

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-39351 Rev. *B

www.infineon.com 2025-11-12

EZ-Serial firmware platform user guide for

CYW20822 module

About this document

Scope and purpose

This document describes the usage of CYW920822M2P4XXI040 -EVK.

Intended audience

This document is intended for embedded developers using the CYW920822M2P4XXI040 -EVK Evaluation Kit.

http://www.infineon.com/

User guide 2 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction ... 11
1.1 How to use this guide .. 11
1.2 Block diagram .. 12
1.3 Block diagram .. 13
1.3.1 Bluetooth® LE communication features ... 13
1.3.2 Hardware and communication features ... 13
1.3.3 Development limitations ... 13

2 Getting started ... 14
2.1 Prerequisites .. 14
2.2 Factory default behavior ... 14
2.3 Connecting a host device .. 15
2.3.1 Connecting the serial interface.. 16
2.3.2 Connecting GPIO pins .. 16
2.3.3 Connecting the CYW920822M2P4XXI040-EVK ... 17
2.4 Communicating with a host device .. 18
2.4.1 Using the API protocol in text mode .. 18
2.4.1.1 Text mode protocol characteristics ... 18
2.4.1.2 Text mode API command categories ... 19
2.4.1.3 Text mode API command categories ... 20
2.4.2 Using the API protocol in binary mode.. 22
2.4.2.1 Binary mode protocol characteristics .. 23
2.4.2.2 Binary mode API example ... 23
2.4.3 Key similarities and differences between text and binary command mode 26
2.4.4 API protocol format autodetection ... 27
2.4.5 Using CYSPP mode ... 27
2.4.5.1 Starting CYSPP operation ... 27
2.4.5.2 Sending and receiving data in CYSPP data mode .. 28
2.4.5.3 Exiting CYSPP mode .. 29
2.4.5.4 Customizing CYSPP behavior for specific needs .. 29
2.4.5.5 Understanding CYSPP connection keys ... 30
2.4.5.6 Using the CYSPP peripheral connection key .. 30
2.4.5.7 Using the CYSPP central connection key and mask .. 31
2.4.5.8 CYSPP configuration and pin states ... 32
2.5 Configuration settings, storage and protection ... 33
2.5.1 Factory, boot, runtime, and automatic settings ... 33
2.5.2 Saving runtime settings in flash .. 34
2.5.3 Protected configuration settings ... 35
2.6 Where to find related material .. 35
2.6.1 Latest EZ-Serial firmware image ... 35
2.6.2 Latest host API protocol library ... 35
2.6.3 Comprehensive API reference ... 35

3 Operational examples .. 36
3.1 System setup examples .. 36
3.1.1 How to identify the running firmware and Bluetooth® LE stack version 36

User guide 3 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

3.1.1.1 Getting version details from boot event .. 36
3.1.1.2 Getting version details from boot event .. 37
3.1.2 How to change the serial communication parameters .. 37
3.1.3 How to change the device name and appearance.. 39
3.1.4 How to change the output power .. 40
3.1.5 How to manage Sleep states ... 40
3.1.5.1 Configuring the system-wide sleep level ... 41
3.1.5.2 Configuring the CYSPP data mode sleep level ... 42
3.1.5.3 Preventing sleep with the LP_MODE pin .. 42
3.1.5.4 Preventing activity with the ATEN_SHDN pin .. 42
3.1.5.5 Avoiding UART data loss or corruption due to Deep Sleep transition 42
3.1.6 How to perform a factory reset .. 43
3.1.6.1 Factory reset via API command .. 43
3.2 Cable replacement examples with CYSPP .. 44
3.2.1 How to get started in CYSPP mode .. 44
3.2.1.1 How to start CYSPP in peripheral mode ... 45
3.2.1.2 How to start CYSPP in central mode .. 46
3.3 GAP peripheral examples .. 47
3.3.1 How to advertise as peripheral device .. 47
3.3.2 How to stop advertising as a peripheral device .. 48
3.3.3 How to customize advertisement and scan response data ... 48
3.4 GAP central examples ... 51
3.4.1 How to scan for peripheral devices ... 52
3.4.2 How to stop scanning for peripheral devices .. 54
3.4.3 How to connect to a peripheral device ... 54
3.4.4 How to cancel a pending connection to a peripheral device ... 55
3.4.5 How to disconnect from a peripheral device .. 55
3.5 GATT server examples ... 56
3.5.1 How to define custom local GATT services and characteristics ... 56
3.5.1.1 Understanding custom GATT limitations ... 56
3.5.1.2 Building custom services and characteristics .. 56
3.5.1.3 Choosing the correct GATT permissions .. 58
3.5.2 How to list local GATT services, characteristics, and descriptors .. 59
3.5.2.1 Discovering local GATT services ... 59
3.5.2.2 Discovering local GATT characteristics .. 60
3.5.2.3 Discovering local GATT descriptors .. 60
3.5.3 How to read and write local GATT attribute values .. 61
3.5.3.1 Reading local GATT data ... 61
3.5.3.2 Writing local GATT data .. 62
3.5.4 How to notify and indicate data to a remote client .. 62
3.5.4.1 Notifying data to a remote client ... 63
3.5.4.2 Indicating data to a remote client .. 63
3.5.5 How to detect and process written data from a remote client .. 64
3.6 GATT client examples .. 64
3.6.1 How to discover a remote server’s GATT structure .. 64
3.6.1.1 Discovering remote GATT services ... 65
3.6.1.2 Discovering remote GATT characteristics .. 65
3.6.1.3 Discovering remote GATT descriptors.. 66
3.6.2 How to read and write remote GATT attribute values .. 67

User guide 4 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

3.6.3 How to detect notified or indicated values from a remote GATT server .. 67
3.7 Security and encryption examples ... 68
3.7.1 How to use peripheral and central privacy ... 68
3.7.2 How to bond with or without MITM protection .. 68
3.7.2.1 Understanding I/O capabilities .. 69
3.7.2.2 Controlling automatic pairing request acceptance ... 71
3.7.2.3 Pairing and bonding in “just works” mode without MITM protection 72
3.7.2.4 Pairing and bonding with full I/O capabilities and MITM protection .. 72
3.7.2.5 Pairing and bonding with a fixed passkey.. 73
3.7.3 How to use out-of-band pairing .. 74
3.7.4 How to encrypt and decrypt arbitrary data .. 75
3.8 iBeacon examples ... 76
3.8.1 How to configure iBeacon transmissions .. 76
3.8.2 How to configure Eddystone transmissions ... 76
3.9 Performance testing examples ... 77
3.9.1 How to maximize throughput to a remote peer ... 77
3.9.1.1 How to maximize throughput to an iOS device ... 78
3.9.1.2 How to maximize throughput to an android device .. 79
3.9.2 How to minimize power consumption .. 79
3.9.2.1 How to minimize power consumption while broadcasting .. 79
3.9.2.2 How to minimize power consumption while broadcasting .. 80
3.9.3 How to communicate using an L2CAP channel .. 81
3.10 Device firmware update examples ... 83
3.10.1 How to use the DFU Bootloader over UART .. 83
3.10.2 How to upgrade firmware Over the Air (OTA) ... 83

4 Application design examples .. 84
4.1 Smart MCU host with 4-wire UART and full GPIO connections .. 84
4.1.1 Hardware design .. 84
4.1.2 Module configuration ... 84
4.1.3 Host configuration ... 84
4.2 Dumb terminal host with CYSPP and simple GPIO state indication ... 85
4.2.1 Hardware design .. 85
4.2.2 Module configuration ... 85
4.2.3 Module configuration ... 85
4.3 Module-only application with beacon functionality .. 85
4.3.1 Hardware design .. 85
4.3.2 Module configuration ... 86
4.3.3 Host configuration ... 86

5 Host API library ... 87
5.1 Host API library overview .. 87
5.1.1 High-level architecture .. 87
5.1.2 Host library design ... 87
5.2 Implementing a project using the host API library .. 88
5.2.1 Basic application architecture ... 88
5.2.2 Exposed API functions .. 89
5.2.3 Command macros .. 90
5.2.4 Convenience macros .. 90
5.3 Porting the host API library to different platforms .. 91

User guide 5 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

5.4 Using the API definition JSON file to create a custom library ... 91

6 Troubleshooting guidelines .. 92
6.1 UART communication issues .. 92
6.2 Bluetooth® LE connection issues .. 93
6.3 GPIO signal issues .. 93

7 API protocol reference ... 94
7.1 Protocol structure and communication flow ... 94
7.1.1 API protocol formats .. 94
7.1.1.1 Text format overview .. 94
7.1.1.2 Binary format overview .. 94
7.1.2 API protocol data types .. 94
7.1.3 Binary format details ... 96
7.1.3.1 Byte ordering and structure packing ... 96
7.1.3.2 Binary packet header .. 97
7.2 API commands and responses .. 98
7.2.1 Protocol group (ID=1) ... 99
7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1) .. 100
7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2) ... 101
7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3) ... 101
7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4) .. 102
7.2.2 System group (ID=2) ... 103
7.2.2.1 system_ping (/PING, ID=2/1) .. 104
7.2.2.2 system_reboot (/RBT, ID=2/2) .. 105
7.2.2.3 system_dump (/DUMP, ID=2/3) .. 106
7.2.2.4 system_store_config (/SCFG, ID=2/4)... 107
7.2.2.5 system_factory_reset (/RFAC, ID=2/5) ... 107
7.2.2.6 system_query_firmware_version (/QFV, ID=2/6) ... 108
7.2.2.7 system_query_unique_id (/QUID, ID=2/7) ... 109
7.2.2.8 system_query_random_number (/QRND, ID=2/8) .. 109
7.2.2.9 system_aes_encrypt (/AESE, ID=2/9) ... 110
7.2.2.10 system_aes_decrypt (/AESD, ID=2/10) ... 111
7.2.2.11 system_write_user_data (/WUD, ID=2/11) ... 112
7.2.2.12 system_read_user_data (/RUD, ID=2/12) ... 113
7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13) .. 114
7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14) .. 115
7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19) .. 115
7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20) ... 116
7.2.2.17 system_set_tx_power (STXP, ID=2/21) .. 117
7.2.2.18 system_get_tx_power (GTXP, ID=2/22) .. 118
7.2.2.19 system_set_transport (ST, ID=2/23) ... 119
7.2.2.20 system_get_transport (GT, ID=2/24) .. 120
7.2.2.21 system_set_uart_parameters (STU, ID=2/25) .. 121
7.2.2.22 system_get_uart_parameters (GTU, ID=2/26) ... 123
7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29) .. 124
7.2.3 DFU group (ID=3) .. 124
7.2.3.1 dfu_reboot (/CDFU, ID=3/1) .. 125
7.2.4 GAP group (ID=4) .. 126
7.2.4.1 gap_connect (/C, ID=4/1) .. 127

User guide 6 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

7.2.4.2 gap_cancel_connection (/CX, ID=4/2) .. 129
7.2.4.3 gap_update_conn_parameters (/UCP, ID=4/3) ... 130
7.2.4.4 gap_send_connupdate_response (/CUR, ID=4/4) ... 131
7.2.4.5 gap_disconnect (/DIS, ID=4/5) .. 132
7.2.4.6 gap_add_whitelist_entry (/WLA, ID=4/6) ... 133
7.2.4.7 gap_delete_whitelist_entry (/WLD, ID=4/7) ... 134
7.2.4.8 gap_start_adv (/A, ID=4/8) .. 135
7.2.4.9 gap_stop_adv (/AX, ID=4/9) .. 137
7.2.4.10 gap_start_scan (/S, ID=4/10) .. 137
7.2.4.11 gap_stop_scan (/SX, ID=4/11) ... 139
7.2.4.12 gap_query_peer_address (/QPA, ID=4/12)... 140
7.2.4.13 gap_query_rssi (/QSS, ID=4/13) .. 140
7.2.4.14 gap_query_whitelist (/QWL, ID=4/14) .. 141
7.2.4.15 gap_set_device_name (SDN, ID=4/15) ... 142
7.2.4.16 gap_get_device_name (GDN, ID=4/16) .. 143
7.2.4.17 gap_set_device_appearance (SDA, ID=4/17) ... 143
7.2.4.18 gap_get_device_appearance (GDA, ID=4/18) .. 144
7.2.4.19 gap_set_adv_data (SAD, ID=4/19) .. 145
7.2.4.20 gap_get_adv_data (GAD, ID=4/20) ... 146
7.2.4.21 gap_set_sr_data (SSRD, ID=4/21) ... 146
7.2.4.22 gap_get_sr_data (GSRD, ID=4/22) .. 147
7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23) .. 148
7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24) .. 150
7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25) ... 151
7.2.4.26 gap_get_scan_parameters (GSP, ID=4/26) .. 153
7.2.4.27 gap_set_conn_parameters (SCP, ID=4/27) .. 154
7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28) ... 155
7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29) ... 156
7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30) .. 159
7.2.4.31 gap_start_legacy_coded_adv (/CA, ID=4/31) .. 162
7.2.4.32 gap_stop_legacy_coded_adv(/CAX, ID=4/32) .. 165
7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33) ... 166
7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34) ... 167
7.2.4.35 gap_start_legacy_coded_scan(/CS, ID=4/35) .. 169
7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36) .. 171
7.2.4.37 gap_phy_update (/UP, ID=4/37) ... 171
7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38) .. 172
7.2.4.39 gap_get_extended_adv_data (GEAD, ID=4/39) ... 174
7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40) .. 175
7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41) ... 176
7.2.5 GATT server group (ID=5) ... 177
7.2.5.1 gatts_create_attr (/CAC, ID=5/1) .. 177
7.2.5.2 gatts_delete_attr (/CAD, ID=5/2) .. 180
7.2.5.3 gatts_validate_db (/VGDB, ID=5/3)... 181
7.2.5.4 gatts_store_db (/SGDB, ID=5/4) ... 182
7.2.5.5 gatts_dump_db (/DGDB, ID=5/5) .. 183
7.2.5.6 gatts_discover_services (/DLS, ID=5/6) .. 184
7.2.5.7 gatts_discover_characteristics (/DLC, ID=5/7) ... 185
7.2.5.8 gatts_discover_descriptors (/DLD, ID=5/8) .. 186

User guide 7 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

7.2.5.9 gatts_read_handle (/RLH, ID=5/9) .. 187
7.2.5.10 gatts_write_handle (/WLH, ID=5/10) .. 188
7.2.5.11 gatts_notify_handle (/NH, ID=5/11) ... 189
7.2.5.12 gatts_indicate_handle (/IH, ID=5/12) ... 190
7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13) ... 191
7.2.5.14 gatts_set_parameters (SGSP, ID=5/14) .. 192
7.2.5.15 gatts_get_parameters (GGSP, ID=5/15) ... 193
7.2.5.16 gatts_service_active (/SACT, ID=5/16) ... 193
7.2.5.17 gatts_service_handle_reset (/RSHL, ID=5/17) ... 194
7.2.6 GATT client group (ID=6) .. 195
7.2.6.1 gattc_discover_services (/DRS, ID=6/1) ... 195
7.2.6.2 gattc_discover_characteristics (/DRC, ID=6/2) .. 196
7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3) ... 197
7.2.6.4 gattc_read_handle (/RRH, ID=6/4) ... 198
7.2.6.5 gattc_write_handle (/WRH, ID=6/5) ... 199
7.2.6.6 gattc_confirm_indication (/CI, ID=6/6) .. 200
7.2.6.7 gattc_set_parameters (SGCP, ID=6/7).. 201
7.2.6.8 gattc_get_parameters (GGCP, ID=6/8) ... 202
7.2.7 SMP group (ID=7) .. 203
7.2.7.1 smp_query_bonds (/QB, ID=7/1) .. 203
7.2.7.2 smp_delete_bond (/BD, ID=7/2) ... 204
7.2.7.3 smp_pair (/P, ID=7/3) .. 205
7.2.7.4 smp_query_random_address (/QRA, ID=7/4) .. 206
7.2.7.5 smp_send_pairreq_response (/PR, ID=7/5) ... 207
7.2.7.6 smp_send_passkeyreq_response (/PE, ID=7/6) .. 208
7.2.7.7 smp_generate_oob_data (/GOOB, ID=7/7) .. 209
7.2.7.8 smp_clear_oob_data (/COOB, ID=7/8) ... 210
7.2.7.9 smp_set_privacy_mode (SPRV, ID=7/9) ... 211
7.2.7.10 smp_get_privacy_mode (GPRV, ID=7/10) .. 212
7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11) .. 212
7.2.7.12 smp_get_security_parameters (GSBP, ID=7/12) ... 214
7.2.7.13 smp_set_fixed_passkey (SFPK, ID=7/13) ... 216
7.2.7.14 smp_get_fixed_passkey (GFPK, ID=7/14) .. 217
7.2.8 L2CAP group (ID=8) .. 218
7.2.8.1 l2cap_connect (/LC, ID=8/1) ... 218
7.2.8.2 l2cap_disconnect (/LDIS, ID=8/2) ... 220
7.2.8.3 l2cap_register_psm (/LRP, ID=8/3) ... 221
7.2.8.4 l2cap_send_connreq_response (/LCR, ID=8/4) ... 222
7.2.8.5 l2cap_send_credits (/LSC, ID=8/5) ... 223
7.2.8.6 l2cap_send_data (/LD, ID=8/6) ... 224
7.2.9 GPIO group (ID=9) ... 225
7.2.9.1 gpio_query_logic (/QIOL, ID=9/1) ... 226
7.2.9.2 gpio_query_adc (/QADC, ID=9/2) ... 227
7.2.9.3 gpio_set_function (SIOF, ID=9/3) ... 228
7.2.9.4 gpio_get_function (GIOF, ID=9/4) ... 229
7.2.9.5 gpio_set_drive (SIOD, ID=9/5) .. 229
7.2.9.6 gpio_get_drive (GIOD, ID=9/6) .. 230
7.2.9.7 gpio_set_logic (SIOL, ID=9/7) ... 231
7.2.9.8 gpio_get_logic (GIOL, ID=9/8) ... 232

User guide 8 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

7.2.9.9 gpio_set_interrupt_mode (SIOI, ID=9/9) .. 233
7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10) ... 234
7.2.9.11 gpio_set_pwm_mode (SPWM, ID=9/11) ... 234
7.2.9.12 gpio_get_pwm_mode (GPWM, ID=9/12) .. 236
7.2.10 CYSPP group (ID=10) .. 237
7.2.10.1 p_cyspp_check (.CYSPPCHECK, ID=10/1) .. 237
7.2.10.2 p_cyspp_start (.CYSPPSTART, ID=10/2) ... 238
7.2.10.3 p_cyspp_set_parameters (.CYSPPSP, ID=10/3) ... 239
7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, ID=10/4) .. 241
7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5) ... 242
7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6) ... 243
7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7).. 244
7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8) ... 247
7.2.11 iBeacon group (ID=12).. 248
7.2.11.1 p_ibeacon_set_parameters (.IBSP, ID=12/1) ... 249
7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2) .. 250
7.2.12 Eddystone group (ID=13) ... 251
7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1) ... 252
7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2) .. 253
7.3 API events .. 254
7.3.1 Protocol group (ID=1) ... 254
7.3.2 System group (ID=2) ... 255
7.3.2.1 system_boot (BOOT, ID=2/1) .. 255
7.3.2.2 system_error (ERR, ID=2/2) ... 256
7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3) ... 256
7.3.2.4 system_factory_test_entered (TFAC, ID=2/4) .. 257
7.3.2.5 system_dump_blob (DBLOB, ID=2/5) .. 257
7.3.3 DFU group (ID=3) .. 258
7.3.3.1 device_firmware_upgrade (DFUE, ID=3/1) .. 258
7.3.4 GAP group (ID=4) .. 259
7.3.4.1 gap_whitelist_entry (WL, ID=4/1) ... 259
7.3.4.2 gap_adv_state_changed (ASC, ID=4/2) .. 260
7.3.4.3 gap_scan_state_changed (SSC, ID=4/3) .. 261
7.3.4.4 gap_scan_result (S, ID=4/4) .. 261
7.3.4.5 gap_connected (C, ID=4/5) ... 263
7.3.4.6 gap_disconnected (DIS, ID=4/6) ... 264
7.3.4.7 gap_connection_update_requested (UCR, ID=4/7) .. 265
7.3.4.8 gap_connection_updated (CU, ID=4/8) ... 266
7.3.4.9 gap_phy_updated(PU, ID=4/9) ... 267
7.3.5 GATT server group (ID=5) ... 267
7.3.5.1 gatts_discover_result (DL, ID=5/1) ... 268
7.3.5.2 gatts_data_written (W, ID=5/2) .. 269
7.3.5.3 gatts_indication_confirmed (IC, ID=5/3) .. 270
7.3.5.4 gatts_db_entry_blob (DGATT, ID=5/4) ... 271
7.3.6 GATT Client Group (ID=6) ... 273
7.3.6.1 gattc_discover_result (DR, ID=6/1) ... 273
7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2) ... 275
7.3.6.3 gattc_data_received (D, ID=6/3) ... 276
7.3.6.4 gattc_write_response (WRR, ID=6/4) ... 277

User guide 9 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

7.3.7 SMP group (ID=7) .. 277
7.3.7.1 smp_bond_entry (B, ID=7/1) .. 278
7.3.7.2 smp_pairing_requested (P, ID=7/2) ... 278
7.3.7.3 smp_pairing_result (PR, ID=7/3) .. 279
7.3.7.4 smp_encryption_status (ENC, ID=7/4) ... 280
7.3.7.5 smp_passkey_display_requested (PKD, ID=7/5) ... 281
7.3.7.6 smp_passkey_entry_requested (PKE, ID=7/6)... 282
7.3.8 L2CAP group (ID=8) .. 282
7.3.8.1 l2cap_connection_requested (LCR, ID=8/1) .. 283
7.3.8.2 l2cap_connection_response (LC, ID=8/2) .. 283
7.3.8.3 l2cap_data_received (LD, ID=8/3) .. 284
7.3.8.4 l2cap_disconnected (LDIS, ID=8/4) .. 285
7.3.8.5 l2cap_rx_credits_low (LRCL, ID=8/5) ... 285
7.3.8.6 l2cap_tx_credits_received (LTCR, ID=8/6) ... 286
7.3.8.7 l2cap_command_rejected (LREJ, ID=8/7).. 287
7.3.9 GPIO group (ID=9) ... 287
7.3.9.1 gpio_interrupt (INT, ID=9/1) ... 287
7.3.10 CYSPP group (ID=10) .. 288
7.3.10.1 p_cyspp_status (.CYSPP, ID=10/1) ... 288
7.3.11 iBeacon group (ID=12).. 289
7.3.12 Eddystone group (ID=13) ... 289
7.4 Error codes... 289
7.4.1 EZ-Serial system error codes ... 289
7.4.2 EZ-Serial GATT database validation error codes .. 296
7.5 Macro definitions ... 297

8 GPIO reference .. 298
8.1 GPIO pin map for supported modules .. 298
8.2 GPIO pin map for supported modules .. 298
8.2.1 EZ-Serial GATT database validation error codes .. 299
8.2.2 PWM output pins .. 300
8.2.3 Analog input pins (ADC) ... 301
8.3 Functional capabilities .. 301
8.3.1 Digital interrupt detection ... 301
8.3.2 Analog-to-digital conversion ... 301

9 Infineon GATT profile reference .. 302
9.1 CYSPP profile ... 302

10 Configuration example reference .. 303
10.1 Factory default settings .. 303
10.2 Adopted Bluetooth® SIG GATT profile structure snippets ... 304
10.2.1 Generic access service (0x1800)... 304
10.2.2 Generic attribute service (0x1801) ... 305
10.2.3 Immediate alert service (0x1802) .. 305
10.2.4 Link loss service (0x1803) ... 305
10.2.5 TX power service (0x1804) ... 305
10.2.6 Current time service (0x1805) .. 305
10.2.7 Reference time update service (0x1806) ... 306
10.2.8 Next DST change service (0x1807) ... 306
10.2.9 Glucose service (0x1808) .. 306

User guide 10 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822

module

Table of contents

10.2.10 Health thermometer service (0x1809) ... 306
10.2.11 Device information service (0x180A) ... 307
10.2.12 Heart rate service (0x180D) .. 307
10.2.13 Phone alert status service (0x180E) ... 307
10.2.14 Battery service (0x180F) ... 308
10.2.15 Blood pressure service (0x1810) .. 308
10.2.16 Alert notification service (0x1811) ... 308
10.2.17 Human interface device service (0x1812).. 309
10.2.18 Scan parameters service (0x1813) ... 309
10.2.19 Running speed and cadence service (0x1814) .. 309
10.2.20 Cycling speed and cadence service (0x1816) .. 310
10.2.21 Cycling power service (0x1818).. 310
10.2.22 Location and navigation service (0x1819) ... 310
10.2.23 Body composition service (0x181B) .. 311
10.2.24 User data service (0x181C) ... 311
10.2.25 Weight scale service (0x181D) .. 312
10.2.26 Bond management service (0x181E) ... 312
10.2.27 Continuous glucose monitoring service (0x181F) ... 313
10.2.28 Environmental sensing service (0x181A) ... 313
10.2.29 HTTP proxy service (0x1823) .. 315
10.2.30 Apple notification center service (7905F431-B5CE-4E99-A40F-4B1E122D00D0) 316

Glossary ... 317

Revision history... 319

Disclaimer... 320

User guide 11 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Introduction

1 Introduction

This document provides a complete guide to the EZ-Serial platform on Infineon Bluetooth® modules. The guide
covers the following:

• Infineon Serial Port Profile (CYSPP) UART-to-Bluetooth® LE bridge functionality

• GPIO status and control connections

• GAP central and peripheral operation

• GATT server and client data transfer

• L2CAP connections

• Customizable GATT structures

• Security features such as encryption, pairing, and bonding

• Beacon behavior with iBeacon and Eddystone

• API protocol allowing full control over all of these behaviors from an external host

1.1 How to use this guide

Depending on the context, navigate to the section most relevant to you as follows:

If you want to know… Do this

System description and functional overview See Introduction and Getting started sections

Firmware configuration examples See Operational examples

Complete design examples See Application design examples

API protocol implementations for external MCU See Host API library

Troubleshooting guides See Troubleshooting guidelines

Reference material See the following sections:

• API protocol reference

• GPIO reference

• Infineon GATT profile reference

• Configuration example reference

The following approach offers an advantageous method for quickly acquiring familiarity with EZ-Serial

firmware:

Introduction and Getting started provide the functional overview.

