note: Pins with certain special functions enabled will generate interrupts internally for processing.
These interrupts occur regardless of whether you enable or disable them with this APl command.

Binary header

Type Length Group ID Note
CMD co 03 09 09 None
RSP co 03 09 09 None
Text info
Text name Response length Category Note
SIOI 0x000F SET None

Command arguments

Data type Name Text | Description

uint8 pin p* GPIO Pin number

uint8 rising R Rising-edge interrupts (set bit to enable, clear to disable)
uint8 falling F Falling-edge interrupts (set bit to enable, clear to disable)

Response parameters

Data type Name Text Description
uint8 affected A 1 for affected, 0 for unaffected

Related commands

e gpio get interrupt mode (GIOI, ID=9/10)

Related events
e gpio_interrupt (INT, ID=9/1)

User guide 233 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10)
Obtain current edge detection interrupt settings on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

Type Length Group ID Note
CMD Co 01 09 0A None
RSP Co 04 09 0A None
Text info
Text name Response length Category Note
GIOI 0x0014 GET None

Command arguments

Data type Name Text Description
uint8 pin p* GPIO Pin number

Response parameters

Data type Name Text | Description
uint8 rising R Rising-edge interrupts (1 to enable, 0 to disable)
uint8 falling F Falling-edge interrupts (1 to enable, 0 to disable)

Related commands

e gpio set interrupt mode (SIOI, ID=9/9)

Related events
e gpio_interrupt (INT, ID=9/1)

7.2.9.11 gpio_set_pwm_mode (SPWM, ID=9/11)
Configure new PWM output behavior for selected channel.

EZ-Serial provides two dedicated PWM output pins (PWMO0, PWM1). You can enable PWM output on any of the
two PWM channels using this APl command. PWM channels are controlled via independent 8MHZ~250kHZ
clocks, and can each use separate dutysettings available from 0% ~100% with 1/64 steps for complete
flexibility.

Enabling PWM on each channel means you cannot use that pin for other generic 1/0. To return a PWM channel
pin to standard functionality, use the gpio set pwm mode (SPWM, ID=9/11) APlcommand to disable PWM
output on that pin. See GPIO pin map for supported modules for a pin map table showing pin availability and
default assignment.

User guide 234 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Note: Enabling PWM output on one or more channels will automatically prevent the CPU from entering
Deep Sleep under any circumstances. This happens because the high-frequency clock required to
generate the PWM signal cannot operate while the CPU is in Deep Sleep. To allow Deep Sleep
mode again, you must disable all PWM output. See How to manage Sleep states for further detail.

Binary header

Type Length Group ID Note
CMD Co 06 09 0B None
RSP Co 02 09 0B None
Text info
Text name Response length Category Note
SPWM 0x000A SET None

Command arguments

Data type Name Text | Description
uint8 channel N* Channel number (2, 5)
uint8 enable E* Enable PWM output (0 to disable, 1 to enable)
uint8 polarity p* Output Polarity
0: High
1: Low
uintl6 clock F* Clock frequency value:

8000 kHz ~ 250 kHz

250 kHz supports 16 steps of duty cycles
500 kHz supports 32 steps of duty cycles
1000 kHz supports 16 steps of duty cycles
4000 kHz supports 4 steps of duty cycles
8000 kHz supports 2 steps of duty cycles

uint8 duty percentage D* PWM duty value:
0% <= duty <= 100%

Response parameters

None.

Related commands
e gpio get pwm mode (GPWM, ID=9/12)

User guide 235 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.2.9.12 gpio_get_pwm_mode (GPWM, ID=9/12)

Obtain current PWM output behavior for selected channel.

See GPIO pin map for supported modules section for a pin map table showing pin availability and default

assignment.

Binary header

Type Length Group ID Note
CMD Co 01 09 0C None
RSP co 09 09 0C None
Text info
Text name Response length Category Note
GPWM 0x0020 GET None
Command arguments
Data type Name Text Description
uint8 channel N* Channel number (2, 5)
Response parameters
Data type Name Text | Description
uint8 enable E Enable PWM output (0 to disable, 1 to enable)
uint8 polarity P Output Polarity
0: High
1: Low
uintl6 clock F Clock frequency value:
8000 kHz ~ 250 kHz
uint8 duty percentage D PWM duty value:
duty value
Related commands
e gpio set pwm mode (SPWM, ID=9/11)
User guide 236 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.10 CYSPP group (ID=10)

CYSPP methods relate to the Infineon Serial Port Profile.

The following are the commands within this group:

e p cyspp check (.CYSPPCHECK, ID=10/1)

e p cyspp start (.CYSPPSTART, ID=10/2)

® p cyspp set parameters (.CYSPPSP, ID=10/3)

® p cyspp get parameters (.CYSPPGP, ID=10/4)

e p cyspp set client handles (.CYSPPSH, ID=10/5)
e p cyspp get client handles (.CYSPPGH, ID=10/6)
e p cyspp set packetization (.CYSPPSK, ID=10/7)
e p cyspp get packetization (.CYSPPGK, ID=10/8)

Events within this group are documented in the CYSPP group (ID=10) section.
You can find further details and examples concerning CYSPP operation in the following sections:

e Using CYSPP mode
e Configuring the CYSPP data mode sleep level
e Cable replacement examples with CYSPP

7.2.10.1 p_cyspp_check (.CYSPPCHECK, ID=10/1)

Check whether a connected peer device includes support for the CYSPP service.

This command requires an active connection, and performs a service and descriptor discovery to identify the
required elements for CYSPP operation. If detection completes successfully, EZ-Serial will generate the
p_cyspp_status (.CYSPP, ID=10/1) API event with the “CYSPP peer support verified” bit set. However, it will not
automatically enter CYSPP mode even upon verifying remote peer compatibility.

Binary header

Type Length Group ID Note
CMD co 00 0A 01 None
RSP Cco 02 0A 01 None
Text info
Text name Response length Category Note
.CYSPPCHECK 0x0011 ACTION None

Command arguments

None.

Response parameters

None.

User guide 237 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands

e p cyspp start (.CYSPPSTART, ID=10/2)

e p cyspp set parameters (.CYSPPSP, ID=10/3)

e p cyspp set client handles (.CYSPPSH, ID=10/5)

Related events
e p_cyspp_status (.CYSPP, ID=10/1)

7.2.10.2 p_cyspp_start (.CYSPPSTART, ID=10/2)

Activate CYSPP operation.

Use this command to start CYSPP via the API protocol, rather than asserting the CYSPP pin or configuring
automatic start withthep cyspp set parameters (.CYSPPSP, ID=10/3) APlcommand. EZ-Serial will
choose the role used for CYSPP operation based on the role setting configured with the

p _cyspp_set parameters (.CYSPPSP, ID=10/3) APIcommand.

Binary header

Type Length Group ID Note
CMD co 00 0A 02 None
RSP co 02 0A 02 None
Text info
Text name Response length Category Note
.CYSPPSTART 0x0011 ACTION None

Command arguments

None.

Response parameters

None.

Related commands

e p cyspp check (.CYSPPCHECK, ID=10/1)

® p cyspp set parameters (.CYSPPSP, ID=10/3)

e p cyspp set client handles (.CYSPPSH, ID=10/5)

Related events
e p_cyspp_status (.CYSPP, ID=10/1)

User guide 238 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.10.3 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Configure new CYSPP behavior settings.

Use this command to control how CYSPP behaves. You can find example usage and practical explanations of
how these settings affect behavior in the Using CYSPP mode and Cable replacement examples with CYSPP
sections.

Note: Disabling CYSPP with this APl method will cause EZ-Serial to hide the relevant GATT database
attributes from client discovery. All other visible attributes will remain the same and keep their
original handles, but those inside the CYSPP attribute range will be hidden an unusable by
connected clients. This will remain in effect until you enable the profile again or assert the CYSPP

pin.

Note: If server_security parameter changed, there will be an error code (0x111) generated, the settings
will be available after reboot.

Binary header

Type Length Group ID Note
CMD co 13 0A 03 None
RSP co 02 0A 03 None
Text info
Text name Response length Category Note
.CYSPPSP 0x000E SET None

Command arguments

Datatype |Name Text | Description

uint8 enable E Enable CYSPP profile:
e 0=Disable
e 1=Enable

e 2=Enable + auto-start (factory default)

uint8 role G GAP role to use:
e 0=Peripheral/server (factory default)
e 1=Central/client

uintl6 company C Company ID value for automatic advertisement payload Manufacturer
Data:
Note: Factory default is 0x0131 (Infineon Semiconductor).

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R Remote connection key to search for while scanning (central role)

uint32 remote_mask | M Bitmask for bits in remote key which must match for a central-role
connection

User guide 239 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description

uint8 sleep_level P Maximum sleep level while connected with open CYSPP data pipe:
e 0=Sleepdisabled

e 1=Normalsleep when possible

e 2=Deep Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower level.
uint8 server_security | S CYSPP server security requirement to allow writing CYSPP data from a
client:

e 0=No security required (factory default)

e 1=Encryption required

e 2 =Authentication required

e 3 =Encryption and Authentication required

uint8 client_flags F Client GATT usage flags while operating CYSPP in the central role
e Bit0(0x01) = Use acknowledged data transfers
e Bit1(0x02) =Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only).

Response parameters

None.

Related commands

e p cyspp start (.CYSPPSTART, ID=10/2)

e p cyspp get parameters (.CYSPPGP, ID=10/4)

e p cyspp set client handles (.CYSPPSH, ID=10/5)

Related events

e gap_adv_state_changed (ASC, ID=4/2) - May occur if CYSPP is set to start automatically in peripheral role
e gap_scan_state_changed (SSC, ID=4/3) - May occur if CYSPP is set to start automatically in central role

e p_cyspp_status (.CYSPP, ID=10/1)

Example usage

e Using CYSPP mode

e Configuring the CYSPP data mode sleep level
e Cable replacement examples with CYSPP

User guide 240 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Obtain current CYSPP behavior settings.

Binary header

Type Length Group ID Note
CMD co 00 0A 04 None
RSP co 15 0A 04 None
Text info
Text name Response length Category Note
.CYSPPGP 0x004F GET None

Command arguments

None.

Response parameters

Datatype | Name Text | Description

uint8 enable E Enable CYSPP profile:
e 0=Disable
e 1=Enable

e 2=Enable + auto-start (factory default)

uint8 role G GAP role to use:
e 0=Peripheral/server (factory default)
e 1=Central/client

uintl6 company C Company ID value for automatic advertisement packet payload
Manufacturer Data:

Note: Factory default is 0x0131 (Infineon Semiconductor).
uint32 local_key L Local connection key to present while advertising (peripheral role)
uint32 remote_key R Remote connection key to search for while scanning (central role)
uint32 remote_mask | M Bitmask for bits in remote key which must match for a central-role

connection
uint8 sleep_level P Maximum sleep level while connected with open CYSPP data pipe:

e 0=Sleepdisabled
e 1=Normalsleep when possible
e 2=Deep Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower level.
uint8 server_security | S CYSPP server security requirement for writing CYSPP data from a client:
User guide 241 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description

e 0=No security required

e 1=Encryptionrequired

e 2 =Authentication required

e 3 =Encryption and Authentication required

uint8 client_flags F Client GATT usage flags while operating CYSPP in the central role
e Bit0(0x01) = Use acknowledged data transfers
e Bit1(0x02) =Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only).

Related commands

® p cyspp set parameters (.CYSPPSP, ID=10/3)

7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)
Configure new preset attribute handles for CYSPP central/client operation.

Use this command to specify the remote GATT server handles manually for data and optional RX flow control. If
you know these handles in advance and can guarantee that they will not change, then configuring them here
causes EZ-Serial to skip the GATT discovery process that normally occurs during CYSPP client operation.

EZ-Serial’s internal GATT structure has the following attribute handles:

Acknowledged Data Unacknowledged Data RX Flow Control
Value 0x0014 0x0017 0x001A
Configuration 0x0015 0x0018 0x001B

To disable preset attribute handles and allow automatic discovery for every CYSPP client connection, set all
four handle values to 0 (factory default).

Note: EZ-Serial uses the data value handleand data cccd handle settings for client-role
data pipe setup and data transfer, whether or not you have configured the client flags
setting to require acknowledged data using the p cyspp set parameters (.CYSPPSP,
1D=10/3) APl command.In other words, if you configure unacknowledged data transfers (factory
default), set these values to the unacknowledged handles; or, if you configure acknowledged data
transfers, you should set these values to the acknowledged handles.

Note: These settings only apply when operating CYSPP in the central/client role. They have no impact on
CYSPP peripheral/server behavior.

Binary header

Type Length Group ID Note
CMD Cco 08 0A 05 None
RSP Cco 02 0A 05 None
User guide 242 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Text info

Text name Response length Category Note
.CYSPPSH 0x000E SET None
Command arguments

Data type Name Text | Description

uintl6 data_value_handle A Data characteristic value handle

uintl6 data_cccd_handle B Data characteristic configuration handle
uintl6 rxflow_value_handle C RX flow control characteristic value handle
uintlé rxflow_cccd_handle D RX flow control characteristic configuration handle
Response parameters

None.

Related commands

e p cyspp start (.CYSPPSTART, ID=10/2)

® p cyspp set parameters (.CYSPPSP, ID=10/3)

Related events

e p cyspp status (.CYSPP, ID=10/1)

7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)

Obtain current preset attribute handles for CYSPP central/client operation.

Binary header

Type Length Group ID Note
CMD Co 00 0A 06 None
RSP Co 0A 0A 06 None
Text info
Text name Response length Category Note
.CYSPPGH 0x002A GET None
Command arguments
None.
Response parameters
Data type Name Text | Description
uintlé data_value_handle A Data characteristic value handle
uintle data_cccd_handle B Data characteristic configuration handle
uintlé rxflow_value_handle C RX flow control characteristic value handle
uintlé rxflow_cccd_handle D RX flow control characteristic configuration handle
User guide 243 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
® p cyspp set client handles (.CYSPPSH, ID=10/5)

7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

Control how incoming serial data from an external host is packetized for CYSPP transmission.

Use this command to control whether or how incoming serial data is assembled into specific packets for
transmission to the remote peer over a CYSPP connection. Packetization does not affect the content or
ordering of serial data in any way, but only affects certain buffering and transmission timing.

Note: CYSPP packetization does not affect any outgoing UART serial data (module-to-host), nor does it
affect incoming serial data while in command mode (i.e. the CYSPP data pipe is not open). It
impacts only the incoming serial data while CYSPP data mode is active.

At 115200 baud, a single byte takes about 80 microseconds to transfer. EZ-Serial checks for new bytes at least
every 20 microseconds and processes whatever is available. Because of this, a continuous serial byte stream
from an external host may be delivered to a remote CYSPP peer with multiple GATT transfers even if all of the
data could fitin a single packet (for example, two bytes sent as two single-byte transfers). Although the data
will always be delivered completely and in the correct order, this results in potentially unnecessary complexity
on the receiving end, which must buffer and combine incoming data if it does not handle it as a continuous
data stream.

To address this behavior, EZ-Serial provides this APl command to control incoming data packetization. There
are five different modes:

e Mode 0: Immediate

This mode reads and transmits data as quickly as possible, always sending as much data as is available as
soon as the Bluetooth® LE stack allows a new transmission. In this mode, the first byte or two bytes of a new
transmission will usually be sent in a single packet even if more data is arriving at the same time.

The [wait] and [length] settings are irrelevant in this mode.
e Mode 1: Anticipate (factory default with 5 ms wait and 20 byte length)

This mode waits up to [wait] milliseconds in anticipation for at least [length] bytes to arrive from the
external host. If the target byte count is reached before the wait time expires, all available bytes will be
transmitted immediately. If the configured wait time expires before reaching the target byte count, all
available bytes will be transmitted at that time. Anticipate mode is suitable for most general operations and
will not negatively impact throughput if the incoming serial data arrives fast enough to keep the UART
receive buffer full.

The [wait] setting must be between 1 and 255. The [length] setting must be between 1 and 128, which is the
internal UART RX software buffer size.

User guide 244 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

e Mode 2: Fixed

This mode waits indefinitely until at least [length] bytes have been read, then transmits exactly that many
bytes. Fixed mode is best used in cases where the host sends chunks of data which are always of the same
size. Setting a [length] value that is larger than the GATT MTU payload size will result in multiple
transmissions once all data has been buffered. For example, a fixed packet length of 32 bytes with the
default GATT MTU size of 23 bytes (usable payload size of 20 bytes) will result in one 20-byte packet followed
by one 12-byte packet. The MTU depends on the value negotiated by the client after connection.

The [length] setting must be between 1 and 128, which is the internal UART RX software buffer size. The
[wait] setting is irrelevant in this mode.

e Mode 3: Variable

This mode requires an additional length value from the host before each packet to indicate how many bytes
to expect. EZ-Serial consumes this byte (it is not transmitted to the remote peer), and then waits until
exactly that many bytes to have been read before transmitting them. Variable mode is suitable for
applications that require packets of differing lengths and which can accommodate an extra transmitted
byte from the host indicating each packet’s length.

For example, the host can send [04 61 62 63 64] to transmit the 4-byte ASCII string “abcd” to the remote
peer in a single packet. Or, the host can send [05 61 62 63 64 65 03 66 67 68] to transmit “abcdefgh” in two
packets (“abcde” followed by “def”).

The prefixed packet length byte must not be greater than 128. Values greater than this will be capped at
128. The [wait] and [length] settings are irrelevant in this mode.

e Mode 4: End-of-packet

This mode buffers data until the configured end-of-packet byte is encountered in the data stream, or until
either the MTU payload size or UART RX buffer has filled. End-of-packet (EOP) mode allows variable-length
packets without knowing in advance how long the packet will be.

The EOP byte defaults to 0x0D (the carriage return byte, often expressed as ‘\ r’ in code). However, you can
change it to any value between 0x00 and OxFF. When the EOP byte occurs in the data stream, all buffered
data up to that point including the EOP byte itself will be transmitted to the remote side.

In this mode, EZ-Serial will also transmit buffered data under two other conditions:

- If the GATT MTU payload size is less than the UART RX buffer size (128 bytes) and enough data is buffered
to fill a single GATT packet, one packet’s worth of data will be transmitted. The default GATT MTU is 23
bytes with a usable payload size of 20 bytes.

- Ifthe GATT MTU payload size is greater than the UART RX buffer size (128 bytes) and the RX buffer is full,
128 bytes of data will be transmitted. This can only occur in cases where the connected client has
negotiated a GATT MTU greater than 131 bytes (actual transmit payload is MTU - 3 bytes).