Operational examples at least one example that is relevant to the intended design. Follow the described

configuration on a development kit for a true hands-on experience. The following examples provide excellent

out-of-the-box feature demonstrations:

− How to get started in CYSPP mode with zero custom configuration

− How to define custom local GATT services and characteristics

− How to detect and process written data from a remote client

− How to bond with or without MITM protection

− How to configure iBeacon transmissions

− How to update firmware using the DFU bootloader

User guide 12 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Introduction

Application design examples at least one design example that is similar to the type of system you intend to use
an EZ-Serial-based Infineon Bluetooth® module with, especially noting the functional capabilities provided by

the configuration and GPIO connections.

Host API library explains you how the external MCU communicates with the module if you are combining EZ-

Serial with an external host microcontroller.

Troubleshooting guidelines provides you with the guidelines to follow when you have the issues in using the

interface.

Note that the reference material available in this document to allow fast access to additional information and
resources available from Infineon. When in doubt, always consult the API reference for helpful information and

related content concerning any API command, response, or event.

Throughout the guide, you will find API methods referenced in the following format:

gpio_set_drive (SIOD, ID=9/5)

These links contain three important parts:

• Proper descriptive name (for example, “gpio_set_direction”), unique among all other methods

• Text-mode name (for example, “SIOD”), applicable when using the API protocol in text mode (see the Using
the API protocol in text mode section)

• Group/method ID values (for example, “9/5”), present in the 4-byte header when using the API protocol in
binary mode (see the Using the API protocol in binary mode section)

Click on any linked API method for detailed reference material in the API protocol reference section.

1.2 Block diagram

The EZ-Serial platform is built on top of Bluetooth® modules from Infineon. Depending on the specific

application, this platform may utilize an external host device such as a microcontroller (MCU) connected to the

module via UART, GPIO pins, or both. Infineon Bluetooth® modules communicate with a remote device using

the Bluetooth® Low Energy (Bluetooth® LE) protocol.

Bluetooth® Module

Host

UART

GPIO

Bluetooth®
Radio

EZ-Serial Firmware

API Protocol
Parser/Generator

Bluetooth® Low-Energy
Stack

EZ-Serial Platform Manager

Remote
Peer

Figure 1 EZ-Serial system block diagram

User guide 13 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Introduction

1.3 Block diagram

EZ-Serial provides an easy way to access the most commonly needed hardware and communication features in
Bluetooth® LE-based applications. To accomplish this, the firmware implements an intuitive API protocol over
the UART interface and exposes a number of status and control signals through the module’s GPIO pins.

1.3.1 Bluetooth® LE communication features

The firmware has the following Bluetooth® LE-related features:

• Bluetooth® 5.0 support on compatible modules

• Central and peripheral connection roles

• Central, peripheral, broadcaster, and observer GAP roles

• Client and server GATT roles

• Customizable GATT database definition

• Direct L2CAP connectivity for maximum throughput

• Encryption, bonding, and protection from man-in-the-middle (MITM) threats

• CYSPP mode for bidirectional serial data transmission

• UART and over-the-air (OTA) bootloader for firmware updates

• iBeacon and Eddystone beaconing

• Remote firmware configuration

• Efficient low-power operation

1.3.2 Hardware and communication features

The EZ-Serial platform also implements a number of features that rely on internal chipset features and local
interfaces:

• Flexible text-mode and binary-mode API protocols

• GPIO reading, writing, and interrupt detection

• On-demand ADC conversion

• Configurable PWM output

• Access to internal AES encryption and decryption engine

• Access to internal pseudo-random number generator

• UART wake-on-RX support

Note: The external 32 kHz LPO is mandatory or CYW20822 does not work in Low-power mode.

1.3.3 Development limitations

This build EZ-Serial does not support the customer firmware image. This can only support the customer
firmware update that Infineon released by OTA or UART loader.

For details on where to find these images, see the Latest EZ-Serial firmware image section.

User guide 14 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2 Getting started

EZ-Serial allows for rapid integration of Bluetooth® LE wireless communication into your designs. Its support

for multiple API protocol formats enables easy testing of functions by typing commands into a serial terminal
from your computer. Once the intended functionality is confirmed, the same behavior can be achieved with a
compact binary protocol on a host microcontroller.

2.1 Prerequisites

For a streamlined experience, ensure that you have the following parts available:

• CYW920822M2P4XXI040-EVK Evaluation Kit

• Computer with serial terminal software such as Tera Term, Realterm, or PuTTY

• Optional: Bluetooth® LE-capable mobile device such as an iPad, iPhone, or Android phone or tablet

The CYW920822M2P4XXI040-EVK Evaluation Kit contains two evaluation boards with built-in USB-to-UART

bridges.

Note: The maximum baud rate of CYW20822 is 1 MHz.

You can control EZ-Serial over a UART interface without additional GPIOs. For more details, see the Application

design examples section. However, we recommend using the CYW920822M2P4XXI040-EVK for the best
experience learning and prototyping due to its comprehensive design and peripheral support.

2.2 Factory default behavior

The following shows the default configuration of EZ-Serial firmware:

1. UART interface configured for 115200 baud, 8 data bits, no parity, 1 stop bit.

2. UART flow control disabled (signals from the module are not generated, signals from the host are ignored).

3. Protocol parser/generator operating in text mode with local echo enabled.

4. CYSPP serial data transfer profile enabled in autostart mode.

5. All optional GPIO status/control pin functions are enabled in pull up/down mode (not strong drive).

When the module is powered on or reset, it will generate the system_boot (BOOT, ID=2/1) API event. This
is only one example of one API method used by the platform; see the API protocol reference for details on the
structure and behavior of the API protocol.

The boot event will appear similar to this, if the protocol generator is in the default text mode:

@E,003B,BOOT,E=0101011A,S=05040001,P=0103,H=40,C=01,A=00A050421A63

This text-mode string of data indicates:

1. @E – an event has occurred.

2. 003B – there are 59 bytes (0x3B) of content to follow

3. BOOT – the event which occurred is the BOOT event

4. E=0101011A – the EZ-Serial application version is 1.1.1 build 26 (0x1A)

5. S=05040001 – the Bluetooth® LE stack component version is 5.4.0 build 1.

6. P=0001 – the protocol version is 1.0

7. H=40 – the hardware platform is CYW920822-P4TAI040

https://www.infineon.com/cms/en/product/evaluation-boards/cyw920822m2p4tai040-evk/?redirId=268727

User guide 15 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

8. C=01 – the cause for this boot/reset is standard power-cycle or XRES
hardware signal

9. A=00A050421A63 – the random Bluetooth® MAC address of this module is 00:A0:50:42:1A:63.

Note: The version data and MAC address shown here are examples only. Actual values may differ.

Once the system boots, EZ-Serial will automatically start the CYSPP connection process by advertising as

peripheral device based on the configuration. In the peripheral role, the gap_adv_state_changed (ASC,

ID=4/2) API event will follow the boot event:

@E,000E,ASC,S=01,R=03

In the central role, the gap_scan_state_changed (SSC, ID=4/3) API event will occur after the boot event,
potentially followed by one or more scan result events:

@E,000E,SSC,S=01,R=03

@E,0062,S,R=00,A=00A050421650,T=00,S=CE,B=00,D=020106110700A1...

A central-mode scan will continue until it finds a compatible peer, and then EZ-Serial will automatically initiate

a connection and set up the CYSPP data pipe and enter data mode upon completion. To change this behavior,

you must either reconfigure the module using the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API

command.

For more details on CYSPP configuration and behavior, see the following sections:

• Using CYSPP mode

• Cable replacement examples with CYSPP

For more details on GPIO references, see the GPIO reference section.

2.3 Connecting a host device

EZ-Serial communicates with an external host device such as a microcontroller using serial data (UART) and

simple GPIO signals for status and control. Depending on your application, you may need to use one, both, or

neither of these in your final design. The Application design examples section describes each of these use cases.

User guide 16 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.3.1 Connecting the serial interface

You can also connect your own host or USB adapter for UART communication. The module’s UART interface

uses standard true-type logic (TTL) signals, with logic LOW at the GND (0 V) level and logic HIGH at the VDD level
(typically 3.3 V or 5 V depending on the chosen module power supply). This is necessary for high-throughput
tests, which require flow control.

Note: Do not connect the module directly to RS-232 signals. This will damage the device.

EZ-Serial’s UART interface has two required signals for data and two optional signals for flow control, if

enabled:

• Required: RXD – Receive data (input), connect to host TXD (output)

• Required: TXD – Transmit data (output), connect to host RXD (input)

• Optional: RTS – Module-side flow control (output), connect to host CTS (input)

• Optional: CTS – Host-side flow control (input), connect to host RTS (output)

See the GPIO pin map for supported modules section for pin-to-function correlations.

The default port settings are 115200 baud, 8 data bits, no parity, and one stop bit. Flow control is supported but

must be specifically enabled if desired.

You can change these settings using the system_set_uart_parameters (STU, ID=2/25) API command.
UART transport settings are protected, which means they cannot be written to flash until they have first been

applied to RAM. This prevents unintentional communication lockouts. See the Protected configuration settings
section for details concerning protected settings.

If you experience any problems communicating over the serial interface, see the Troubleshooting guidelines

section for solutions to common issues.

2.3.2 Connecting GPIO pins

EZ-Serial also supports GPIO connections for status signals (output) and control signals (input). These allow
more flexible hardware design choices and more efficient operation than what the serial interface alone
provides.

The firmware provides eight single-function pins for status and control, aside from the two or four pins used for
UART communication. All of these pin functions are enabled by default, but many can be disabled with the

gpio_set_function (SIOF, ID=9/3) API command. Disabling the special functions on these pins allows
you to use them for GPIO and manual interrupt detection.

Table 1 summarizes the functions provided by these pins. For additional information including module-specific

pin assignments, operational side-effects, and default logic states, see the GPIO pin map for supported
modules section.

User guide 17 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

 GPIO function summary

Pin name Direction Optional* Functional description

LP_MODE Input No Low-power mode control. Assert (LOW) to prevent sleep, de-assert

(HIGH) to allow sleep.

CYSPP Input No CYSPP mode control. Assert (LOW) for CYSPP data mode, de-assert

(HIGH) for command mode.

Asserting this pin will begin CYSPP operation in the configured role
even if the CYSPP profile is disabled in the platform configuration. For

more details, see the Using CYSPP mode section.

CONNECTION Output Yes Connection indicator. Asserted (LOW) when a Bluetooth® LE

connection is established, de-asserted (HIGH) upon disconnection.

When CYSPP data mode is active with the CYSPP pin in the asserted
(LOW) state, the CONNECTION pin is asserted only when a remote

device has connected and completed the CYSPP GATT data

characteristic subscription, indicating that the bidirectional data pipe
is ready. It is de-asserted when data can no longer flow, either due to

disconnection or because the data characteristic subscription is

ended.

By default, the pins noted as output are not strongly driven, but instead are internally pulled to the indicated

states with approximately 5.6 kΩ. This prevents unintentional damage in cases where the initial power-on state
of an externally connected device’s pins could otherwise result in a direct short between opposite supply lines.

Since this can result in unexpected behavior with some external devices that have equal or stronger pulls in

input mode, you can change the drive mode of special-function output pins to use strong drive instead with the

gpio_set_function (SIOF, ID=9/3) API command. Only the UART_TX pin is strongly driven by default,
because it cannot function properly with any other configuration.

For more details on GPIO functionality, see the GPIO reference section.

2.3.3 Connecting the CYW920822M2P4XXI040-EVK

When using the recommended evaluation kit for prototyping, simply connect the mini-USB cable between your
PC and the main board. Ensure that the EZ-Serial-compatible evaluation module is securely plugged into the

receptacle. This provides power to the module and a communication interface (UART) via the kit’s onboard
PSoC™ 5LP microcontroller. Once you have connected the cable and allowed any necessary drivers to install,

two new virtual COM ports will become available, as shown in Figure 2.

Figure 2 Virtual serial port from CYW920822M2P4XXI040

User guide 18 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

You can then use this serial port in any compatible application on your PC, such as Tera Term, Realterm, or
PuTTY.

Note: Connect the two serial ports with 115200, 8, N, 1. Press SW2 to reset the device and the primary
serial port will output the following BOOT message: @E,003B,BOOT,E=FIRMWARE VERSION,S=SDK

VERSION,P=PROTOCOL VERSION,H=HARDWARE ID,C=BOOT CAUSE,A=DEVICE ADDRESS

2.4 Communicating with a host device

Once you have connected a host to the module via the serial interface, you can send and receive data. EZ-Serial
supports two different modes of communication: command mode (API protocol communication and control)

and CYSPP mode (transparent wireless cable replacement to remote device). The following sections describe
these modes in detail.

The active communication mode depends on the state of the CYSPP pin, which can be one of three options:

• CYSPP pin externally de-asserted (HIGH): command mode (text or binary)

• CYSPP pin externally asserted (LOW): CYSPP mode

• CYSPP pin left floating: command mode until activating CYSPP data pipe, then CYSPP mode

Ensure that the CYSPP pin is in the intended state at boot time to achieve the desired behavior. If you assert this

pin, the API parser and generator become inactive, because all serial data is piped through the Bluetooth® LE
connection (once established). You will experience what appears to be a lack of communication if you attempt

to send API commands to the module while in CYSPP mode.

2.4.1 Using the API protocol in text mode

EZ-Serial implements a text-mode API protocol which allows full control of the platform using human-readable
commands, responses, and events. This mode is the default setting from the factory to provide the fastest
possible path to rapid prototyping. Commands are typed using short codes, and responses and events come

back with predictable timing and formats.

2.4.1.1 Text mode protocol characteristics

The text mode protocol has the following general behaviors:

• Commands sent from the host must be terminated with a carriage return (0x0D) or line feed (0x0A) byte, or
both

• Commands begin with ‘/’ (forward slash), ‘S’, ‘G’, or ‘.’ to indicate ACTION, SET, GET, or PROFILE commands,

respectively.

• Commands are always immediately followed by a corresponding response, if they are parsed correctly

• Commands with multiple arguments allow the arguments to be supplied in any order

• Commands with multiple arguments do not require all arguments to be present in most cases; SET
commands with some arguments omitted will leave non-set values unchanged, and ACTION commands
with some arguments omitted will fall back to the default platform settings relevant for those arguments.

User guide 19 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Commands with syntax errors are followed by the system_error (ERR, ID=2/2) API event with an error
code indicating the nature of the problem, rather than a response packet (see the Error codes section).

• All numeric data must be entered in hexadecimal notation, without prefixes (“0x”) or signs (“+” or “-”);

negative numbers should be entered in two’s complement form (for example, -1 = FF, -16 = F0, -128 = 80)

• All multi-byte numeric data is entered and expressed in big-endian byte order (for example, 0x12345678 is
“12345678”)

• Text command codes and hexadecimal data are not case-sensitive

• New command entry in text mode must start with a printable ASCII character (0x20 – 0x7E), or the byte will
be ignored. This requirement allows a wider range of “dummy” byte options when using wake-on-RX.

• Responses always begin with “@R,” followed by a 16-bit “length” value describing the number of bytes that

come after the four length characters (including the comma), followed by the response text code

• Responses always include a “result” value as the first parameter after the text code, indicating success or
failure

• Events always begin with “@E,” followed by a 16-bit “length” value similar to responses described above

− Responses and events are terminated with carriage return (0x0D) and line feed (0x0A) bytes

− Lines beginning with a “#” symbol are treated as comments and discarded by the parser

2.4.1.2 Text mode API command categories

There are four main categories of commands in text mode: ACTION, SET, GET, and PROFILE. These all use the
same basic syntax, but execute different types of behavior.

 Text mode command categories

Category Features

ACTION ACTION commands trigger operations that cannot persist across resets or power-cycles, with very
few exceptions. They accomplish things such as connection establishment, querying of GPIO logic

states, entry into advertisement mode, and remote GATT discovery and data transfer.

The exceptions to the “current session only” rule are these:

• system_store_config (/SCFG, ID=2/4), used to write all modified settings to flash
immediately

• system_factory_reset (/RFAC, ID=2/5), used to clear all modified settings and reset the
module

• system_write_user_data (/WUD, ID=2/11), used to write arbitrary user data to a
dedicated section of flash

• gatts_create_attr (/CAC, ID=5/1), used to add custom GATT database attributes

• gatts_delete_attr (/CAD, ID=5/2), used to remove custom GATT database attributes

• smp_pair (/P, ID=7/3), used to initiate pairing, resulting in new bonding data stored in

flash

• smp_delete_bond (/BD, ID=7/2), used to delete an existing bond, altering data stored in
flash

SET SET commands affect configuration settings that control many types of behavior, but do not

typically trigger immediate changes to the operational state like ACTION commands do.

Every argument in a SET command may be stored in non-volatile (flash) memory so that it persists
across power-cycles. Modified settings are stored in RAM only by default, and you must use the

/SCFG command to write them to flash. In text mode, you can also invoke a SET command with a

User guide 20 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Category Features

‘$’ after the text code (for example, “SDN$,N=...”) to cause that change to be written to both

RAM and flash immediately.

A small number of SET commands also manage protected settings, which are those that can affect
core chipset operation and communication. For these settings, you cannot write changed values

directly to flash without first performing a separate write to RAM only. This prevents accidental
changes that are difficult to undo. For more details on this behavior, see the Protected

configuration settings section.

GET GET commands provide the ability to read all settings that can be changed with SET commands.
There is a corresponding GET command for every SET command found in the protocol with

matching parameters returned in the response.

Like SET commands, GET commands return data from the RAM-stored configuration structure by

default. However, using the ‘$’ after the text code will cause the flash-stored data to be returned

instead.

A few GET commands are similar in name to related ACTION commands such as “GIOL” (get GPIO

logic settings) and “/QIOL” (query GPIO logic state). Keep in mind that GET/SET commands

concern user-defined settings, while ACTION commands concern immediate behavior changes.
Always see the API reference material when in doubt about the intended use and behavior of any

API method.

PROFILE PROFILE commands configure the behavior of special built-in behaviors, such as CYSPP data
mode and iBeacon and Eddystone beaconing. Depending on the profile, these commands may

perform actions or get or set configuration values as described for the previous three command

types.

For more information on these command categories and behaviors, see the configuration hierarchy in Factory,
boot, runtime, and automatic settings and the material in API protocol reference.

2.4.1.3 Text mode API command categories

The easiest way to use text command mode is with a serial terminal application. You can use any application of
this kind, as long as it works with standard serial ports and can be configured to open the port with the proper

baud rate, flow control, and other settings. Figure 3 shows an example session using factory default firmware
and the PuTTY terminal application, starting with the system_boot (BOOT, ID=2/1) API event and
demonstrating a few commands, responses, and other events.

Figure 3 Text command mode session with PuTTY

User guide 21 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Table 3 describes the various protocol methods shown in Figure 3.

 Text mode communication example

Direction Content Detail

←RX @E,003B,BOOT,E=0101011A,S=05040001,

P=0001,H=05,C=01,A=00A050421A63
system_boot (BOOT, ID=2/1) API event

received:

• app = 1.1.1 build 26

• stack = 5.4.0 build 01

• protocol = 1.3

• hardware = CYBLE-2120XX-X0 module

• boot cause = power-on/XRES

• MAC address = 00:A0:50:42:1A:63

←RX @E,000E,ASC,S=01,R=03 gap_adv_state_changed (ASC, ID=4/2) API

event received:

• state = 1 (active)

• reason = 3 (CYSPP operation)

TX→ /ping system_ping (/PING, ID=2/1) API command
sent to ping the local module to verify proper

communication.

←RX @R,001D,/PING,00000000, R=00000003,

F=32D1
system_ping (/PING, ID=2/1) API response

received:

• result = 0 (success)

• runtime = 3 seconds

• fraction = 13009/32768 seconds

TX→ gdn gap_get_device_name (GDN, ID=4/16) API
command sent to get the configured device

name.

←RX @R,001E,GDN,0000,N=EZ-

Serial 42:1A:63
gap_get_device_name (GDN, ID=4/16) API

response received:

• result = 0 (success)

• name = “EZ-Serial 42:1A:63”

←RX @E,0035,C,C=01,A=00A050421650,T=00,

I=0006,L=0000,O=0064,B=00
gap_connected (C, ID=4/5) API event

received:

• conn_handle = 1

• peer = 00:A0:50:42:16:50

• addr_type = 0 (public)

• interval = 6 (7.5 ms)

• slave_latency = 0

• supervision_timeout = 0x64 (100 = 1 second)

• bond = 0 (not bonded)

←RX @E,001E,W,C=01,H=001B,T=00,D=0200 gatts_data_written (W, ID=5/2) API event

received:

User guide 22 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Direction Content Detail

• conn_handle = 1

• attr_handle = 0x1B (27)

• type = 0 (simple write)

• data = 2 bytes [02 00]

TX→ badcmd Invalid API command sent to demonstrate text

mode error event.

←RX @E,000B,ERR,0203 system_error (ERR, ID=2/2) API event

received:

• reason = 0x0203 (Unrecognized Command)

See the reference material in the API protocol reference section for details on each of these API methods and
text-mode syntax rules.

2.4.2 Using the API protocol in binary mode

EZ-Serial also implements a binary-format API protocol that allows the same control of the platform using

compact binary commands, responses, and events. This mode is typically preferable when controlling the EZ-
Serial-based module from an external microcontroller. The binary byte stream is much easier to parse and

generate from MCU application code than human-readable text strings.

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure

comprises a 4-byte header followed by an optional payload, terminating with a checksum byte. The payload

carries information related to the command, response, or event. If present, this payload always comes
immediately after the header and before the checksum byte.

 Binary packet structure

Header Payload (optional) Checksum

[0] Type [1] Length [2] Group [3] ID [4...N-1] Parameter(s) [N] Summation

The checksum byte is calculated by starting from 0x99 and adding the value of each header and payload byte,

rolling over back to 0 (instead of 256) to stay within the 8-bit boundary. The checksum byte itself is not included
in the summation process. For the example 4-byte binary packet for the system_ping (/PING, ID=2/1) API
command:

C0 00 02 01

Calculate the checksum as follows:

0x99 + 0xC0 + 0x00 + 0x02 + 0x01 = 0x15C

Retain only the final lower 8 bits (0x5C) for the 1-byte checksum value. The final 5-byte packet (including

checksum) is:

C0 00 02 01 5C

The structure above allows a packet parser implementation to know exactly how much data to expect in
advance anytime a new packet begins to arrive, and to calculate the checksum as new bytes arrive.

User guide 23 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

The “Type” byte in the header contains information not only about the packet type (the highest two bits), but
also the memory scope (where applicable), and the highest three bits of the 11-bit “Length” value. For details

on the binary packet format and flow, see the API structural definition in the Protocol structure and
communication flow section.

2.4.2.1 Binary mode protocol characteristics

The binary mode protocol has the following general behaviors:

• Commands sent from the host must begin with a properly formatted 4-byte header

• Commands must contain the number of payload bytes specified in the Length field from the header

• Commands must end with a valid checksum byte, but no additional termination such as NULL or carriage

return

• Commands are always immediately followed by a response, if they are parsed correctly

• Commands require all arguments to be supplied in the binary payload according to the protocol structural

definition, in the right order (no arguments are optional)

• Commands with syntax errors are followed by a system_error (ERR, ID=2/2) API event with an error

code indicating the nature of the problem, rather than a response packet

• Commands must be fully transmitted within one second of the first byte, or the parser will time out and

return to an idle state after triggering the system_error (ERR, ID=2/2) API event with a timeout error

code

• All multi-byte integer data is entered and expressed in little-endian byte order (for example, 0x12345678 is
[78 56 34 12]). Note that this only applies to API method arguments and parameters with a fixed width—1, 2,

or 4-byte integers, and 6-byte MAC addresses.

• All multi-byte data passed inside a variable-length byte array (uint8a or longuint8a) remains in the original

order provided by the source. This includes UUID data found during GATT discovery. If unsure, consult the
API reference manual to verify the argument data type.

− Response payloads always begin with a 16-bit “result” value as the first parameter, indicating success or

failure of the command triggering the response

− The binary command header includes a single bit in the first byte that performs the same duty as the ‘$’
character in text mode, to cause changed settings to be written to flash immediately instead of just RAM

2.4.2.2 Binary mode API example

The easiest way to use binary command mode is with a host MCU or other application that has a complete

parser and generator implementation available, such as the host API library provided by Infineon and discussed

in the Host API library section.

However, it is also possible to test individual commands manually with a serial terminal application capable of
entering and displaying binary data. Figure 4 shows an example of this type of test using Realterm, including
hexadecimal representation of data. There is no local echo when binary mode is used, so the screenshot does
not show the command packets sent to the module. To assist in identifying the packet types and boundaries,

responses are colored cyan, events are yellow, and the final checksum byte of each packet is red.

User guide 24 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Figure 4 Binary command mode session with Realterm

Note: This is helpful for testing, but not an efficient way to communicate in binary mode.

Each binary packet (including the checksum byte) is described in Table 5. For better comparison between text
mode and binary mode, the API transactions demonstrated here are the same as those used in the text mode

example. Note that multibyte integer data such as the 6-byte MAC address and the 16-bit advertisement

interval are transmitted in little-endian byte order.

 Binary mode communication example

Direction Content Detail

←RX 80 12 02 01 1A 01 01 01 35 00

03 03 03 01 05 01 63 1A 42 50

A0 00 3F

system_boot (BOOT, ID=2/1) API event received:

• app = 1.1.1 build 26

• stack = 3.3.0 build 53

• protocol = 1.3

• hardware = CYBLE-2120XX-X0 module

• boot cause = power-on/XRES

• MAC address = 00:A0:50:42:1A:63

←RX 80 02 04 02 01 03 25 gap_adv_state_changed (ASC, ID=4/2) API event

received:

• state = 1 (active)

• reason = 3 (CYSPP operation)

TX→ C0 00 02 01 5C (not visible) system_ping (/PING, ID=2/1) API command sent

to ping the local module to verify proper communication

User guide 25 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Direction Content Detail

←RX C0 08 02 01 00 00 03 00 00 00

47 42 F0
system_ping (/PING, ID=2/1) API response

received:

• result = 0 (success)

• runtime = 3 seconds

• fraction = 16967/32768

TX→ C0 00 04 10 6D (not visible) gap_get_device_name (GDN, ID=4/16) API

command sent to get the configured device name

←RX C0 15 04 10 00 00 12 45 5A 2D

53 65 72 69 61 6C 20 34 32 3A

31 41 3A 36 33 95

gap_get_device_name (GDN, ID=4/16) API

response received:

• result = 0 (success)

• name = “EZ-Serial 42:1A:63”

←RX 80 0F 04 05 04 50 16 42 50 A0

00 00 06 00 00 00 64 00 00 37
gap_connected (C, ID=4/5) API event received:

• handle = 4

• peer = 00:A0:50:42:16:50

• addr_type = 0 (public)

• interval = 6 (7.5 ms)

• slave_latency = 0

• supervision_timeout = 0x64 (100 = 1 second)

• bond = 0 (not bonded)

←RX 80 0A 05 02 04 1F 00 00 04 00

11 22 33 44 FB
gatts_data_written (W, ID=5/2) API event

received:

• conn_handle = 4

• attr_handle = 0x1F (31)

• type = 0 (simple write)

• data = 4 bytes [11 22 33 44]

TX→ C0 00 EE EE 35 (not visible) Invalid API command (group and ID bytes set to 0xEE)

sent to demonstrate binary mode error event

←RX 80 02 02 02 03 02 24 system_error (ERR, ID=2/2) API event received:

• reason = 0x0203 (Unrecognized Command)

See the reference material in the API protocol reference section for details concerning each of these API
methods and the binary packet format, including information on all header fields and supported data types.

User guide 26 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.3 Key similarities and differences between text and binary command

mode

The text-mode and binary-mode protocol formats provided by EZ-Serial each have their own advantages. As a

general guideline, text mode is better for initial development or one-time configuration, while binary mode is a
better choice for production-stage control from an external host device due to the significantly less complex

parser/generator implementation on an external host. The following lists contain important factors to consider
when choosing which mode to use.

Similarities are:

• Both modes access the same internal API functionality. They are not different protocols, only different

formats.

• Both follow the same command/response/event flow

• EZ-Serial supports both simultaneously. There is no need to switch between firmware images.

• Your choice of protocol format only affects local communication with an external host over the wired serial
interface. It does not have any impact on data sent over a wireless Bluetooth® LE connection, or on the type

of host communication used on a remote device (example, another Infineon module running EZ-Serial
firmware).

Differences are:

• Binary multibyte integer data is transmitted in little-endian byte order for more efficient direct memory

structure mapping on most common platforms, while text mode uses big-endian for easier left-to-right

readability

• Binary commands have a one-second timeout, while text mode commands have no timeout

• Binary commands are semantically organized by functional group (system, protocol, GAP, GATT server, and

so on) rather than the four categories used in text mode (ACTION, SET, GET, and PROFILE)

• Binary commands require all arguments in every case, while text mode commands often have optional

arguments that fall back to default/preset values if omitted

• Binary packets include basic checksum validation, while text mode packets do not

• Binary is more efficient for MCU-based communication, while text mode is easier for manual entry in a
terminal

• Binary commands are never echoed back to the host, while text mode commands are (by default)

User guide 27 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.4 API protocol format autodetection

EZ-Serial uses text mode for API protocol communication by default, but you can change this setting with the
protocol_set_parse_mode (SPPM, ID=1/1) API command. If “binary” mode is specified and written to
flash, the module will use binary mode automatically on subsequent resets or power-cycles.

The parser also automatically detects whether the external host is using binary or text mode, and temporarily
switches to the detected mode for the active session. The detection logic behaves in the following way:

• If the parser is in text mode, a byte received at any time with the two most significant bits set (0xC0-0xFF)
will switch the parser to binary mode immediately. The “trigger” byte will not be discarded, but will be
processed as the first byte in the command packet. This mechanism is considered safe because no valid

text-mode command begins with a byte that has the highest two bits set.

• If the parser is in binary mode, a byte received when the parser is idle (not mid-command) that is one of the
initial category characters for any of the four types of commands (‘/’, ‘S’, ‘G’, and ‘.’) will switch the parser to
text mode immediately. The “trigger” byte will not be discarded, but will be processed as the first byte in the

text command string. This mechanism is considered safe because no binary command begins with one of

these characters. Note that this requires the parser to be idle, not in the middle of a packet, because a
binary command packet could easily have one of these characters in its header or payload.

The automatically detected parse mode is not retained across power-cycles, nor is it stored in the same

configuration setting area as a value explicitly set by the protocol_set_parse_mode (SPPM, ID=1/1) API
command. For more detail on this type of temporary configuration, see the Factory, boot, runtime, and
automatic settings section.

2.4.5 Using CYSPP mode

EZ-Serial implements a special CYSPP profile that provides a simple method to send and receive serial data

over a Bluetooth® LE connection. This operational mode is separate from the normal command mode where
the API protocol may be used. When CYSPP data mode is active, any data received from an external host will be

transmitted to the remote peer, and any data received from the remote peer will be sent out through the
hardware serial interface to the external host.

2.4.5.1 Starting CYSPP operation

You can start CYSPP mode using any of these three methods:

• Assert (LOW) the CYSPP pin externally, ensuring that you have configured the desired GAP role. You may

connect this pin to the ground in hardware designs that only require CYSPP operation and never need API

communication.

• Use the p_cyspp_start (.CYSPPSTART, ID=10/2) API command. You can use this command to enter
CYSPP mode even if the CYSPP profile is disabled in the platform configuration.

• Have a remote GATT client connect and subscribe to the CYSPP acknowledged data characteristic (enabling

indications) or unacknowledged data characteristic (enabling notifications). This method will only enter
CYSPP mode if the CYSPP profile is enabled in the platform configuration.

When starting CYSPP mode locally using either the CYSPP pin or the p_cyspp_start (.CYSPPSTART,
ID=10/2) API command, the data pipe will not be immediately available because the remote device must still
connect and set up the proper GATT data subscriptions. If 100% data delivery is required in this context, the

host should monitor the CONNECTION pin to determine when it is safe to begin sending data from the host for

Bluetooth® LE transmission. Once the CONNECTION pin is asserted while the CYSPP pin is also asserted, the
host may send and receive data over CYSPP.

User guide 28 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Note: Externally asserting (LOW) the CYSPP pin will always begin CYSPP operation, even if the profile has
been disabled in the platform configuration via the p_cyspp_set_parameters (.CYSPPSP,

ID=10/3) API command. If you do not require CYSPP operation, you should ensure that this pin
remains electrically floating or externally de-asserted (HIGH).

2.4.5.2 Sending and receiving data in CYSPP data mode

Once you have started CYSPP mode, the EZ-Serial platform will take care of the rest of the connection process
and data pipe construction on the module side. If you are using modules running EZ-Serial firmware on both
ends of the connection, then simply start CYSPP mode with complementary roles (peripheral on one end,
central on the other), and the modules will automatically connect and prepare the data pipe using the

following processes.

A non-Infineon device such as a Bluetooth® LE-enabled smartphone will frequently be used for one end of the
connection, and you must configure it to follow the same procedure.

For configuration examples in each mode, see the Cable replacement examples with CYSPP section.

If you have configured CYSPP to operate in peripheral mode:

1. EZ-Serial will begin advertising with configured advertisement settings.

2. Upon connection, a remote peer must subscribe to one of the two “Data” characteristics:

3. Acknowledged Data, enable indications (guaranteed reliability).

4. Unacknowledged Data, enable notifications (faster potential throughput).

5. Remote peer may optionally subscribe to the “RX Flow Control” characteristic, to allow the server

communicate whether it is safe to write new data or not.

6. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive

data.

7. The data pipe will remain open until the central device disconnects or unsubscribes from the data
characteristic, or the CYSPP pin is de-asserted locally.

If you have configured CYSPP to operate in central mode:

1. EZ-Serial will begin scanning with configured scan settings, searching for a connectable remote peer that

includes the CYSPP service UUID and matching connection key within its advertisement packet payload.

2. Upon identifying a suitable peer, it will initiate a connection to that peer with configured connection
settings.

3. Upon connection, it will perform a remote GATT discovery to identify the relevant CYSPP service,
characteristic, and descriptor attribute handles, if you have not manually set them already with the

p_cyspp_set_client_handles (.CYSPPSH, ID=10/5) API command.

4. Upon successful completion of GATT discovery, it will subscribe to the configured data characteristic and

the RX Flow Control characteristic (if enabled). Use the client flags setting of the
p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command to control acknowledged vs.
unacknowledged data and RX flow usage.

5. EZ-Serial will assert the CONNECTION pin (if enabled), indicating that CYSPP is ready to send and receive

data.

The data pipe will remain open until the peripheral device disconnects, or the CYSPP pin is deasserted locally.

User guide 29 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.5.3 Exiting CYSPP mode

Once in CYSPP mode, the API parser is logically disconnected from incoming serial data, so you will not be able
to send any commands to the module. However, you can still exit from CYSPP in two ways:

• Deassert (HIGH) the CYSPP pin externally

• Have the remote GATT client unsubscribe from the relevant CYSPP data characteristic (only applies when
the CYSPP pin is not externally asserted)

EZ-Serial returns to command mode if the CYSPP operation ends.

Note: It is not possible to use an API command to exit from CYSPP data mode, because the API parser is

not available while in this mode. If your design needs to switch between modes on demand,

include external access to the CYSPP pin so you can control the operational mode.

2.4.5.4 Customizing CYSPP behavior for specific needs

While the default behavior is suitable in many cases, there are configuration settings that allow a great deal of
control over this behavior. The following list describes which options can be changed, and how to do so:

1. CYSPP mode uses the system’s configured UART host transport settings for sending and receiving serial

data. To change these settings, use the system_set_uart_parameters (STU, ID=2/25) API

command.

2. CYSPP mode uses the system’s configured radio transmit power setting for all Bluetooth® LE
communication. To change this setting, use the system_set_tx_power (STXP, ID=2/21) API

command.

3. CYSPP mode supports special incoming data packetization modes starting in EZ-Serial v1.1. This helps
make radio transmissions and data delivery more efficient in a variety of use cases. To change these

settings, use the p_cyspp_set_packetization (.CYSPPSK, ID=10/7) API command.

4. When operating in peripheral mode, CYSPP uses the system’s configured advertisement parameters,

including the advertisement and scan response packet content (which may be based on the device name)

and the system’s whitelist. To change these settings, use one or more of the following API commands:

− gap_set_adv_parameters (SAP, ID=4/23)

− gap_set_adv_data (SAD, ID=4/19)

− gap_set_sr_data (SSRD, ID=4/21)

− gap_set_device_name (SDN, ID=4/15)

5. When operating in central mode, CYSPP uses the system’s configured scanning and connection parameters,

including the system’s whitelist. To change these settings, use one or more of the following API commands:

− gap_set_scan_parameters (SSP, ID=4/25)

− gap_set_conn_parameters (SCP, ID=4/27)

User guide 30 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.5.5 Understanding CYSPP connection keys

EZ-Serial also supports CYSPP connection keys, which improve usability in environments where multiple
CYSPP-capable devices are operating in an automated configuration. This feature allows an advertising
peripheral device to broadcast an arbitrary 4-byte value that a scanning device can filter against, searching
either for a masked range of devices or a single specific device.

CYSPP connection keys are not set in the factory default configuration; CYSPP peripheral advertisements
contain a “0” key, and CYSPP central scans do not attempt to match any bits. To change this, use the
p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command, and specifically the “local_key”,

“remote_key”, and “remote_mask” arguments of this command as described in the following sections.

2.4.5.6 Using the CYSPP peripheral connection key

The CYSPP peripheral connection key affects only the content of the advertisement packet while the module is

in an advertising state. The CYSPP peripheral role does not include any filtering behavior; filtering is left to the

scanning device that is operating in the CYSPP central role.

When the CYSPP profile is enabled, the platform-managed advertising packet contains a special Manufacturer
Data field to hold the local connection key value. It is not stored elsewhere, such as in a GATT characteristic.

This advertisement packet field has the following structure:

 CYSPP peripheral connection key manufacturer data field structure

Length Type Company ID Connection Key

07 FF b0 b1 b0 b1 b2 b3

The Company ID value is a 16-bit value that the Bluetooth® SIG assigns to member companies that have

requested them (see resources on Bluetooth® webpage for more details). The factory default value is the
Infineon company identifier, 0x0131, but you can change this with the same command used to change other

CYSPP parameters. Note that both the Company ID and the Connection Key values are broadcast in little-
endian byte order.

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit
value for the “local_key” argument to apply a new peripheral connection key. Changes will take effect

immediately, even if the module is already advertising in the CYSPP peripheral role.

Note: EZ-Serial will only incorporate the CYSPP peripheral connection key into the advertising packet if
you have not enabled user-defined advertisement content. If you have configured user-defined
advertisement content instead as described in the How to customize advertisement and scan

response data section, changing this value will have no effect. Ensure that your user-defined
advertisement packet contains an equivalent field to allow scanning devices to filter properly.

 Update CYSPP peripheral key to 0x11223344

Direction Content Effect

TX→ .CYSPPSP,L=11223344 Apply new CYSPP configuration

←RX @R,000E,.CYSPPSP,0000 Response indicates success

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

User guide 31 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.5.7 Using the CYSPP central connection key and mask

The CYSPP central connection key affects the scanning operation that occurs when CYSPP is active in the
central role and has not yet connected to a remote peer. The central connection key has two parts:

Note: remote_key – the value used for comparison with the peripheral key from the advertisement
packet

Note: remote_mask – the bitmask used to strip away any irrelevant bits from the peripheral key before

comparison

For EZ-Serial to initiate a connection to a CYSPP peripheral device, the “remote_key” value must match with
the advertised peripheral connection key after a logical AND operation with the “remote_mask” value. A mask
with all bits set (“FFFFFFFF”) will require an exact match between the two keys, while a mask with no bits set
(“00000000”) will match any device. The factory default configuration is the all-zero mask, so any CYSPP-

capable peer will match. The mask values between these two extremes provide the option to connect only to

devices within specific segments of the connection key space, much like an IP-based network. Table 8 provides

examples of each case.

 Connection key and mask examples

Remote Key Remote Mask Key & Mask Result

11223344 FFFFFFFF 11223344 Connect to a device whose key is exactly “11223344”

55667788 FFFFFF00 55667700 Connect to any device whose key begins with “556677”

12345789 FFFF0000 12340000 Connect to any device whose key begins with “1234”

18F7A9CC FFFF00FF 18F700CC Connect to any device whose key begins with “18F7” and ends

with “CC”

Any 00000000 00000000 Connect to any device

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit

values for the “remote_key” and “remote_mask” arguments to apply a new central connection key and mask.
Changes to these values will take effect immediately, even if the module is already scanning in the CYSPP

central role.

Note: If an advertising peripheral device is broadcasting the CYSPP service UUID but does not also have
a Manufacturer Data field containing a connection key in the same advertisement packet, the

value “0” will be substituted for an actual key for the purpose of filtering on the scanning device.

 Update CYSPP central key to 0x11223344 and require exact matching

Direction Content Effect

TX→ .CYSPPSP,R=11223344,M=FFFFFFFF Apply new CYSPP configuration

←RX @R,000E,.CYSPPSP,0000 Response indicates success

User guide 32 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

2.4.5.8 CYSPP configuration and pin states

Table 10 describes the relationship between the state of the CYSPP pin and the CYSPP firmware configuration
managed with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. Note these two key
behaviors concerning hardware control vs. software control:

• Asserting the CYSPP pin externally will always trigger automatic CYSPP operation in the configured role

• CYSPP data mode (where the API is suppressed and all serial data is channeled to the remote peer)
ultimately depends on the state of the CYSPP pin. EZ-Serial pulls this pin to the appropriate logic level
based on internal CYSPP state changes when CYSPP is enabled, but you can override the pulled state with

an external host or hardware design feature.

 CYSPP configuration and pin relationship

CYSPP pin

state

CYSPP “enable”

value in configuration

CYSPP operation

Floating
(assumed

default)

Disabled Inactive. All advertising, scanning, connections, GATT
subscriptions, GATT transfers, etc. occur via API commands and

events. CYSPP GATT structure is not visible to a remote client.

 Enabled Idle until start. When started via the p_cyspp_start
(.CYSPPSTART, ID=10/2) API command, module will begin

advertising or scanning depending on configured role. API events
(boot, stage changes, connections, etc.) will be visible over UART

until the CYSPP data connection is opened between the local
device and remote peer. The CYSPP pin will be pulled LOW when

this occurs, at which point the API will be suppressed and the
serial interface may be used only for CYSPP data pipe. This mode

will continue until the remote host disconnects or unsubscribes.

 Autostart

(factory default)

Automatic. Same behavior as “Enabled” case above, except
CYSPP operation begins automatically at boot time and restarts

upon disconnection.

Externally
driven HIGH

(de-asserted)

Disabled Inactive. All advertising, scanning, connections, GATT
subscriptions, GATT transfers, etc. occur via API commands and

events. CYSPP GATT structure is not visible to a remote client.

Enabled Idle until start, command mode retained. When started via the
p_cyspp_start (.CYSPPSTART, ID=10/2) API command,

module will begin advertising or scanning depending on

configured role. API events (BOOT, stage changes, connections,
etc.) will be visible over UART. API communication will continue
throughout the process; CYSPP data from the remote host will

never be raw/transparent unless the host asserts the CYSPP pin.

Autostart Automatic. Same behavior as “Enabled” case above, except
CYSPP operation begins automatically at boot time and restarts

upon disconnection. API events will continue to be visible while

CYSPP pin is de-asserted (HIGH).

User guide 33 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

CYSPP pin

state

CYSPP “enable”

value in configuration

CYSPP operation

Externally
driven LOW

(asserted)

Does not matter Active regardless of firmware configuration. Automatic
advertising or scanning will begin at boot time depending on

configured role. API events (boot, state changes, connections,
and so on.) will not be visible over UART, because API
communication is always suppressed when CYSPP pin is

asserted.

2.5 Configuration settings, storage and protection

The EZ-Serial platform provides methods to customize its many built-in functions. It is important to understand
how these settings are stored and changed in different contexts to avoid unexpected behavior.

2.5.1 Factory, boot, runtime, and automatic settings

EZ-Serial implements four different “layers” of configuration data, each of which serves a unique purpose.

Table 11 describes each type of configuration storage in detail.

 Configuration setting storage layers

Layer Details

Factory

(FLASH)

Description:

Factory-level settings are hard-coded into the firmware image and stored in flash, and cannot
be changed independently by the user. They are used for runtime-level settings until/unless

customized boot-level values exist. Using the system_factory_reset (/RFAC, ID=2/5)

API command will revert to these values.

Content:

These values contain only platform configuration settings, but no custom GATT structure

definitions or value data.

Data retention during chipset reset: YES

These values are retained upon power cycles and chipset reset conditions.

Data retention during DFU: VERSION-SPECIFIC

These values may change during the DFU process if updating to a new EZ-Serial image with

different factory default values.

Boot

(FLASH)

Description:

Boot-level settings are set by the user and stored in flash, and applied to the runtime-level area
for active use when the module boots. (If no customized boot-level settings have been set by
the user, the factory-level settings are applied instead upon first boot.) These values can be

modified using API commands, and they are erased when performing a factory reset.

Content:

These values contain both platform configuration settings and any custom GATT structure

definitions. Actual GATT characteristic values such as those written by a remote client are not

included in this data.

Data retention during chipset reset: YES

These values are retained during power cycles and chipset reset conditions.

Data retention during DFU: YES

User guide 34 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Layer Details

These values are retained during the DFU process. Boot-level configuration data is kept in a
special “user data” area of flash, which is excluded during updates to new EZ-Serial firmware

images.

Runtime

(RAM)

Description:

Runtime-level settings are used as the active configuration set that controls EZ-Serial’s
behavior at all times, with a few exceptions as noted in the following “Automatic” section. API
commands that set or get configuration values access this layer of configuration data unless

explicitly noted otherwise.

Content:

These values contain platform configuration settings, custom GATT structure definitions, and

GATT characteristic values written from a remote client.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions. Any runtime

settings or GATT database structure definitions should be written to flash with the relevant API

command(s) before performing a reset.

Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to

image transfer.

Automatic

(RAM)

Description:

Automatic settings are set by the firmware based on detected external behavior, and EZ-Serial

uses these values to augment the settings in the runtime configuration block. Currently, only

one setting falls into this category:

API parse mode (binary or text mode depending on initial packet byte)

Content:

These values contain a very limited subset of auto-detected configuration settings, and do not

include most configuration data or any GATT structure or value data.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions.

Data retention during DFU: NO

These values are not retained during the DFU process, which involves a chipset reset prior to

image transfer.

2.5.2 Saving runtime settings in flash

Storing settings in flash memory is critical to allow predictable, long-term customized behavior without

needing to reconfigure each time. EZ-Serial provides two ways to accomplish this:

• Use the system_store_config (/SCFG, ID=2/4) API command to write all current runtime-level

settings to the boot-level configuration. This applies a snapshot of the current configuration to flash in one

step. It is simpler than the alternative if you are unsure which settings have changed between boot-level
and runtime-level values, or if you want to test out a new set of options before making them permanent.

• Set the “flash” memory scope bit in the binary command packet header when writing new configuration
values with relevant commands, or append the ‘$’ character to command names in text mode. This is

simpler than the alternative if you know exactly which settings need to be changed, since it does not require
the final use of the system_store_config (/SCFG, ID=2/4) API command afterward.

User guide 35 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Getting started

Note that while the flash memory scope bit (in binary mode) or ‘$’ character (in text mode) may be used with
any command, doing so is only relevant for commands that either read or write configuration values directly.

For other commands, these flags will be silently ignored. For more details on API reference material, see the API
protocol reference section.

To ensure the longest flash memory life, writes to flash should be as infrequent as possible in production-ready
designs. Settings that must be changed frequently should be modified in RAM and only written to flash if
required. Note, the internal chipsets used in the Infineon Bluetooth® modules that run EZ-Serial have a

minimum flash endurance rating of 100,000 cycles.

2.5.3 Protected configuration settings

To help avoid this potential problem, a few settings are classified as protected. This means that they must be

changed at the runtime level only (RAM) before they may be applied to the boot-level (flash) area. Currently,
only one command affects protected settings:

system_set_uart_parameters (STU, ID=2/25)

The changes that are most likely to cause an unintended communication lockout are serial transport

reconfigurations, such as selecting a baud rate that is not supported by the host. To store new values in flash

for protected configuration settings, you must either send the same command twice with the flash memory

scope bit/character used only the second time. This forces the flash write to occur using the new configuration,
which can only occur if communication is still possible.

2.6 Where to find related material

This guide refers to firmware images and example source code files that must be accessed separately from this

document.

2.6.1 Latest EZ-Serial firmware image

You can find the latest available EZ-Serial firmware image files on Infineon’s website:

• AIROC™ Wi-Fi & Bluetooth® EZ-Serial Module Firmware Platform

These images are suitable for bootloader updates over Bluetooth® LE in the case of target devices. For more
details on how to flash these firmware images onto target modules, see the Device firmware update examples

section.

2.6.2 Latest host API protocol library

You can find the latest host API protocol library source code on Infineon’s website:

• AIROC™ Wi-Fi & Bluetooth® EZ-Serial Module Firmware Platform

2.6.3 Comprehensive API reference

While this guide contains many specific functional examples, these are not intended to provide a full reference
to all possible functionality provided by the API. For more details on the API structure and protocol, see the API
protocol reference section.

https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/?redirId=VL1275&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-software
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/?redirId=VL1275&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-software

User guide 36 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3 Operational examples

EZ-Serial provides a great platform on which to build a wide variety of Bluetooth® LE applications. The

following sections describe many common operations that you can experiment with or combine together to
create the behavior needed for your application.

3.1 System setup examples

These examples demonstrate the basic platform behavior and configuration of the system.

Note: The first example (see Table 14) provides low-level detail and explanation of some API protocol

formatting features, while all other examples assume a basic understanding of the mechanics of

the protocol and will only show example snippets in text format. For detail on the API methods

used in each case and the binary equivalents of each command, response, and event, see the API
protocol reference section.

3.1.1 How to identify the running firmware and Bluetooth® LE stack version

The EZ-Serial firmware, Bluetooth® LE stack, and protocol version details can be obtained from the API event
generated at boot time, or on demand using an API command.

3.1.1.1 Getting version details from boot event

Capture and process the system_boot (BOOT, ID=2/1) API event that occurs when the module is powered

on or reset. This event includes the application version, stack version, protocol version, boot cause, and unique

Bluetooth® MAC address.