For the “Anticipate” mode (1), you must consider the UART baud rate when choosing the [wait] and [length]
values. A5 ms wait time is suitable for a 20-byte target length at 115200 baud, but this is not enough time to
read in 20 bytes at 9600 baud (for example). If you change the baud rate, be sure to choose a [wait] value
that allows the target packet length to be filled under normal operating conditions. Table 71 contains “safe”
wait values for 20-byte packets at common baud rates for reference.

User guide 245 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Table71 Common UART timing for 20-byte packets

baud rate Single bit duration 20 bytes at 8/N/1 (200 bits) Safe wait value example
300 3.333ms ~667 ms 800ms (0x320)

9600 104 us ~21ms 32 ms (0x20)

192 17.4 us ~3.5ms 5 ms (0x05)

115200 8.68 us ~1.7ms 5 ms (0x05)

230400 4.34 us 868 us 2 ms (0x02)

460800 2.17 us 434 us 1 ms (0x01)

1000000 1.09 us 217 us 1 ms (0x01)

The single-bit duration for any baud rate can be calculated in microseconds using this equation:
Bit time = 1,000,000 us / [baud]

Standard UART settings of 8 data bits, no parity, and 1 stop bit yield a total of 10 bits per byte. For a 20-byte
packet, this requires allowance for 200 bits.

Note: If the packet length used in Anticipate, Fixed, Variable, or End-of-Packet modes exceeds the GATT
MTU usable payload size (20 bytes on many platforms), then the packets will be broken apart to fit
within this lower-level constraint. For example, using Fixed mode with [length] set to 32 bytes will
result in two transmitted packets each time the target length is reached: first a 20-byte packet and
then a 12-byte packet.

Binary header

Type Length Group ID Note
CMD Cco 04 0A 07 None
RSP co 02 0A 07 None
Text info
Text name Response length Category Note
.CYSPPSK 0x000E SET None

Command arguments

Datatype |Name | Text| Description

Packetization mode:

0 = Immediate: transmit incoming data as soon as possible

1= Anticipate: wait a short time to attempt a minimum buffer threshold
2 = Fixed: buffer and send packets of exactly one size

3 =Variable: specify the size of every packet with a prefixed length byte
4 = End-of-packet: transmit data when specific byte occurs in stream

uint8 mode | M

Note: Factory default is 1 (Anticipate), only support mode 0 and mode 1.

002-39351 Rev. *B
2025-11-12

User guide 246

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

uint8 wait W | Anticipation delay (uinit: 10milliseconds), used only in “Anticipate” mode:
Minimum = 0x01 (10 millisecond)
Maximum = 0x0D (130 millisecond)

Note: Factory default is Ox1 (10 milliseconds).
uint8 length |L Fixed/anticipated packet length (bytes), used only in “Anticipate” or “Fixed”
mode:

Minimum = 0x01 (1 byte)
Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU).
uint8 eop E End-Of-Packet byte:
Note: Factory default is 0x0D(‘\r’ carriage return).

Response parameters

None.

Related commands
e p cyspp get packetization (.CYSPPGK, ID=10/8)

7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Obtain current CYSPP packetization settings.

Binary header

Type Length Group ID Note
CMD co 00 0A 08 None
RSP co 06 0A 08 None
Text info
Text name Response length Category Note
.CYSPPGK 0x0022 GET None

Command arguments

None.

User guide 247 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

Datatype |Name | Text| Description

uint8 mode | M Packetization mode:

0 = Immediate: transmit incoming data as soon as possible

1 = Anticipate: wait a short time to attempt a minimum buffer threshold
2 = Fixed: buffer and send packets of exactly one size

3 =Variable: specify the size of every packet with a prefixed length byte
4 = End-of-packet: transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate).

uint8 wait W | Anticipation delay (unit: 10 milliseconds), used only in “Anticipate” mode:
Minimum = 0x01 (10 millisecond)
Maximum = 0x0D (130 millisecond)

Note: Factory default is Ox1 (10 milliseconds).
uint8 length | L Fixed/anticipated packet length (bytes), used only in “Anticipate” and “Fixed”
modes:

Minimum = 0x01 (1 byte)
Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU).
uint8 eop E End-Of-Packet byte:
Note: Factory default is 0x0D(‘\r’ carriage return).

Related commands

e p cyspp set packetization (.CYSPPSK, ID=10/7)
7.2.11 iBeacon group (ID=12)

iBeacon methods relate to iBeacon setup and operation.

The following are the commands within this group:

e p_ibeacon_set_parameters (.IBSP, ID=12/1)
e p_ibeacon_get_parameters (.IBGP, ID=12/2)

Events within this group are documented in the iBeacon group (ID=12) section.

User guide 248 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.11.1 p_ibeacon_set_parameters (.IBSP, ID=12/1)

Configure new iBeacon behavior.

For details on iBeacon broadcasting, see the example usage and the official documentation from Apple.

Binary header

Type Length Group ID Note
CMD co 1A 0C 01 None
RSP co 02 [01 None
Text info
Text name Response length Category Note
.IBSP 0x000B SET None

Command arguments

Data type | Name Text | Description
uint8 enable E Enable iBeacon broadcast:
0 = Disable (factory default)
1=Enable
2 =Enable + auto-start
uintl6 interval I Advertisement interval for iBeacon broadcasting (625 ps units):
Minimum = 0x00AO0 (160 * 0.625 ms = 100 ms, factory default)
Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)
uintl6 company | C Company ID value in broadcast packet payload Manufacturer Data:
Note: Factory default is 0x0131 (Infineon Semiconductor).
Uintl6 major J iBeacon 16-bit major value:
Note: Factory default is 0x0001.
Uintl6 minor N iBeacon 16-bit minor value:
Note: Factory default is 0x0001.
uint8a uuid U iBeacon UUID (must contain 16 bytes of data):
Note: Factory default is E2C56DB5-DFFB-48D2-B060-DOF5A71096E0
(AirLocate).
Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.
User guide 249 002-39351 Rev. *B

2025-11-12

https://developer.apple.com/ibeacon/

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description

uint8_t Tx Power | T A TX power level in 2's compliment, indicating the signal strength one meter
from the device.

Note: Factory default is 0xCO (Convert it to int8_t by user).

Response parameters

None.

Related commands

e p ibeacon get parameters (.IBGP, ID=12/2)

Related events
e gap adv state changed (ASC, ID=4/2) -May occurifiBeacon is setto start automatically

Example usage

e See How to configure iBeacon transmissions

7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2)

Sets up iBeacon behavior.

Binary header

Type Length Group ID Note
CMD Cco 00 0C 02 None
RSP Cco 1C 0C 02 None
Text info
Text name Response length Category Note
.IBGP 0x0054 GET None

Command arguments

None.

Response parameters

Data type | Name Text | Description

uint8 enable E Enable iBeacon broadcast:
0 = Disable (factory default)
1=Enable

2 =Enable + auto-start

uintl6 interval I Advertisement interval for iBeacon broadcasting (625 ps units):
Minimum = 0x00AO0 (160 * 0.625 ms = 100 ms, factory default)
Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)
User guide 250 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description
uintl6 company | C Company ID value in broadcast packet payload Manufacturer Data:
Note: Factory default is 0x0131 (Infineon Semiconductor).
Uintl6 major J iBeacon 16-bit major value:
Note: Factory default is 0x0001.
Uintl6 minor N iBeacon 16-bit minor value:
Note: Factory default is 0x0001.
uint8a uuid U iBeacon UUID (must contain 16 bytes of data):
Note: Factory default is E2C56DB5-DFFB-48D2-B060-DOF5A71096E0
(AirLocate).
Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.
uint8_t Tx Power | T A TX power level in 2's compliment, indicating the signal strength one meter
from the device.
Note: Factory default is 0xCO (Convert it to int8_t by user,).

Related commands

e p ibeacon set parameters (.IBSP, ID=12/1)

7.2.12 Eddystone group (ID=13)
Eddystone methods relate to Eddystone beacon setup and operation.
The following are the commands within this group:

e p eddystone set parameters (.EDDYSP, ID=13/1)
e p eddystone get parameters (.EDDYGP, ID=13/2)

Events within this group are documented in the Eddystone group (ID=13) section.

User guide 251 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1)

Configure new Eddystone beacon behavior.

For details on Eddystone frame types and data, see the example usage and the official documentation from
Google.

Note: Eddystone telemetry (TLM) frames typically contain data that updates frequently. EZ-Serial does
not automatically change any data contained in Eddystone beacon packets. If you wish to
broadcast telemetry data, you must regularly update its content from an external host device with
this APl command.

Binary header

Type | Length | Group | ID | Note
CMD |CO |05-18 |0OD 01 | Variable-length command payload, minimum of 5 (0x05), maximum of 24

(0x18)
RSP Cco 02 0D 01 | None
Text info
Text name Response length Category Note
.EDDYSP 0x000D SET None

Command arguments

Datatype |Name | Text| Description

uint8 enable |E Enable Eddystone beacon broadcast:
e 0=Disable (factory default)

e 1=Enable

e 2=Enable +auto-start

uintl6 interval Advertisement interval for Eddystone broadcasting (625 us units):
e Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)

e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint8 type T Eddystone frame type:

e 0x00=UID

e 0x10=URL (factory default)
e 0x20=Telemetry

uint8a data D Eddystone frame data (0-19 bytes)
Note: Factory default value results in Infineon webpage. “

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.

User guide 252 002-39351 Rev. *B
2025-11-12

https://github.com/google/eddystone
https://github.com/google/eddystone
http://www.infineon.com/

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Response parameters

None.

Related commands
e p eddystone get parameters (.EDDYGP, ID=13/2)

Related events

e gap adv_state changed (ASC, ID=4/2) - May occur if Eddystone beaconingis set to start
automatically

Example usage
e See How to configure Eddystone transmissions

7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2)

Obtain current Eddystone beacon behavior.

Binary header

Type | Length | Group | ID | Note
CMD | CO 00 0D 02 | None
RSP |CO |07-1A |0OD 02 | Variable-length response payload, minimum of 7 (0x07), maximum of 26
(0x1A)
Text info

Text name | Response length | Category| Note

.EDDYGP 0x0021-0x0047 GET Variable-length response payload, minimum of 33 (0x21),
maximum of 71 (0x47)

Command arguments

None.

Response parameters

Datatype | Name | Text| Description

uint8 enable |E Enable Eddystone beacon broadcast:
e 0=Disable (factory default)

e 1=Enable

e 2=Enable + auto-start

uintl6 interval || Advertisement interval for Eddystone broadcasting (625 ps units):
e Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)
e Maximum =0x4000 (16384 * 0.625 ms = 10.24 seconds)
uint8 type T Eddystone frame type:
e 0x00=UID
e 0x10=URL (factory default)
User guide 253 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

e 0x20=Telemetry

uint8a data D Eddystone frame data (0-19 bytes)
Note: Factory default value results in Infineon webpage.
Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Related commands
® p eddystone set parameters (.EDDYSP, ID=13/1)

7.3 APl events

All events implemented in the API protocol are described in detail below. APl commands and responses are
documented separately in the APl commands and responses section.

A master list of all possible error codes appearing in certain events can be found in the Error codes section.
Commands and responses are broken down into the following groups:

e Protocol Group (ID=1)

e System Group (ID=2)

e DFU Group (ID=3)

e GAP Group (ID=4)

e GATT Server Group (ID=5)
e GATT Client Group (ID=6)
e SMP Group (ID=7)

e L2CAP Group (ID=8)

e GPIO Group (ID=9)

e iBeacon Group (ID=12)

e Eddystone Group (ID=13)

7.3.1 Protocol group (ID=1)

Protocol methods allow you to change the way the API protocol operates while communicating with an
external host over the serial interface.

The protocol group currently has no events. Commands within this group are documented in the
Protocol group (ID=1)section.

User guide 254 002-39351 Rev. *B
2025-11-12

http://www.infineon.com/

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.2 System group (ID=2)

System methods relate to the core device, describing things like boot, device address info, and resetting to an
initial state.

The following are the events within this group:

e system boot (BOOT, ID=2/1)

e system error (ERR, ID=2/2)

e system factory reset complete (RFAC, ID=2/3)
e system factory test entered (TFAC, ID=2/4)
e system dump blob (DBLOB, ID=2/5)

Commands within this group are documented in the System group (ID=2) section.

7.3.2.1 system_boot (BOOT, ID=2/1)

EZ-Serial module has booted and is ready to process commands.

Binary header

Type Length Group ID Note
80 12 02 01 None
Text info

Text name Event Length Note

BOOT 0x003B None

Event parameters

Data type Name Text Description
uint32 app E Application version number
uint32 stack S Bluetooth® LE stack version number
uintl6 protocol P API protocol version number
uint8 hardware H Hardware identifier:
e 0x40=CYW920822-P4TAlI040
uint8 cause C Cause of boot event:
e 0x01=Hardware power-on/reset
e 0x02 =Wake from hibernation mode
e 0x03=Reserved
e 0x04 = Software reboot via APl command
e 0x05=Factory reset completed
e 0x06=DFU process completed with update
e 0x07=DFU process canceled without update
macaddr address A Bluetooth® address
User guide 255 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
e system reboot (/RBT, ID=2/2)
e system factory reset (/RFAC, ID=2/5)

7.3.2.2 system_error (ERR, ID=2/2)

System error has occurred.

This may be triggered by a malformed command, an operation that failed or could start due to an invalid
operational state, or a low-level hardware failure. See the Error codes for a list of all possible errors.

Binary header

Type Length Group ID Note
80 02 02 02 None
Text info

Text name Event Length Note

ERR 0x000B None

Event parameters

Data type Name Text Description

uintlé error E Error code describing what went wrong

7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3)

Factory reset complete.

This event will occur after sending the system factory reset (/RFAC, ID=2/5) APlcommand,or
asserting (LOW) the FACTORY_TR and CYSPP pins at boot time. EZ-Serial transmits this event using the
originally configured host interface settings (if different from the default). After generating this event, the
module will reboot immediately, and the default settings will take effect.

Note: If you triggered a factory reset using the GPIO method at boot time, the final reboot back into an
operational state will only occur after you de-assert one or both of the pins. This safequard
prevents an endless loop of factory resets if both pins remain asserted.

Binary header

Type Length Group ID Note
80 00 02 03 None
Text Info

Text name Event Length Note

RFAC 0x0005 None

Event parameters
None.

User guide 256 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
e system factory reset (/RFAC, ID=2/5)
7.3.2.4 system_factory_test_entered (TFAC, ID=2/4)

Manufacturing test mode active.

This event occurs if you assert (LOW) the FACTORY_TR pin at boot time. The module will remain in this state
until you reset or power-cycle it. Test mode is currently only intended for internal use during Infineon
manufacturing.

Binary header

Type Length Group ID Note
80 00 02 04 None
Text info

Text name Event Length Note

TFAC 0x0005 None

Event parameters

None.

7.3.2.5 system_dump_blob (DBLOB, ID=2/5)

Single data blob of requested configuration type or system state.

Binary header

Type |Length | Group | ID | Note
80 04-14 |02 05 | Variable-length event payload, minimum of 4 (0x04), maximum of 20 (0x14)

Text info

Textname |EventLength | Note
DBLOB 0x0015-0x0035 | Variable-length event payload, minimum of 21 (0x15), maximum of 53 (0x35)

Event parameters

Datatype | Name | Text| Description

uint8 type | T Type of information being dumped:

e 0=Runtime configuration data

e 1=Boot-level configuration data

e 2=Factory-level configuration data

uintl6 offset | O Blob start offset
uint8a data |D Dumped blob of data
User guide 257 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands
e system dump (/DUMP, ID=2/3)
7.3.3 DFU group (ID=3)

DFU methods relate to the firmware update process, using either wired UART or over-the-air GATT-based
firmware transfer.

The following is the event within this group:
« dfu_boot (DFUE, ID=3/1)

Commands within this group are documented in the DFU group (ID=3) section.

7.3.3.1 device_firmware_upgrade (DFUE, ID=3/1)
Booted into DFU mode.

This event indicates that the system is ready to receive a new firmware image from an external host (UART).

Note: In DFU mode, the UART interface default operates at 115200 baud, 8/N/1 with no flow control, the
user can change parameters by system_set_uart_parameters (STU, ID=2/25).

Binary header

Type Length Group ID Note
80 01 03 01 None
Text info

Text name Event Length Note

DFUE 0x000A None

Event parameters

Data type Name Text Description

uint8 mode R DFU mode:
0 = successfully entered DFU mode.
1=Timeout.

2 = 0Only Security check fail
3=DFU process more than 90s.

Related commands
e dfu reboot (/CDFU, ID=3/1)

User guide 258 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Related events
e system_boot (BOOT, ID=2/1)

Example usage

e See Device firmware update examples

7.3.4 GAP group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning, advertising, connection establishment, and connection maintenance.

The following are the events within this group:

e gap whitelist entry (WL, ID=4/1)

e gap adv_state changed (ASC, ID=4/2)
e gap scan state changed (SSC, ID=4/3)
e gap scan result (S, ID=4/4)

e gap connected (C, ID=4/5)

e gap disconnected (DIS, ID=4/6)

e gap connection update requested (UCR, ID=4/7)

e gap connection updated (CU, ID=4/8)

e gap phy updated (PU, ID=4/9)

Commands within this group are documented in the GAP group (ID=4) section.

7.3.4.1 gap_whitelist_entry (WL, ID=4/1)

Details about a single entry in the whitelist table.

Binary header

Type Length Group ID Note
80 07 04 01 None
Text info
Text name Event Length Note
WL 0x0017 None
Event parameters
Data type Name Text Description
Macaddr address A Bluetooth® address
uint8 type T Address type:
e 0=Public
e 1=Random/private
User guide 259 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Related commands
e gap add whitelist entry (/WLA, ID=4/6)
e gap query whitelist (/QWL, ID=4/14)

7.3.4.2 gap_adv_state_changed (ASC, ID=4/2)

Indicates that the module has started or stopped advertising, due to a scheduled timeout, automated process,
or intentional action.

Binary header

Type Length Group ID Note
80 02 04 02 None
Text info

Text name Event Length Note

ASC 0x000E None

Event parameters

Data type Name Text Description
uint8 state S Advertising state:
e 0=Stopped
e 1=Active
uint8 reason R Reason for state change:

e 0=Usercommand

e 1=Reserved

e 2=Configured timeout expired

e 3=CYSPP operation state change

e 4=iBeacon operation state change

e 5=Eddystone operation state change
e 6=Disconnection

Related commands

e gap start _adv (/A, ID=4/8)

e gap stop adv (/AX, ID=4/9)

e gap set adv parameters (SAP, ID=4/23)

e p cyspp start (.CYSPPSTART, ID=10/2)

e p cyspp set parameters (.CYSPPSP, ID=10/3)

User guide 260 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.4.3 gap_scan_state_changed (SSC, ID=4/3)

Indicates that the module has started or stopped scanning, due to a scheduled timeout or intentional action.

Binary header

Type Length Group ID Note
80 02 04 03 None
Text info

Text name Event Length Note

SSC 0x000E None

Event parameters

Data type Name Text Description
uint8 state S Scanning state:
e 0=Stopped
e 1=Active
uint8 reason R Reason for state change:

e 0=Usercommand

e 1=NOTUSED

e 2=Configured timeout expired

e 3=CYSPP operation state change

Related commands

e gap start scan (/S, ID=4/10)

e gap stop scan (/SX, ID=4/11)

e p cyspp start (.CYSPPSTART, ID=10/2)

e p cyspp get parameters (.CYSPPGP, ID=10/4)

7.3.4.4 gap_scan_result (S, ID=4/4)

Details about an advertisement or scan a response packet.

This event occurs while scanning for remote devices. If you have enable active scanning, most peripherals will
provide two separate packets delivered via this API: one advertisement packet and one scan response packet.
Passive scanning will result in only the first of those two. Scan response packets typically contain less critical
data, such as the friendly name of the device, or its transmit power.

Binary header

Type |Length | Group |ID | Note
80 0D-2C |04 04 | Variable-length event payload, minimum of 13 (0x0D), maximum of 44 (0x2C)

User guide 261 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Text info

Text name | EventLength | Note
S 0x0030-0x006E | Variable-length event payload, minimum of 48 (0x30), maximum of 110(0x6E)

Event parameters

Data type | Name Text | Description

uint8 result_type R Scan result type:

e 0=_Connectable undirected advertisement packet

e 1=Connectable directed advertisement packet

e 2=Scannable undirected advertisement packet

e 3 =Non-connectable undirected advertisement packet
e 4 =Scan response packet

e 5=Extended advertisement packet

e 6=Extended scan response packet

e 7=Periodic advertisement packet

macaddr | address A Bluetooth® address
uint8 address_type | T Address type:
e 0=Public
e 1=Random/private
int8 rssi S RSSI
uint8 bond B Bond entry (0 for no bond)
uint8a data D Advertisement payload data (0-31 bytes)
Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload.

uint8_t primary PHY P Primary PHY:
o 1.:1M
e 3:Coded PHY

uint8_t secondary C Secondary PHY:
PHY e 0:No packet on secondary PHY
e 1.1M
e 2.2M

e 3.Coded PHY

Related commands

e gap connect (/C, ID=4/1)

e gap start scan (/S, ID=4/10)

e gap stop scan (/SX, ID=4/11)

® gap set scan parameters (SSP, ID=4/25)

User guide 262 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Example usage
e See How to scan for peripheral devices

7.3.4.5 gap_connected (C, ID=4/5)

Connection established with a remote device.

Binary header

Type Length Group ID Note
80 OF 04 05 None
Text info
Text name Event Length Note
C 0x0035 None
Event parameters
Data type Name Text Description
uint8 conn_handle C Connection handle
macaddr address A Bluetooth® address
uint8 type T Address type:
0= Public
1=Random/private
uintl6 interval I Connection interval
uintl6 slave_latency L Slave latency
uintl6 supervision_timeout 0] Supervision timeout
uint8 bond B Bond entry (0 for no bond)
Related commands
e gap connect (/C, ID=4/1)
e gap update conn parameters (/UCP, ID=4/3)
e gap send connupdate response (/CUR, ID=4/4)

e gap disconnect (/DIS, ID=4/5)

Related events

e gap_disconnected (DIS, ID=4/6)

e gap_connection_update_requested (UCR, ID=4/7)
e gap_connection_updated (CU, ID=4/8)

Example usage

e See How to connect to a peripheral device

User guide 263

002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.4.6 gap_disconnected (DIS, ID=4/6)

Connection to a remote device has closed.

For a list of possible disconnection reasons, see the 0x900 range of codes in the EZ-Serial system error codes
section. These are the most common reasons:

e 0x0908 - Page timeout (unexpected loss of connectivity, no response within supervision timeout)
e 0x0913 - Remote user terminated connection (cleanly closed from remote side)
e 0x0916 - Connection terminated by local host (cleanly closed from local side)

e 0x093E - Connection failed to be established (connection initiated locally, but peer did not respond to
request)

Binary header

Type Length Group ID Note
80 03 04 06 None
Text info

Text name Event Length Note

DIS 0x0010 None

Event parameters

Data type Name Text Description
uint8 conn_handle C Connection handle
uintl6 reason R Reason for disconnection

Related commands
e gap connect (/C, ID=4/1)
e gap disconnect (/DIS, ID=4/5)

Example usage

e See How to disconnect from a peripheral device

User guide 264 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.3.4.7 gap_connection_update_requested (UCR, ID=4/7)
A remote peer has requested a connection parameter update.

To accept or reject the new request, use the gap _send connupdate response (/CUR, ID=4/4) APl
command. An argument of “0” for that command will accept, and non-zero will reject.

Note: This event and the gap send connupdate response (/CUR, ID=4/4) APlcommand for
replying only apply when operating as the Bluetooth® LE master device. In the slave role, the
specification requires that the slave accept whatever connection parameters the master supplies.
When connected as a slave, a connection update request from a master will result only in the
gap connection updated (CU, ID=4/8) APlevent.

Binary header

Type Length Group ID Note
80 09 04 07 None
Text info

Text name Event Length Note

UCR 0x0025 None

Event parameters

Data type Name Text | Description

uint8 conn_handle C Handle of connection requesting new parameters
uintl6 interval_min | Minimum connection interval

uintl6 interval_max X Maximum connection interval

uintl6 slave_latency L Slave latency

uintl6 supervision_timeout 0 Supervision timeout

Related commands
e gap update conn parameters (/UCP, ID=4/3)
e gap send connupdate response (/CUR, ID=4/4)

Related events

e gap connection updated (CU, ID=4/8)

User guide 265 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.3.4.8 gap_connection_updated (CU, ID=4/8)
Active connection has negotiated and applied new parameters.

This event occurs on the slave side after a master requests new parameters or accepts the new parameters
requested by the slave. It also occurs on the master side after a slave requests new parameters and the master
accepts the request.

Note: A connection update request sent from a slave but rejected will not result in any events indicating
the rejection. The slave must assume that the original parameters are in effect until after it
receives this APl event.

Binary header

Type Length Group ID Note
80 07 04 08 None
Text info

Text name Event Length Note

Cu 0x001D None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle
uintlé6 interval [Connection interval
uintleé slave_latency L Slave latency
uintl6 supervision_timeout 0 Supervision timeout

Related commands
e gap update conn parameters (/UCP, ID=4/3)
e gap send connupdate response (/CUR, ID=4/4)

Related events

e gap_connection_update_requested (UCR, ID=4/7)

User guide 266 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.9

gap_phy_updated(PU, ID=4/9)

Details about a PHY information.

Binary header

Type Length Group ID Note
80 03 04 09 None
Text info
Text name Event length Note
PU 0x0013 None
Event parameters
Data type Name Text Description
uint8 conn_handle C Connection handle
uint8 TX phy T PHY:
1=1M
2=2M
3=Coded
uint8 RX phy R PHY:
1=1M
2=2M
3=Coded

Related commands

® gap phy update

7.3.5

(/UP, ID=4/37)

GATT server group (ID=5)

GATT server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth® stack.

These methods are used for working with the local GATT structure.

The following are the events within this group:

e gatts discover result (DL, ID=5/1)

e gatts data written (W, ID=5/2)

e gatts indication confirmed (IC, ID=5/3)
e gatts db entry blob (DGATT, ID=5/4)

Commands within this group are documented in GATT client group (ID=6).

User guide

267

002-39351 Rev. *B
2025-11-12

(infineon

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.5.1 gatts_discover_result (DL, ID=5/1)

Details about a single entry in the local GATT database.

This event occurs while discovering local services, characteristics, or descriptors.

Binary header

Type Length |Group |ID | Note

80 08+ 05 01 | Variable-length event payload, value specified is minimum
Text info

Text name Event Length Note

DL 0x0020+ Variable-length event payload, value specified is minimum

Event parameters

Data type | Name Text | Description
uintle attr_handle H Attribute handle
uintle attr_handle_rel | R Related attributes handle:

o Ifdiscovering services, the end handle for the service group

 Ifdiscovering characteristics, the value handle that holds the
application data

o If discovering descriptors, always 0 (not applicable)

uintl6 type T Attribute type:

e 0x2800 = Primary Service Declaration

e 0x2801 = Secondary Service Declaration

e 0x2802 = Include Declaration

e 0x2803 = Characteristic Declaration

e 0x2900 = Characteristic Extended Properties descriptor
e 0x2901 = Characteristic User Description descriptor

e 0x2902 = Client Characteristic Configuration descriptor
e 0x2903 = Server Characteristic Configuration descriptor
e 0x2904 = Characteristic Format descriptor

e 0x2905 = Characteristic Aggregate Format descriptor

e 0x0000 = Characteristic value attribute or user-defined structure (see
uuID)

User guide 268 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

Data type | Name Text | Description
uint8 properties P Characteristic properties bitmask, only non-zero during characteristic
discovery:
e Bit0(0x01) =Broadcast
e Bit1(0x02) = Read
e Bit 2 (0x04) = Write without response
e Bit3(0x08) = Write
e Bit4 (0x10) = Notify
e Bit5(0x20) =Indicate
e Bit 6 (0x40) = Signed write
e Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)
uint8a uuid U uuiD
Note: uint8a data type requires one prefixed “length” byte
before binary parameter payload.

Related commands

e gatts discover services (/DLS, ID=5/6)

e gatts discover characteristics (/DLC, ID=5/7)
e gatts discover descriptors (/DLD, ID=5/8)

7.3.5.2 gatts_data_written (W, ID=5/2)
The remote GATT client has written data to a local attribute.

A connected remote client can write data to a local attribute using either acknowledged unacknowledged write
operations Acknowledged writes require two full connection intervals to complete: one for the data transfer
from client to server, and one for the acknowledgment back from server to client. Unacknowledged writes may
occur multiple times within the same connection interval, and therefore provide greater throughput potential.

EZ-Serial automatically responds to acknowledged writes except in two cases:

e You have disabled automatic responses using the gatts set parameters (SGSP, ID=5/14) API
command

e The attribute written to has the “User data management” bit set in its properties value, set during creation
withthe gatts create attr (/CAC, ID=5/1) APIcommand

In these cases, the type parameter of this event will have the high bit (0x80) set, indicating that you must
manually respond to the write using the gatts send writereq response (/WRR, ID=5/13) API
command. This acknowledgment is required before any other GATT operations can occur on either the local or
remote side. Failing to respond within 30 seconds will result in client disconnection.

Binary header

Type Length |Group |ID |Note

80 06 05 02 | Variable-length event payload, value specified is minimum

User guide 269 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Text info
Text name Event Length Note
W 0x0016+ Variable-length event payload, value specified is minimum

Event parameters

Datatype |Name Text | Description
uint8 conn_handle |C Handle of connection from which the write came
uintl6 attr_handle |H Attribute handle
uint8 type T Write type:
e 0x00 = Simple write - acknowledged
e 0x01=Write without response - unacknowledged
e 0x80 = Simple write requiring manual response via APl command
longuint8a | data D Written data
Note: longuint8a data type requires two prefixed “length”
bytes before binary parameter payload.

Related commands

e gatts send writereq response (/WRR, ID=5/13) - Required after acknowledged writes when
manual response bit is set

e gattc write handle (/WRH, ID=6/5) -Usedon the clientside to write datatoaremote GATT server
attribute
7.3.5.3 gatts_indication_confirmed (IC, ID=5/3)

Remote GATT client has confirmed receipt of indicated data.

This event occurs after a client receives and confirms that data pushed using the gatts indicate handle
(/IH, ID=5/12) APlcommand.

Binary header

Type Length Group ID Note

80 03 05 03 None

Text info

Text name Event Length Note

IC 0x000F None

Event parameters

Data type Name Text | Description

uint8 conn_handle C Handle of connection from which confirmation came

uintl6 attr_handle H Attribute handle use for indication

User guide 270 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Related commands
e gatts indicate handle (/IH, ID=5/12)

Related events

e gattc data received (D, ID=6/3) -Occurson theremote clientafter receivingindicated data

7.3.5.4 gatts_db_entry_blob (DGATT, ID=5/4)

Single entry from the GATT structure definition.

This event presents a local dynamic GATT attribute definition in a format that simplifies reentry using the
gatts create attr (/CAC, ID=5/1) APlcommand.Fordetails aboutthe data provided in this event, see
How to define custom local GATT services and characteristics.

Note: This event includes the attribute handle and the absolute group end value, neither of which are
part of the data entered when creating a new custom attribute. Be sure to remove the handle and
absolute group end if you are directly copying the content from these output lines into new
commands by hand.

Binary header

Type |Length | Group | ID | Note
80 10-20 |05 04 | Variable-length event payload, minimum of 16 (0x10), maximum of 32 (0x20)

Text info

Text name | EventLength | Note
DGATT 0x0037-0x0057 | Variable-length event payload, minimum of 55 (0x37), maximum of 87 (0x57)

Event parameters

Datatype |Name Text | Description
uintl6 handle H Attribute handle (0x0001 - OxFFFF)
uintl6 type T* | Attribute type:

e 0x2800 = Primary Service Declaration

e 0x2801 = Secondary Service Declaration

e 0x2802 = Include Declaration

e 0x2803 = Characteristic Declaration

e 0x2900 = Characteristic Extended Properties descriptor
e 0x2901 = Characteristic User Description descriptor

e 0x2902 = Client Characteristic Configuration descriptor
e 0x2903 = Server Characteristic Configuration descriptor
e 0x2904 = Characteristic Format descriptor

e 0x2905 = Characteristic Aggregate Format descriptor

e 0x0000 = Characteristic value attribute or user-defined structure
with SRAM value storage (auto-managed)

User guide 271 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Datatype |Name Text | Description
e 0x0001 = Characteristic value attribute or user-defined structure
with no value storage (user-managed)

uint8 read_permissions | R* | Attribute read permissions:
e Bit0(0x01) = Read permitted
e Bit1(0x02) = Encryption required
e Bit 2 (0x04) = Authentication required
e Bit 3 (0x08) = Authorization required

e Bit4 (0x10) = LE secure connection authentication required
e Bits 5-7 (OXEQ) = RESERVED

uint8 write_permissions | W* | Attribute write permissions:

e Bit0(0x01) = Write permitted

e Bit1(0x02) = Encryption required

e Bit 2 (0x04) = Authentication required

e Bit 3 (0x08) = Authorization required

e Bit4 (0x10) = LE secure connection authentication required
e Bit5-7 (OXEQ) = RESERVED

uint8 char_properties C* | Characteristic properties (byte 1)
e Bit0(0x01) =Broadcast
e Bit1(0x02) =Read
e Bit 2 (0x04) = Write without response
e Bit3(0x08) = Write
e Bit4 (0x10) = Notify
e Bit5(0x20) = Indicate
e Bit 6 (0x40) = Signed write
e Bit 7 (0x80) = Extended properties (requires 0x2900 descriptor)
uintlé length L Maximum length
longuint8a | data D Data (UUID or default attribute value where applicable)
Note: longuint8a data type requires two prefixed

“length” bytes before binary parameter payload.

Related commands
e gatts dump db (/DGDB, ID=5/5)

User guide 272 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.6 GATT Client Group (ID=6)

GATT client methods relate to the client role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the GATT structures on remote devices, and can only be used while a
device is connected.

The following are the events within this group:

e gattc discover result (DR, ID=6/1)

e gattc remote procedure complete (RPC, ID=6/2)
e gattc data received (D, ID=6/3)

e gattc write response (WRR, ID=6/4)

Commands within this group are documented in the GATT client group (ID=6) section.

7.3.6.1 gattc_discover_result (DR, ID=6/1)

Details about a single entry in the remote GATT database.

This event occurs while you are discovering remote services, characteristics, or descriptors.

Binary header

Type |Length | Group |ID | Note
80 09-19 |06 01 | Variable-length event payload, minimum of 9 (0x09), maximum of 25 (0x19)

Text info

Textname |EventLength | Note
DR 0x0025-0x0044 | Variable-length event payload, minimum of 37 (0x25), maximum of 69 (0x45)

Event parameters

Datatype | Name Text | Description

uint8 conn_handle C Connection handle
uintl6 attr_handle H Attribute handle

uintl6 attr_handle_rel | R Related attribute handle:

» Ifdiscovering services, the end handle for the service group

 Ifdiscovering characteristics, the value handle that holds the
application data

o If discovering descriptors, always 0 (not applicable)

uintl6 type T Attribute type:

e 0x2800 = Primary Service Declaration

e 0x2801 = Secondary Service Declaration

e 0x2802 = Include Declaration

e 0x2803 = Characteristic Declaration

e 0x2900 = Characteristic Extended Properties descriptor
e 0x2901 = Characteristic User Description descriptor

e 0x2902 = Client Characteristic Configuration descriptor

User guide 273 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Data type | Name Text | Description
e 0x2903 = Server Characteristic Configuration descriptor

e 0x2904 = Characteristic Format descriptor
e 0x2905 = Characteristic Aggregate Format descriptor

e 0x0000 = Characteristic value attribute or user-defined structure (see
uuID)

uint8 properties P Characteristic properties bitmask, only non-zero during characteristic
discovery:

e Bit0 (0x01)=Broadcast
e Bit1(0x02)=Read

e Bit 2 (0x04) = Write without response
= Write

e Bit4 (0x10) = Notify

e Bit5(0x20) = Indicate

(0x01)
(0x02)
(0x04)
e Bit3(0x08)
(0x10)
(0x20)
e Bit 6 (0x40) = Signed write

e Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)
uint8a uuid U UUID (16-bit, 32-bit, or 128-bit)

Note: uint8a data type requires one prefixed “length” byte
before binary parameter payload.

Related commands

e gattc discover services (/DRS, ID=6/1)

e gattc discover characteristics (/DRC, ID=6/2)
e gattc discover descriptors (/DRD, ID=6/3)

Related events

e gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

e See How to discover a remote server’s GATT structure

User guide 274 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2)
Remote GATT client operation has completed.

This event occurs after requesting a GATT client operation that may require an unknown length of time or
quantity of returned results before it is finished, such as a remote GATT descriptor discovery. Since you cannot
perform multiple GATT client operations simultaneously, your application logic must wait for this event, and
only continue with additional client operations after the event occurs.

See the following related Commands list for specific commands that trigger this event.