If the protocol parser/generator is in text mode (factory default), the system_boot (BOOT, ID=2/1) API

event looks like this:

@E,003B,BOOT,E=0101011A,S=05040001,P=0001,H=40,C=01,A=00A050421A63

If the protocol parser is in binary mode, this event will be similar to that shown below, expressed in
hexadecimal notation:

Header Payload Checksum

80 12 02 01 1A 01 01 01 35 00 03 03 03 01 05 01 63 1A 42 50 A0 00 3F

To simplify manual interpretation in this guide, individual parameters within the payload are separately

underlined.

Note: In text mode, multibyte integer data is expressed in big-endian notation, while in binary mode,
multibyte integer data is transmitted in little-endian order.

The payload data in the event text/binary examples shown above is described in Table 12.

User guide 37 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Payload details for boot event

Text code Text data Binary data Details Interpretation

E “0101011A” 1A 01 01 01 EZ-Serial application version Version 1.1.1 build 26

(0x1A)

S “05040001” 05 04 00 01 Bluetooth® LE stack version Version 5.4.0 build 01

P “0001” 01 00 API protocol version Version 1.0

H “40” 05 Hardware ID CYW20822

C “01” 01 Cause for boot event Power-cycle/XRES

A “00A050421A63” 63 1A 42 50 A0

00

MAC address 00:A0:50:42:1A:63

3.1.1.2 Getting version details from boot event

Use the system_query_firmware_version (/QFV, ID=2/6) API command to request version details at

any time. The response to this command contains the same initial information in the system_boot (BOOT,
ID=2/1) API event, but it does not include the boot cause or the module’s Bluetooth® MAC address.

The folllwing shows the text-mode response to this API command:

@R,002C,/QFV,0000,E= 010402FF,S=05040001,P=0001,H=40

The following shows the binary-mode response packet :

Header Payload Checksum

C0 0D 02 06 00 00 FF 02 04 01 01 00 04 05 01 00 40 BF 7A

To simplify manual interpretation in this guide, individual parameters within the payload are separately
underlined.

3.1.2 How to change the serial communication parameters

Use the system_set_uart_parameters (STU, ID=2/25) API command to reconfigure the serial interface

used for host communication. This command affects protected settings, and therefore it must be applied in

RAM first before it can be written to flash.

All data entered via text mode must be expressed in hexadecimal notation. Table 13 lists common baud rates
and their hexadecimal equivalents:

 Common UART baud rates and hex equivalents

Baud rate Hex equivalent

300 12C

9,600 2580

19,200 4B00

115,200 (default) 1C200

230,400 38400

460,800 70800

1000000 F4240

User guide 38 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Note: EZ-Serial supports non-standard baud rates not listed in Table 13, and should remain below 3%
clock error due to the use of an internal fractional clock divider. While this is within the tolerance

level required by many UART interfaces, you should measure the actual bit timing with a scope or
logic analyzer to verify that the baud rate is operating within the required tolerance for your host

device.

Note: The USB-to-UART bridge provided by the CYW920822M2P4XXI040-EVK’s PSoC™ 5LP microcontroller
supports configurable baud rates and parity/stop bits, but does not support flow control. It is also
limited to 115200 baud to remain within typical clock tolerances. Connect an external UART device
or MCU to the module’s UART data and flow control pins if you wish to use flow control or faster

baud rates. See the Connecting the serial interface section for detailed instructions and specific
requirements for proper functionality when connecting an external UART device to the
CYW920822M2P4XXI040-EVK.

Note: Selecting a baud rate below 9600 and using API protocol communication can result in a situation
where EZ-Serial generates API response and event packets faster than the UART interface can

transmit them to the host. If this occurs, data will flow continuously out of the module, but it will
not respond to incoming commands. The most likely trigger for this situation is a scan started with

gap_start_scan (/S, ID=4/10), or autostarting CYSPP client mode operation (which also
begins a scan). Performing a scan in a busy environment will generate scan result events rapidly

and continuously.

Possible workarounds include:

• If using CYSPP, keep the CYSPP pin externally asserted to suppress API output

• If possible, select a faster baud rate

• If possible, reduce the quantity of devices in the environment to decrease scan result frequency

 Example 1: Set UART to 9600 baud, no parity, flow control enabled, and store in flash

Direction Content Effect

TX→ STU,B=2580,F=1 Set new UART parameters (RAM only) – “38400” decimal is “9600” hex

←RX @R,0009,STU,0000 Response indicates success

Change host UART parameters to match the new settings here before sending additional data

TX→ STU$ Write UART settings to flash

←RX @R,000A,STU$,0000 Response indicates success

Note the use of the command “STU$” with no additional arguments. In text mode, most SET commands have

no required arguments, allowing you to change only the desired settings. Optional arguments that are omitted
will not be modified, because the EZ-Serial platform substitutes the current runtime values as if you had
supplied all of them.

In the above example, the “baud,” “flow,” and “parity” settings are stored in RAM with the first command, and

then the second command writes to flash whichever runtime values are affected by the
system_set_uart_parameters (STU, ID=2/25) API command.

User guide 39 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 2: Set UART to 115200 baud, no parity, flow control disabled, and store in RAM only

Direction Content Effect

TX→ STU,B=1C200,F=0 Apply new UART parameters

←RX @R,0009,STU,0000 Response indicates success

3.1.3 How to change the device name and appearance

Use the gap_set_device_name (SDN, ID=4/15) API command to set a new friendly device name at any

time, and the gap_set_device_appearance (SDA, ID=4/17) API command to set a new appearance
value.

EZ-Serial uses the device name and appearance to populate the GAP service’s name and appearance
characteristic values in the GATT database. If EZ-Serial is allowed to automatically manage the advertisement
and scan response data content (default behavior), then it will also include up to 29 bytes of the device name in

the scan response packet. (The limit of 29 bytes is due to a Bluetooth® LE specification limit on the maximum

scan response payload, which is 31 bytes; the other two bytes are needed for the field length and field type
values that are part of the device name field.)

Note: EZ-Serial limits the device name length to 64 bytes to minimize internal SRAM requirements.

Using EZ-Serial’s special macro codes, described in the Macro definitions section, you can enter a single text
string that is expanded internally to include module-specific values – in this case, the Bluetooth® MAC address.

The device appearance value is a 16-bit field made up of a 10-bit and 6-bit subfield. Allowed values are defined

by the Bluetooth® SIG and can be found at Bluetooth® webpage.

Changes made to the device name and appearance values take effect immediately. They are written to the local

GATT characteristics for these two values (always present), and the device name is updated in the scan
response packet if user-defined advertisement content has not been enabled with the
gap_set_adv_parameters (SAP, ID=4/23) API command.

 Example 1: Set device name with partial MAC address incorporation

Direction Content Effect

TX→ SDN$,N=EZ-Serial

%M4:%M5:%M6
Set new device name in flash using 4th, 5th, and 6th MAC bytes

(module-specific)

←RX @R,000A,SDN$,0000 Response indicates success

This configured name will result in an actual name of “EZ-Serial E3:83:5F” assuming the module in use has a
MAC address of 00:A0:50:E3:83:5F (as is used in other examples throughout this document).

 Example 2: Set device appearance to “Generic Computer” (0x0080)

Direction Content Effect

TX→ SDA$,A=0080 Set new appearance value in flash

←RX @R,000A,SDA$,0000 Response indicates success

https://www.bluetooth.com/develop-with-bluetooth/

User guide 40 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.1.4 How to change the output power

Use the system_set_tx_power (STXP, ID=2/21) API command to set a new radio transmit power level.
The argument to this command is not the dBm value directly, but rather a set of predefined values representing
a fixed range from -18 dBm to +3 dBm. Table 18 lists each allowed value.

 Supported TX power output options

Argument Power level

1 –20 dBm

2 –10 dBm

3 –6 dBm

4 –4 dBm

5 –2 dBm

6 (default) 0 dBm

7 2 dBm

8 4 dBm

See each module’s datasheet for details about these restrictions.

 Example 1: Set output power to -6 dBm

Direction Content Effect

TX→ STXP,P=3 Set new TX power (RAM only)

←RX @R,000A,STXP,0000 Response indicates success

3.1.5 How to manage Sleep states

EZ-Serial manages transitions between active CPU and sleep states automatically. It chooses the mode requiring

the lowest safe power consumption according to the current operational state and configuration, including

transitioning into sleep mode between Bluetooth® LE radio events (advertising, scanning, or while connected).
Table 20 provides a high-level summary of the four power states used by the platform.

 EZ-Serial power states

Power mode Current range (typical),

Vdd = 3.3 V to 5.0 V

Wake-up

time

Description

Active 235 µA n/a CPU and all peripherals are active.

Sleep 222 µA 0 CPU Idle. Bluetooth® LE Deep Sleep. This state is

useful when data need to be processed but does not

need to be transmitted.

Deep Sleep 6.5 µA 12 ms 128 KB SRAM retained. All register/flip-flop states are

retained. Digital I/O’s will hold the state.

Hibernate 2.5 µA 180 ms Powers down system memory. It retains only a

minimal amount of flip-flop state.

EZ-Serial uses the maximum allowed sleep level based on combined data from the system-wide sleep setting,
CYSPP data mode sleep setting (if CYSPP data mode is active), PWM output state, and LP_MODE pin state.

User guide 41 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

In outline form, the Sleep state logic follows this process:

1. If the LP_MODE pin is asserted, remain in active mode. Otherwise:

2. Select the lowest value (0 = no sleep, 1 = normal sleep, 2 = deep sleep) among the following:

a) The system sleep level is configured with the system_set_sleep_parameters (SSLP, ID=2/19) API
command.

b) The CYSPP-specific sleep level is configured with the p_cyspp_set_parameters (.CYSPPSP,

ID=10/3) API command, if the CYSPP data pipe is open (connected and in CYSPP data mode).

c) Normal sleep if high-resolution PWM output is enabled with the gpio_set_pwm_mode (SPWM,
ID=9/11) API command.

Note: EZ-Serial does not allow changes to the sleep level calculation hierarchy order. For example, if

CYSPP sleep level is “2” (Deep Sleep) but system-wide sleep is level “1”, then the system-wide
setting will override the CYSPP setting because it is a lower value. EZ-Serial will always select the
lowest applicable value for the current operational state.

3. This fine-grained level of control over sleep mode selection in various operational states allows you to

achieve the most efficient power consumption supported by your application design. For example, you may
allow Deep Sleep at all times except when the CYSPP data pipe is open, to easily avoid potential initial-byte

data corruption at high baud rates. For more details, see the Avoiding UART data loss or corruption due to
Deep Sleep transition section.

3.1.5.1 Configuring the system-wide sleep level

Configure the system-wide sleep level using the system_set_sleep_parameters (SSLP, ID=2/19) API

command. When sleep is not prevented by asserting the LP_MODE pin, this value is the first “default” sleep
level limit applied when calculating which sleep mode to use.

Active PWM output will limit the effective maximum sleep level in any state to normal sleep (value = 1) if
another setting is net even lower than this. If the CYSPP data pipe is open (connected and in CYSPP data mode),

then the CYSPP-specific sleep level may further limit the effective maximum sleep level.

EZ-Serial allows only normal sleep (value = 1) as the factory default system-wide sleep level, for a simpler out-

of-the-box experience concerning UART communication. However, you can change this to allow Deep Sleep to
significantly improve average current consumption. Ensure that your application can properly work within this
mode before applying it; for more details, see the Avoiding UART data loss or corruption due to Deep Sleep
transition section.

 Example 1: Change system-wide sleep level to Deep Sleep

Direction Content Effect

TX→ SSLP,L=2 Set new system sleep level to “Deep Sleep”

←RX @R,000A,SSLP,0000 Response indicates success

Transmissions to the module now require a preceding dummy byte for wake-on-RX, or proper use of the
LP_MODE pin as described in the Preventing sleep with the LP_MODE section.

User guide 42 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.1.5.2 Configuring the CYSPP data mode sleep level

Configure the CYSPP data mode sleep level using the p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
API command. When sleep is not disabled using the LP_MODE pin, this value is the second limit applied when
calculating which sleep mode to use. The system-wide sleep level takes precedence over the CYSPP sleep level.
Further, PWM output will limit the effective maximum sleep level in any state to normal sleep (value = 1),

regardless of other settings.

Setting the CYSPP data mode sleep level to normal sleep (value = 1) or no sleep (value = 0) ensures that EZ-
Serial does not use a sleep level beyond that setting whenever a CYSPP data pipe is open (connected and in

CYSPP data mode). The factory default setting for this option is to allow Deep Sleep (value = 2), but keep in
mind that factory defaults also set the system-wide sleep level limit to normal sleep (value = 1), which prevents

Deep Sleep at all times unless you reconfigure it.

For using CYSPP mode in the peripheral role with legacy systems that cannot use either the LP_MODE pin or
preceding dummy bytes, one possible compromise for improved power consumption is to set the system-wide

sleep level to Deep Sleep and the CYSPP data mode sleep level to normal sleep. The CPU will sleep aggressively

until a remote peer opens the CYSPP data pipe, at which point the CPU will use only normal sleep so that the
wired external host does not need any special sleep/wake transition control.

 Example 1: Limit CYSPP-specific sleep level to normal sleep

Direction Content Effect

TX→ .CYSPPSP,P=1 Set the new CYSPP sleep level to “normal sleep”

←RX @R,000E,CYSPPSP,0000

3.1.5.3 Preventing sleep with the LP_MODE pin

Assert (LOW) the LP_MODE control pin to prevent the module from sleeping. Properly asserting and deasserting

this pin surrounding host-to-module UART transmissions provides the most efficient power consumption while
still allowing Deep Sleep at all other times. For more details, see the Avoiding UART data loss or corruption due

to Deep Sleep transition section.

3.1.5.4 Preventing activity with the ATEN_SHDN pin

Not implemented.

3.1.5.5 Avoiding UART data loss or corruption due to Deep Sleep transition

Allowing Deep Sleep provides the best average power consumption. However, because the UART peripheral
cannot operate in Deep Sleep mode, supporting UART communication while also allowing Deep Sleep requires
special consideration. It takes approximately 12 ms for the CPU to transition from Deep Sleep to fully awake,
and any UART data sent during this time will be lost.

The UART peripheral will start processing the data after detecting N bytes upon waking, potentially leading to

persistent bit misalignment and the reporting of incorrect data to the API parser. Table 23 shows how many

bytes can wake up the device from Deep Sleep.

Infineon recommends that use a GPIO to exit from low-power mode.

User guide 43 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Limit CYSPP-specific sleep level to normal sleep

baud rate (bit/s) Dummy length (bytes)

300 1

9600 1

19200 2

115200 9

230400 18

460800 35

1000000 75

3.1.6 How to perform a factory reset

You can perform a factory reset using either GPIO signals or an API command.

EZ-Serial will generate the system_factory_reset_complete (RFAC, ID=2/3) API event immediately

after erasing all settings, and before performing the final module reset to boot to the factory default state. The
platform generates this event using the previously configured parser and transport mode. While this event is

typically not processed by an external host during a hardware-triggered factory reset, it helps to verify the
intended flow when controlling the module via software.

After the reset completes, the system_boot (BOOT, ID=2/1) API event will occur with the “cause”
parameter indicating a factory reset.

3.1.6.1 Factory reset via API command

To trigger a factory reset over the serial interface, use the system_factory_reset (/RFAC, ID=2/5) API

command.

 Example 1: Perform a factory reset

Direction Content Effect

TX→ /RFAC Trigger factory reset

←RX @R,000B,/RFAC,0000 Response indicates success

←RX @E,0005,RFAC Event indicates factory reset

completed

Short delay while chipset reset and boot process occurs

←RX @E,003B,BOOT,E=0101011A,S=05040001,P=0001,H=40,

C=05,A=00A050421A63
Event indicates that system has
rebooted, cause is set to 0x05

(factory reset)

User guide 44 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.2 Cable replacement examples with CYSPP

EZ-Serial’s CYSPP implementation provides a simple way to use a Bluetooth® LE connection to manage a
bidirectional stream of serial data. Both ends of the connection must support CYSPP, including the ability to
either provide or make use of the CYSPP GATT structure for data flow. The EZ-Serial firmware can operate as
either a GAP peripheral and CYSPP server device (typical when communicating with a smartphone) or as a GAP

central and CYSPP client device (typical when communicating with a second module running EZ-Serial

firmware).

See the Using CYSPP mode section for a description of how CYSPP mode behaves generally and how it affects

API communication.

3.2.1 How to get started in CYSPP mode

The factory default configuration in peripheral auto-start mode. With this configuration, the module begins

advertising as soon as it has power.

If you are using the CYW920822M2P4XXI040-EVK for evaluation, perform the following steps:

• Open the kit-provided COM port in your terminal software of choice, being sure to use the correct port

settings. If you have not changed any settings previously using the API commands, the defaults are 115200

baud, 8 data bits, no parity, 1 stop bit, and no flow control.

• To use CYSPP in central/client mode, send command “.CYSPPSP$,G=1,E=1” by COM port

• Connect to the EZ-Serial module from a compatible remote peer as described in the Using CYSPP mode

section, or activate another CYSPP-capable peripheral if running the local test module in central mode as

described in the previous step

• Wait for the p_cyspp_status (.CYSPP, ID=10/1) API event to appear with the LSB set indicating the
data channel is ready. The final status event should appear as one of the following:

@E,000C,.CYSPP,S=21

• Send and receive data as desired.

If you are using a custom design:

• EZ-Serial uses the role configured in the firmware using the p_cyspp_set_parameters (.CYSPPSP,

ID=10/3) API command. EZ-Serial uses the peripheral role with factory default settings.

• Connect the module’s UART_RX pin to the external host’s UART_TX pin

• Connect the module’s UART_TX pin to the external host’s UART_RX pin

• OPTIONAL: Assert (LOW) the CYSPP pin to force CYSPP data mode in the hardware, preventing API usage or

output

• Apply power to the module, or reset it with the hardware reset pin

• If you have asserted (LOW) the CYSPP pin externally:

Monitor the CONNECTION pin to detect when the remote peer has connected and the GATT data subscription is
complete.

Once the CONNECTION pin goes low, you can send and receive data from the host to the remote peer over the
module’s serial connection.

• If the CYSPP pin is left floating:

User guide 45 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Wait for the p_cyspp_status (.CYSPP, ID=10/1) API event to appear with the LSB set indicating the data
channel is ready. The final status event should appear as one of the following:

• @E,000C,.CYSPP,S=05 (running in peripheral role)

• @E,000C,.CYSPP,S=15 (running in central role)

Send and receive data as desired.

Note: If you externally de-assert (HIGH) the CYSPP pin, EZ-Serial will never enter CYSPP data mode even
if a remote peer has connected and all CYSPP mode data pipe preparations have completed. The
remote peer may use CYSPP on its end normally, but all data transfers and status updates will
appear on the local EZ-Serial end as API events to be processed normally.

3.2.1.1 How to start CYSPP in peripheral mode

EZ-Serial’s factory default configuration automatically starts CYSPP operation in the peripheral role after

booting. To establish a CYSPP data pipe, simply scan and connect from a remote device, then subscribe to RX
flow control (optional) and the desired acknowledged or unacknowledged data characteristic as described in

the Sending and receiving data in CYSPP data mode section.

A second EZ-Serial module running in CYSPP central/client mode will perform all required client-side steps

automatically. As of version 1.1, EZ-Serial shows all GATT events relating to CYSPP setup until the CYSPP data
pipe is fully opened.

 Example 1: Complete boot and CYSPP connection process in peripheral mode

Direction Content Effect

←RX @E,003B,BOOT,E=0101000A,S=05040001,P=0001,

H=40,C=01,A=00A050421A63
Boot event

←RX @E,000E,ASC,S=01,R=03 CYSPP-triggered advertisement started

TX→ .CYSPPSP$,P=1,G=1,

E=2,R=11223344,M=FFFFFFFF
Configure peripheral into CYSPP mode

←RX @R,000F,.CYSPPSP$,0000 Response

←RX @E,0035,C,C=01,A=00A050E3835F,T=00,

I=0006,L=0000,O=0064,B=00
Connection established with remote

device

←RX @E,0012,PU,C=01,T=01,R=01 Phy update event

←RX @E,000E,ASC,S=00,R=03 Advertisement stop

←RX @E,001A,W,C=01,H=0018,T=00,D=0200 Remote client writes [02 00] to Client

Characteristic Configuration Descriptor
for RX flow control to enable indications

from that characteristic

←RX @E,000C,.CYSPP,S=21 CYSPP status update (0x04):

0x04: Subscribed to RX flow control

←RX @E,001A,W,C=04,H=001B,T=00,D=0200 Remote client writes [02 00] to Client
Characteristic Configuration Descriptor
for unacknowledged data to enable

notifications from that characteristic

←RX @E,000C,.CYSPP,S=25 CYSPP status update

The host may now send data to the module for delivery to the remote peer, received data comes from peer.

User guide 46 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.2.1.2 How to start CYSPP in central mode

Following are the steps of how to start CYSPP mode automatically.

This assumes you have already configured the peripheral device in CYSPP mode and auto start enabled after

boot.”

 Example 1: Complete boot and CYSPP connection process in central mode

Direction Content Effect

TX→ .CYSPPSP$,P=1,G=1, E=2,R=11223344,

M=FFFFFFFF
Configure Central role and auto-start

←RX @R,000F,.CYSPPSP$,0000 Response

TX→ /RBT Central role reboot

←RX @E,003B,BOOT,E=0101000A,S=05040001,

P=0001,H=40,C=04,A=00A050E3835F
Boot event

←RX @E,000E,SSC,S=01,R=03 CYSPP-triggered scan started

←RX @E,006C,S,R=00,A=EA5B51311E93,T=01,

S=B2,

B=00,D=020106110700A10C2000080A9EE2

1115A13333336507FF310144332211,P=01

,C=00

Scan result (advertisement fields separated for

easier interpretation)

←RX @E,000E,SSC,S=00,R=03 CYSPP-triggered scan stopped

←RX @E,0035,C,C=00,A=00A050421A63,T=00,

I=0006,L=0000,O=0064,B=00
Connection established with remote device

←RX @E,0029,DR,C=00,H=0012,R=0000,T=280

0,

P=00,U=0028

GATT discovery result (0x1800)

←RX @E,0029,DR,C=00,H=0013,R=0000,T=280

0,

P=00,U=0328

GATT discovery result (0x1801)

←RX @E,0045,DR,C=00,H=0014,R=0000,T=280

0,

P=00,U=00A10C2000089A9EE21115A13333

3365

GATT discovery result (CYSPP service)

←RX @E,0029,DR,C=00,H=0015,R=0000,

T=2902,P=00,U=0229
GATT discovery result

←RX @E,0029,DR,C=00,H=0016,R=0000,

T=2803,P=00,U=0328
GATT discovery result

←RX @E,0045,DR,C=00,H=0017,R=0000,T=000

0,P=00,

U=00A20C2000089A9EE21115A133333365

GATT discovery result

←RX @E,0029,DR,C=00,H=0018,R=0000,T=290

2,P=00,U=0229
GATT discovery result

←RX @E,0029,DR,C=00,H=0019,R=0000,T=280

3,P=00,U=0328
GATT discovery result

←RX @E,0045,DR,C=00,H=001A,R=0000,T=000

0,P=00,U=03A10C2000089A9EE21115A133

333365

GATT discovery result

←RX @E,0029,DR,C=00,H=001B,R=0000,T=290

2,P=00,U=0229
GATT discovery result

←RX @E,0010,RPC,C=04,R=060A Remote procedures complete

User guide 47 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

The host may now send data to the module for delivery to the remote peer, received data comes from the peer.

3.3 GAP peripheral examples

GAP peripheral operation is one of the most common use cases for Bluetooth® LE designs, since it is usually the
simplest way to communicate with a smartphone operating as a central device.

The Bluetooth® specification defines different types of roles for the devices on each end of a Bluetooth® LE link:

• Link layer

− Master – device that initiates a connection (always GAP central)

− Slave – device that accepts a connection (always GAP peripheral)

• GAP layer

− Central – device that initiated a connection (always LL master)

− Peripheral – device that accepted a connection (always LL slave)

− Broadcaster – device that is advertising in a non-connectable state

− Observer – device that is scanning without initiating a connection

• GATT layer

− Client – device that accesses data from a remote GATT server

− Server – device that provides attribute data to be accessed remotely

Link layer roles are defined at the moment that a connection is initiated based on which side initiates the

connection.

The GAP layer provides four different roles, two of which involve connections (central and peripheral) and two
of which are connectionless (broadcaster and observer). The link layer and GAP layer roles are closely related,

particularly when a connection is involved.

The GATT layer role is independent of other behavior. A single device may even perform GATT duties in both the
client and server roles. A common example of this is an iOS device providing the Apple Notification Center

Service as a GATT server, even though it is connected to a peripheral device and acting as a GATT client to that

device.

3.3.1 How to advertise as peripheral device

Advertising is the Bluetooth® LE activity that allows scanning devices to observe and connect to peripherals. It
is required for a connection to be initiated, but it may also be done in a non-connectable way (called
“broadcasting”). EZ-Serial supports non-connectable broadcasting even while connected.

EZ-Serial gives you full control over when and how to advertise by using the gap_start_adv (/A, ID=4/8)

API command and the gap_set_adv_parameters (SAP, ID=4/23) API command.

When the advertising state changes, the gap_adv_state_changed (ASC, ID=4/2) API event occurs. This

event includes the new state as well as a code showing the reason why the state changed.

Note: If you do not have any automatic advertisement timeout set, advertisements will continue until
you explicitly stop them or a remote device initiates a connection.

User guide 48 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

In text mode, all arguments to the gap_start_adv (/A, ID=4/8) API command are optional. Any supplied
arguments will be used only for the immediate advertisement that begins as a result of the command, while

any omitted arguments will fall back to the values configured by the gap_set_adv_parameters (SAP,
ID=4/23) API command. You can see these values at any time by using the gap_get_adv_parameters

(GAP, ID=4/24) API command.