Binary header

Type Length Group ID Note
80 03 06 02 None
Text info

Text name Event Length Note

RPC 0x0010 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uintl6 result R GATT result code for procedure:
0= Success

0x01-0x7F = Error from Bluetooth® specification
0x80-0xFF = Error from application (user-defined)

Related commands

e gattc discover services (/DRS, ID=6/1) -Always triggers this event upon completion

e gattc discover characteristics (/DRC, ID=6/2) -Always triggers this event upon completion
e gattc discover descriptors (/DRD, ID=6/3) -Always triggers thiseventupon completion

e gattc read handle (/RRH, ID=6/4) -Triggers thiseventif read fails, otherwise triggers
gattc_data_received (D, ID=6/3)

Related events
e gattc discover result (DR, ID=6/1) -Occursduringaremote GATT discovery prior to this event

Example usage

e See How to discover a remote server’s GATT structure

User guide 275 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.3.6.3 gattc_data_received (D, ID=6/3)

Remote GATT server has returned or pushed a value from one of its attributes.

This event occurs after sending a read request with the gattc_read handle (/RRH, ID=6/4) API
command, or when a remote GATT server pushes a data update using a notification or indication after the
client subscribes to either of these transfer types on supported characteristics. The source parameter
describes which operation triggered the event.

If the data received came from a remote GATT server indication and you have disabled automatic confirmations
by clearing the auto-confirm bit of the £lags argumentinthe gattc set parameters (SGCP, ID=6/7)
APl command, you must manually confirm the indication before performing any other operations. If the
source parameter of this event has the high bit (0x80) set, use the gattc confirm indication (/CI,
1D=6/6) APl command.

Binary header

Type |Length | Group |ID | Note
80 06-1A |06 03 | Variable-length event payload, minimum of 6 (0x06), maximum of 26 (0x1A)

Text info

Textname |EventLength | Note
D 0x0016-0x003E | Variable-length event payload, minimum of 22 (0x16), maximum of 62 (0x3E)

Event parameters

Datatype | Name Text | Description

uint8 conn_handle | C Connection handle
uintl6 handle H Attribute handle
uint8 source S Transfer source:

e 0x00=GATT client read request
e 0x01=GATT server notification
e 0x02=GATT server indication

e 0x82=GATT server indication requiring manual confirmation

longuint8a | data D Received value (0-20 bytes)

Note: Ionguint8a data type requires two prefixed “length”
bytes before binary parameter payload.

Related commands

e gatts notify handle (/NH, ID=5/11)

e gatts indicate handle (/IH, ID=5/12)
e gattc read handle (/RRH, ID=6/4)

e gattc confirm indication (/CI, ID=6/6)

User guide 276 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

7.3.6.4 gattc_write_response (WRR, ID=6/4)
Remote GATT server acknowledged GATT client write operation.

This event occurs after attempting an acknowledged write operation with the gattc_write handle (/WRH,
1D=6/5) APl command. If the write is accepted by the remote server, the result value will be 0. Any non-zero
result value indicates an error.

Binary header

Type Length Group ID Note
80 05 06 04 None
Text info

Text name Event Length Note

WRR 0x0017 None

Event parameters

Data type Name Text | Description
uints8 conn_handle |C Connection handle
uintlé attr_handle H Attribute handle
uintlé result R GATT result code:

e (0=Success
e 0x601-0x067F = Error from Bluetooth® specification

e 0x680-0x06FF = Error from remote server application (user-defined)

Related commands
e gattc write handle (/WRH, ID=6/5)
e gatts send writereq response (/WRR, ID=5/13)

7.3.7 SMP group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used
for working with encryption, pairing, and bonding between two peers.

The following are the events within this group:

e smp bond entry (B, ID=7/1)

e smp pairing requested (P, ID=7/2)

e smp pairing result (PR, ID=7/3)

e smp encryption status (ENC, ID=7/4)

e smp passkey display requested (PKD, ID=7/5)
e smp passkey entry requested (PKE, ID=7/6)

Commands within this group are documented in the SMP group (ID=7) section.

User guide 277 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.7.1 smp_bond_entry (B, ID=7/1)

Details about a single entry in the bonding table.

This event occurs once after a new bond is created as a result of the pairing process, or multiple times (based
on bond list count) after requesting the bond list with the smp_query_bonds (/QB, ID=7/1) APl command.

Binary header

Type Length Group ID Note
80 08 07 01 None
Text info

Text name Event Length Note

B 0x001B None

Event parameters

Data type Name Text Description
uint8 handle B Bonded device handle (1-3)
macaddr address A Bluetooth® address
uint8 type T Address type:
¢ 0=Public
e 1=Random/private

Related commands

e smp query bonds (/QB, ID=7/1)

e smp pair (/P, ID=7/3)

7.3.7.2 smp_pairing_requested (P, ID=7/2)
Remote device has requested pairing.

When this event occurs, you must use the smp_send_pairreq_response (/PR, ID=7/5) APl command to continue
the process, unless the auto-accept bit is set in the flags setting of the smp_set_security_parameters (SSBP,
ID=7/11) APl command.

Binary header

Type Length Group ID Note

80 05 07 02 None

Text info

Text name Event Length Note

P 0x0018 None

User guide 278 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Event parameters

Data type | Name Text | Description
uint8 conn_handle | C Connection handle
uint8 mode M Security level setting reported to peer:

e 0x10=Mode 1, Level 1 - No security
e 0x11=Mode 1, Level 2 - Unauthenticated pairing with encryption (no
MITM)

e 0x12=Mode 1, Level 3 - Authenticated pairing with encryption (with
MITM)

e 0x21=Mode 2, Level 2 - Unauthenticated pairing with data signing (no
MITM)

e 0x22=Mode 2, Level 3 - Authenticated pairing with data signing (with
MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack
functionality, set to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

uint8 pairprop P Pairing properties:
e Bit0(0x01): MITM enabled for Secure Connections (SC)

Related commands

e smp pair (/P, ID=7/3)

e smp send pairreq response (/PR, ID=7/5)

e smp set security parameters (SSBP, ID=7/11)

Related events

e smp pairing result (PR, ID=7/3)

7.3.7.3 smp_pairing_result (PR, ID=7/3)
Pairing process has ended.

This event indicates that the pairing process is finished, successfully or otherwise. If the result parameter is
0, then pairing has completed successfully, and the smp _bond entry (B, ID=7/1) APlevent will follow if
bonding is enabled. Any non-zero result value indicates failure.

Binary header

Type Length Group ID Note

80 03 07 03 None

Text info

Text name Event Length Note

PR 0x000F None

User guide 279 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Event parameters

Data type Name Text Description
uint8 conn_handle C Connection handle
uintle result R Result

Related commands
e smp pair (/P, ID=7/3)

Related events
e smp encryption status (ENC, ID=7/4)
e smp bond entry (B, ID=7/1)

7.3.7.4 smp_encryption_status (ENC, ID=7/4)

Encryption status has changed.

This event confirms that a link has transitioned between plaintext and encrypted status during the pairing
process. Indicates encrypted (S=01) for LTK encryption only not for STK encryption (LE legacy pairing)

Binary header

Type Length Group ID Note
80 02 07 04 None
Text info

Text name Event Length Note

ENC 0x000E None

Event parameters

Data type Name Text Description
uint8 conn_handle C Connection handle
uint8 status S Encryption status:

e 0=Notencrypted
e 1=Encrypted

Related commands
e smp pair (/P, ID=7/3)

Related events
e smp_pairing_result (PR, ID=7/3)

User guide 280 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.7.5 smp_passkey_display_requested (PKD, ID=7/5)
Remote peer requires passkey display for entry or comparison during pairing.

This event provides the local device with the passkey generated as part of the pairing process, so that the local
device may display or otherwise make it available to the user for entry or comparison on the remote device.
This type of passkey generation and display will be used if the local I/O capabilities are set to “Display Only” or
“Display + Yes/No” using the smp_set security parameters (SSBP, ID=7/11) APlcommand.

If you have configured I/O capabilities of “Display + Yes/No” for the local device and this event occurs, you must
use the smp send passkeyreq response (/PE, ID=7/6) APIcommand to confirm valid comparison.In
this case, the passkey argument to that command will be ignored.

Binary header

Type Length Group ID Note
80 05 07 05 None
Text info

Text name Event Length Note

PKD 0x0014 None

Event parameters

Data type Name Text | Description
uint8 conn_handle |C Connection handle
uint32 passkey P Passkey to display (should be displayed to the user in decimal format)

Related commands

e smp send passkeyreq response (/PE, ID=7/6)

Related events

e smp pairing requested (P, ID=7/2)

e smp pairing result (PR, ID=7/3)

e smp passkey entry requested (PKE, ID=7/6)

User guide 281 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.7.6 smp_passkey_entry_requested (PKE, ID=7/6)
Remote peer requested passkey entry during pairing.

This event indicates that a remote device has generated and displayed a passkey that must be entered locally
and sent back for comparison. If this occurs, you must reply with the smp_send passkeyreq response
(/PE, 1ID=7/6) APIcommand. If the pairing process completes successfully, EZ-Serial will generate the
smp_pairing result (PR, ID=7/3) APleventwithasuccessresultcode (0).

Binary header

Type Length Group ID Note
80 01 07 06 None
Text info

Text name Event Length Note

PKE 0x0009 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

Related commands

e smp send passkeyreq response (/PE, ID=7/6)

Related events

e smp_pairing_requested (P, ID=7/2)

e smp_pairing_result (PR, ID=7/3)

e smp_passkey_display_requested (PKD, ID=7/5)

7.3.8 L2CAP group (ID=8)

L2CAP methods relate to the Logical Link Control and Adaptation Protocol layer of the Bluetooth® stack. These
methods are used for working directly with low-level data transfer between two connected devices.

The following are the events within this group:

e 1l2cap connection requested (LCR, ID=8/1)
e 1l2cap connection response (LC, ID=8/2)

e 1l2cap data received (LD, ID=8/3)

e 1l2cap disconnected (LDIS, ID=8/4)

e l2cap rx credits low (LRCL, ID=8/5)

e l2cap tx credits received (LTCR, ID=8/6)
e 12cap command rejected (LREJ, ID=8/7)

Commands within this group are documented in the L2CAP group (ID=8) section.

User guide 282 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.3.8.1 |2cap_connection_requested (LCR, ID=8/1)

Received an L2CAP connection request.

Binary header

Type Length Group ID Note
80 0B 08 01 None
Text info

Text name Event Length Note

LCR 0x002C None

Event parameters

Data type Name Text | Description

uints8 conn_handle C Connection handle

uintlé6 channel N Channel ID

uintl6 local L Local device Protocol Service Multiplexer (PSM)
uintl6 mtu M Maximum Transmission Unit (MTU)

uintlé mps P Maximum Payload Size (MPS)

uintlé credits Z Credits

Related commands
e l2cap connect (/LC, ID=8/1)
e l2cap_send connreq response (/LCR, ID=8/4)

Related events

e l2cap connection response (LC, ID=8/2)

7.3.8.2 |2cap_connection_response (LC, ID=8/2)

Received a response to a transmitted L2CAP connection request.

Binary header

Type Length Group ID Note
80 0B 08 02 None
Text info

Text name Event Length Note

LC 0x002B None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uintlé response R Response

User guide 283 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

API protocol reference

uintlé channel N Channel

uintlé mtu M Maximum Transmission Unit (MTU)
uintlé6 mps P Maximum Payload Size (MPS)
uintlé credits Z Credits

Related commands
e l2cap connect (/LC, ID=8/1)
e l2cap send connreq response (/LCR, ID=8/4)

Related events

e l2cap connection requested (LCR, ID=8/1)

7.3.8.3 |2cap_data_received (LD, ID=8/3)

Received a data block from remote peer over an open L2CAP channel.

Binary header

Type Length | Group |ID |Note

80 04 08 03 | Variable-length event payload, value specified is minimum
Text info

Text name Event Length Note

LD 0x000D Variable-length event payload, value specified is minimum

Event parameters

Datatype |Name Text | Description

uintl6 channel | N Channel ID
longuint8a | data D Data
Note: longuint8a data type requires two prefixed “length” bytes

before binary parameter payload.

Related commands
e l2cap_send data (/LD, ID=8/6)

Related events
e l2cap connection requested (LCR, ID=8/1)
e 1l2cap connection response (LC, ID=8/2)

e l2cap rx credits low (LRCL, ID=8/5)

User guide 284 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.3.8.4

12cap_disconnected (LDIS, ID=8/4)

Previously open L2CAP channel to a remote device has been disconnected.

Binary header

Type Length Group ID Note
80 05 08 04 None
Text info

Text name Event Length Note

LDIS 0x0018 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle
uintlé channel N Channel ID

uintlé6 reason R Reason for disconnection

Related commands

e 1l2cap connect (/LC, ID=8/1)

e 12cap disconnect (/LDIS, ID=8/2)
e 1l2cap register psm (/LRP, ID=8/3)

Related events
e l2cap connection requested (LCR, ID=8/1)

e l2cap connection response (LC, ID=8/2)

7.3.8.5

12cap_rx_credits_low (LRCL, ID=8/5)

Open L2CAP channel connection has crossed the defined threshold for low remaining credits.

This event occurs on the receiving side and indicates that more credits must be sent to the transmitting device
viathe 12cap send credits (/LSC, ID=8/5) APlIcommand to ensure thatthe transmitting device will be

able to continue to send data.

Binary header

Type Length Group ID Note

80 05 08 05 None

Text info

Text name Event Length Note

LRCL 0x0018 None

User guide 285 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle
uintl6 channel N Channel ID

uintlé credits Z Credits remaining

Related commands
e 12cap send credits (/LSC, ID=8/5)

7.3.8.6 12cap_tx_credits_received (LTCR, ID=8/6)

Open L2CAP channel connection received more TX credits from the remote peer.

This event occurs on the transmitting side, and indicates that it is safe to send more data to the remote device
withthe 12cap send data (/LD, ID=8/6) APlcommand.

Binary header

Type Length Group ID Note
80 05 08 06 None
Text info

Text name Event Length Note

LTCR 0x0018 None

Event parameters

Data type Name Text Description
uints8 conn_handle C Connection handle
uintlé channel N Channel ID
uintlé6 credits z Credits received

Related commands
e l2cap_send data (/LD, ID=8/6)

User guide 286 002-39351 Rev. *B
2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.3.8.7

L2CAP command has been rejected by the remote peer.

Binary header

12cap_command_rejected (LREJ, ID=8/7)

Type Length Group ID Note
80 05 08 07 None
Text info

Text name Event Length Note

LREJ 0x0018 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle
uintl6 channel N Channel ID

uintl6é reason R Reason for rejection
7.3.9 GPIO group (ID=9)

GPIO methods relate to the physical pins on the module.

The following is the event within this group:

e gpio interrupt

(INT, ID=9/1)

Commands within this group are documented in the GPIO group (ID=9) section.

7.3.9.1

gpio_interrupt (INT, ID=9/1)

A configured GPIO interrupt has occurred.

This event is generated for GP10 edge changes that have enabled interrupts via the

gpio_set interrupt mode

Note:

Binary header

(S10I, 1ID=9/9) APlcommand.

This event is suppressed for pins that have functions enabled using the gpio set function
(STOF, ID=9/3) APIcommand. While interrupts occur internally for many functional pins, the
interrupt APl event is disabled to prevent unintentional or unnecessary API traffic. To allow

generation of this event for those pins, disable the function for those pins.

Type Length Group ID Note

80 08 09 01 None

Text info

Text name Event Length Note

INT 0x0020 None

User guide 287 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Event parameters

Data type Name Text | Description

uint8 Pin P GPIO Pin number

uint8 logic L Port logic state mask (set bits indicates HIGH)
uint32 runtime R Number of seconds since boot

uintl6 fraction F Fraction of a second (units are 1/32768)

Related commands

e gpio set interrupt mode (SIOI, ID=9/9)
7.3.10 CYSPP group (ID=10)

CYSPP methods relate to the Infineon Serial Port Profile.
The following is the event within this group:

e p cyspp status (.CYSPP, ID=10/1)

Commands within this group are documented in the CYSPP group (ID=10) section.

7.3.10.1 p_cyspp_status (.CYSPP, ID=10/1)

CYSPP operational status has changed.

Note: If this event occurs within EZ-Serial and data mode is active (either Bit 0 or Bit 1 set and the CYSPP
GPIO pin is not externally deasserted), then the wired serial interface will be logically disconnected
from the API protocol parser and routed to the CYSPP data pipe instead. For this reason, this event
will never be transmitted out the serial interface with Bit 5 set (0x20), since outgoing APl events are
suppressed while operating in CYSPP data mode.

Binary header

Type Length Group ID Note

80 01 0A 01 None

Text info

Text name Event Length Note

.CYSPP 0x000C None

User guide 288 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

Event parameters

Data type Name Text Description

uint8 status S CYSPP status bitmask:

e Bit 0 (0x01) = Unacknowledged data subscribed

e Bit1(0x02) = Acknowledged data subscribed

e Bit 2 (0x04) = RX flow subscribed

e Bit 3 (0x08) = RX flow blocked by remote server
(0x10)
(0x20)

e Bit4 (0x10) = CYSPP peer support verified
e Bit5 (0x20) = Data mode active (used internally)

Related commands

e p cyspp check (.CYSPPCHECK, ID=10/1)

e p cyspp start (.CYSPPSTART, ID=10/2)

e p cyspp set parameters (.CYSPPSP, ID=10/3)

Example usage

e See Cable replacement examples with CYSPP.

7.3.11 iBeacon group (ID=12)

iBeacon methods relate to iBeacon setup and operation.

There are currently no APl events related to iBeacon functionality. Commands within this group are
documented in the iBeacon group (ID=12) section.

7.3.12 Eddystone group (ID=13)
Eddystone methods relate to Eddystone beacon setup and operation.

There are currently no APl events related to Eddystone functionality. Commands within this group are
documented in the Eddystone group (ID=13) section.

7.4 Error codes

7.4.1 EZ-Serial system error codes

Table 72 shows the complete list of all result/error codes generated by EZ-Serial. See the command and event
reference material in the API commands and responses and APl events sections for specific details about each
result in the context of the responses and events where they are triggered.