 Example 1: Start advertising with preconfigured default parameters

Direction Content Effect

TX→ /A Begin advertising with preconfigured defaults

←RX @R,0008,/A,0000 Response indicates success

←RX @E,000E,ASC,S=01,R=03 Event indicates advertising state changed to “active”

 Example 2: Start advertising with custom parameters

Direction Content Effect

TX→ /A,M=1,T=0,I=A0,C=6,F=0,O=1E Begin advertising with custom arguments

←RX @R,0008,/A,0000 Response indicates success

←RX @E,000E,ASC,S=01,R=00 Event indicates advertising state changed to “active”

3.3.2 How to stop advertising as a peripheral device

To explicitly stop advertising, use the gap_stop_adv (/AX, ID=4/9) API command, or open a connection to

the module from a remote Bluetooth® LE central device.

 Example 1: Stop advertising

Direction Content Effect

TX→ /AX Stop advertising

←RX @R,0009,/AX,0000 Response indicates success

←RX @E,000E,ASC,S=00,R=00 Event indicates advertising state changed to “inactive” due to user

request

3.3.3 How to customize advertisement and scan response data

You can customize the content of the main advertisement payload and scan response payload with the
gap_set_adv_data (SAD, ID=4/19) and gap_set_sr_data (SSRD, ID=4/21) API commands,

respectively.

Note: If you intend to use user-defined advertisement content, you must explicitly enable this in the
advertisement parameters. Normally, the EZ-Serial platform manages the content in the
advertisement and scan response packets automatically based on the platform configuration,

including the device name and which profiles are enabled. If you set custom content but do not
configure EZ-Serial to use that content, advertisement and scan response payloads will remain
automatically managed.

User guide 49 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Key features and requirements for customizing data:

• Each of the advertisement and scan response packet payloads may have a maximum of 31 bytes. This is a
Bluetooth® LE specification limit.

• Advertisement data in both packets should follow the correct [Length, Type, Value...] format required by the
Bluetooth® specification. Malformed data within advertisements can prevent proper scanning by remote
devices. The Length value does not include itself, but does include the Type byte and all bytes in the

remaining Value data.

• Each packet may contain as many fields as will fit in 31 bytes. Place multiple fields one right after the other
with no special separator. Since each field begins with a “length” value, a scanning device is always able to

properly identify the end of each field.

• Advertisement packets include the Bluetooth® connection address (public or random) outside of the
payload data. This does not count towards the 31-byte limit.

• The main advertisement packet is always transmitted while advertising. It typically includes things like

connectable flags, important supported service UUIDs, and a custom manufacturer data field. Place any
data that is critical for the remote device to see inside the main advertisement packet.

• The scan response packet is only transmitted when a remote device is performing an active scan. During an

active scan, the scanning device sends a scan request to any discovered advertising device immediately
after receiving the main advertisement packet. The scan response packet typically includes the friendly
name of the advertising device, and occasionally also includes transmit power, more manufacturer data, or

other useful but less critical data that a remote scanning device may not need to see.

Detailed information on approved field types and their intended contents can be found in the Bluetooth®

specification. Table 30 lists the fields that are most commonly used:

 Common advertisement field types

Type Description Value

0x01 Flags field – 1 byte of data 1 byte (bitfield)

0x02 Partial list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x03 Complete list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x04 Partial list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x05 Complete list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x06 Partial list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x07 Complete list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x08 Shortened local name 0-29 bytes (Text string)

0x09 Complete local name 0-29 bytes (Text string)

0x0A TX power level 1 byte (dBm as signed integer)

0xFF Manufacturer data 3-29 bytes (company ID + data)

EZ-Serial does not validate advertisement or scan response payload content, and the underlying Bluetooth® LE
stack has only limited validation on the Flags field. Ensure that any customized data within either of these
packets is correctly formatted. While the module will transmit whatever payload data is configured, scanning
devices may not correctly identify your device if the data is malformed or missing (especially the Flags field).

User guide 50 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

The stack requires that the Flags field, if present, must have the final two bits set so that they match the
Discovery Mode setting used when starting advertisements. For Bluetooth® LE-only devices that do not support

“classic” BR/EDR Bluetooth® behavior, this means that the flag byte will almost always be one of these three
values:

• 0x04: Non-discoverable/broadcast-only (common for beacon-only devices)

• 0x06: General discoverable (most common for connectable devices)

See gap_start_adv (/A, ID=4/8) API command for additional reference on discoverable modes.

Table 31 provides examples for reference:

 Examples of well-formed advertisement fields

Byte content Field description

02 01 06 Length: 2 bytes

Type: Flags (0x01)

Value: LE General Discoverable Mode, BR/EDR Not Supported

05 02 09 18 0D 18 Length: 5 bytes

Type: Complete list of 16-bit UUIDs for supported GATT services (0x02)

Value: 0x1809 (Health Thermometer), 0x180D (Heart Rate)

07 08 57 69 64 67 65 74 Length: 7 bytes

Type: Shortened local name (0x08)

Value: “Widget”

09 FF 31 01 AA BB CC DD

EE FF
Length: 9 bytes

Type: Manufacturer data (0xFF)

Value: Company ID = 0x0131 (Infineon Semiconductor)

Data = [AA BB CC DD EE FF]

These four example fields require 25 bytes when combined, including each of the four Length values. They can

be placed in a single advertisement packet if desired:

02 01 06 05 02 09 18 0D 18 07 08 57 69 64 67 65 74 09 FF 31 01 AA BB CC DD EE FF

Here, the shortened name is included in the same packet as the more critical information. This is uncommon,
but not prohibited. The name typically goes in the scan response packet because there it cannot fit into the
advertisement packet, but any field may be in any location as long as the scanning device knows what to

expect.

User guide 51 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Set custom advertisement and scan response data

Direction Content Effect

TX→ SAP,F=2 Enable user-defined advertisement and scan response content

←RX @R,0009,SAP,0000 Response indicates success

TX→ SAD,D=050209180D18 Set new advertisement content (RAM only), Flags, and 16-bit
UUID fields. The firmware adds the 020106 header automatically
for General discoverable and also adds the 020104 header

automatically for Non-discoverable/broadcast-only.

←RX @R,0009,SAD,0000 Response indicates success

TX→ SSRD,D=0708576964676574 Set new scan response content (RAM only), Complete local name

field

←RX @R,000A,SSRD,0000 Response indicates success

 Example 2: Set advertisement and scan response data to a value similar to factory defaults

Direction Content Effect

TX→ SAP,F=1 Enable user-defined

advertisement and scan response

content

←RX @R,0009,SAP,0000 Response indicates success

TX→ SAD,D=110700a10c2000089a9ee21115a133333365 Set new advertisement content
(RAM only) The firmware adds the

020106 header automatically for
General discoverable and also

adds the 020104 header

automatically for Non-

discoverable/broadcast-only.

←RX @R,0009,SAD,0000 Response indicates success

TX→ SSRD,D=1309455a2d53657269616c2045333a38333a3546 Set new scan response content

(RAM only)

←RX @R,000A,SSRD,0000 Response indicates success

3.4 GAP central examples

Running as a GAP central allows you to scan for and connect to remote peripheral devices. You can also operate

as a GAP observer by scanning without any subsequent connection attempts. For more details on various link-

layer, GAP, and GATT roles, see the GAP central examples section.

User guide 52 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.4.1 How to scan for peripheral devices

Use the gap_start_scan (/S, ID=4/10) API command to begin scanning for devices. Scanning is not
required before initiating a connection, but doing so helps to identify potential connection targets or ensure
that known or compatible peripherals are nearby and connectable.

Note: If you do not have any automatic scan timeout set, then scanning will continue until you explicitly

stop it. Scanning will not automatically resume when a connection is terminated unless CYSPP is

enabled in the central role. Otherwise, you must implement this behavior in your application logic
as needed.

Note: Stop scanning before you can initiate an outgoing connection to a remote peer. Requesting a
connection with gap_connect (/C, ID=4/1) while scanning will result in an error.

In text mode, all arguments to the gap_start_scan (/S, ID=4/10) API command are optional. Any

supplied arguments will be used only for the immediate scan started as a result of the command, while any

omitted arguments will fall back to the values configured by the gap_set_scan_parameters (SSP,

ID=4/25) API command. You can see these values at any time by using the gap_get_scan_parameters
(GSP, ID=4/26) API command.

After you start scanning, EZ-Serial will begin generating gap_scan_result (S, ID=4/4) API events each

time a new advertisement packet is seen from a remote device. The same advertising device will generate

multiple scan results until duplicate filtering is enabled in the scan parameters.

Passive vs. Active Scanning:

• During a passive scan, EZ-Serial will not send scan requests to devices to ask for the “follow-up” scan

response packet. In this mode, each device generates only one event for each detected advertisement

packet. Passive scans use less power on average, since the transmitter remains inactive and the receiver is
not intentionally reactivated for a second time for the same device.

• During an active scan, EZ-Serial sends a scan request to obtain additional information from the remote

peripheral. In this mode, the Bluetooth® LE stack may generate two events for each device detected during
a scan. However, the remote device may not send the scan response packet, or the local device may not

receive it due to adverse RF conditions, so a second scan result event is not guaranteed. Active scans use
more power than passive scans, and result in brief transmission bursts in between receive operations.

Note: Due to, the precise timing required by the Bluetooth® LE protocol and the way active scans behave,

a large number of actively scanning devices in the same vicinity can result in none of the scanning

devices successfully obtaining a scan response from an advertising device. If two or more scanning
devices transmit a scan request on the same channel within the same ~150 µs window
immediately after the main advertisement packet, the advertising device will not be able to parse

the request and will not send a response to either device. This unlikely but possible issue does not
occur while performing a passive scan.

User guide 53 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Start passive scanning with preconfigured default parameters

Direction Content Effect

TX→ /S Begin scanning with preconfigured defaults

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=01,R=00 Event indicates the scanning state has changed to

“Active” due to user request

←RX @E,0052,S,R=00,A=00A050E3835E,T

=00,S=D1,B=00,D=0201061107CA366

D7D5BCC0288B14DE541D9FF652F,P=0

1,C=00

Event indicates scan result from 00:A0:50:E3:83:5E,

normal ad packet, RSSI -47 dBm (0xB1), Flags field

and 128-bit UUID

 Example 2: Start a 5-second active scan with duplicate filtering enabled

Direction Content Effect

TX→ /S,M=1,A=1,D=1,O=5 Begin “observation” scanning, active

mode, 5-second timeout, duplicate

filter enabled

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=01,R=00 Event indicates the scanning state

has changed to “active” due to user

request

←RX @E,0052,S,R=00,A=00A050E3835E,T=00,S=D1,B=00

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F,

P=01,C=00

Event indicates scan result from
00:A0:50:E3:83:5E, ad packet, RSSI -

47 dBm (0xB1), Flags field and 128-

bit UUID

←RX @E,004E,S,R=04,A=00A050E3835E,T=00,S=D1,B=00

D=1209426C7565666C6F772037383A46353A4236,

P=01,C=00

Event indicates scan result from
00:A0:50:E3:83:5E, scan response

packet, RSSI -47 dBm, Local name

field

←RX @E,000E,SSC,S=00,R=02 Event indicates the scanning state
has changed to “stopped” due to

configured timeout (5 seconds)

User guide 54 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.4.2 How to stop scanning for peripheral devices

To explicitly stop scanning, use the gap_stop_scan (/SX, ID=4/11) API command, or initiate a connection
request to a remote device using the gap_connect (/C, ID=4/1) API command.

Note: It is possible for additional gap_scan_result (S, ID=4/4) API events to occur between a
successful response to the gap_stop_scan command and the gap_scan_state_changed

event (“SSC” in text mode), due to the brief amount of time that it takes the stack to process the

request and change states. Please ensure that your application logic will not fail in this case.

 Example 1: Stop scanning

Direction Content Effect

TX→ /SX Stop scanning

←RX @R,0009,/SX,0000 Response indicates success

←RX @E,000E,SSC,S=00,R=00 Event indicates the scanning state has changed to “inactive” due to

user request

3.4.3 How to connect to a peripheral device

Use the gap_connect (/C, ID=4/1) API command to initiate a connection to a remote device based on its
Bluetooth® connection address. The Bluetooth® connection address (also commonly referred to as a MAC

address) is a made up of the 6-byte device address and a 1-byte value indicating the address type. To initiate a

connection, the module must be in a disconnected state (not advertising, scanning, connecting, or connected).

Note: At this time, the Infineon Bluetooth® stack supports one active connection at a time. To transfer
data to and from multiple devices quickly, you must establish and tear down connections in rapid

succession. With a fast advertisement interval on peripheral devices and a fast connection interval
while connected, it is possible to perform many connect-transfer-disconnect cycles per second.

Addresses may be either public or random. Public addresses do not change, while random addresses change
on some period determined by the device employing privacy measures (typically at least every few minutes).

The use of random addresses, also called private addresses, reduces the possibility of passive profiling by a
remote device. For example, iOS devices always use random addressing for Bluetooth® LE operations. EZ-Serial

supports both types, and uses public addressing by default. For more information on this topic and how to

configure EZ-Serial to use random addressing, see the How to use peripheral and central privacy section.

When a Bluetooth® LE device initiates a connection request, it does not immediately transmit anything. Rather,
it must first scan until it receives a connectable advertisement packet from the target device. This is why a
peripheral device must be in an advertising state to accept a connection. The full connection process includes
the following steps:

1. Target peripheral device is advertising in a connectable state.

2. Central device begins scanning for advertisements from a target peripheral device.

3. Central device detects advertisement and responds with connection request.

4. Peripheral device receives connection request and responds with a connection response.

5. Connection is fully established.

The API command used to initiate a connection includes arguments for scan parameters, because scanning is
the first operation that the stack must perform on the GAP central device during a connection process.

User guide 55 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Connect to a remote device using default connection parameters

Direction Content Effect

TX→ /C,A=00A050E3835E,T=0 (0:public,1 random) Initiate connection

←RX @R,000D,/C,0000,C=00 Response indicates

success

←RX @E,0030,C,H=04,A=00A050E3835E,T=00,I=0010,L=0000,O=0064 Event indicates that

connection opened

3.4.4 How to cancel a pending connection to a peripheral device

Use the gap_cancel_connection (/CX, ID=4/2) API command to cancel a pending outgoing connection

request. This only applies when the connection is not yet open and you have not received the gap_connected
(C, ID=4/5) API event. If you need to close an open connection, use the gap_disconnect (/DIS,
ID=4/5) API command.

 Example 1: Cancel a pending connection to a remote device

Direction Content Effect

TX→ /CX Cancel pending connection

←RX @R,0009,/CX,0000 Response indicates success

←RX @E,0010,DIS,C=00,R=091F Event indicates connection canceled

3.4.5 How to disconnect from a peripheral device

Use the gap_disconnect (/DIS, ID=4/5) API command to close an active connection to a remote device.

This only applies when the connection is already fully established, and should not be used to cancel a pending
outgoing connection. In that case, use the gap_cancel_connection (/CX, ID=4/2) API command.

 Example 1: Disconnect from a remote device

Direction Content Effect

TX→ /DIS Disconnect from peer

←RX @R,000A,/DIS,0000 Response indicates success

←RX @E,0010,DIS,C=0,R=0916 Event indicates that connection closed, reason=0x0916

(intentional local closure)

User guide 56 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.5 GATT server examples

Bluetooth® LE data transfer operations between two connected devices most often occur through the GATT
layer, with a server on one side and a client on the other side. The GATT server makes use of a predefined
attribute structure, which the client may remotely discover and use as needed. The GATT server defines what
data is available and how it may be accessed, and has limited ability to push data to the client if the client has

subscribed to receive these types of updates.

3.5.1 How to define custom local GATT services and characteristics

EZ-Serial implements a dynamic GATT structure that can be modified at runtime and stored in flash. Note that
the structure itself is the part that is stored in flash; values stored within data characteristics (other than default

values defined when creating new entries) are stored in RAM only, and do not persist across power-cycles or

resets.

The EZ-Serial platform contains a few predefined GATT elements in the factory default configuration. EZ-Serial

requires these for correct operation, and they cannot be removed or modified. However, additional structural
elements are entirely customizable.

A GATT structure is fundamentally made up of individual attributes, each of which has a unique numeric

handle, a UUID that is 16 bits, 32 bits, or 128 bits wide, and a value container. Attribute handles start at 1 and
may go up to 0xFFFF (65535). No two attributes may have the same handle. The gatts_create_attr (/CAC,
ID=5/1) API command will automatically choose the next available attribute handle and report the value in

the response after a successful command.

Note: Modifications to the custom GATT structure require flash write operations, which can potentially
disrupt Bluetooth® LE connectivity. Therefore, you should only make changes to the GATT

database while there is no active Bluetooth® LE connection to avoid the possibility of a connection

loss.

3.5.1.1 Understanding custom GATT limitations

The dynamic GATT implementation in EZ-Serial contains some built-in entries to provide the required EZ-Serial
functionality, leaving the remaining space available for custom entries.

Attempting to create a new custom attribute that exceeds any of these bounds will generate an error result
indicating the nature of the limitation. For more details, see the Error codes section.

3.5.1.2 Building custom services and characteristics

The GATT database is made up of one or more primary services. Each primary service has a service declaration
(UUID 0x2800) and includes one or more characteristics. Each characteristic has a characteristic declaration
(UUID 0x2803) and a value attribute (any UUID not in the above list), and often has additional characteristic-

related descriptors in the 0x2900 range.

UUIDs indicate the purpose of each attribute, but may be (and often are) repeated through the complete

database. For example, a database containing three services will contain three separate attributes that all have
the UUID 0x2800, which is the official “Primary Service Declaration” UUID defined by the Bluetooth® SIG.
Table 40 lists notable predefined structural definition UUIDs from the Bluetooth® SIG.

User guide 57 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Bluetooth® SIG structural UUIDs

UUID Description

0x2800 Primary Service Declaration

0x2801 Secondary Service Declaration

0x2802 Include Declaration

0x2803 Characteristic Declaration

0x2900 Characteristic Extended Properties

0x2901 Characteristic User Description

0x2902 Client Characteristic Configuration

0x2903 Server Characteristic Configuration

0x2904 Characteristic Format

0x2905 Characteristic Aggregate Format

Further details on these and other official identifiers can be found on the Bluetooth® SIG webpage.

When defining GATT elements at runtime, you must enter each attribute in the correct order based on the
desired structure. Any entries that do not conform to the correct order requirement will be rejected with a

validation error. The only case where a validation warning is allowed is when you define a new service or
characteristic declaration and have not yet entered the subsequent attributes that must follow. You can use the

gatts_validate_db (/VGDB, ID=5/3) API command at any time to perform an integrity check on the

current GATT structure to see whether additional attributes are expected.

The required order for each complete characteristic definition (declaration, value, and optional descriptors) is
dictated by the internal Bluetooth® LE stack as follows:

 Required characteristic attribute order

Order UUID Description Required

#1 0x2803 Characteristic Declaration Yes

#2 <custom> Characteristic Value Yes

#3 0x2900 Characteristic Extended Properties No

#4 0x2901 Characteristic User Description No

#5 0x2902 Client Characteristic Configuration No

#6 0x2903 Server Characteristic Configuration No

#7 0x2904 Characteristic Format No

#8 0x2905 Characteristic Aggregate Format No

Any optional attributes may be omitted as long as all provided attributes are supplied in the above order.

After adding all attributes by gatts_create_attr (/CAC, ID=5/1), You need to send

gatts_service_active (/SACT, ID=5/16) to activate these attributes.

For details on how to use custom GATT creation API commands to add support for Bluetooth® SIG official
services such as Device Information, Health Thermometer, and others, see the Adopted Bluetooth® SIG GATT
profile structure snippets section and the API reference material for gatts_create_attr (/CAC, ID=5/1).

https://www.bluetooth.com/specifications/assigned-numbers/generic-attribute-profile

User guide 58 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.5.1.3 Choosing the correct GATT permissions

It is critical to use correct permissions when defining any custom GATT structural elements. See the Adopted
Bluetooth® SIG GATT profile structure snippets section, for example, definitions, and you may notice certain
patterns. Here are the recommended guidelines for the most common entries:

• Service declarations (type = 0x2800)

− Read permissions = 0x01, to allow structure discovery (no encryption/authentication)

− Write permissions = 0x00, to prevent attempted changes

− Characteristic properties = 0x00, because they do not apply

• Characteristic declarations (type = 0x2803)

− Read permissions = 0x01, to allow structure discovery (no encryption/authentication)

− Write permissions = 0x00, to prevent attempted changes

− Characteristic properties = <actual properties>

• Characteristic value attributes (type = 0x0000)

− Read permissions = <actual permissions>

− Write permissions = <actual permissions>

− Characteristic properties = <actual properties, matching 0x2803 declaration>

• Characteristic user description attributes (type = 0x2901)

− Read permissions = 0x01, to allow reading description

− Write permissions = 0x00, to prevent attempted changes

− Characteristic properties = 0x02 (read)

• Client characteristic configuration attributes (type = 0x2902)

− Read permissions = 0x01, to allow reading current client flags

− Write permissions = 0x01, to allow configuring new client flags

− Characteristic properties = 0x0A (read + write)

In general, structural elements such as service and characteristic declarations should be read-only, but should
have no particular security restrictions on them. This ensures that a connected client is able to discover the
database structure correctly, even if additional security is required to execute read and/or write operations on

the characteristic value attributes. Some Android devices are known to have problems during discovery if the
declaration descriptors themselves have extra security requirements.

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable

the authentication bit, make sure that you also enable the encryption bit, or the command will be

rejected with an error result.

User guide 59 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.5.2 How to list local GATT services, characteristics, and descriptors

Listing the local GATT structure can be helpful in certain cases, even though it is typically the remote GATT

structure that requires discovery (see the How to discover a remote server’s GATT structure section). This is
especially true since you can dynamically change the local GATT structure at runtime. EZ-Serial provides three
commands for local discovery, each of which provides output equivalent to its “remote discovery” counterpart.

Local discovery differs from remote discovery in two key ways:

• Local discovery is instant and deterministic, while remote discovery is not. Remote discovery generates an
unknowable number of result events over a relatively slow Bluetooth® LE connection, with completion

indicated via the gattc_remote_procedure_complete (RPC, ID=6/2) API event. In contrast, local
discovery returns the known result count as part of the response to the discovered request, and then

generates exactly that many discovery result events without a final “complete” event (which would be
redundant).

− When discovering local descriptors, the output includes some extra information in the results that is not
provided during an equivalent remote descriptor discovery process. Specifically:

All descriptors include the “properties” value. In remote results, this will always be 0.

− Service declarations include the end handle. In remote results, this will always be 0.

− Characteristic declarations include the value attribute handle. In remote results, this will always be 0.

3.5.2.1 Discovering local GATT services

Use the gatts_discover_services (/DLS, ID=5/6) API command to obtain a list of services in the local

GATT database.

 Example 1: Local GATT service discovery with factory default structure (no custom attributes)

Direction Content Effect

TX→ /DLS Request to discover all local services

←RX @R, 0011, /DLS, 0000, C=0002 Response indicates success, 2 records to follow

←RX @E, 0040, DL, H=0012, R=001B,

T=2800, P=00,

U=00A10C2000089A9EE21115A133333365

Service 65333333-A115-11E2-9E9A-

0800200CA100, start=18 (0x12), end=27 (0x1B)

←RX @E, 0040, DL, H=001C, R=0022,

T=2800, P=00,

U=00A20C2000089A9EE21115A133333365

Service 65333333-A115-11E2-9E9A-

0800200CA200, start=28 (0x1C), end=34 (0x22)

User guide 60 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.5.2.2 Discovering local GATT characteristics

Use the gatts_discover_characteristics (/DLC, ID=5/7) API command to obtain a list of

characteristics in the local GATT database.

 Example 1: Local GATT characteristic discovery with factory default structure (no custom
attributes)

Direction Content Effect

TX→ /DLC Request to discover all local characteristics

←RX @R,0011,/DLC,0000,C=0005 Response indicates success, 5 records to follow

←RX @E,0040,DL,H=0013,R=0014,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365
Char 0x6533…A101, decl handle=0x13, value

handle=0x14, perm=0x028

←RX @E,0040,DL,H=0016,R=0017,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365
Char 0x6533…A102, decl handle=0x16, value

handle=0x17, perm=0x14

←RX @E,0040,DL,H=0019,R=001A,T=2803,P=20,

U=03A10C2000089A9EE21115A133333365
Char0x6533…A103, decl handle=0x19, value

handle=0x1A, perm=0x20

←RX @E,0040,DL,H=001D,R=001E,T=2803,P=28,

U=01A20C2000089A9EE21115A133333365
Char 0x6533…A201, decl handle=0x1D, value

handle=0x1E, perm=0x28

←RX @E,0040,DL,H=0020,R=0021,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365
Char 0x6533…A202, decl handle=0x20, value

handle=0x21, perm=0x28

3.5.2.3 Discovering local GATT descriptors

Use the gatts_discover_descriptors (/DLD, ID=5/8) API command to obtain a list of descriptors in
the local GATT database.