Table72 EZ-Serial system error codes

Code (Hex) | Name Description

0000 EZS_ERR_SUCCESS Operation successful, no error

0100 EZS_ERR_CORE Core system error category

0101 EZS_ERR_CORE_NULL_POINTER Null pointer encountered (internal
error)

User guide 289 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description

0102 EZS_ERR_CORE_MALLOC_FAILED Memory allocation failed (internal
error)

0103 EZS_ERR_CORE_BUFFER_OVERFLOW Buffer overflow (internal error)

0104 EZS_ERR_CORE_FEATURE_NOT_IMPLEMENTED Unsupported feature (internal error)

0105 EZS_ERR_CORE_TASK_SCHEDULE_OVERFLOW Task scheduling attempted but
schedule is full

0106 EZS_ERR_CORE_TASK_QUEUE_OVERFLOW Task queue attempted but queue is
full

0107 EZS_ERR_CORE_INVALID_STATE Invalid state for requested
operation

0108 EZS_ERR_CORE_OPERATION_NOT_PERMITTED Operation not permitted

0109 EZS_ERR_CORE_INSUFFICIENT_RESOURCES Insufficient resources for requested
action

010A EZS_ERR_CORE_FLASH_WRITE_NOT_PERMITTED Unable to perform flash write at
this time

010B EZS_ERR_CORE_FLASH_WRITE_FAILED Flash write operation failed during
write

010C EZS_ERR_CORE_HARDWARE_FAILURE Internal chipset hardware failure

010D EZS_ERR_CORE_BLE_INITIALIZATION_FAILED Could notinitialize the Bluetooth®
LE stack

010E EZS_ERR_CORE_REPEATED_ATTEMPTS Repeated attempts to initialize the
Bluetooth® LE stack

010F EZS_ERR_CORE_TX_POWER_READ Could not read radio TX power

0110 EZS_ERR_CORE_DB_VERIFICATION_FAILED Verification prevented custom
attribute addition

0111 EZS_ERR_CORE_SYS_REBOOT_REQUIRED System reboot was required or the
settings would not be updated

0200 EZS_ERR_PROTOCOL Protocol error category

0201 EZS_ERR_PROTOCOL_UNRECOGNIZED_PACKET_TYPE Unsupported packet type for text
parsing
(internal error)

0202 EZS_ERR_PROTOCOL_UNRECOGNIZED_ARGUMENT_TYPE | Unsupported argument type for
text parsing
(internal error)

0203 EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND Command group/method not valid
or unrecognized

0204 EZS_ERR_PROTOCOL_UNRECOGNIZED_RESPONSE Response group/method invalid or
unrecognized
(internal error)

0205 EZS_ERR_PROTOCOL_UNRECOGNIZED_EVENT Event group/method invalid or
unrecognized
(internal error)

User guide 290 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description

0206 EZS_ERR_PROTOCOL_SYNTAX_ERROR Syntax error while parsing text
command

0207 EZS_ERR_PROTOCOL_COMMAND_TIMEOUT Binary command packet
transmission not completed in the
required time

0208 EZS_ERR_PROTOCOL_RESPONSE_PENDING Command already sent but
response is still pending

0209 EZS_ERR_PROTOCOL_INVALID_CHECKSUM Binary command packet has invalid
checksum

020A EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH Command length is greater than
maximum

020B EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT Incorrect number of parameters
provided

020C EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE Command parameter outside of
acceptable range

020D EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT Text-mode command missing
required arguments

020E EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA Invalid hexadecimal data provided
(not 0-9, A-F)

020F EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE Invalid escape sequence

0210 EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE Invalid macro sequence

0211 EZS_ERR_PROTOCOL_FLASH_SETTINGS_PROTECTED Attempted direct flash write of
protected setting

0300 EZS_ERR_GPIO GPIO error category

0301 EZS_ERR_GPIO_PORT_NOT_SUPPORTED Selected port in GPIO command
not supported

0400 EZS_ERR_LL Link layer error category

0401 EZS_ERR_LL_CONTROLLER_BUSY Link layer controller busy

0402 EZS_ERR_LL_NO_DEVICE_ENTITY Device entity not available

0403 EZS_ERR_LL_NOT_IN_BOND_LIST Device not found in bond list

0404 EZS_ERR_LL_DEVICE_ALREADY_EXISTS Device already exists

0500 EZS_ERR_GAP GAP error category

0501 EZS_ERR_GAP_INVALID_CONNECTION_HANDLE Invalid connection handle specified

0502 EZS_ERR_GAP_CONNECTION_REQUIRED Connection required, but none is
available

0503 EZS_ERR_GAP_ROLE Incorrect GAP role for this
operation

0504 EZS_ERR_GAP_ADV_QUEUE_OVERFLOW Advertisement queue attempted
but queue is full

0600 EZS_ERR_GATT GATT error category

0601 EZS_ERR_GATT_INVALID_ATTRIBUTE_HANDLE Invalid attribute handle for GATT
operation

User guide 291 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description

0602 EZS_ERR_GATT_READ_NOT_PERMITTED Read not permitted on this
attribute

0603 EZS_ERR_GATT_WRITE_NOT_PERMITTED Write not permitted on this
attribute

0604 EZS_ERR_GATT_INVALID_PDU Invalid PDU for requested
operation

0605 EZS_ERR_GATT_INSUFFICIENT_AUTHENTICATION Insufficient authentication for
requested operation

0606 EZS_ERR_GATT_REQUEST_NOT_SUPPORTED Request not supported

0607 EZS_ERR_GATT_INVALID_OFFSET Invalid offset specified for
requested operation

0608 EZS_ERR_GATT_INSUFFICIENT_AUTHORIZATION Insufficient authorization for
requested operation

0609 EZS_ERR_GATT_PREPARE_WRITE_QUEUE_FULL Prepare write queue full, cannot
prepare new write

060A EZS_ERR_GATT_ATTRIBUTE_NOT_FOUND Attribute not found in database

060B EZS_ERR_GATT_ATTRIBUTE_NOT_LONG Attribute not long when long
operation requested

060C EZS_ERR_GATT_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size

060D EZS_ERR_GATT_INVALID_ATTRIBUTE_LENGTH Invalid attribute length

060E EZS_ERR_GATT_UNLIKELY_ERROR Unlikely error occurred, unknown
cause

060F EZS_ERR_GATT_INSUFFICIENT_ENCRYPTION Insufficient encryption for
requested operation

0610 EZS_ERR_GATT_UNSUPPORTED_GROUP_TYPE Unsupported group type specified
in Read By Group Type operation

0611 EZS_ERR_GATT_INSUFFICIENT_RESOURCES Insufficient resources to perform
operation

0680 EZS_ERR_GATT_CLIENT_NOT_SUBSCRIBED Client has not subscribed to
updates on characteristic (local
error code when sending
notifications or indications)

0700 EZS_ERR_L2CAP L2CAP error category

0701 EZS_ERR_L2CAP_NOT_IN_BOND_LIST Device not found in bond list

0702 EZS_ERR_L2CAP_PSM_WRONG_ENCODING Wrong L2CAP PSM encoding

0703 EZS_ERR_L2CAP_PSM_ALREADY_REGISTERED L2CAP PSM already registered

0704 EZS_ERR_L2CAP_PSM_NOT_REGISTERED L2CAP PSM not registered

0705 EZS_ERR_L2CAP_CONNECTION_ENTITY_NOT_FOUND L2CAP connection entity not found

0706 EZS_ERR_L2CAP_CHANNEL_NOT_FOUND L2CAP channel not found

0707 EZS_ERR_L2CAP_PSM_NOT_IN_RANGE L2CAP PSMis notin range

0800 EZS_ERR_SMP SMP error category

User guide 292 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description
0801 EZS_ERR_SMP_OOB_NOT_AVAILABLE Out-of-band pairing data is not
available
0802 EZS_ERR_SMP_SECURITY_OPERATION_FAILED Security operation failed
0803 EZS_ERR_SMP_MIC_AUTH_FAILED Message integrity check
authentication failed
0900 EZS_ERR_SPEC Bluetooth® Core Specification error
category
0901 EZS_ERR_SPEC_UNKNOWN_HCI_COMMAND Unknown HCI Command
0902 EZS_ERR_SPEC_UNKNOWN_CONNECTION_IDENTIFIER Unknown Connection Identifier
0903 EZS_ERR_SPEC_HARDWARE_FAILURE Hardware Failure
0904 EZS_ERR_SPEC_PAGE_TIMEOUT Page Timeout
0905 EZS_ERR_SPEC_AUTHENTICATION_FAILURE Authentication Failure
0906 EZS_ERR_SPEC_PIN_OR_KEY_MISSING PIN or Key Missing
0907 EZS_ERR_SPEC_MEMORY_CAPACITY_EXCEEDED Memory Capacity Exceeded
0908 EZS_ERR_SPEC_CONNECTION_TIMEOUT Connection Timeout
0909 EZS_ERR_SPEC_CONNECTION_LIMIT_EXCEEDED Connection Limit Exceeded
090A EZS_ERR_SPEC_SYNCHRONOUS_CONN_LIMIT Synchronous Connection Limit to a
_DEVICE_EXCEEDED Device Exceeded
090B EZS_ERR_SPEC_ACL_CONNECTION_ALREADY_EXISTS ACL Connection Already Exists
090C EZS_ERR_SPEC_COMMAND_DISALLOWED Command Disallowed
090D EZS_ERR_SPEC_CONNECTION_REJECTED Connection Rejected due to Limited
_LIMITED_RESOURCES Resources
090E EZS_ERR_SPEC_CONNECTION_REJECTED Connection Rejected due to
_SECURITY_REASONS Security Reasons
090F EZS_ERR_SPEC_CONNECTION_REJECTED Connection Rejected due to
_UNACCEPTABLE_BDADDR Unacceptable BD_ADDR
0910 EZS_ERR_SPEC_CONNECTION_ACCEPT Connection Accept Timeout
_TIMEOUT_EXCEEDED Exceeded
0911 EZS_ERR_SPEC_UNSUPPORTED_FEATURE Unsupported Feature or Parameter
_OR_PARAMETER_VALUE Value
0912 EZS_ERR_SPEC_INVALID_HCI_COMMAND_PARAMETERS Invalid HCI Command Parameters
0913 EZS_ERR_SPEC_REMOTE_USER_TERMINATED Remote User Terminated
_CONNECTION Connection
0914 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED Remote Device Terminated
_LOW_RESOURCES Connection due to Low Resources
0915 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED Remote Device Terminated
_POWER_OFF Connection due to Power Off
0916 EZS_ERR_SPEC_CONNECTION_TERMINATED Connection Terminated by Local
_BY_LOCAL_HOST Host
0917 EZS_ERR_SPEC_REPEATED_ATTEMPTS Repeated Attempts
0918 EZS_ERR_SPEC_PAIRING_NOT_ALLOWED Pairing Not Allowed
User guide 293 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description
0919 EZS_ERR_SPEC_UNKNOWN_LMP_PDU Unknown LMP PDU
091A EZS_ERR_SPEC_UNSUPPORTED_REMOTE Unsupported Remote Feature /
_LMP_FEATURE Unsupported LMP Feature
091B EZS_ERR_SPEC_SCO_OFFSET_REJECTED SCO Offset Rejected
091C EZS_ERR_SPEC_SCO_INTERVAL_REJECTED SCO Interval Rejected
091D EZS_ERR_SPEC_SCO_AIR_MODE_REJECTED SCO Air Mode Rejected
091E EZS_ERR_SPEC_INVALID_LMP_LL_PARAMETERS Invalid LMP Parameters / Invalid LL
Parameters
091F EZS_ERR_SPEC_UNSPECIFIED_ERROR Unspecified Error
0920 EZS_ERR_SPEC_UNSUPPORTED_LMP_LL Unsupported LMP Parameter Value
_PARAMTER_VALUE / Unsupported LL Parameter Value
0921 EZS_ERR_SPEC_ROLE_CHANGE_NOT_ALLOWED Role Change Not Allowed
0922 EZS_ERR_SPEC_LMP_LL_RESPONSE_TIMEOUT LMP Response Timeout / LL
Response Timeout
0923 EZS_ERR_SPEC_LMP_ERROR_TRANSACTION_COLLISION | LMP Error Transaction Collision
0924 EZS_ERR_SPEC_LMP_PDU_NOT_ALLOWED LMP PDU Not Allowed
0925 EZS_ERR_SPEC_ENCRYPTION_MODE_NOT_ACCEPTABLE | Encryption Mode Not Acceptable
0926 EZS_ERR_SPEC_LINK_KEY_CANNOT_BE_CHANGED The link Key cannot be Changed
0927 EZS_ERR_SPEC_REQUESTED_QOS_NOT_SUPPORTED Requested QoS Not Supported
0928 EZS_ERR_SPEC_INSTANT_PASSED Instant Passed
0929 EZS_ERR_SPEC_PAIRING_WITH_UNIT_KEY Pairing with Unit Key Not
_NOT_SUPPORTED Supported
092A EZS_ERR_SPEC_DIFFERENT_TRANSACTION_COLLISION Different Transaction Collision
092B /* 0x2B reserved */ Reserved
092C EZS_ERR_SPEC_QOS_UNACCEPTABLE_PARAMETER = QoS Unacceptable Parameter
0x092C
092D EZS_ERR_SPEC_QOS_REJECTED QoS Rejected
092E EZS_ERR_SPEC_CHANNEL_CLASSIFICATION Channel Classification Not
_NOT_SUPPORTED Supported
092F EZS_ERR_SPEC_INSUFFICIENT_SECURITY Insufficient Security
0930 EZS_ERR_SPEC_PARAMETER_OUT_OF Parameter Out Of Mandatory Range
_MANDATORY_RANGE
0931 /* 0x31 reserved */ Reserved
0932 EZS_ERR_SPEC_ROLE_SWITCH_PENDING = 0x0932 Role Switch Pending
0933 /* 0x33 reserved */ Reserved
0934 EZS_ERR_SPEC_RESERVED_SLOT_VIOLATION = 0x0934 Reserved Slot Violation
0935 EZS_ERR_SPEC_ROLE_SWITCH_FAILED Role Switch Failed
0936 EZS_ERR_SPEC_EXTENDED_INQUIRY_RSP_TOO_LARGE Extended Inquiry Response Too
Large
0937 EZS_ERR_SPEC_SSP_NOT_SUPPORTED_BY_HOST Secure Simple Pairing Not
Supported By Host
User guide 294 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

Code (Hex) | Name Description
0938 EZS_ERR_SPEC_HOST_BUSY_PAIRING Host Busy - Pairing
0939 EZS_ERR_SPEC_CONNECTION_REJECTED Connection Rejected due to No
_NO_SUITABLE_CHANNEL Suitable Channel Found
093A EZS_ERR_SPEC_CONTROLLER_BUSY Controller Busy
093B EZS_ERR_SPEC_UNACCEPTABLE Unacceptable Connection
_CONNECTION_PARAMETERS Parameters
093C EZS_ERR_SPEC_DIRECTED_ADVERTISING_TIMEOUT Directed Advertising Timeout
093D EZS_ERR_SPEC_CONNECTION_TERMINATED Connection Terminated due to MIC
_MIC_FAILURE Failure
093E EZS_ERR_SPEC_CONNECTION_FAILED Connection Failed to be Established
_TO_BE_ESTABLISHED
093F EZS_ERR_SPEC_MAC_CONNECTION_FAILED MAC Connection Failed
0940 EZS_ERR_SPEC_COARSE_CLOCK_ADJ_REJECTED Coarse Clock Adjustment Rejected
but Will Try to Adjust Using Clock
Dragging
EEEE EZS_ERR_UNKNOWN Unknown problem
(internal error)
User guide 295 002-39351 Rev. *B

2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

(infineon

API protocol reference

7.4.2

EZ-Serial GATT database validation error codes

Table 73 shows the complete list of result/error codes generated by EZ-Serial during dynamic GATT database
validation. See the How to define custom local GATT services and characteristics section and the
documentation for the related GATT Server Group (ID=5) APlcommand methods for detail.

Table73 EZ-Serial GATT validation error codes

Code (Hex) | Name Description

0000 GATTS_DB_VALID_OK Validation passed with no
warnings or errors

0001 GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES | Structure is valid, but more
attributes are required

0002 GATTS_DB_VALID_ERROR_ATTRIBUTE_LIMIT_EXCEEDED Attribute count limit exceeded

0003 GATTS_DB_VALID_ERROR_ATTRIBUTE_DATA_EXCEEDED Runtime attribute value data byte
limit exceeded

0004 GATTS_DB_VALID_ERROR_CONSTANT_DATA_EXCEEDED Constant default data byte limit is
exceeded

0005 GATTS_DB_VALID_ERROR_CCCD_LIMIT_EXCEEDED CCCD attribute limit exceeded

0006 GATTS_DB_VALID_ERROR_SVC_DECL_REQUIRED Service declaration required

0007 GATTS_DB_VALID_ERROR_UNEXPECTED_SVC_DECL Unexpected service declaration

0008 GATTS_DB_VALID_ERROR_CHAR_DECL_REQUIRED Characteristic declaration
required

0009 GATTS_DB_VALID_ERROR_UNEXPECTED_CHAR_DECL Unexpected characteristic
declaration

000A GATTS_DB_VALID_ERROR_CHAR_VALUE_REQUIRED Characteristic value attribute
required

000B GATTS_DB_VALID_ERROR_UNEXPECTED_DESCRIPTOR Specified descriptor is not allowed
at this position

000C GATTS_DB_VALID_ERROR_INVALID_ATT_PROPERTIES Attribute properties not
compatible with type

000D GATTS_DB_VALID_ERROR_INVALID_ATT_LENGTH Invalid attribute length

000E GATTS_DB_VALID_ERROR_INVALID_ATT_DATA Attribute data not compatible with
type

User guide 296 002-39351 Rev. *B

2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

API protocol reference

7.5 Macro definitions

Macros in EZ-Serial are simple codes that result in text substitution within the parser. Macros may be used in
either text mode or binary mode. Macros always begin with the ‘%’ character and are followed by one or more
alphanumeric characters (A-Z, 0-9). Macros are not case-sensitive.

Table74 Macro definitions

Code | Description Example Example Note
input output
%M1 | Byte #1 of local MyDevice MyDevice 00 | Examples assume that the local device has a
public MAC address | %M1 public MAC addressof 00:20:50:E3:83:5F.
%M2 | Byte #2 of local MyDevice MyDevice A0
public MAC address | %M2
%M3 | Byte #3 of local MyDevice MyDevice 50
public MAC address | %M3
%M4 | Byte #4 of local MyDevice MyDevice E3
public MAC address | %M4
%M5 | Byte #5 of local MyDevice MyDevice 83
public MAC address | %M5
%M6 | Byte #6 of local MyDevice MyDevice 5F
public MAC address | %M6

Macros may be used in series with or without special separators, as long as the entire macro code (including the
‘%’ byte) remains intact. For example, to use the last three bytes of the MAC address in the same string,
separated by the ‘.’ byte, use the following:

MyDevice $%$M4:%M5:%M6

This string is particularly useful for setting a module-specific device name using the gap _set device name
(SDN, 1D=4/15) APlcommand without needing to query or track the MAC address separately by hand.