 Example 1: Local GATT descriptor discovery with factory default structure (no custom
attributes)

Direction Content Effect

TX→ /DLD Request to discover all local descriptors

←RX @R,0011,/DLD,0000,C=0011 Response indicates success, 17 records to

follow

←RX @E,0024,DL,H=0012,R=001B,T=2800,P=00,

U=0028
UUID 0x2800 (Primary Service), start=0x12,

end=0x1B

←RX @E,0024,DL,H=0013,R=0014,T=2803,P=28,

U=0328
UUID 0x2803 (Characteristic), decl=x013, value

handle=0x14

←RX @E,0040,DL,H=0014,R=0000,T=0000,P=28,

U=01A10C2000089A9EE21115A133333365
UUID 0x6533…A101 (CYSPP), handle=0x14,

perm=0x28

Additional records are omitted for brevity

←RX @E,0024,DL,H=001C,R=0022,T=2800,P=00,

U=0028
UUID 0x2800 (Primary Service), start=0x1C,

end=0x22

←RX @E,0024,DL,H=001D,R=001E,T=2803,P=28,

U=0328
UUID 0x2803 (Characteristic), decl=0x1D, value

handle=0x1E, perm=0x28

←RX @E,0040,DL,H=001E,R=0000,T=0000,P=28,

U=01A20C2000089A9EE21115A133333365
UUID 0x6533…A201, handle=0x1E, perm=0x28

User guide 61 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Direction Content Effect

←RX @E,0024,DL,H=001F,R=0000,T=2902,P=0A,

U=0229
UUID 0x2902 (CCCD), handle=0x1F, perm=0x0A

←RX @E,0024,DL,H=0020,R=0021,T=2803,P=28,

U=0328
UUID 0x2803 (Characteristic), decl=0x20, value

handle=0x21, perm=0x28

←RX @E,0040,DL,H=0021,R=0000,T=0000,P=28,

U=02A20C2000089A9EE21115A133333365
UUID 0x6533…A202, handle=20x217,

perm=0x28

←RX @E,0024,DL,H=0022,R=0000,T=2902,P=0A,

U=0229
UUID 0x2902 (CCCD), handle=0x22, perm=0x0A

3.5.3 How to read and write local GATT attribute values

Read and write local GATT values using the gatts_read_handle (/RLH, ID=5/9) and
gatts_write_handle (/WLH, ID=5/10) API commands, respectively.

These commands work like their remote client-side counterparts, except that client-level permissions and

access restrictions do not apply. It is always possible to locally read any attribute, and always possible to write

any attribute that supports the write operation. Some attributes, such as service and characteristic
declarations, contain only constant data (stored in flash) that is not meant to be modified with a typical GATT
write command. If you intend to change the structure of the GATT database itself, use the

gatts_create_attr (/CAC, ID=5/1) and gatts_delete_attr (/CAD, ID=5/2) API commands.

3.5.3.1 Reading local GATT data

You can read the value of a local attribute using the gatts_read_handle (/RLH, ID=5/9) API command.

EZ-Serial will return the current value in the response.

Note: User-managed attributes have no RAM-backed data storage, so there is never any data to read.
Attempting to read this type of characteristic will generate an error resulting in the response.

 Example 1: Read local characteristic CCCD value (create a TX power service (10.2.5) before

testing read local attribute value)

Direction Content Effect

TX→ /CAC, T=2800, R=01, W=00, C=00,

L=0000, D=0418
Add a new attribute (TX Power Service) to

the local GATT structure

←RX @R, 0018, /CAC, 0000, H=0023, V=0001 Response indicates success

TX→ /CAC, T=2803, R=01, W=00, C=02,

L=0000, D=072A
Add a new characteristic declaration to the

local GATT structure

←RX @R, 0018, /CAC, 0000, H=0024, V=0001 Response indicates success

TX→ /CAC, T=0000, R=01, W=00, C=02,

L=0001, D=
Add a new characteristic value to the local

GATT structure

←RX @R, 0018, /CAC, 0000, H=0025, V=0000 Response indicates success

TX→ /CAC, T=2902, R=01, W=01, C=0A,

L=0002, D=
Add a CCCD to the local GATT structure

←RX @R, 0018, /CAC, 0000, H=0026, V=0000 Response indicates success

TX→ /SACT GATT service active

←RX @R, 000B, /SACT, 0000 Response indicates success

User guide 62 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Direction Content Effect

TX→ /RLH, H=26 Read attribute with handle = 0x26

←RX @R, 0011, /RLH, 0000, D=0000 Response indicates success, hex data is

“0000”

3.5.3.2 Writing local GATT data

You can write the value of a local RAM-backed attribute using the gatts_write_handle (/WLH, ID=5/10)
API command. This command replaces any existing data in the attribute and is limited by the maximum length
of the attribute in the GATT structure.

Note: User-managed attributes have no RAM-backed data storage, so there is no destination for storing
written data. Attempting to write this type of characteristic will generate an error resulting in the

response. Also, service and characteristic declarations (0x2800 range) are stored in flash, and
cannot be changed with this command.

Writing data does not automatically push a notification or indication packet to a remote client, even if the client
has subscribed to either of these types of pushed updates. See the How to notify and indicate data to a remote

client section for details on how to push data.

 Example 1: Write “0200” to CCCD in TX power service (followed the steps in 3.5.3.1 example 1
to create a TX power service (10.2.5) first.

Direction Content Effect

TX→ /WLH,H=26,D=0200 Write “0200” (hex) into an attribute with handle = 0x26

←RX @R,000A,/WLH,0000 Response indicates success

TX→ /RLH,H=26 Read attribute with handle = 0x26 to verify

←RX @R,0011,/RLH,0000,D=0200 Response indicates success, data shows expected value

3.5.4 How to notify and indicate data to a remote client

Notifying and indicating both allow a server to push updates to a client without the client specifically
requesting the latest values. These transfer mechanisms provide an efficient way to send real-time updates

without constant polling from the client side, saving power for use cases such as remote sensors or any
interrupt-driven activities.

Notifications and indications both transmit data from the server to the client, but notifications are

unacknowledged, while indications are acknowledged. You can transmit multiple notifications during a single
connection interval, but you can only transmit one indication every two connection intervals (one interval for
the transmission and one for the acknowledgment).

Although the server decides when to push data to the client using these methods, the client retains ultimate
control over whether the server may transmit at all, via the use of “subscription” bits for each type of transfer.

All GATT characteristics that support either the “notify” or “indicate” operation must have a “Client
Characteristic Configuration Descriptor” (CCCD) within the set of attributes making up the complete

characteristic structure. For example, the “Service Changed” characteristic (UUID 0x2A05) within the “Generic
Attribute” service (UUID 0x1801) is made up of three separate attributes:

User guide 63 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Service changed GATT characteristic structure

Handle UUID Description

0x0009 0x2803 Characteristic Declaration

0x000A 0x2A05 Service Change Value Attribute

0x000B 0x2902 Client Characteristic Configuration Descriptor (CCCD)

This characteristic supports the “indicate” operation. For a client to subscribe to indications, it must set Bit 1
(0x02) of the value in the CCCD. This descriptor holds a 16-bit value, so the correct operation on the client side

is to write [02 00] to handle 0x000B.

For characteristics that support the “notify” operation, the correct subscription flag is Bit 0 (0x01). Notification

and indication subscriptions do not persist across multiple connections.

3.5.4.1 Notifying data to a remote client

Use the gatts_notify_handle (/NH, ID=5/11) API command to notify data to a remote client. Use a

handle corresponding to a value attribute for a characteristic for which the remote client has already
subscribed to notifications by writing 0x0001 to the relevant CCCD.

Note: Notifying data to a client requires an active connection.

 Example 1: Notify a four-byte value to a client manually (create a Glucose service (10.2.9)

before starting this example)

Direction Content Effect

TX→ /NH,H=25,D=41424344 Notify “ABCD” (hex) via attribute with handle = 23 (0x17)

←RX @R,0009,/NH,0000 Response indicates success

3.5.4.2 Indicating data to a remote client

Use the gatts_indicate_handle (/IH, ID=5/12) API command to indicate data to a remote client. Use a
handle corresponding to a value attribute for a characteristic for which the remote client has already
subscribed to indications by writing 0x0002 to the relevant CCCD.

Note: Indicating data to a client requires an active connection.

 Example 1: a four-byte value to a client manually (create a Glucose service (10.2.9) before

starting this example)

Direction Content Effect

TX→ /IH,H=2D,D=41424344 Write “ABCD” (hex) via attribute with handle = 0x14(0x0A)

←RX @R,0009,/IH,0000 Response indicates success

←RX @E,000F,IC,C=01,H=002D Event indicates that client has confirmed receipt of data

User guide 64 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.5.5 How to detect and process written data from a remote client

Write operations from a remote GATT client will generate the gatts_data_written (W, ID=5/2) API event,

containing the handle and value data as well as the remote connection handle from the device that initiated
the request. This event will only occur if the write succeeds and was not blocked due to incorrect permissions,
insufficient encryption or authentication levels, or invalid length or offset.

If the type parameter of this event has the high bit (0x80) set, this means that you must manually respond to the

write operation with the gatts_send_writereq_response (/WRR, ID=5/13) API command. This occurs
for user-managed characteristics, or if you have globally disabled automatic write responses using the
gatts_get_parameters (GGSP, ID=5/15) API command.

3.6 GATT client examples

EZ-Serial provides GATT client operational support through a variety of API methods. All methods described in
the following sections require an active connection to a remote peer device, and will generate an error result if

attempted without one.

3.6.1 How to discover a remote server’s GATT structure

EZ-Serial’s remote GATT discovery methods function the same as the local discovery methods, with the
addition of a connection handle in the discovery result output. For an overview of some of the behavioral
differences between local and remote GATT discovery, see How to list local GATT services, characteristics, and

descriptors.

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit, or the command will be

rejected with an error result.

Note: Remote discovery procedures often complete with a final result code of 0x060A rather than

0x0000. This does not indicate a problem, but only means that the final internal request to find

more data in the specified start/end range yielded no further results. This is a logical indicator to
the client that it should terminate the discovery process. You can avoid this result code by
specifying start and end range values in the discovery request command, which do not result in a

final search in an empty range on the server. However, these start and end values are typically not
available before performing the discovery in the first place.

User guide 65 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.6.1.1 Discovering remote GATT services

Use the gattc_discover_services (/DRS, ID=6/1) API command to obtain a list of services in the

remote GATT database on a connected peer device.

 Example 1: Remote GATT service discovery on an EZ-Serial peer device with factory default
configuration

Direction Content Effect

TX→ /DRS Request to discover all remote

services

←RX @R,000A,/DRS,0000 Response indicates success

←RX @E,0029,DR,C=00,H=0001,R=0009,T=2800,P=00,U=0018 Service 0x1800, start=1, end=9

←RX @E,0029,DR,C=00,H=000A,R=000A,T=2800,P=00,U=0118 Service 0x1801, start=10, end=10

(0x0A)

←RX @E,0045,DR,C=00,H=000B,R=0011,T=2800,P=00,

U=62905C36B7C4DC8F8241B575398DE7A0
Service 0xA0E7…9062, start=11

(0x0B), end=17 (0x11)

←RX @E,0045,DR,C=04,H=001C,R=0022,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365
Service 0x6533…A200, start=28

(0x1C), end=34 (0x22)

←RX @E,0010,RPC,C=04,R=060A Remote procedures complete

3.6.1.2 Discovering remote GATT characteristics

Use the gattc_discover_characteristics (/DRC, ID=6/2) API command to obtain a list of

characteristics in the remote GATT database on a connected peer device.

 Example 1: Remote GATT characteristic discovery on an EZ-Serial peer device with factory
default configuration

Direction Content Effect

TX→ /DRC Request to discover all remote

characteristics

←RX @R,000A,/DRC,0000 Response indicates success

←RX @E,0029,DR,C=00,H=0002,R=0003,T=2803,P=02,

U=002A
Char 0x2A00, decl handle=2, value

handle=3, perm=0x02

←RX @E,0029,DR,C=00,H=0004,R=0005,T=2803,P=02,

U=012A
Char 0x2A01, decl handle=4, value

handle=5, perm=0x02

←RX @E,0029,DR,C=00,H=0006,R=0007,T=2803,P=02,

U=042A
Char 0x2A04, decl handle=6, value

handle=7, perm=0x02

←RX @E,0029,DR,C=000,H=0008,R=0009,T=2803,P=02,

U=C92A
Char 0x2AC9, decl handle=8, value

handle=9, perm=0x02

←RX @E,0029,DR,C=00,H=000C,R=000D,T=2803,P=14,

U=300225EE8263EAABC2F78AF007650C04
Char 0x040C…3002, decl handle=12,

value handle=13, perm=0x14

←RX @E,0045,DR,C=00,H=000F,R=0010,T=2803,P=2A,

U=2BE545B07D406B87FBDB8030D6B091CB
Char 0xCB91…2BE5, decl handle=15,

value handle=16, perm=0x2A

User guide 66 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

←RX @E,0045,DR,C=00,H=001D,R=001E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365
Char 0x6533…A101, decl handle=1D,

value handle=1E, perm=0x28

←RX @E,0045,DR,C=00,H=0020,R=0021,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365
Char 0x6533…A202, decl handle=32,

value handle=33, perm=0x28

←RX @E,0010,RPC,C=04,R=060A Remote procedures complete, 0x060A =
no attributes found in last search

request

3.6.1.3 Discovering remote GATT descriptors

Use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors in

the remote GATT database on a connected peer device.

 Example 1: Remote GATT descriptor discovery on an EZ-Serial peer device with factory
default configuration

Direction Content Effect

TX→ /DRD Request to discover all remote

descriptors

←RX @R,000A,/DRD,0000 Response indicates success

←RX @E,0024,DR,C=00,H=0001,R=0000,T=2800,P=00,

U=0028
UUID 0x2800 (Primary Service), start=1

←RX @E,0024,DR,C=00,H=0002,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=2

←RX @E,0024,DR,C=00,H=0003,R=0000,T=0000,P=00,

U=002A
UUID 0x2A00 (Device Name), handle=3

… … …

Additional records are omitted for brevity

←RX @E,0029,DR,C=00,H=001C,R=0000,T=2800,P=00,

U=0328
UUID 0x2800 (Primary Service), start=28

←RX @E,0029,DR,C=00,H=001D,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=29

←RX @E,0045,DR,C=00,H=001E,R=0000,T=0000,P=00,

U=01A20C2000089A9EE21115A133333365
UUID 0x6533…A201, handle=30

←RX @E,0029,DR,C=00,H=001F,R=0000,T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=31

←RX @E,0029,DR,C=00,H=0020,R=0000,T=2803,P=00,

U=0328
UUID 0x2803 (Characteristic), decl=32

←RX @E,0045,DR,C=00,H=0021,R=0000,T=0000,P=00,

U=02A20C2000089A9EE21115A133333365
UUID 0x6533…A202, handle=33

←RX @E,0029,DR,C=00,H=0022,R=0000,T=2902,P=00,

U=0229
UUID 0x2902 (CCCD), handle=34

←RX @E,0010,RPC,C=00,R=060A Long remote procedures complete,

0x060A = no attributes found in last

search request

User guide 67 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.6.2 How to read and write remote GATT attribute values

Reading and writing local GATT values may be accomplished with the gattc_read_handle (/RRH,
ID=6/4) and gattc_write_handle (/WRH, ID=6/5) API commands, respectively.

3.6.3 How to detect notified or indicated values from a remote GATT server

A remote GATT server may push data updates to a client at unpredictable times, if the client has subscribed to
notifications or indication on a supported remote GATT server characteristic. When this occurs, EZ-Serial

generates the gattc_data_received (D, ID=6/3) API event with the connection handle, attribute handle,
and value data.

To receive notifications or indications from a remote server, you must first subscribe to the relevant type of
data updates by writing a special value to the attribute called the Client Characteristic Configuration Descriptor
(CCCD). This attribute always has a UUID of 0x2902, and is a separate attribute relative to the characteristic

declaration (UUID 0x2803) or characteristic value (custom UUID).

Usually, the CCCD attribute has a handle value that is +1 or +2 from the characteristic value attribute. You can

use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors and
identify which attributes you need to use. For example, a remote server structure might contain something like

the following:

• Handle 0x0017, UUID 0x2803: Characteristic Declaration Descriptor

• Handle 0x0018, UUID 0x2A46: Characteristic Value Descriptor (“New Alert” characteristic)

• Handle 0x0019, UUID 0x2902: Client Characteristic Configuration Descriptor

With this structure, you can subscribe to notifications for this characteristic by writing the 16-bit value 0x0001
to the attribute with handle 0x0019. Remember, you must write this value as a little-endian integer [01 00]. To

unsubscribe from receiving notifications, simply write the value 0x0000 to the same CCCD attribute.

Subscribing to indications requires the same procedure, but you must use the value 0x0002 instead of 0x0001.

The CCCD attribute with UUID 0x2902 will only be present for characteristic that support either notifications or

indications. Whether you should enable notifications or indications depends on which of those two GATT
methods is implemented on the server side. For official, adopted characteristics, you can find this information
on the Bluetooth® SIG developer website. For proprietary/custom characteristics, see the whatever
documentation or reference material is made available from the product developer.

User guide 68 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7 Security and encryption examples

EZ-Serial supports built-in Bluetooth® security technologies for safeguarding sensitive data transmitted

wirelessly, including privacy and encryption.

3.7.1 How to use peripheral and central privacy

GAP privacy randomizes the Bluetooth® connection address visible to remote devices in while in certain
operating modes. Use the smp_set_privacy_mode (SPRV, ID=7/9) API command to enable or disable
peripheral or central privacy. Enabling privacy in each mode causes the Bluetooth® connection address used in

related states to be random (private) instead of fixed (public). This can make passive profiling by a remote

observer more difficult.

Peripheral privacy affects the Bluetooth® connection address broadcast during advertisements, which the

remote central device may log or use for a scan request or connection request. Central privacy affects the
Bluetooth® connection address used for scan requests or connection requests when scanning for or

communicating with a remote device.

Once enabled, EZ-Serial will randomize the private address on the interval configured by the

smp_set_privacy_mode (SPRV, ID=7/9) API command.

 Example 1: Enable peripheral and central privacy

Direction Content Effect

TX→ SPRV$,M=3 Enable central and peripheral privacy, store in flash

←RX @R,000B,SPRV$,0000 Response indicates success

3.7.2 How to bond with or without MITM protection

Bonding between two devices requires first generating and exchanging encryption keys and then permanently

storing encryption data along with information required to identify the bonded device and reuse the same keys

again in the future. The mechanics of pairing depend on which side (master or slave) initiates the pairing
request, and the I/O capabilities of each side.

Note: While the Bluetooth® specification allows pairing (generation and exchange of encryption keys)
without bonding (permanent storage of encryption data), most common smartphones, tablets,

and computer operating systems require performing both at the same time if you need encryption.
The encryption-only arrangement (no bonding) is supported only between modules that support

pairing without bonding.

The Bluetooth® specification provides a random passkey generation/display/comparison mechanism for
preventing man-in-the-middle (MITM) attacks during the pairing process. EZ-Serial supports pairing with or

without MITM protection enabled. The factory default settings apply the so-called “just works” method, with no
passkey entry and no MITM protection. You can set local I/O capabilities with the io argument of the

smp_set_security_parameters (SSBP, ID=7/11) API command.

User guide 69 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7.2.1 Understanding I/O capabilities

The I/O capabilities of each peer involved in a pairing process affects the resulting security type (authenticated
vs. unauthenticated) and the exact nature of which events and commands must be used on each side. Table 54
describes all possible I/O arrangements and the resulting behavior and authentication level.

 I/O capabilities and pairing behavior

 Initiator

Responder DisplayOnly Display+YesNo KeyboardOnly NoInput+NoOutput Keyboard+Display

DisplayOnly Just Works Just Works Passkey Entry:

Responder

displays

Initiator inputs

Just Works Passkey Entry:

Responder

displays

Initiator inputs

(Unauthenticated) (Unauthenticated) (Authenticated) (Unauthenticated) (Authenticated)

Display+YesNo Just Works Just Works Passkey Entry:

Responder

displays

Initiator inputs

Just Works Passkey Entry:

Responder

displays

Initiator inputs

(Unauthenticated) (Unauthenticated) (Authenticated) (Unauthenticated) (Authenticated)

KeyboardOnly Passkey Entry:

Initiator displays

Responder inputs

Passkey Entry:

Initiator displays

Responder inputs

Passkey Entry:

Initiator inputs

Responder inputs

Just Works Passkey Entry:

Initiator displays

Responder inputs

(Authenticated) (Authenticated) (Authenticated) (Unauthenticated) (Authenticated)

NoInput+NoOutput Just Works Just Works Just Works Just Works Just Works

(Unauthenticated) (Unauthenticated) (Unauthenticated) (Unauthenticated) (Unauthenticated)

Keyboard+Display Passkey Entry:

Initiator displays

Responder inputs

Passkey Entry:

Initiator displays

Responder inputs

Passkey Entry:

Responder

displays

Initiator inputs

Just Works Passkey Entry:

Initiator displays

Responder inputs

(Authenticated) (Authenticated) (Authenticated) (Unauthenticated) (Authenticated)

The information in the above table comes from the Bluetooth® Core Specification. Combinations reporting
“unauthenticated” do not support MITM protection mechanisms.

Note: Smartphones, tablets, and computers all support full Keyboard+Display I/O capabilities. Also,
when a smartphone has connected as a central device (the one opening the connection), typically

the smartphone OS will not allow the peripheral to act as the pairing initiator. The peripheral can
request pairing using the smp_pair (/P, ID=7/3) API command, but the smartphone will

reject the request and immediately initiate its own request instead after first confirming with an

on-screen prompt whether to proceed with pairing. When this happens, you will see the
smp_pairing_requested (P, ID=7/2) API event follow immediately after your local pairing
request command. The EZ-Serial peripheral device will then be operating in the “responder” role
describe above.

User guide 70 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

The following table describes the local API command and event flow that you should expect when using EZ-
Serial with some common configurations and remote peer devices. All API sequences shown here assume that

the “autoaccept incoming pairing” flag bit is set. If it is not set, you must manually accept incoming requests
with the smp_send_pairreq_response (/PR, ID=7/5) API command anytime the

smp_pairing_requested (P, ID=7/2) event occurs. For more information, see the Controlling automatic
pairing request acceptance section.

 EZ-Serial API flow in common I/O capability configurations

 Remote peer

Local I/O Role Smartphone EZ-Serial with keyboard+display (I=4)

DisplayOnly

(I=0)

Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)

RX:
smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]

Responder RX: smp_pairing_requested (P,
ID=7/2)

RX: smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey on smartphone to finish]

RX: smp_pairing_requested (P,
ID=7/2)

RX:
smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]

Display+YesNo

(I=1)

Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)

RX:
smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]

Responder RX: smp_pairing_requested (P,
ID=7/2)

RX: smp_passkey_display_requested
(PKD, ID=7/5)

[enter passkey on smartphone to finish]

RX: smp_pairing_requested (P,
ID=7/2)

RX:
smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]

KeyboardOnly

(I=2)

Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)

[passkey displayed in remote EZ-Serial]

RX:
smp_passkey_entry_requested

(PKE, ID=7/6)

Responder RX: smp_pairing_requested (P,
ID=7/2)

[passkey displayed on smartphone]

RX: smp_passkey_entry_requested
(PKE, ID=7/6)

TX: smp_send_passkeyreq_response
(/PE, ID=7/6)

RX: smp_pairing_requested (P,
ID=7/2)

[passkey displayed in remote EZ-Serial]

RX:
smp_passkey_entry_requested

(PKE, ID=7/6)

TX:
smp_send_passkeyreq_response

(/PE, ID=7/6)

User guide 71 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Remote peer

NoInput+NoOutput

(I=3)

Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)

[process completes without interaction]

Responder RX: smp_pairing_requested (P,
ID=7/2)

[process completes without interaction]

RX: smp_pairing_requested (P,
ID=7/2)

[process completes without interaction]

Keyboard+Display

(I=4)

Initiator N/A, smartphone takes initiator role TX: smp_pair (/P, ID=7/3)

RX:
smp_passkey_display_requested

(PKD, ID=7/5)

[enter passkey in remote EZ-Serial to

finish]

Responder RX: smp_pairing_requested (P,
ID=7/2)

[passkey displayed on smartphone]

RX: smp_passkey_entry_requested
(PKE, ID=7/6)

TX: smp_send_passkeyreq_response
(/PE, ID=7/6)

RX: smp_pairing_requested (P,
ID=7/2)

[passkey displayed in remote EZ-Serial]

RX:
smp_passkey_entry_requested

(PKE, ID=7/6)

TX:
smp_send_passkeyreq_response

(/PE, ID=7/6)

3.7.2.2 Controlling automatic pairing request acceptance

EZ-Serial’s default behavior is to accept all compatible pairing requests that come in from other devices.

However, your application may benefit from having more control over the pairing process. To change this, clear
Bit 0 (0x01) of the flags value in the smp_set_security_parameters (SSBP, ID=7/11) API command.

Subsequent pairing requests will generate the smp_pairing_requested (P, ID=7/2) API event, and you
must respond with the smp_send_pairreq_response (/PR, ID=7/5) API command to accept or reject the

request.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

 Example 1: Disable automatic acceptance of incoming pairing requests, store in flash, then

pair from a remote peer

Direction Content Effect

TX→ SSBP$,F=0 Clear Bit 0 (autoaccept)

←RX @R,000B,SSBP$,0000 Response indicates success, stored in flash

←RX @E,001B,P,C=01,M=01,B=01,K=10,P=00 Event indicates incoming pairing request

TX→ /PR,R=0 Send pairing request response with “0” result

(accept)

←RX @R,0009,/PR,0000 Response indicates success

←RX @E,001B,B,B=03,A=00A050E3835F,T=00 Event indicates new bond entry created

←RX @E,000F,PR,C=01,R=0000 Event indicates the pairing process completed

successfully

User guide 72 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7.2.3 Pairing and bonding in “just works” mode without MITM protection

The simplest way to bond requires no special passkey entry or display. If your device has no input or output
capabilities, you must use this mode for pairing since MITM protection requires numeric display or entry (or
both) to function correctly.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

 Example 1: Configure a simple pairing without MITM protection, then initiate pairing

Direction Content Effect

TX→ SSBP,M=10,I=3 Set “No Input / No Output” I/O, no MITM protection

←RX @R,000A,SSBP,0000 Response indicates success

TX→ /P Initiate pairing request to remote peer

←RX @R,0008,/P,0000 Response indicates success

←RX @E,001B,B,B=03,A=00A050421C63,T=00 Event indicates new bond entry created

←RX @E,000F,PR,C=00,R=0000 Event indicates the pairing process completed

successfully

3.7.2.4 Pairing and bonding with full I/O capabilities and MITM protection

If your design includes a numeric display or keypad (or both), you can enable MITM protection for improved

security during pairing. In this configuration, you must either display a passkey to the user or allow the user to

enter a passkey, depending on the exact I/O capabilities and which side initiates pairing and which side
responds. For more details, see the Understanding I/O capabilities section.