User guide 297 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

GPIO reference

8 GPIO reference

This section describes the various GPIO connections provided by the EZ-Serial firmware on supported modules.
It also provides details on the default boot state and what behavior to expect in different operational modes.

8.1 GPIO pin map for supported modules

The EZ-Serial firmware can be run on multiple Infineon Bluetooth® LE modules, some of which have unique pin
configurations. The assignment of special functions for supported modules is described in Table 75.

Each pin is shown with its assigned module pin and the effective pin when use the CYW920822M2P4XX1040-EVK
Evaluation Kit. Pins that have been remapped on evaluation modules are shown in bold in Table 75.

Table75 GPIO pin map on supported modules

Pin name Pin assignment
CYW20822 module
Digital UART_RX P25
Functions UART_TX P23
UART_RTS P24
UART_CTS P11
CONNECTION P13
CYSPP P30
LP_MODE P22
UART1_TX P33
PWM PWMO P20
PWM1 P10
ADC ADC P9
8.2 GPIO pin map for supported modules

EZ-Serial provides 11 special-function digital GPIO pins, two optional PWM output pins for generating flexible
PWM signals, and one optional analog input pin for ADC reads.

User guide 298 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

GPIO reference

8.2.1 EZ-Serial GATT database validation error codes

Table 76 details the functionality of each digital function GPIO pin. Pins with the “Optional” column showing
Yes may have their special functionality disabled using the gpio set function (SIOF, ID=9/3) API
command, which will allow them to be configured as GPIOs and used for API-based input, output, or interrupts.

Table76 GPIO pin functionality detail

Pin Name Direction | Details Optional
UART_RX Input UART Communication RX signal for incoming data from an external No
host device.
UART_TX Output | UART Communication TX signal for outgoing data to external host No
device

UART_RTS Output | UART Communication RTS signal signifying local receive permission Yes
(flow control)

UART_CTS Input UART Communication CTS signal detecting remote receive permission | Yes
(flow control)
CONNECTION | Output Description: Yes

Bluetooth® LE connection or CYSPP data pipe readiness status. When
the CYSPP pin is asserted, the external host can use this pin to detect
when data sent to the module will be immediately transmitted to the
remote peer.

Status indicator logic (active-low):

e When CYSPP pin is deasserted (APl command mode active)

e LOW - remote Bluetooth® LE peer device is connected

e HIGH - no remote Bluetooth® LE peer device is connected

e When CYSPP pin is asserted (CYSPP mode active)

e LOW - CYSPP data stream fully available (connected and ready)

e HIGH - CYSPP data stream not available (disconnected or not ready)
Default boot state:

¢ HIGH (no connection)

CYSPP Input Description: No
CYSPP mode control. The external host can use this pin to begin
automatic CYSPP operation without the need for any APl commands.
This pin is also internally pulled high or low based on software-
triggered entry or exit to and from CYSPP data mode. If connected to a
high-impedance input pin (weaker than 5.6k pull), this pin may be used
as a status indicator for software-based CYSPP mode changes.
Otherwise, it should be driven externally to the desired state.

Control signal logic (active-low):

e LOW - module enters CYSPP data mode

e HIGH - module exits CYSPP data mode and returns to APl command
mode

Default boot state:

User guide 299 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

GPIO reference

Pin Name Direction | Details Optional
e Internally pulled HIGH (command mode active, CYSPP data mode
inactive)
UART1_TX Output | Output UART log with baud rate 115200.
LP_MODE Input Description: No

e Low-power status control. The external host can use this pin to
affect the sleep behavior of the module, specifically by either
preventing or allowing entry into sleep modes.

e Controlsignal logic (active-low):

- LOW - CPU is kept in active mode

- HIGH - CPU is allowed (but not forced) to sleep
Default boot state:
e Internally pulled HIGH (sleep allowed)

P32 Output | Description: -
P32 is a strap option for benign boot that, if high, instructs the MO CPU
to stop the boot process and go into an idle state.
o CYSPP status indicator logic:
- LOW - APl commands or remote Bluetooth® LE client GATT client
transactions have entered CYSPP data mode
- HIGH - APl commands or remote Bluetooth® LE peer GATT client
transactions have exited CYSPP data mode
Default boot state:
e HIGH (APl commands)

8.2.2 PWM output pins

EZ-Serial provides two dedicated PWM output pins (PWMO, PWM1). You can enable PWM output on any of the
four PWM channels using the gpio set pwm mode (SPWM, ID=9/11) APlcommand. PWM channels are
controlled via independent 24 MHz clocks, and can each use separate divider, prescaler, period, and compare
settings for complete flexibility.

Enabling PWM on each channel means you cannot use that pin for other generic 1/0. To return a PWM channel
pin to standard functionality, use the gpio set pwm mode (SPWM, ID=9/11) APlcommand to disable PWM
output on that pin.

Note: Enabling PWM output on one or more channels will automatically prevent the CPU from entering
Deep Sleep under any circumstances. This happens because the high-frequency clock required to
generate the PWM signal cannot operate while the CPU is in Deep Sleep. To allow Deep Sleep
mode again, you must disable all PWM output. See the How to manage Sleep states section for
more detail.

User guide 300 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

GPIO reference

8.2.3 Analog input pins (ADC)

EZ-Serial provides a single dedicated ADC input pin (ADC) for reading analog voltages. The ADC supports an
input voltage range of 0 V minimum to VBAT maximum. To perform a single ADC conversion, use the

gpio query adc (/QADC, ID=9/2) APlcommand. Once the conversion completes, the module will
transmit the result in the response to this command.

You can use the ADC pin as a normal digital GPIO, but using the gpio query adc (/QADC, ID=9/2) API
command will reconfigure the pin back to a high-impedance analog input state.

8.3 Functional capabilities

It is important to understand the intended use case for certain GPIO-related functions provided by the EZ-Serial
firmware, especially digital interrupt detection and analog-to-digital conversion (ADC). This helps ensure that
your expectations will be met.

8.3.1 Digital interrupt detection

The internal chipset is capable of detecting and responding to interrupts extremely quickly. However, EZ-Serial
generates an APl event packet for each monitored edge change. These events are queued when they occur and
transmitted out to the host as APl event packets. To avoid overflowing the limited outgoing API packet queue,
events that cannot fit into the queue are simply discarded. This means that if edge changes occur faster than
APl event packet transmissions can keep up, some interrupts will not be reported.

8.3.2 Analog-to-digital conversion

Similar to the previous section describing interrupt detection, the ADC operates very quickly but incurs
significant processing overhead in order to transmit conversion results to an external host via APl event
packets. The EZ-Serial firmware platform provides a way to perform on-demand single ADC reads on individual
analog channels, such as what might be involved in periodic battery voltage measurements or analog light, gas,
or temperature sensor readings.

User guide 301 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Infineon GATT profile reference

9 Infineon GATT profile reference

The EZ-Serial platform makes use of a few custom GATT profiles defined by Infineon Semiconductor. The
service UUIDs, characteristic UUIDs, special permissions, and overall structure are outlined here for quick
reference. Much more detailed reference material can be found on the wireless connectivity webpage.

9.1 CYSPP profile

The Infineon Serial Port Profile (CYSPP) provides bidirectional serial data transfer between two remote devices,
each of which passes data in through a single local hardware serial interface. It supports both acknowledged
transfers and unacknowledged transfers and provides a mechanism for virtual flow control in both the RX and
TX direction.

The profile contains a single service (“CYSPP”), which contains three characteristics for data transfer and flow
control (“Acknowledged Data”, “Unacknowledged Data”, and “RX Flow”). The structural outline of this profile is
as follows:

1. CYSPP Service: UUID 65333333-A115-11E2-9E9A-0800200CA100
a) Acknowledged Data
Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA101 (Write, Indicate)

The Acknowledged Data Characteristic is used to send and receive data in an acknowledged fashion. The
EZ-Serial firmware is able to fully track every transfer in both directions. This characteristic has a variable
length, supporting transfers in each direction of up to 20 bytes per packet.

- Configuration descriptor: UUID 0x2902
b) Unacknowledged Data
Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA102 (Write without response, Notify)

The Unacknowledged Data Characteristic is used to send and receive data in an unacknowledged fashion.
The EZ-Serial firmware cannot track transfers using this mode once they have been accepted by the
Bluetooth® LE stack. This provides less control, but the lack of acknowledgments also allows for much
greater maximum throughput. This characteristic has a variable length, supporting transfers in each
direction of up to 20 bytes per packet.

- Configuration descriptor: UUID 0x2902

c) RXFlow

Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA103 (Indicate)

The RX Flow Characteristic is used to indicate to the client that the server can no longer safely receive new
data. If the client subscribes to indications from this characteristic, the server will assume that the client will

obey flow control signals. This characteristic is one byte in length. An indicated value of “0” means that it is
safe for the client to send data, while a value of “1” means that the client must refrain from sending data.

- Configuration descriptor: UUID 0x2902

User guide 302 002-39351 Rev. *B
2025-11-12

https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD1253

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10 Configuration example reference

The configuration examples provided in this section are each designed to work independently, assuming in
each case that the platform is initially configured using factory default settings. Applying all of the commands
in one example and then immediately following this with the commands from another example may result in
changes to the first set of behavior that is no longer in line with the expected results.

You can return a module to factory defaults as a baseline configuration at any time by using the
system factory reset (/RFAC, ID=2/5) APlcommand. Thisreset command is not explicitly included in
any of the configuration snippets within this section.

10.1 Factory default settings

While you can return to the factory default settings on the module by performing a factory reset, it is also
helpful to know what those settings are for comparison or to explicitly change one or more individual settings
back to the default value without reverting all customizations at once. The following is a comprehensive list of
commands that will return the EZ-Serial module to default behavior:

SPPM, M=00

SPEM,M=01

SSLP,L=01

STXP, P=07 (lower values on some modules for regulatory compliance)
ST, I=01
STU,B=0001C200,A=00,C=00,F=00,D=08, P=00,S=01
SDN, N=EZ-Serial %M4:%M5:%M6

SDA,A=0000

SAD, D=

SSRD, D=
SAP,M=02,T=00,I=0030,C=07,L=00,0=0000,F=00
ssp,M=02,I=0100,w=0100,A=00,F=00,D=00,0=0000
scp,I=0006,1L=0000,0=0064,Vv=0100,w=0100,M=0000
SGSP, F=01

SGCP, F=01

SPRV,M=00, I=012C
SSBp,M=11,B=01,K=10,P=00,I=03,F=01

e CYSPPSP,E=02,G=00,C=0131,L=00000000,R=00000000,M=00000000,P=02,5=00,F=02
e CYSPPSH,A=0000,B=0000,C=0000,D=0000

e CYSPPSK,M=01,W=05,L=14,E=0D

e IBSP,E=00,I=00A0,C=0131,J=0001,N=0001,U=E2C56DB5DFFB48D2B060D0OF5A71096E0
e EDDYSP,E=00,I=00A0,T=10,D=006379707265737300

Note that the above commands affect only RAM. To make them permanent, apply all settings to flash using the
system store config (/SCFG, ID=2/4) APlcommand.

User guide 303 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2 Adopted Bluetooth® SIG GATT profile structure snippets

The snippets below demonstrate how to add various GATT service and characteristic structural elements to
support official profiles defined by the Bluetooth® SIG, and some other common services.

Note: These database structures concern only the GATT server side of the profiles in question. GATT
client operations depend on the client device.

Note: The information provided in this section only covers the basic GATT structure, but does not include
any specific values that may be necessary or helpful for specific functionality. Many characteristics
also have flexible length values that depend on application design, such as those inside the Device
Information Service (0x180A) or Human Interface Device Service (0x1812). See the official
Bluetooth® SIG documentation or other related resources linked under each service for further
detail.

Note: Additions to and removals from the GATT structure are always stored in flash. As long as the
“result” value in the response indicates success, the change will be effective immediately and will
persist through power cycles and resets. The internal CPU is occupied for approximately 15 ms
during each flash write operation, and during this time no other activity will be processed (UART or
Bluetooth® LE communication). Any UART data sent during this brief window will be lost.

Therefore, you should only modify the GATT structure while disconnected, and you should allow a
gap of at least 20 ms between the end of one APl command and the beginning of a new one. If you
have enabled hardware flow control using the system set uart parameters (STU,
1D=2/25) APl command, EZ-Serial will block incoming data flow during flash writes to prevent
serial data corruption or loss.

10.2.1 Generic access service (0x1800)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

Note: This service is included in the EZ-Serial application. It is always present in the fixed, nonremovable
part of the GATT structure. Do not add another instance of this service to the EZ-Serial application.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0018
/CAC,T=2803,R=01,W=00,C=02,1=0000,D=002A
/CAC, T=0000,R=01,W=00,C=02,L=0040, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=012A
/CAC, T=0000,R=01,W=00,C=02,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=042A
/CAC, T=0000,R=01,W=00,C=02,1=0008, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=A62A
/CAC, T=0000,R=01,W=00,C=02,L1=0001, D=
/SACT

User guide 304 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.2 Generic attribute service (0x1801)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

Note: This service is include in the EZ-Serial application. It is always present in the fixed, nonremovable
part of the GATT structure. Do not add another instance of this service to the EZ-Serial application.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=0118
/CAC, T=2803,R=01,W=00,C=20,L=0000,D=052A
/CAC, T=0000,R=00,W=00,C=20,L=0004, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.3 Immediate alert service (0x1802)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0218
/CAC,T=2803,R=01,W=00,C=04,1=0000,D=062A
/CAC,T=0000,R=02,W=02,C=04,1=0001, D=
/SACT

10.2.4 Link loss service (0x1803)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=0318
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=062A
/CAC, T=0000,R=01,W=01,C=0A,L=0001, D=
/SACT

10.2.5 TX power service (0x1804)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=0418
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=072A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.6 Current time service (0x1805)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0518
/CAC, T=2803,R=01,W=00,C=12,L=0000, D=2B2A
/CAC,T=0000,R=01,W=00,C=12,L=000A, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=0F2A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=142A
/CAC, T=0000,R=01,W=00,C=02,L=0004, D=
/SACT

User guide 305 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.7 Reference time update service (0x1806)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=0618
/CAC, T=2803,R=01,W=00,C=04,L=0000,D=162A
/CAC, T=0000,R=02,W=02,C=04,L=0001, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=172A
/CAC, T=0000,R=01,W=00,C=02,1L=0002, D=
/SACT

10.2.8 Next DST change service (0x1807)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0718
/CAC,T=2803,R=01,W=00,C=02,1=0000,D=112A
/CAC, T=0000,R=01,W=00,C=02,L1=0008, D=
/SACT

10.2.9 Glucose service (0x1808)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0818
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=182A
/CAC, T=0000,R=00,W=00,C=10,L=000A, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=342A
/CAC, T=0000,R=00,W=00,C=10,1=0003, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,1L=0000,D=512A
/CAC, T=0000,R=01,W=00,C=02,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=28,L1=0000, D=522A
/CAC, T=0000,R=02,W=02,C=28,L=0003, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.10 Health thermometer service (0x1809)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0918
/CAC,T=2803,R=01,W=00,C=20,L=0000,D=1C2A
/CAC, T=0000,R=00,W=00,C=20,1=0005, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=1D2A
/CAC, T=0000,R=01,wW=00,C=02,L=0001, D=
/CAC, T=2803,R=01,W=00,C=10,1L=0000, D=1E2A
/CAC, T=0000,R=00,W=00,C=10,L=0005, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000,D=212A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2906,R=01,W=00,C=02,1=0004, D=
/SACT

User guide 306 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.11 Device information service (0x180A)

In the following commands, most identification data attributes are given 16-byte lengths (1L=0010). You will
most likely need to modify these lengths according to the data you intend to write into the characteristics.

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000, D=0A18
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=292A
/CAC, T=0000,R=01,W=00,C=02,L=0010, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=242A
/CAC, T=0000,R=01,W=00,C=02,L=0010, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=252A
/CAC, T=0000,R=01,W=00,C=02,1=0010, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=272A
/CAC, T=0000,R=01,W=00,C=02,1=0010, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=262A
/CAC,T=0000,R=01,W=00,C=02,1=0010, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=282A
/CAC, T=0000,R=01,W=00,C=02,L1=0010, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=232A
/CAC, T=0000,R=01,W=00,C=02,L1=0008, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=2A2A
/CAC, T=0000,R=01,W=00,C=02,1=0001, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=502A
/CAC, T=0000,R=01,W=00,C=02,1=0007, D=
/SACT

10.2.12 Heart rate service (0x180D)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0D18
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=372A
/CAC, T=0000,R=00,W=00,C=10,L=0002, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=382A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=2803,R=01,W=00,C=08,1L=0000,D=392A
/CAC, T=0000,R=02,W=02,C=08,L=0001, D=
/SACT

10.2.13 Phone alert status service (0x180E)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0E18
/CAC,T=2803,R=01,W=00,C=12,1=0000, D=3F2A
/CAC,T=0000,R=01,W=00,C=12,1=0001, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=12,1=0000,D=412A
/CAC,T=0000,R=01,W=00,C=12,1=0001, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=04,1=0000, D=402A
/CAC, T=0000,R=02,W=02,C=04,1=0001, D=
/SACT

User guide 307 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.14 Battery service (0x180F)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=0F18
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=192A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=2904,R=01,W=00,C=02,L=0007, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.15 Blood pressure service (0x1810)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,wW=00,C=00,L=0000,D=1018
/CAC, T=2803,R=01,W=00,C=20,L=0000,D=352A
/CAC, T=0000,R=00,W=00,C=20,L=0007, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=10,L=0000,D=362A
/CAC, T=0000,R=00,wW=00,C=10,L=0007, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000,D=492A
/CAC,T=0000,R=01,wW=00,C=02,1L=0002, D=

/SACT

10.2.16 Alert notification service (0x1811)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=1118
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=472A
/CAC, T=0000,R=01,W=00,C=02,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=462A
/CAC, T=0000,R=00,W=00,C=10,1=0002, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=482A
/CAC, T=0000,R=01,W=00,C=02,1=0002, D=
/CAC, T=2803,R=01,W=00,C=10,L=0000,D=452A
/CAC, T=0000,R=00,W=00,C=10,L=0002, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=08,L1=0000, D=442A
/CAC, T=0000,R=02,W=02,C=08,1=0002, D=
/SACT