Note: All API events relating to passkey entry or display use hexadecimal formatting. However, user
entry and display must use decimal format, including any necessary leading zeros for a full 6-digit

value. Ensure that your application uses a decimal format for any user interactions involving the

passkey.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be
done either before or after connecting.

 Example 1: Configure keyboard+display I/O capabilities and MITM protection, then initiate
pairing

Direction Content Effect

TX→ SSBP,M=12,I=4 Set “Keyboard+Display” I/O, enable MITM protection

←RX @R,000A,SSBP,0000 Response indicates success

TX→ /P Initiate pairing request to remote peer

←RX @R,0008,/P,0000 Response indicates success

←RX @E,001B,P,C=00,M=02,B=01,K=10,

P=00
Event indicates incoming pairing request

←RX @E,0014,PKD,C=00,P=00017266 Event indicates passkey display (17266 hex = 094822

dec)

User guide 73 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

Direction Content Effect

←RX @E,001B,B,B=03,A=00A050421C63,

T=00
Event indicates new bond entry created

←RX @E,000F,PR,C=00,R=0000 Event indicates the pairing process completed

successfully

3.7.2.5 Pairing and bonding with a fixed passkey

If your application requires it, EZ-Serial supports the configuration of a fixed passkey to be used during the
pairing process instead of either no passkey or a random one. You can choose a fixed 6-digit value between
000000 and 999999 using the smp_set_fixed_passkey (SFPK, ID=7/13) API command and configuring

the local I/O capabilities to the “Display Only” value with the smp_set_security_parameters (SSBP,
ID=7/11) API command. During pairing, EZ-Serial will generate the smp_passkey_display_requested

(PKD, ID=7/5) API event containing the value configured here. The remote peer must then enter this key to

pair successfully.

Note: The fixed passkey will take effect only if you enable fixed passkey use by setting Bit 1 (0x02) of the
security flags parameter and set the “Display Only” I/O capabilities value (0x00) using the

smp_set_security_parameters (SSBP, ID=7/11) API command. If both of these
conditions are not met, then the stack will revert to the default behavior of using a random

passkey.

The following example assumes that you have already connected to a remote peer device. An active connection
is required for any type of pairing operation to succeed. However, configuration of security settings may be

done either before or after connecting.

 Example 1: Configure “123456” fixed passkey value and required I/O capabilities, then pair
from a remote peer

Direction Content Effect

TX→ SSBP,M=12,I=0,F=3 Set “Display Only” I/O, enable fixed passkey use

flag bit (0x02)

←RX @R,000A,SSBP,0000 Response indicates success

TX→ SFPK,P=1E240 Set a fixed passkey value (1E240 hex = 123456 dec)

←RX @R,000A,SFPK,0000 Response indicates success

←RX @E,001B,P,C=00,M=12,B=01,K=10,P=01 Event indicates incoming pairing request

←RX @E,0014,PKD,C=00,P=0001E240 Event indicates passkey display (1E240 hex =

123456 dec)

←RX @E,001B,B,B=03,A=76C880C3F154,T=01 Event indicates new bond entry created

←RX @E,000F,PR,C=00,R=0000 Event indicates the pairing process completed

successfully

User guide 74 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7.3 How to use out-of-band pairing

EZ-Serial supports the use of out-of-band (OOB) encryption key sharing for added security during pairing with

compatible devices. Use the smp_generate_oob_data (/GOOB, ID=7/7) API command to generate OOB
data based on a 16-byte input key. Use the same key on the remote device to generate matching OOB data in
order to successfully pair using out-of-band key exchange.

Ensure that you generate OOB data on both sides of the connection before initiating the pairing process on

either side.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using the

smp_generate_oob_data (/GOOB, ID=7/7) API command. If you set OOB data and then
attempt to pair with a device that does not support OOB pairing, or that does not have the correct
matching key set, pairing will always fail. To clear OOB data and revert to the standard pairing

and key generation/exchange process, either reset the module via hardware or software or use the

smp_clear_oob_data (/COOB, ID=7/8) API command.

Note: Most smartphones and tablets available at the time of this publication do not support out-of-band
pairing for Bluetooth® LE connections. The example shown here works between two Infineon

Bluetooth® LE modules running EZ-Serial firmware.

The following example assumes that you have already connected to a remote peer device. An active connection

is required for any type of pairing operation.

 Example 1: Apply OOB key on two devices and initiate pairing

Device Direction Content Effect

#1 TX→ /GOOB,K=00112233445566778899AABBCCDDEEFF Generate new OOB data with a

128-bit key

#1 ←RX @R,000B,/GOOB,0000 Response indicates success

#2 TX→ /GOOB,K=00112233445566778899AABBCCDDEEFF Generate new OOB data with a

128-bit key

#2 ←RX @R,000B,/GOOB,0000 Response indicates success

#1 TX→ /P,K=10 Pair without bonding, security

type=1, key size=16

#1 ←RX @R,0008,/P,0000 Response indicates success

#1 ←RX @E,000F,PR,C=00,R=0000 Event indicates that pairing

completed successfully

#2 ←RX @E,000F,PR,C=01,R=0000 Event indicates that pairing

completed successfully

User guide 75 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.7.4 How to encrypt and decrypt arbitrary data

The EZ-Serial platform exposes the internal AES encryption engine via two simple API commands to allow

encryption and decryption of arbitrary data. Use the system_aes_encrypt (/AESE, ID=2/9) API
command to encrypt data, and the system_aes_decrypt (/AESD, ID=2/10) API command to decrypt
data.

The encryption and decryption processes require a 16-byte key to initialize the engine, followed by 16 bytes of

data to process. Supply the key for every new operation. The combination of both parts of input data is
transmitted in a single argument to the relevant encryption or decryption command:

• Bytes 0-15 = 16-byte key

• Bytes 16-31 = 16-byte data to encrypt or decrypt

In the following example, the text-mode input data blob is broken apart for clarity. However, the actual
command requires all data in a single nonbroken command.

 Example 1: Encrypting 8 bytes of cleartext data

Direction Content Effect

TX→ /AESE,I = 00112233445566778899AABBCCDDEEFF

41424344454647484950515253545556
Request encryption of
“ABCDEFGHIPQRSTUV” data with a

simple key

←RX @R,002E,/AESE,0000,O=

48F5051A5DBFAC460601E3665D2D20CB
Response indicates success, cyphertext

returned

 Example 2: Decrypting 8 bytes of cyphertext data

Direction Content Effect

TX→ /AESD,I=

00112233445566778899AABBCCDDEEFF

48F5051A5DBFAC460601E3665D2D20CB

Request decryption of cyphertext data with input

key matching encryption command

←RX @R,002E,/AESD,0000,

O=41424344454647484950515253545556
Response indicates success, cleartext returned

User guide 76 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.8 iBeacon examples

EZ-Serial provides simple configuration commands for beacon broadcast management. Most Bluetooth® LE-
based beaconing technologies require only a specially formed advertisement packet, but implementing this
manually requires additional tracking and modification of advertising behavior and does not allow scheduled
interleaving with other types of behavior simultaneously.

3.8.1 How to configure iBeacon transmissions

Use the p_ibeacon_set_parameters (.IBSP, ID=12/1) API command to configure automated iBeacon
broadcast packets based on a supplied UUID and major/minor ID set.

Note: The UUID supplied in the configuration command will be added to the advertisement packet
exactly as entered, with the same byte order. In contrast, the major and minor values are

interpreted as fixed-length 16-bit integers and subject to the typical rules for text and binary mode
byte ordering.

Official iBeacon specifications are available from the iBeacon page on Apple’s developer webpage.

 Example 1: Enable auto-start iBeacon broadcasting with sample IDs at 100 ms interval, store
in flash

Direction Content Effect

TX→ .IBSP$,E=02,I=00A0,

U=00112233445566778899AABBCCDDEEFF,J=1111,N=2222
Set iBeacon configuration

←RX @R,000C,.IBSP$,0000 Response indicates success

3.8.2 How to configure Eddystone transmissions

Use the p_eddystone_set_parameters (.EDDYSP, ID=13/1) API command to configure automated
Eddystone broadcast packets based on a supplied configuration set. EZ-Serial currently supports Eddystone-
UID and Eddystone-URL frames, but does not support Eddystone-TLM frames (beacon telemetry data).

Official Eddystone beacon specifications are available from Google’s Eddystone GitHub page.

 Example 1: Enable auto-start Eddystone broadcasting of “http://www.Infineon.com/” URL at

100 ms interval

Direction Content Effect

TX→ .EDDYSP,E=02,I=00A0,T=10,

D=006379707265737307
Set Eddystone configuration with scheme and encoding

←RX @R,000D,.EDDYSP,0000 Response indicates success

https://developer.apple.com/ibeacon/
https://github.com/google/eddystone

User guide 77 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.9 Performance testing examples

This section covers techniques to achieve optimal performance in specific contexts.

3.9.1 How to maximize throughput to a remote peer

Throughput concerns how much data you can move across a link within a specific period of time, usually
expressed in bytes per second or bits per second (8 bits per byte). In the case of Bluetooth® LE, the following
guidelines will help improve average throughput:

1. Minimize the connection interval. The Bluetooth® LE specification allows 7.5 ms minimum connection

interval. Data transfers are specifically timed during Bluetooth® LE connections, and more frequent

transfers mean higher potential throughput.

a) When operating in the GAP central role, you can determine the connection interval when initiating the
connection with the gap_connect (/C, ID=4/1) API command, or afterwards with a connection

update request using the gap_update_conn_parameters (/UCP, ID=4/3) API command.

b) When operating in the GAP peripheral role, the remote central determines the initial interval, and you
must request an update with the gap_update_conn_parameters (/UCP, ID=4/3) API command

after connecting. The remote peer (master/central device) may either accept or reject this request. Note
that if the remote peer rejects the request, it will not notify the requesting device; the only evidence of the

reject will be the lack of a subsequent gap_connection_updated (CU, ID=4/8) API event.

2. Maximize the payload size for GATT transfers. It takes much longer to send 20 one-byte packets than one 20-
byte packet, due to the low transmission duty cycle required by the Bluetooth® LE protocol. If your

application has five 16-bit sensor measurement values that are used to the remote peer on the same

interval, use a single characteristic to provide all 10 bytes at once rather than using five separate

characteristics.

3. Use unacknowledged transfers. You can push more unacknowledged data through in a single connection

interval than you can with acknowledged transfers. A typical acknowledged data transfer requires two full
connection intervals to complete (one for the transfer and one for the acknowledgment), but multiple
unacknowledged transfers can be used in sequence within the same interval—up to one packet every

1.25 ms, if supported by the remote client. Typically, standalone full-stack modules cannot buffer and

process data quite this fast, but it is often possible to achieve something near this level of throughput. Note
that making this change may require additional application logic to provide a packet delivery/retry request

mechanism.

a) For client-to-server transfers, use the “write-no-response” operation instead of “write.”

b) For server-to-client transfers, use the “notify” operation instead of “indicate.”

These actions will help increase the observed throughput, but will simultaneously increase power
consumption. Keep this trade-off in mind to choose the right balance between power consumption and
throughput.

User guide 78 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Request a connection parameter update to 7.5 ms interval, no latency, 1 sec
timeout

Direction Content Effect

TX→ /UCP,I=8,L=0,O=64 Request connection update to 10ms (8 * 1.25
ms), no slave latency, 1-second supervision

timeout

←RX @R,000A,/UCP,0000 Response indicates success, request sent to

remote peer

←RX @E,001D,CU,H=04,I=0008,L=0000,O=0064 Event indicates new connection parameters

accepted

3.9.1.1 How to maximize throughput to an iOS device

Apple devices began supporting Bluetooth® LE technology with the iPhone 4S and iOS 5. iOS devices have

additional limitations on top of those mandated in the Bluetooth® specification.

The following additional guidelines apply for maximizing iOS throughput:

• When operating in the GAP central role, the latest iOS devices limit the minimum connection interval of
30 ms (or 11.25 ms when connecting to HID devices). If the peripheral requests a shorter connection interval

than this, the iOS device will reject the request.

• iOS devices limit unacknowledged GATT data transfers (write-no-response or notify) to a maximum of four
per connection interval, according to widespread observations

• iOS 5 added support for GAP peripheral role operation, which includes support for 7.5 ms intervals as

required by the Bluetooth® specification. However, switching GAP roles may not be suitable depending on

other application requirements, and requires a notably different mobile app development approach with its
own side effects.

See the Core Bluetooth® Programming Guide on the Apple Developer website for official guidelines.

 Example 1: Request a connection parameter update to 30 ms interval, no latency, 1 sec

timeout

Direction Content Effect

TX→ /UCP,I=18,L=0,O=64 Request connection update to 30 ms (24 * 1.25
ms), no slave latency, 1-second supervision

timeout

←RX @R,000A,/UCP,0000 Response indicates success, request sent to

remote peer

←RX @E,001D,CU,H=04,I=0010,L=0000,O=0064 Event indicates new connection parameters

accepted

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html

User guide 79 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.9.1.2 How to maximize throughput to an android device

Android devices officially began supporting Bluetooth® LE technology with the 4.3 release, though 4.4 and
onward greatly improved stability and supported functionality.

The following additional guidelines apply for maximizing Android throughput:

• Through 4.4.2, Android supported only a single connection interval of 48.75 ms

• Version 4.4.3 and later support intervals down to 7.5 ms when requested by the remote device, though the

default interval is still 48.75 ms when first establishing the connection

Newer android handsets allow up to six unacknowledged GATT transfers in a single connection interval.

3.9.2 How to minimize power consumption

You can reduce power consumption by making the Bluetooth® LE radioactive as infrequently as your
application allows. The specific actions described in this section will help decrease average consumption, but
will also decrease potential throughput. Keep this trade-off in mind to choose the right balance between power

consumption and throughput.

If you have not already done so, ensure that the best possible CPU sleep mode for your application is

configured as described in the How to manage Sleep states section. This will ensure that the CPU is not taking
more power than necessary. If the CPU is fully or partially awaking more often than necessary, the relative

improvements possible using the methods described in the following sections may not make a notable
difference.

3.9.2.1 How to minimize power consumption while broadcasting

To reduce power consumption in an advertising state:

• Maximize the advertisement interval while broadcasting. The Bluetooth® LE specification allows advertising
at any interval between 20 ms and 10240 ms. Increasing the interval means fewer transmissions within a

given time period. For example, a device advertising at 500 ms will use roughly 20% of the power required
by that same device advertising at 100 ms. Use the gap_set_adv_parameters (SAP, ID=4/23) API

command to change the default advertisement interval, or the gap_start_adv (/A, ID=4/8) API
command to use a non-default interval at the moment you enter an advertising state.

Side effects:

− Scanning devices are less likely to detect each advertisement packet, due to the reduced probability of
the scanning device actively receiving on the same channel at the same time as the advertisement

transmission occurs

− Connections may take longer to establish, since this process begins with the same scanning process and

requires detection of a connectable advertisement packet from the target device

• Do not use all three advertisement channels. The Bluetooth® LE spectrum dedicates three channels to

advertisement packets, spread across the 2.4 GHz Bluetooth® RF spectrum to help ensure reception in busy
RF environments. Most Bluetooth® LE devices advertise on all three channels, but you can selectively

advertise on only one or two of these channels using the gap_set_adv_parameters (SAP, ID=4/23) or

gap_start_adv (/A, ID=4/8) API commands. Advertising on only one channel requires roughly 33% of
the power needed when using all three.

Side effects:

User guide 80 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

− Scanning devices are less likely to detect advertisement packets for the same reason as above—there are
fewer advertisement packets being transmitted, which reduces the probability of actively receiving on

the correct channel at the correct time

− The advertising device cannot combat RF interference as effectively. If you enable only one

advertisement channel, but that portion of the RF spectrum is extremely congested, then a scanning
device may not be able to detect advertisement packets at all even if the timing lines up correctly

• If connections are not required, use a non-connectable/non-scannable mode. When a peripheral device is

connectable (accepting new connections) or scannable (accepting scan request packets while advertising),
the Bluetooth® LE radio switches to a receiving state for approximately 150 µsec after every advertisement

packet to listen for a connection request or scan request packet. When using all three advertising channels,
this means three complete TX-RX cycles occur repeatedly at the configured advertisement interval. If a

peripheral device only needs to broadcast (example, in a beaconing state for iBeacon or Eddystone
applications), you can configure a broadcast-only advertising mode with the gap_set_adv_parameters
(SAP, ID=4/23) or gap_start_adv (/A, ID=4/8) API commands. This prevents the radio from
switching into a receiving state after each transmission, saving both time and power.

Side effects:

− Any data configured in the scan response packet payload will never be transmitted. Most often, this is the

friendly device name.

• Minimize the advertisement and/or scan response data payload length. Regardless of the configured

advertisement interval, the advertisement payload also has a significant effect on the amount of time spent

on transmissions. The advertisement payload may be between 0 and 31 bytes, and the Bluetooth® LE RF

protocol uses a symbol rate of 1 Mbit/sec, which translates to 8 µsec per byte. The fixed encapsulation and
overhead data in every advertisement or scan response packet takes roughly 140 µsec to transmit, but the

payload can add up to 248 µsec to this duration. In other words, a 31-byte payload (~390 µsec) requires
twice as much transmission time as a 7-byte payload (~195 µsec).

In most cases, the application design requires very specific content in the advertisement payload. However,

you should optimize this as much as possible if low-power consumption is critical for performance. You can
configure custom advertisement data content with the gap_set_adv_data (SAD, ID=4/19) and

gap_set_adv_parameters (SAP, ID=4/23) API commands, as described in the How to customize
advertisement and scan response data section.

3.9.2.2 How to minimize power consumption while broadcasting

To reduce power consumption in a connected state:

• Maximize the connection interval. The Bluetooth® LE specification allows a connection interval from 7.5 ms

to 4000 ms.

− When operating in the GAP central role, you can determine the connection interval when initiating the
connection, or afterwards with a connection update request

− When operating in the GAP peripheral role, the remote central determines the initial interval, and you
must request an update after connecting if you need to change it. The remote peer may either accept or
reject this request.

• Use non-zero slave latency. While this only affects power consumption on the slave/peripheral device
during a connection, the slave latency setting can drastically improve power efficiency in many

applications. This setting controls how many connection intervals the slave may skip if it has no data to
send to the connected master device. Once the allowed number of intervals have occurred, the slave must
respond regardless of whether it has any new data to send. The slave may respond at any interval.

User guide 81 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

With the default “0” slave latency setting, the slave must acknowledge the master’s connection
maintenance packets at every interval. In applications requiring infrequent data transfers, this wastes a

great deal of power. Increasing the slave latency value to “3” allows the slave to respond every four intervals
instead of every interval, for an average power reduction of 75% while connected. Applications such as

environmental sensors and human input devices can benefit greatly from non-zero slave latency.

The slave latency value may not be higher than the maximum number that allows the calculated value for
[conn_interval × slave_latency] to remain below the supervision_timeout value, since otherwise the

connection would time out regularly.

Side effects:

− If the slave has no data to send, the master must wait until the slave latency period passes before it can
send or request data to or from the slave. The slave will not be aware of any requests from the master

until it enables its radio again. This can result in noticeable delays especially when using long connection
intervals. For example, a 500 ms connection interval and slave latency setting of “3” could create a
master-to-slave response delay of up to two full seconds. To mitigate this, select a balanced combination
of connection interval and slave latency values that provides acceptable master-side delay and slave-side
power consumption.

− Non-zero slave latency interval increases the possibility of a connection timeout in non-optimal RF

environments. The master will trigger a supervision timeout condition if it does not receive an
acknowledgement from the slave before the timeout period elapses. The master will re-send any

connection maintenance packet that is not acknowledged, but if the slave has already switched back to a

low-power state between required response intervals, the master’s attempted retries may be ignored for

too long. To mitigate this, select a longer supervision timeout, shorter connection interval, and/or lower
slave latency value to achieve required connection stability in the target environment.

• Use unacknowledged transfers. Acknowledged transfers involve more data sent over the air to handle the
acknowledgement. This results in higher average consumption. If you do not need application-level data

transfer confirmations, use unacknowledged methods instead.

− For client-to-server transfers, use the “write-no-response” operation instead of “write.”

− For server-to-client transfers, use the “notify” operation instead of “indicate.”

3.9.3 How to communicate using an L2CAP channel

Using L2CAP eliminates the overhead and optional upper-layer acknowledgements involved with GATT-based
communication. Instead of using structured attributes, L2CAP provides a single data stream for raw transfers.

L2CAP uses a credit-based system for managing data flow. Upon connection or at any point afterwards, the
receiving end of a data channel grants a certain number of credits to the transmitting side. The transmitting

side may send exactly that many packets (regardless of length) before it must wait for additional credits. EZ-
Serial provides the following API methods to work with this credit-based system:

• l2cap_send_credits (/LSC, ID=8/5) command for the receiving side to send credits to the

transmitting side

• l2cap_rx_credits_low (LRCL, ID=8/5) event on the receiving side when the transmitting side has
few or no credits remaining

• l2cap_tx_credits_received (LTCR, ID=8/6) event on the transmitting side when it has received

additional credits

The following example assumes that you have already connected the two devices together and paired. An
active connection is required for any type of L2CAP operations. Registering a PSM only needs to be done once
per session; it will persist even after link closure until the module is reset.

User guide 82 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

 Example 1: Open L2CAP connection between two devices and send data (pairing required)

Device Direction Content Effect

#1 TX→ /LRP,N=43,W=0 Register PSM on channel 43, watermark=0

#1 ←RX @R,000A,/LRP,0000 Response indicates success

#2 TX→ /LRP,N=73,W=0 Register PSM on channel 73, watermark=0

#2 ←RX @R,000A,/LRP,0000 Response indicates success

#1 TX→ /LC,C=0,R=73,L=41,T=17,P=17，
Z=3

Open L2CAP connection, 3 TX credits for peer

#1 ←RX @R,0009,/LC,0000 Response indicates success

#2 ←RX @E,002C,LCR,C=01,N=0041,L=0073,

M=0017,P=0017,Z=0000
Event indicates incoming L2CAP connection

#2 TX→ /LCR,C=0,N=41,R=0,M=17,P=17,Z=3 Accept connection, 3 TX credits for peer

#2 ←RX @R,000A,/LCR,0000 Response indicates success

#2 ←RX @E,002B,LC,C=01,R=0000,N=0040,

M=0017,P=0017, Z=0003
Event indicates connection established

#1 ←RX @E,002B,LC,C=00,R=0000,N=0041,

M=0017,P=0017,

Z=0003

Event indicates connection request accepted

#1 TX→ /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 ←RX @R,0009,/LD,0000 Response indicates success

#2 ←RX @E,0017,LD,N=0040,D=0411223344 Event indicates 4-byte data packet received

#1 TX→ /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 ←RX @R,0009,/LD,0000 Response indicates success

#2 ←RX @E,0017,LD,N=0040,D=0411223344 Event indicates 4-byte data packet received

#1 TX→ /LD,N=41,D=0411223344 Send 4-byte data packet to peer

#1 ←RX @R,0009,/LD,0000 Response indicates success

#2 ←RX @E,0017,LD,N=0040,D=0411223344 Event indicates 4-byte data packet received

#2 ←RX @E,0018,LRCL,C=00,N=0040,Z=0000 Event indicates that peer has zero credits

remaining

#2 TX→ /LSC,N=40,Z=3 Send 3 transmit credits to peer

#2 ←RX @R,000A,LSC,0000 Response indicates success

#1 ←RX @E,0018,LTCR,C=00,N=0041,Z=0003 Event indicates additional credits received

User guide 83 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Operational examples

3.10 Device firmware update examples

EZ-Serial provides multiple methods for updating or replacing firmware on the module. These methods are

described in the following sections. See the Latest EZ-Serial firmware image section for information on where
to find the latest EZ-Serial firmware images.

3.10.1 How to use the DFU Bootloader over UART

See the steps mentioned in the following knowledge base article:

• How to upgrade CYW20822 module firmware via UART

3.10.2 How to upgrade firmware Over the Air (OTA)

See the steps mentioned in the following knowledge base article:

• How to upgrade CYW20822 module firmware with OTA

https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-upgrade-CYW20822-module-firmware-via-UART/ta-p/655728
https://community.infineon.com/t5/Knowledge-Base-Articles/How-to-upgrade-CYW20822-module-firmware-with-OTA/ta-p/660734

User guide 84 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Application design examples

4 Application design examples

The examples in this section describe the hardware design and platform configuration necessary for some

common types of applications. You can use any of these exactly as described for your design or modify as
needed.

4.1 Smart MCU host with 4-wire UART and full GPIO connections

This design takes allows maximum functionality with an external host microcontroller, including efficient sleep
state control and optional CYSPP communication.