User guide 308 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.17 Human interface device service (0x1812)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=1218
/CAC, T=2803,R=01,W=00,C=06,L=0000,D=4E2A
/CAC, T=0000,R=01,wW=01,C=06,L=0001, D=
/CAC, T=2803,R=01,W=00,C=12,L=0000, D=4D2A
/CAC, T=0000,R=01,W=00,C=12,1=0000, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2908,R=01,W=00,C=02,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=4B2A
/CAC,T=0000,R=01,W=00,C=02,L=0000, D=
/CAC,T=2907,R=01,W=00,C=02,L=0000, D=
/CAC,T=2803,R=01,W=00,C=12,L=0000,D=222A
/CAC, T=0000,R=01,wW=00,C=12,L=0008, D=
/CAC,T=2902,R=01,W=01, C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=0E,L=0000,D=322A
/CAC, T=0000,R=01,wW=01,C=0E,L=0008, D=
/CAC, T=2803,R=01,W=00,C=12,1L=0000,D=332A
/CAC, T=0000,R=01,wW=00,C=12,L=0003, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=4A2A
/CAC, T=0000,R=01,W=00,C=02,1L=0004, D=
/CAC,T=2803,R=01,W=00,C=04,L=0000, D=4C2A
/CAC, T=0000,R=02,W=02,C=04,1=0001, D=
/SACT

10.2.18 Scan parameters service (0x1813)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,wW=00,C=00,L=0000,D=1318
/CAC, T=2803,R=01,W=00,C=04,1L=0000, D=4F2A
/CAC,T=0000,R=02,W=02,C=04,1=0004, D=
/CAC,T=2803,R=01,W=00,C=10,L=0000,D=312A
/CAC, T=0000,R=00,W=00,C=10,1L=0001, D=
/CAC,T=2902,R=01,W=01, C=0A,L=0002, D=
/SACT

10.2.19 Running speed and cadence service (0x1814)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1418
/CAC,T=2803,R=01,W=00,C=10,L1=0000, D=532A
/CAC, T=0000,R=00,W=00,C=10,1=0004, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=542A
/CAC, T=0000,R=01,W=00,C=02,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L1=0000, D=5D2A
/CAC,T=0000,R=01,W=00,C=02,L1=0001, D=
/CAC,T=2803,R=01,W=00,C=28,1=0000, D=552A
/CAC, T=0000,R=02,W=02,C=28,1=0006, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

User guide 309 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.20 Cycling speed and cadence service (0x1816)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1618
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=5B2A
/CAC, T=0000,R=00,W=00,C=10,1=0001, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=5C2A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=5D2A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=2803,R=01,W=00,C=28,L=0000,D=552A
/CAC, T=0000,R=02,W=02,C=28,1=0006, D=
/CAC,T=2902,R=01,W=01,C=0A,L1=0002, D=
/SACT

10.2.21 Cycling power service (0x1818)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1818
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=632A
/CAC, T=0000,R=00,W=00,C=10,1=0004, D=
/CAC,T=2902,R=01,W=01,C=0A,L1=0002, D=
/CAC,T=2903,R=01,W=01,C=0A,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=652A
/CAC, T=0000,R=01,W=00,C=02,L1=0004, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=5D2A
/CAC, T=0000,R=01,W=00,C=02,L1=0001, D=
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=642A
/CAC, T=0000,R=00,W=00,C=10,1=0001, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=28,L1=0000, D=662A
/CAC, T=0000,R=02,W=02,C=28,L=0005, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.22 Location and navigation service (0x1819)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,wW=00,C=00,L=0000,D=1918
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=6A2A
/CAC, T=0000,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=10,L=0000,D=672A
/CAC, T=0000,R=00,wW=00,C=10,L=0002, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,wW=00,C=02,L=0000,D=692A
/CAC, T=0000,R=01,wW=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=28,L=0000, D=6B2A
/CAC, T=0000,R=02,W=02,C=28,L=0005, D=
/CAC, T=2902,R=01,wW=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=10,L=0000,D=682A
/CAC, T=0000,R=00,W=00,C=10,L=0006, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=

User guide 310 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

/SACT

10.2.23 Body composition service (0x181B)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=1B18
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=9B2A
/CAC, T=0000,R=01,W=00,C=02,L=0004, D=
/CAC,T=2803,R=01,W=00,C=20,L=0000, D=9C2A
/CAC, T=0000,R=00,W=00,C=20,L=002A, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.24 User data service (0x181C)

You will need to modify the lengths of the first three characteristics according to the data you intend to use
with them. Also, the reference code lists 65 attribute definitions, but your application may not need to use all of
these. See the official specification for this service on the Bluetooth® SIG website for details.

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1C18
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=8A2A
/CAC,T=0000,R=01,W=01,C=0A,L=0000, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=902A
/CAC,T=0000,R=01,wW=01,C=0A,L=0000,D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=872A
/CAC,T=0000,R=01,W=01,C=0A,L=0000, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=802A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=852A
/CAC,T=0000,R=01,W=01,C=0A,L=0004, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=8C2A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=982A
/CAC,T=0000,R=01,wW=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=8E2A
/CAC,T=0000,R=01,wW=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=962A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000, D=8D2A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=922A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=912A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=7F2A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=832A
/CAC,T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=932A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=862A
/CAC,T=0000,R=01,wW=01,C=0A,L=0004, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=972A
User guide 311 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

/CAC,T=0000,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=8F2A
/CAC,T=0000,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=882A
/CAC, T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=892A
/CAC, T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=7E2A
/CAC, T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=842A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=812A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=822A
/CAC,T=0000,R=01,W=01,C=0A,L=0001, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=8B2A
/CAC, T=0000,R=01,wW=01,C=0A,L=0004, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=942A
/CAC, T=0000,R=01,wW=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=952A
/CAC, T=0000,R=01,wW=01,C=0A,L=0001, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=992A
/CAC,T=0000,R=01,W=01,C=0A,L=0004, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=9A2A
/CAC,T=0000,R=01,W=00,C=02,L=0001, D=
/CAC,T=2803,R=01,W=00,C=28,L=0000, D=9F2A
/CAC, T=0000,R=02,W=02,C=28,L=0002, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000, D=A22A
/CAC, T=0000,R=01,wW=01,C=0A,L=0000, D=
/SACT

10.2.25 Weight scale service (0x181D)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=1D18
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=9E2A
/CAC, T=0000,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=20,L=0000, D=9D2A
/CAC, T=0000,R=00,W=00,C=20,1=0013, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.26 Bond management service (0x181E)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1E18
/CAC,T=2803,R=01,W=00,C=08,L1=0000, D=A42A
/CAC, T=0000,R=02,W=02,C=08,L1=0001, D=
/CAC,T=2803,R=01,W=00,C=02,1=0000, D=A52A
/CAC, T=0000,R=01,W=00,C=02,L1=0003, D=
/SACT

User guide 312 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

10.2.27 Continuous glucose monitoring service (0x181F)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,wW=00,C=00,L=0000,D=1F18
/CAC, T=2803,R=01,W=00,C=10,1L=0000, D=A72A
/CAC, T=0000,R=00,W=00,C=10,L=0006, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=A82A
/CAC, T=0000,R=01,W=00,C=02,1=0006, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=A92A
/CAC,T=0000,R=01,W=00,C=02,1L=0005, D=
/CAC,T=2803,R=01,W=00,C=0A,L=0000, D=AA2A
/CAC,T=0000,R=01,W=01,C=0A,L=0009, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=AB2A
/CAC, T=0000,R=01,wW=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=28,L=0000,D=522A
/CAC, T=0000,R=02,W=02,C=28,L=0003, D=
/CAC,T=2902,R=01,W=01, C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=28,L=0000, D=AC2A
/CAC, T=0000,R=02,W=02,C=28,L=000F, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/SACT

10.2.28 Environmental sensing service (0x181A)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=1A18
/CAC, T=2803,R=01,W=00,C=20,L=0000, D=7D2A
/CAC, T=0000,R=00,W=00,C=20,L=0002, D=
/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=732A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=722A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=7B2A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=6C2A
/CAC, T=0000,R=01,W=00,C=02,L=0003, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0006, D=
User guide 313 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=742A
/CAC,T=0000,R=01,W=00,C=02,1=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=7A2A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,1L=0002, D=
/CAC,T=2901,R=01,W=00,C=02,1L=0000, D=
/CAC,T=2906,R=01,W=00,C=02,1=0002, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=6F2A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=772A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC,T=2901,R=01,W=00,C=02,L=0000, D=
/CAC,T=2906,R=01,W=00,C=02,1L=0004, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000,D=752A
/CAC,T=0000,R=01,W=00,C=02,L=0003, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC,T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0006, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=782A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC,T=2906,R=01,W=00,C=02,L=0004, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=6D2A
/CAC,T=0000,R=01,W=00,C=02,L=0004, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC,T=290D,R=01,W=00,C=02,L=0002, D=
/CAC,T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0008, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=6E2A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=712A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=702A

User guide 314 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=762A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000,D=792A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=A32A
/CAC, T=0000,R=01,W=00,C=02,L=0001, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=2C2A
/CAC, T=0000,R=01,W=00,C=02,L=0002, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC,T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=A02A
/CAC, T=0000,R=01,W=00,C=02,L=0004, D=
/CAC, T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,L=0002, D=
/CAC, T=2901,R=01,W=00,C=02,L=0000, D=
/CAC, T=2906,R=01,W=00,C=02,L=0004, D=
/CAC,T=2803,R=01,W=00,C=02,L=0000, D=A12A
/CAC,T=0000,R=01,W=00,C=02,1L=0006, D=
/CAC,T=290C,R=01,W=00,C=02,L=000B, D=
/CAC, T=290D,R=01,W=00,C=02,1L=0002, D=
/CAC,T=2901,R=01,W=00,C=02,L=0000, D=
/CAC,T=2906,R=01,W=00,C=02,1L=0004, D=
/SACT

10.2.29 HTTP proxy service (0x1823)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC, T=2800,R=01,W=00,C=00,L=0000,D=2318
/CAC, T=2803,R=01,W=00,C=08,L=0000,D=B62A
/CAC, T=0000,R=02,W=02,C=08,L=0000, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000, D=B72A
/CAC, T=0000,R=01,wW=01,C=0A,L=0000, D=
/CAC, T=2803,R=01,W=00,C=0A,L=0000,D=B92A
/CAC, T=0000,R=01,wW=01,C=0A,L=0000, D=
/CAC, T=2803,R=01,W=00,C=08,L=0000, D=BA2A

User guide 315 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module I n f| neon

Configuration example reference

/CAC, T=0000,R=02,W=02,C=08,1L=0001, D=
/CAC,T=2803,R=01,W=00,C=10,L=0000, D=B82A
/CAC, T=0000,R=00,W=00,C=10,1=0003, D=
/CAC,T=2902,R=01,W=01,C=0A,L=0002, D=
/CAC, T=2803,R=01,W=00,C=02,L=0000, D=BB2A
/CAC, T=0000,R=01,wW=00,C=02,L=0001, D=
/SACT

10.2.30 Apple notification center service
(7905F431-B5CE-4E99-A40F-4B1E122D00DO)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,1=0000, D=D0002D121E4B0FA4994ECEB531F40579
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=BD1DA299E625588CD94201630D12BFIF
/CAC, T=0000,R=00,W=00,C=10,1=0008, D=
/CAC,T=2902,R=01,W=01,C=0A,L1=0002, D=
/CAC,T=2803,R=01,W=00,C=08,1=0000, D=D9D9AAFDBDI9B2198A849E145F3D8D169
/CAC, T=0000,R=02,W=02,C=08,1=0006, D=
/CAC,T=2803,R=01,W=00,C=10,1=0000, D=FB7B7CCE6AB344BEB54BD624E9C6EA22
/CAC, T=0000,R=00,W=00,C=10,1=0000, D=

/CAC, T=2902,R=01,W=01,C=0A,L=0002, D=

/SACT

User guide 316 002-39351 Rev. *B
2025-11-12

https://www.bluetooth.com/develop-with-bluetooth/

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Glossary

Glossary

ADC
Analog-to-Digital Conversion (ADC)

AES
Advanced Encryption Standard (AES)

API
Application Programming Interface (API)

CCccb
Client Characteristic Configuration Descriptor (CCCD)

CPU
Central Processing Unit(CPU)

CYSPP
Cypress (Infineon) Serial Port Profile (CYSPP)

DFU
device firmware update (DFU)

ECO
External crystal oscillator (ECO)

GAP
Generic Access Profile (GAP)

GATT
generic attribute profile (GATT)

GPIO
General Purpose Input Output (GPIO)

L2CAP
Logic link control and adaptation protocol (L2CAP)

User guide 317 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Glossary

MAC
Medium Access Control (MAC)

MCU
Microcontroller Unit (MCU)

MITM
Man in the Middle (MITM)

OTA
over-the-air (OTA)

PWM
Pulse Width Modulation (PWM)

RSSI
Remote Signal Strength Indication (RSSI)

SMP
Security Manager Protocol (SMP)

TTL
True-Type Logic (TTL)

UART
Universal Asynchronous Receiver-Transmitter (UART)

UuID
universally unique identifier (UUID)

WCO
Watch crystal oscillator (WCO)

User guide 318 002-39351 Rev. *B
2025-11-12

o _.
EZ-Serial firmware platform user guide for CYW20822 module < In f| neon

Revision history

Revision history

Document Date Description of changes

revision

o 2024-03-04 Initial release.

*A 2024-07-15 Updated the note in Hardware and communication features section.
Updated Table 22.

Updated Avoiding UART data loss or corruption due to Deep Sleep
transition section.

Added Table 23.

Updated Table 32.
Updated Table 33.
Updated Table 63.

Updated the newest FW build support text mode and binary mode for
every command in API protocol reference chapter.

*B 2025-11-12 Updated 3.1.1.2
Updated 7.2.2.1
Updated 7.2.4.23
Updated 7.2.4.24
Updated 7.2.4.30
Updated 7.2.4.36
Updated 7.2.4.38
Updated 7.2.4.39
Updated 7.2.4.41
Updated 7.2.7.7
Updated 7.2.7.8
Updated 7.2.7.14
Updated 7.2.9.2
Updated 7.2.9.12
Updated 7.2.10.8
Updated 7.2.11.2
Updated 7.2.12
Updated 7.2.12.2
Updated system_dump_blobin 7.3.3.1
Updated device_firmware_upgrade 7.3.3.1
Updated 7.3.4.9
Updated 7.3.5.4
Updated 7.3.6.2
Updated 7.3.6.3
Updated 7.3.6.4
Updated 7.3.7.1
Updated 7.3.7.2
Updated 7.3.7.3
Updated 7.3.8.1
Updated 7.3.9.1

User guide 319 002-39351 Rev. *B
2025-11-12

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Edition 2025-11-12
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document Reference Number
002-39351 *B

Important Notice

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties
of non-infringement of third-party rights and implied
warranties such as warranties of fitness for a specific
use/purpose or merchantability.

Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.

The data contained in this document is exclusively intended
for technically qualified and skilled customer representatives.
It is the responsibility of the customer to evaluate the
suitability of the Product for the intended application and the
customer’s specific use and to verify all relevant technical
data contained in this document in the intended application
and the customer’s specific use. The customer is responsible
for properly designing, programming, and testing the
functionality and safety of the intended application, as well as
complying with any legal requirements related to its use.
Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall
responsibility for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:

Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security Breaches.
If this document includes or references software:

The software is owned by Infineon under the intellectual property
laws and treaties of the United States, Germany, and other
countries worldwide. All rights reserved. Therefore, you may use
the software only as provided in the software license agreement
accompanying the software.

If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in the
software (a) for software provided in source code form, to modify
and reproduce the software solely for use with Infineon hardware
products, only internally within your organization, and (b) to
distribute the software in binary code form externally to end users,
solely for use on Infineon hardware products. Any other use,
reproduction, modification, translation, or compilation of the
software is prohibited. For further information on the Product,
technology, delivery terms and conditions, and prices, please
contact your nearest Infineon office or visit
https://www.infineon.com

mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 How to use this guide
	1.2 Block diagram
	1.3 Block diagram
	1.3.1 Bluetooth® LE communication features
	1.3.2 Hardware and communication features
	1.3.3 Development limitations

	2 Getting started
	2.1 Prerequisites
	2.2 Factory default behavior
	2.3 Connecting a host device
	2.3.1 Connecting the serial interface
	2.3.2 Connecting GPIO pins
	2.3.3 Connecting the CYW920822M2P4XXI040-EVK

	2.4 Communicating with a host device
	2.4.1 Using the API protocol in text mode
	2.4.1.1 Text mode protocol characteristics
	2.4.1.2 Text mode API command categories
	2.4.1.3 Text mode API command categories

	2.4.2 Using the API protocol in binary mode
	2.4.2.1 Binary mode protocol characteristics
	2.4.2.2 Binary mode API example

	2.4.3 Key similarities and differences between text and binary command mode
	2.4.4 API protocol format autodetection
	2.4.5 Using CYSPP mode
	2.4.5.1 Starting CYSPP operation
	2.4.5.2 Sending and receiving data in CYSPP data mode
	2.4.5.3 Exiting CYSPP mode
	2.4.5.4 Customizing CYSPP behavior for specific needs
	2.4.5.5 Understanding CYSPP connection keys
	2.4.5.6 Using the CYSPP peripheral connection key
	2.4.5.7 Using the CYSPP central connection key and mask
	2.4.5.8 CYSPP configuration and pin states

	2.5 Configuration settings, storage and protection
	2.5.1 Factory, boot, runtime, and automatic settings
	2.5.2 Saving runtime settings in flash
	2.5.3 Protected configuration settings

	2.6 Where to find related material
	2.6.1 Latest EZ-Serial firmware image
	2.6.2 Latest host API protocol library
	2.6.3 Comprehensive API reference

	3 Operational examples
	3.1 System setup examples
	3.1.1 How to identify the running firmware and Bluetooth® LE stack version
	3.1.1.1 Getting version details from boot event
	3.1.1.2 Getting version details from boot event

	3.1.2 How to change the serial communication parameters
	3.1.3 How to change the device name and appearance
	3.1.4 How to change the output power
	3.1.5 How to manage Sleep states
	3.1.5.1 Configuring the system-wide sleep level
	3.1.5.2 Configuring the CYSPP data mode sleep level
	3.1.5.3 Preventing sleep with the LP_MODE pin
	3.1.5.4 Preventing activity with the ATEN_SHDN pin
	3.1.5.5 Avoiding UART data loss or corruption due to Deep Sleep transition

	3.1.6 How to perform a factory reset
	3.1.6.1 Factory reset via API command

	3.2 Cable replacement examples with CYSPP
	3.2.1 How to get started in CYSPP mode
	3.2.1.1 How to start CYSPP in peripheral mode
	3.2.1.2 How to start CYSPP in central mode

	3.3 GAP peripheral examples
	3.3.1 How to advertise as peripheral device
	3.3.2 How to stop advertising as a peripheral device
	3.3.3 How to customize advertisement and scan response data

	3.4 GAP central examples
	3.4.1 How to scan for peripheral devices
	3.4.2 How to stop scanning for peripheral devices
	3.4.3 How to connect to a peripheral device
	3.4.4 How to cancel a pending connection to a peripheral device
	3.4.5 How to disconnect from a peripheral device

	3.5 GATT server examples
	3.5.1 How to define custom local GATT services and characteristics
	3.5.1.1 Understanding custom GATT limitations
	3.5.1.2 Building custom services and characteristics
	3.5.1.3 Choosing the correct GATT permissions

	3.5.2 How to list local GATT services, characteristics, and descriptors
	3.5.2.1 Discovering local GATT services
	3.5.2.2 Discovering local GATT characteristics
	3.5.2.3 Discovering local GATT descriptors

	3.5.3 How to read and write local GATT attribute values
	3.5.3.1 Reading local GATT data
	3.5.3.2 Writing local GATT data

	3.5.4 How to notify and indicate data to a remote client
	3.5.4.1 Notifying data to a remote client
	3.5.4.2 Indicating data to a remote client

	3.5.5 How to detect and process written data from a remote client

	3.6 GATT client examples
	3.6.1 How to discover a remote server’s GATT structure
	3.6.1.1 Discovering remote GATT services
	3.6.1.2 Discovering remote GATT characteristics
	3.6.1.3 Discovering remote GATT descriptors

	3.6.2 How to read and write remote GATT attribute values
	3.6.3 How to detect notified or indicated values from a remote GATT server

	3.7 Security and encryption examples
	3.7.1 How to use peripheral and central privacy
	3.7.2 How to bond with or without MITM protection
	3.7.2.1 Understanding I/O capabilities
	3.7.2.2 Controlling automatic pairing request acceptance
	3.7.2.3 Pairing and bonding in “just works” mode without MITM protection
	3.7.2.4 Pairing and bonding with full I/O capabilities and MITM protection
	3.7.2.5 Pairing and bonding with a fixed passkey

	3.7.3 How to use out-of-band pairing
	3.7.4 How to encrypt and decrypt arbitrary data

	3.8 iBeacon examples
	3.8.1 How to configure iBeacon transmissions
	3.8.2 How to configure Eddystone transmissions

	3.9 Performance testing examples
	3.9.1 How to maximize throughput to a remote peer
	3.9.1.1 How to maximize throughput to an iOS device
	3.9.1.2 How to maximize throughput to an android device

	3.9.2 How to minimize power consumption
	3.9.2.1 How to minimize power consumption while broadcasting
	3.9.2.2 How to minimize power consumption while broadcasting

	3.9.3 How to communicate using an L2CAP channel

	3.10 Device firmware update examples
	3.10.1 How to use the DFU Bootloader over UART
	3.10.2 How to upgrade firmware Over the Air (OTA)

	4 Application design examples
	4.1 Smart MCU host with 4-wire UART and full GPIO connections
	4.1.1 Hardware design
	4.1.2 Module configuration
	4.1.3 Host configuration

	4.2 Dumb terminal host with CYSPP and simple GPIO state indication
	4.2.1 Hardware design
	4.2.2 Module configuration
	4.2.3 Module configuration

	4.3 Module-only application with beacon functionality
	4.3.1 Hardware design
	4.3.2 Module configuration
	4.3.3 Host configuration

	5 Host API library
	5.1 Host API library overview
	5.1.1 High-level architecture
	5.1.2 Host library design

	5.2 Implementing a project using the host API library
	5.2.1 Basic application architecture
	5.2.2 Exposed API functions
	5.2.3 Command macros
	5.2.4 Convenience macros

	5.3 Porting the host API library to different platforms
	5.4 Using the API definition JSON file to create a custom library

	6 Troubleshooting guidelines
	6.1 UART communication issues
	6.2 Bluetooth® LE connection issues
	6.3 GPIO signal issues

	7 API protocol reference
	7.1 Protocol structure and communication flow
	7.1.1 API protocol formats
	7.1.1.1 Text format overview
	7.1.1.2 Binary format overview

	7.1.2 API protocol data types
	7.1.3 Binary format details
	7.1.3.1 Byte ordering and structure packing
	7.1.3.2 Binary packet header

	7.2 API commands and responses
	7.2.1 Protocol group (ID=1)
	7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)
	7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)
	7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)
	7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

	7.2.2 System group (ID=2)
	7.2.2.1 system_ping (/PING, ID=2/1)
	7.2.2.2 system_reboot (/RBT, ID=2/2)
	7.2.2.3 system_dump (/DUMP, ID=2/3)
	7.2.2.4 system_store_config (/SCFG, ID=2/4)
	7.2.2.5 system_factory_reset (/RFAC, ID=2/5)
	7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)
	7.2.2.7 system_query_unique_id (/QUID, ID=2/7)
	7.2.2.8 system_query_random_number (/QRND, ID=2/8)
	7.2.2.9 system_aes_encrypt (/AESE, ID=2/9)
	7.2.2.10 system_aes_decrypt (/AESD, ID=2/10)
	7.2.2.11 system_write_user_data (/WUD, ID=2/11)
	7.2.2.12 system_read_user_data (/RUD, ID=2/12)
	7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13)
	7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14)
	7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19)
	7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20)
	7.2.2.17 system_set_tx_power (STXP, ID=2/21)
	7.2.2.18 system_get_tx_power (GTXP, ID=2/22)
	7.2.2.19 system_set_transport (ST, ID=2/23)
	7.2.2.20 system_get_transport (GT, ID=2/24)
	7.2.2.21 system_set_uart_parameters (STU, ID=2/25)
	7.2.2.22 system_get_uart_parameters (GTU, ID=2/26)
	7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29)

	7.2.3 DFU group (ID=3)
	7.2.3.1 dfu_reboot (/CDFU, ID=3/1)

	7.2.4 GAP group (ID=4)
	7.2.4.1 gap_connect (/C, ID=4/1)
	7.2.4.2 gap_cancel_connection (/CX, ID=4/2)
	7.2.4.3 gap_update_conn_parameters (/UCP, ID=4/3)
	7.2.4.4 gap_send_connupdate_response (/CUR, ID=4/4)
	7.2.4.5 gap_disconnect (/DIS, ID=4/5)
	7.2.4.6 gap_add_whitelist_entry (/WLA, ID=4/6)
	7.2.4.7 gap_delete_whitelist_entry (/WLD, ID=4/7)
	7.2.4.8 gap_start_adv (/A, ID=4/8)
	7.2.4.9 gap_stop_adv (/AX, ID=4/9)
	7.2.4.10 gap_start_scan (/S, ID=4/10)
	7.2.4.11 gap_stop_scan (/SX, ID=4/11)
	7.2.4.12 gap_query_peer_address (/QPA, ID=4/12)
	7.2.4.13 gap_query_rssi (/QSS, ID=4/13)
	7.2.4.14 gap_query_whitelist (/QWL, ID=4/14)
	7.2.4.15 gap_set_device_name (SDN, ID=4/15)
	7.2.4.16 gap_get_device_name (GDN, ID=4/16)
	7.2.4.17 gap_set_device_appearance (SDA, ID=4/17)
	7.2.4.18 gap_get_device_appearance (GDA, ID=4/18)
	7.2.4.19 gap_set_adv_data (SAD, ID=4/19)
	7.2.4.20 gap_get_adv_data (GAD, ID=4/20)
	7.2.4.21 gap_set_sr_data (SSRD, ID=4/21)
	7.2.4.22 gap_get_sr_data (GSRD, ID=4/22)
	7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23)
	7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24)
	7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25)
	7.2.4.26 gap_get_scan_parameters (GSP, ID=4/26)
	7.2.4.27 gap_set_conn_parameters (SCP, ID=4/27)
	7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28)
	7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)
	7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)
	7.2.4.31 gap_start_legacy_coded_adv (/CA, ID=4/31)
	7.2.4.32 gap_stop_legacy_coded_adv(/CAX, ID=4/32)
	7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33)
	7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)
	7.2.4.35 gap_start_legacy_coded_scan(/CS, ID=4/35)
	7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36)
	7.2.4.37 gap_phy_update (/UP, ID=4/37)
	7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38)
	7.2.4.39 gap_get_extended_adv_data (GEAD, ID=4/39)
	7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40)
	7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41)

	7.2.5 GATT server group (ID=5)
	7.2.5.1 gatts_create_attr (/CAC, ID=5/1)
	7.2.5.2 gatts_delete_attr (/CAD, ID=5/2)
	7.2.5.3 gatts_validate_db (/VGDB, ID=5/3)
	7.2.5.4 gatts_store_db (/SGDB, ID=5/4)
	7.2.5.5 gatts_dump_db (/DGDB, ID=5/5)
	7.2.5.6 gatts_discover_services (/DLS, ID=5/6)
	7.2.5.7 gatts_discover_characteristics (/DLC, ID=5/7)
	7.2.5.8 gatts_discover_descriptors (/DLD, ID=5/8)
	7.2.5.9 gatts_read_handle (/RLH, ID=5/9)
	7.2.5.10 gatts_write_handle (/WLH, ID=5/10)
	7.2.5.11 gatts_notify_handle (/NH, ID=5/11)
	7.2.5.12 gatts_indicate_handle (/IH, ID=5/12)
	7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13)
	7.2.5.14 gatts_set_parameters (SGSP, ID=5/14)
	7.2.5.15 gatts_get_parameters (GGSP, ID=5/15)
	7.2.5.16 gatts_service_active (/SACT, ID=5/16)
	7.2.5.17 gatts_service_handle_reset (/RSHL, ID=5/17)

	7.2.6 GATT client group (ID=6)
	7.2.6.1 gattc_discover_services (/DRS, ID=6/1)
	7.2.6.2 gattc_discover_characteristics (/DRC, ID=6/2)
	7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3)
	7.2.6.4 gattc_read_handle (/RRH, ID=6/4)
	7.2.6.5 gattc_write_handle (/WRH, ID=6/5)
	7.2.6.6 gattc_confirm_indication (/CI, ID=6/6)
	7.2.6.7 gattc_set_parameters (SGCP, ID=6/7)
	7.2.6.8 gattc_get_parameters (GGCP, ID=6/8)

	7.2.7 SMP group (ID=7)
	7.2.7.1 smp_query_bonds (/QB, ID=7/1)
	7.2.7.2 smp_delete_bond (/BD, ID=7/2)
	7.2.7.3 smp_pair (/P, ID=7/3)
	7.2.7.4 smp_query_random_address (/QRA, ID=7/4)
	7.2.7.5 smp_send_pairreq_response (/PR, ID=7/5)
	7.2.7.6 smp_send_passkeyreq_response (/PE, ID=7/6)
	7.2.7.7 smp_generate_oob_data (/GOOB, ID=7/7)
	7.2.7.8 smp_clear_oob_data (/COOB, ID=7/8)
	7.2.7.9 smp_set_privacy_mode (SPRV, ID=7/9)
	7.2.7.10 smp_get_privacy_mode (GPRV, ID=7/10)
	7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11)
	7.2.7.12 smp_get_security_parameters (GSBP, ID=7/12)
	7.2.7.13 smp_set_fixed_passkey (SFPK, ID=7/13)
	7.2.7.14 smp_get_fixed_passkey (GFPK, ID=7/14)

	7.2.8 L2CAP group (ID=8)
	7.2.8.1 l2cap_connect (/LC, ID=8/1)
	7.2.8.2 l2cap_disconnect (/LDIS, ID=8/2)
	7.2.8.3 l2cap_register_psm (/LRP, ID=8/3)
	7.2.8.4 l2cap_send_connreq_response (/LCR, ID=8/4)
	7.2.8.5 l2cap_send_credits (/LSC, ID=8/5)
	7.2.8.6 l2cap_send_data (/LD, ID=8/6)

	7.2.9 GPIO group (ID=9)
	7.2.9.1 gpio_query_logic (/QIOL, ID=9/1)
	7.2.9.2 gpio_query_adc (/QADC, ID=9/2)
	7.2.9.3 gpio_set_function (SIOF, ID=9/3)
	7.2.9.4 gpio_get_function (GIOF, ID=9/4)
	7.2.9.5 gpio_set_drive (SIOD, ID=9/5)
	7.2.9.6 gpio_get_drive (GIOD, ID=9/6)
	7.2.9.7 gpio_set_logic (SIOL, ID=9/7)
	7.2.9.8 gpio_get_logic (GIOL, ID=9/8)
	7.2.9.9 gpio_set_interrupt_mode (SIOI, ID=9/9)
	7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10)
	7.2.9.11 gpio_set_pwm_mode (SPWM, ID=9/11)
	7.2.9.12 gpio_get_pwm_mode (GPWM, ID=9/12)

	7.2.10 CYSPP group (ID=10)
	7.2.10.1 p_cyspp_check (.CYSPPCHECK, ID=10/1)
	7.2.10.2 p_cyspp_start (.CYSPPSTART, ID=10/2)
	7.2.10.3 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
	7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)
	7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)
	7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)
	7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)
	7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

	7.2.11 iBeacon group (ID=12)
	7.2.11.1 p_ibeacon_set_parameters (.IBSP, ID=12/1)
	7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2)

	7.2.12 Eddystone group (ID=13)
	7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1)
	7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2)

	7.3 API events
	7.3.1 Protocol group (ID=1)
	7.3.2 System group (ID=2)
	7.3.2.1 system_boot (BOOT, ID=2/1)
	7.3.2.2 system_error (ERR, ID=2/2)
	7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3)
	7.3.2.4 system_factory_test_entered (TFAC, ID=2/4)
	7.3.2.5 system_dump_blob (DBLOB, ID=2/5)

	7.3.3 DFU group (ID=3)
	7.3.3.1 device_firmware_upgrade (DFUE, ID=3/1)

	7.3.4 GAP group (ID=4)
	7.3.4.1 gap_whitelist_entry (WL, ID=4/1)
	7.3.4.2 gap_adv_state_changed (ASC, ID=4/2)
	7.3.4.3 gap_scan_state_changed (SSC, ID=4/3)
	7.3.4.4 gap_scan_result (S, ID=4/4)
	7.3.4.5 gap_connected (C, ID=4/5)
	7.3.4.6 gap_disconnected (DIS, ID=4/6)
	7.3.4.7 gap_connection_update_requested (UCR, ID=4/7)
	7.3.4.8 gap_connection_updated (CU, ID=4/8)
	7.3.4.9 gap_phy_updated(PU, ID=4/9)

	7.3.5 GATT server group (ID=5)
	7.3.5.1 gatts_discover_result (DL, ID=5/1)
	7.3.5.2 gatts_data_written (W, ID=5/2)
	7.3.5.3 gatts_indication_confirmed (IC, ID=5/3)
	7.3.5.4 gatts_db_entry_blob (DGATT, ID=5/4)

	7.3.6 GATT Client Group (ID=6)
	7.3.6.1 gattc_discover_result (DR, ID=6/1)
	7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2)
	7.3.6.3 gattc_data_received (D, ID=6/3)
	7.3.6.4 gattc_write_response (WRR, ID=6/4)

	7.3.7 SMP group (ID=7)
	7.3.7.1 smp_bond_entry (B, ID=7/1)
	7.3.7.2 smp_pairing_requested (P, ID=7/2)
	7.3.7.3 smp_pairing_result (PR, ID=7/3)
	7.3.7.4 smp_encryption_status (ENC, ID=7/4)
	7.3.7.5 smp_passkey_display_requested (PKD, ID=7/5)
	7.3.7.6 smp_passkey_entry_requested (PKE, ID=7/6)

	7.3.8 L2CAP group (ID=8)
	7.3.8.1 l2cap_connection_requested (LCR, ID=8/1)
	7.3.8.2 l2cap_connection_response (LC, ID=8/2)
	7.3.8.3 l2cap_data_received (LD, ID=8/3)
	7.3.8.4 l2cap_disconnected (LDIS, ID=8/4)
	7.3.8.5 l2cap_rx_credits_low (LRCL, ID=8/5)
	7.3.8.6 l2cap_tx_credits_received (LTCR, ID=8/6)
	7.3.8.7 l2cap_command_rejected (LREJ, ID=8/7)

	7.3.9 GPIO group (ID=9)
	7.3.9.1 gpio_interrupt (INT, ID=9/1)

	7.3.10 CYSPP group (ID=10)
	7.3.10.1 p_cyspp_status (.CYSPP, ID=10/1)

	7.3.11 iBeacon group (ID=12)
	7.3.12 Eddystone group (ID=13)

	7.4 Error codes
	7.4.1 EZ-Serial system error codes
	7.4.2 EZ-Serial GATT database validation error codes

	7.5 Macro definitions

	8 GPIO reference
	8.1 GPIO pin map for supported modules
	8.2 GPIO pin map for supported modules
	8.2.1 EZ-Serial GATT database validation error codes
	8.2.2 PWM output pins
	8.2.3 Analog input pins (ADC)

	8.3 Functional capabilities
	8.3.1 Digital interrupt detection
	8.3.2 Analog-to-digital conversion

	9 Infineon GATT profile reference
	9.1 CYSPP profile

	10 Configuration example reference
	10.1 Factory default settings
	10.2 Adopted Bluetooth® SIG GATT profile structure snippets
	10.2.1 Generic access service (0x1800)
	10.2.2 Generic attribute service (0x1801)
	10.2.3 Immediate alert service (0x1802)
	10.2.4 Link loss service (0x1803)
	10.2.5 TX power service (0x1804)
	10.2.6 Current time service (0x1805)
	10.2.7 Reference time update service (0x1806)
	10.2.8 Next DST change service (0x1807)
	10.2.9 Glucose service (0x1808)
	10.2.10 Health thermometer service (0x1809)
	10.2.11 Device information service (0x180A)
	10.2.12 Heart rate service (0x180D)
	10.2.13 Phone alert status service (0x180E)
	10.2.14 Battery service (0x180F)
	10.2.15 Blood pressure service (0x1810)
	10.2.16 Alert notification service (0x1811)
	10.2.17 Human interface device service (0x1812)
	10.2.18 Scan parameters service (0x1813)
	10.2.19 Running speed and cadence service (0x1814)
	10.2.20 Cycling speed and cadence service (0x1816)
	10.2.21 Cycling power service (0x1818)
	10.2.22 Location and navigation service (0x1819)
	10.2.23 Body composition service (0x181B)
	10.2.24 User data service (0x181C)
	10.2.25 Weight scale service (0x181D)
	10.2.26 Bond management service (0x181E)
	10.2.27 Continuous glucose monitoring service (0x181F)
	10.2.28 Environmental sensing service (0x181A)
	10.2.29 HTTP proxy service (0x1823)
	10.2.30 Apple notification center service (7905F431-B5CE-4E99-A40F-4B1E122D00D0)

	Glossary
	Revision history
	Disclaimer