4.1.1 Hardware design

Include the following design elements in your hardware:

• Module UART_TX pin to host UART RX pin

• Module UART_RX pin to host UART TX pin

• Module UART_CTS pin to host UART RTS pin

• Module UART_RTS pin to host UART CTS pin

• Module CYSPP and LP_MODE pins to digital output host GPIOs

• Module CONNECTION pins to high-impedance digital input host GPIOs

4.1.2 Module configuration

Most configuration settings will depend on your communication requirements. However, you may wish to
make one or more of the following changes:

• Change device name with gap_set_device_name (SDN, ID=4/15)

• Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters
(.CYSPPSP, ID=10/3)

• Enable system-wide Deep Sleep with system_set_sleep_parameters (SSLP, ID=2/19)

• Enable flow control and optionally change UART parameters with system_set_uart_parameters (STU,
ID=2/25)

4.1.3 Host configuration

The external host must match EZ-Serial’s configured UART communication. With factory default settings, this

will be 115200,8/N/1 with no flow control. However, you should enable and use flow control if the host supports

it.

Use the host API library described in the Host API library section to facilitate easy API communication between
the host and the module, making sure to properly assert and de-assert the module’s LP_MODE pin as described

in the Avoiding UART data loss or corruption due to Deep Sleep transition section if you have enabled system-
wide Deep Sleep.

Monitor the CONNECTION signal for a simple indicator of Bluetooth® LE connectivity without needing to parse
all possible API events from the module. This can be especially helpful when using CYSPP mode.

User guide 85 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Application design examples

4.2 Dumb terminal host with CYSPP and simple GPIO state indication

This design takes advantage of the factory default EZ-Serial configuration and support for automatic CYSPP
connectivity. It is best suited for applications where the external host cannot or does not need to impose any
control over the EZ-Serial platform via API commands or events.

4.2.1 Hardware design

Include the following design elements in your hardware:

• Module CYSPP pin to GND if CYSPP mode configured.

• Module UART_TX pin to host UART RX pin

• Module UART_RX pin to host UART TX pin

• Optional for flow control:

− Module UART_CTS pin to host UART RTS pin

− Module UART_RTS pin to host UART CTS pin

• Optional for connectivity status

4.2.2 Module configuration

The factory default configuration provides most of the behavior required. However, you may wish to make one

or more of the following changes:

• Change device name with gap_set_device_name (SDN, ID=4/15)

• Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters
(.CYSPPSP, ID=10/3)

• Change system sleep settings with system_set_sleep_parameters (SSLP, ID=2/19)

• Change UART baud or other parameters with system_set_uart_parameters (STU, ID=2/25)

4.2.3 Module configuration

The external host must match EZ-Serial’s configured UART communication. With factory default settings, this
will be 115200,8/N/1 with no flow control.

If the host supports a simple “enable” control line for whether or not it is safe to send data, use the module’s
CONNECTION pin. This signal will be asserted (LOW) only when the CYSPP data pipe is fully established.

4.3 Module-only application with beacon functionality

This design requires no special external hardware and only minimal initial configuration to define the type of
beaconing desired.

4.3.1 Hardware design

For correct operation, the module only requires power to the supply pins. You may also wish to include test pad
or header access to the UART interface and status pins such as CONNECTION during prototyping, as this can
greatly simplify debugging if necessary.

User guide 86 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Application design examples

4.3.2 Module configuration

Make the following changes from the factory default configuration:

• Disable CYSPP mode with p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• Enable system-wide Deep Sleep mode with system_set_sleep_parameters (SSLP, ID=2/19)

• Configure non-connectable (broadcast-only) with gap_set_adv_parameters (SAP, ID=4/23)

• Configure desired beaconing with p_ibeacon_set_parameters (.IBSP, ID=12/1) or
p_eddystone_set_parameters (.EDDYSP, ID=13/1)

4.3.3 Host configuration

The simple automatic beacon design does not require any host hardware, and therefore needs no host

configuration.

User guide 87 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Host API library

5 Host API library

The host library implements a protocol parser/generator that communicates with the EZ-Serial firmware using

the API protocol. The provided library is written in standard C and wraps all API methods into easy-to-use
command functions or response/event callbacks. This section describes how to use the library as designed,
how to port it to other platforms, or how to create your own library if the provided code is not suited for direct
use or porting for any reason.

5.1 Host API library overview

5.1.1 High-level architecture

The host library communicates with the EZ-Serial firmware platform, providing the host side of the
command/response/event communication mechanism that the module implements. The host must perform
the following over the UART interface:

1. Read and parse incoming data (may be either response or event packets)

2. Validate packets using checksum

3. Trigger application-defined callbacks when incoming packets arrive

4. Generate and send outgoing data (command packets)

The protocol parser and generator on the module side strictly follow these rules:

• Events may be generated by the module at any time

• Every command received from the host will immediately generate a response

• An event generated (example by a GPIO interrupt) while a command is being processed will not interrupt

the command-response packet flow, but will be sent out after the response packet is sent

The parser and generator on the host side must operate under these assumptions.

5.1.2 Host library design

Host communication with an EZ-Serial-based module requires only that the incoming module-to-host byte
stream is processed correctly, and that the outgoing host-to-module byte stream is properly formatted. To
simplify this and provide a convenient layer of abstraction, the host API library provides a simple “parse”

function for incoming bytes, and “wrapper” command functions which convert named parameter lists into
binary packets ready for transmission.

Other than expecting standard C compiler functionality and little-endian byte order, the library is intentionally

platform-agnostic. The source of incoming data does not matter; the internal methods only process the data

after it arrives. The destination of outgoing data also does not matter; the internal methods only perform
packetization and buffering of data so that it is ready to transmit. This improves portability, since UART

peripherals are accessed differently on different platforms, and a single library cannot provide support across
all (or even very many) platforms if the UART peripheral implementation is built into the library itself.

User guide 88 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Host API library

5.2 Implementing a project using the host API library

5.2.1 Basic application architecture

Any host application which uses the EZ-Serial API library must follow the same basic behavior:

1. Set up UART peripheral for incoming and outgoing data.

2. Assign hardware-specific input/output callback methods.

3. Monitor UART for incoming data, and send to parser.

4. Handle event/response packets sent to callback handler.

5. Call command wrapper functions as needed for application.

This process is shown in the following flowchart:

Boot

Initialize

Setup UART peripheral

Assign UART TX function

Assign event handler function

Custom application behavior

Non-blocking app code

Send API commands as needed

UART RX?

Sleep (optional)

No

Host API Library

Ezs_cmd_...()

UART TX call

ParseByte ()

Event handler
call

Figure 5 EZ-Serial host API library application flow

The host API library contains the core parsing and generating functions necessary to translate incoming data
into callbacks and command function calls into binary packets.

User guide 89 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Host API library

5.2.2 Exposed API functions

The generic host API implementation written in C provides the following methods:

Function Description

EZSerial_Init Initializes parser and callback functions used for event

handling, serial output, and serial input

EZSerial_Parse Processes incoming bytes and triggers event callback function

when response or event packet is successfully processed

EZSerial_FillPacketMetaFromBinary Fills binary packet metadata in ezs_packet_t structure based
on 4-byte binary packet header content (used internally within

EZSerial_Parse)

EZSerial_SendPacket Sends binary packet and checksum byte using host-specific

output callback function

EZSerial_WaitForPacket Reads data using host-specific input callback function in a

blocking or non-blocking way depending on timeout argument

(calls EZSerial_Parse as part of its functionality)

The application is responsible for providing implementation functions for three methods, assigned to the
following function pointers:

Function Description

EZSerial_AppHandler Called whenever a valid incoming packet is observed.

This is strictly required in all cases. It is a core element of

abstracting incoming packets into callback functions.

EZSerial_HardwareOutput Called whenever the API generator needs to send data to the

module over UART.

This is required if you intend to use the EZSerial_SendPacket
method, or the ezs_cmd_... macros which also use that method.

If you will be manually sending well-formed binary command

packet data directly from your own application, this may be

assigned as NULL.

EZSerial_HardwareInput Called whenever the API parser needs to read data from the

module over UART.

This is required if you intend to use the EZSerial_WaitForPacket
method, or the EZS_WAIT_... or EZS_CHECK_... macros which

also use that method. If you will be manually calling the
EZSerial_Parse method after reading bytes in over UART, this

may be assigned as NULL.

User guide 90 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Host API library

5.2.3 Command macros

To simplify binary packet creation, the library implements packet builder macros which match the protocol
definitions for each command method. For example:

• ezs_cmd_system_ping()

• ezs_cmd_system_reboot()

• ezs_cmd_gap_start_adv(mode, type, interval, channels, filter, timeout)

Commands that fall into the SET/GET categories and may access flash memory for retrieving or storing setting
data have two separate command functions for each:

• RAM: ezs_cmd_gatts_set_parameters(flags)

• Flash: ezs_fcmd_gatts_set_parameters(flags)

To substantially reduce flash usage, these are defined as macros which make use of a single function that
accepts variable arguments:

• ezs_output_result_t ezs_cmd_va(uint16 index, uint8 memory, ...)

This single method uses the supplied command table index (defined in the library header file as an enumerated
list) and the packed binary protocol structure definition to determine how many arguments are needed for any

given command and what their data types are.

This macro-based approach means it is not possible for to perform type checking at compile time, but it also
means that the entire command generator implementation uses a tiny quantity of flash memory (well under
one kByte as measured on one 8-bit MCU).

5.2.4 Convenience macros

If the hardware-specific input and output functions are correctly defined, the library also provides macros to

further abstract common behavior into simpler code.

Function Description

EZS_SEND_AND_WAIT(CMD, TIMEOUT) Sends a command and then calls EZS_WAIT_FOR_RESPONSE.

EZS_WAIT_FOR_PACKET(TIMEOUT) Calls EZSerial_WaitForPacket with type set to any.

EZS_WAIT_FOR_RESPONSE(TIMEOUT) Calls EZSerial_WaitForPacket with type set to response.

EZS_WAIT_FOR_EVENT(TIMEOUT) Calls EZSerial_WaitForPacket with type set to event.

EZS_CHECK_FOR_PACKET() Wrapper for EZS_WAIT_FOR_PACKET(0), a non-blocking attempt

to read data.

The assignable “return value” (evaluated expression result) for all of these macros is a pointer to an
ezs_packet_t object. If the process fails at any point for any reason—timeout, command transmission failure,

incoming packet in progress, etc.—then the pointer value will be 0 (NULL).

User guide 91 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Host API library

5.3 Porting the host API library to different platforms

Since the API protocol uses a packet byte stream, the API host library expects matching byte ordering and
packet structure mapping in order to avoid any extra processing overhead. The module (and low-level
Bluetooth® spec) uses little-endian byte ordering, so the host must as well for all multi-byte integer data.

The example application code provided with the library to demonstrate EZ-Serial API usage includes a block of
code which can verify proper support and configuration of byte ordering and structure packing. While it is not
possible to provide a single, comprehensive cross-platform implementation of a structure packing macro due
to variations between compilers, it is possible to definitively test whether the existing code will work properly.

This can quickly identify and avoid potential problems that are otherwise very difficult to troubleshoot.

No special C extensions are used; tested compilers are GCC or GCC-compliant and follow the default C89 ruleset
since no additional extensions are enabled.

5.4 Using the API definition JSON file to create a custom library

The JSON schema used for the API definition has the following structure:

1. info (single dictionary)

 date – Definition revision date

 version – API protocol definition version

2. groups (list of dictionaries) […

 id – Numeric ID assigned to group

 name – Alpha name assigned to group (for example, “gap”)

 commands (list of dictionaries) […

i. id – Numeric ID assigned to command

ii. name – Alpha name assigned to command (for example, “start_adv”)

iii. flashopt – Boolean flag indicating flash storage for settings

iv. parameters (list of dictionaries) […

1. type – Data type (for example, “uint16”)

2. name – Alpha name assigned to parameter (for example, “mode”)

3. textname – text-mode equivalent (for example, “M”)

4. required – Boolean flag indicating optional or required parameter

5. format – Intended data presentation format (for example, “string” or “hex”)

6. default – Fixed default value if optional parameter

v. returns (list of dictionaries) […see parameters…]

vi. references (single dictionary)

1. commands (dictionary)

2. events (dictionary)

 events (list of dictionaries) […see commands…]

User guide 92 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Troubleshooting guidelines

6 Troubleshooting guidelines

EZ-Serial is designed to be as robust and intuitive as possible, but it is always possible for something to go

wrong. The following instructions can help narrow down the cause of failure in identify solutions in some cases.

6.1 UART communication issues

If you are unable to send or receive data as expected over the UART interface, perform the following steps:

1. Ensure VDD, VDDR, and GND pins are properly connected (VDDR also requires power).

2. Ensure VDD and VDDR have a stable supply within the supported range (typically 3 V – 5 V).

3. Ensure UART data pins are properly connected:

− Module UART_RX to host TX

− Module UART_TX to host RX

4. If flow control is enabled or expected, ensure the UART flow control pins are properly connected:

− Module UART_RTS to host CTS

− Module UART_CTS to host RTS

5. Ensure the CYSPP pin is floating or HIGH to avoid entry into CYSPP mode. When CYSPP is active, API
communication is disabled, and this can appear as a non-communicative state until a connection is

established.

6. Drive or strongly pull the LP_MODE pin LOW to disable sleep mode. This is not necessary in most cases, but

it can help eliminate potential uncertainty during testing. For more details, see the Avoiding UART data loss

or corruption due to Deep Sleep transition section.

7. Reset the module and monitor the UART_TX pin during the boot process. If the module boots normally

(CYSPP pin de-asserted), the system_boot (BOOT, ID=2/1) API event should occur at the configured
baud rate and in the configured protocol mode. With factory default settings, these values are 115200 baud
and text mode. If possible, verify activity using an oscilloscope or a logic analyzer.

8. If attempting to communicate using the API protocol, ensure that your command packet structures are

correct per the definitions in the Protocol structure and communication flow section.

9. If you are sending commands in binary mode and the commands in use have any variable-length arguments
(data type of uint8a or longuint8a), ensure that the argument has the correct <length> [data0,

data1, ..., dataN] format. Omitting the length byte will cause the API parser to interpret the packet

incorrectly.

10. If you are experiencing data corruption or loss on module-to-host transfers and using the
CYW920822M2P4XXI040-EVK with the “KitProg3” firmware on the PSoC™ 5LP MCU acting as the USB-to-

UART bridge, ensure that you have the latest version of PSoC™ Programmer and have updated the KitProg3
firmware on the CYW920822M2P4XXI040-EVK according to the PSoC™ Programmer user guide.

User guide 93 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Troubleshooting guidelines

6.2 Bluetooth® LE connection issues

If you are unable to connect to or from a remote device, perform the following steps:

1. If attempting to initiate a connection to a remote peripheral/slave device:

 Ensure that the local device is in an idle state, not advertising or scanning or connected to another
device. You can stop these various operations with the gap_stop_adv (/AX, ID=4/9) API command,
gap_stop_scan (/SX, ID=4/11) API command, and gap_disconnect (/DIS, ID=4/5) API
command, respectively. Note that the factory default configuration will automatically boot into an
advertising state due to CYSPP settings.

 Ensure the remote device is advertising in a connectable state. Try scanning with the gap_start_scan
(/S, ID=4/10) API command in “observation” mode to monitor for all advertising devices.

 Ensure the remote device is not too far away or in any other situation resulting in very low signal strength.
Scanning as described in (a) will also reveal this with observation of scan result RSSI values.

 Ensure you have specified the correct Bluetooth® connection (MAC) address and address type (public or
private). A connection attempt with the right Bluetooth® address but the wrong address type will fail.

 Ensure you are in the correct state to initiate a connection (idle, not advertising, scanning, connecting, or
connected already).

 Try connecting to a different peripheral/slave device to see whether the problem persists.

2. If attempting to initiate a connection from a remote central/master device:

 Ensure the module is advertising in a connectable state. Start advertising specifically in the “connectable,
undirected” mode using the gap_start_adv (/A, ID=4/8) API command, and watch for the expected
gap_adv_state_changed (ASC, ID=4/2) API event indicating that the state actually changed to

“active.”

 Ensure you have set properly formed custom advertising data with gap_set_adv_data (SAD,
ID=4/19) if you have disabled automatic advertising packet management with

gap_set_adv_parameters (SAP, ID=4/23). Advertisement packets without a standard “Flags” field
(usually [02 01 06]) will not appear in a generic scan. For more details, see the How to customize

advertisement and scan response data section.

6.3 GPIO signal issues

If you are not observing the expected behavior for GPIO input and/or output signals, perform the following
steps:

1. Ensure that the pins you have connected are correct based on your chosen module. See the GPIO pin map

for supported modules section for per-device pin map details.

2. If a special-function pin is not generating or responding to an external signal as expected, ensure that the

function is enabled using the gpio_set_function (SIOF, ID=9/3) API command. Note that all
functions are enabled in the factory default configuration and should not need to be re-enabled in order to

work out of the box.

3. If a special-function output pin is not sufficiently driving a connected external device’s input logic, ensure

that the “strong drive” mode is enabled for that functional pin by using the gpio_set_function (SIOF,
ID=9/3) API command.

User guide 94 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7 API protocol reference

This section describes the API protocol that EZ-Serial uses. This protocol allows an external host to control the

module, in addition to any GPIO signals involved in the design. The protocol follows a strict set of rules to make
deterministic host-side behavior possible.

The material in this revision of the User Guide describes version 1.3 of the API protocol.

7.1 Protocol structure and communication flow

7.1.1 API protocol formats

EZ-Serial implements a unified set of functionality that can be accessed using either text or binary API
communication. These two formats cover the same feature set, and do not offer more or less control in any way

(with the exception of optional argument support in text mode, described in the following sections).

7.1.1.1 Text format overview

The text protocol definition is comprised entirely of printable ASCII characters for ease of use in terminal
software. Response and Event packets sent from the module shall end with “\r\n” characters (0x0D, 0x0A).

Commands sent to the module may end with either or both. Unlike the binary mode described below, the text
protocol does not contain any checksum data or have a command entry timeout.

7.1.1.2 Binary format overview

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure

comprises a 4-byte header, followed by an optional payload of up to 2047 bytes (length specifier field is 11 bits

wide).

No currently defined binary packet contains more than 520 payload bytes at this time, and very few contain
more than 48. The API reference material in the API protocol data types section lists every fixed or
minimum/maximum length value for all commands, responses, and events within the protocol.

The payload carries information related to the command, response, or event. If present, this payload always
comes immediately after the header. All data in the payload will be contained within one or more of the

datatypes specified in the API protocol data types section.

To simplify the implementation of parsers and generators both inside the firmware and on external host

microcontrollers, any packet may have a maximum of one variable-length data member (byte array or string),
and if present, it must be the last element in the payload.

7.1.2 API protocol data types

The data types implemented for individual parameters/arguments in the API protocol are described below,

including representative text and binary examples.

In both text and binary modes, all negative numbers are represented in two’s complement form. In this form,
the most significant bit is the sign bit, which indicates a negative number if set. The remaining bits count
upward from the bottom of the selected (positive or negative) range. For example, the value 0x80 is the bottom
of the “int8” range, -128.

User guide 95 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

 API protocol data types

Type Bytes Description Example

uint8 1 Unsigned 8-bit integer.

range is 0 to 255.
Text mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal 154

Binary mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal 154

int8 1 Signed 8-bit integer.

range is -128 to 127.

Text mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal -102

Binary mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal -102

uint16 2 Unsigned 16-bit integer.

range is 0 to 65,535.

Text mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal 39,612

Binary mode: (little-endian)

• [34 12] = 0x1234, decimal 4,660

• [BC 9A] = 0x9ABC, decimal 39,612

int16 2 Signed 16-bit integer.

Range is -32,768 to

32,767.

Text mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal -25,924

Binary mode: (little-endian)

• [34 12] = 0x10, decimal 4,660

• [BC 9A] = 0x9ABC, decimal -25,924

uint32 4 Unsigned 32-bit integer.
range is 0 to

4,294,967,295.

Text Mode:

• “12345678” = 0x12345678, decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0, decimal 2,596,069,104

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678, decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0, decimal 2,596,069,104

int32 4 Signed 32-bit integer.
range is -2,147,438,648

to 2,147,483,647.

Text Mode:

• “12345678” = 0x12345678, decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0, decimal -1,698,898,192

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678, decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0, decimal -1,698,898,192

macaddr 6 48-bit MAC address. Text Mode:

• “112233AABBCC” = 11:22:33:AA:BB:CC

User guide 96 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Type Bytes Description Example

Binary Mode: (little-endian)

• [CC BB AA 33 22 11] = 11:22:33:AA:BB:CC

uint8a 1+ Array of uint8 bytes,

with prefixed one-byte
length value. Supported

length is 0-255 bytes.

Text Mode: (length omitted, detected automatically)

• “41424344” = Length 4, Data [41 42 43 44]

• “1122334455” = Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 41 42 43 44] = Ln. 4, [41 42 43 44]

• [05 11 22 33 44 55] = Ln. 5, [11 22 33 44 55]

longuint8a 2+ Array of uint8 bytes,

with prefixed two-byte
length value. Supported

length is 0-65535 bytes.

Text Mode: (length omitted, detected automatically)

• “41424344” = Length 4, Data [41 42 43 44]

• “1122334455” = Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 00 41 42 43 44] = Length 4, Data [41 42 43 44]

• [05 00 11 22 33 44 55] = Length 5, Data [11 22 33 44 55]

The 16-bit length prefix in binary mode is transmitted in

little-endian byte order, so the value 0x0005 is sent as [05

00].

string 1+ String of uint8 bytes,

with prefixed one-byte

length value. Length is

0-255 bytes.

These two datatypes are represented in binary exactly the
same way as uint8a and longuint8a data, but in text mode

they are entered and displayed exactly as-is, with the

assumption that they contain printable ASCII characters.
An example of a string value entered and displayed in this

way is the Device Name value.
longstring 2+ String of uint8 bytes,

with prefixed two-byte
length value. Length is

0-65535 bytes.

7.1.3 Binary format details

7.1.3.1 Byte ordering and structure packing

The protocol implements a collection of common data types representing signed and unsigned integers, arrays

of binary bytes, arrays of printable characters, and certain technology-specific data (6-byte MAC address).

In text mode, all data except string/longstring values are represented as ASCII hexadecimal characters, without
a leading “0x” or other prefix. For example, the decimal value 154 is shown or entered as “9A”. Leading zeros

may be omitted. Also, in text mode, all multi-byte integer and MAC address data shall be entered in big-endian

byte order. For example, the value 0x1234 is entered or displayed as “1234”. The MAC address

11:22:33:AA:BB:CC is entered or displayed as “112233AABBCC”.

In binary mode, all multi-byte integers and MAC address data must be transmitted serially in little-endian byte
order. For example, the value 0x1234 is two bytes transmitted as [34 12], and the MAC address

11:22:33:AA:BB:CC is six bytes transmitted as [CC BB AA 33 22 11].

The Bluetooth® Low Energy specification mandates little-endian byte order internally, so data from the stack is

naturally presented to the application layer in this byte order. Further, many common embedded processors
use little-endian data storage, including the ARM Cortex-M0 in Infineon Bluetooth® modules. As a result, host

User guide 97 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

MCU firmware can read in a serial byte stream into a contiguous SRAM buffer, and define a structure like the
following:

typedef struct {

 uint16 app;

 uint32 stack;

 uint16 protocol;

 uint8 hardware;

 uint8 cause;

 macaddr address;

} ezs_evt_system_boot_t;

The host MCU application can directly map this structure onto the packet buffer in memory with no additional

byte-swap operations. Accessing any one of the structure members will give correct access to the data in the
packet. This arrangement allows for minimal flash usage and CPU execution time.

7.1.3.2 Binary packet header

Table 69 describes the binary packet 4-byte header structure:

 Binary packet header structure

Byte Field(s) Description

0 [7:6] - Type

[5:4] - Memory

[2:0] - Length MSB

Type: The “Type” field is a 2-bit value (MSB aligned) indicating whether the

packet is a command, response, or event. Options are as follows:

00: RESERVED

01: RESERVED

10: Event (module-to-host)

11: Response (module-to-host), and Command (host-to-module)

Protocol methods follow this convention when the “Type” value is aligned

properly:

Commands sent to the module begin with 0xC0

Responses sent to the host begin with 0xC0

Events sent to the host begin with 0x80

Memory: The “Memory” field is a 2-bit value (MSB aligned) indicating whether a
command sent accesses the runtime value stored in RAM, or the boot value

stored in flash. This field is ignored for commands which do not read or write

configuration data stored in either flash or RAM. Options are as follows:

• 00: Runtime (RAM)

• 01: Boot (Flash)

• 10: RESERVED

• 11: RESERVED

The values stored in RAM and flash may be the same, if the user has not modified

the runtime value separately from the boot value since the last power-on or

reset.

Length MSB:

The length MSB field contains the upper three bits of the payload length value

(11 bits total).

User guide 98 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Byte Field(s) Description

The “Type”, “Memory”, and “Length MSB” bitfields are positioned within Byte 0

as follows: 0b TTMM 0LLL

The remaining bit in the middle is currently reserved and should always be set to

zero.

1 Length LSB This value indicates the number of bytes in the payload. It may be 0 to indicate
no payload, or any value up to the 11-bit maximum of 2047 (combining the LSB

and MSB fields together).

Typically, packets fit easily within a 64-byte buffer. However, a few packets such

as local GATT reads and writes may potentially be much longer than this.
Protocol methods which may require or generate atypically long packets shall be

documented specifically.

2 Group ID All protocol methods are organized into logically separate groups, such as GAP,
GATT server, L2CAP, CYSPP, etc. This byte represents the group ID, between 0

and 255.

A single group ID applies to all commands, responses, and events within that

group.

3 Method ID Within each group and packet type, every protocol method has a unique ID
between 0 and 255. Command/response pairs always have matching IDs.

Command/response pairs and events are separate collections and may have

overlapping method IDs, each in a set starting from 0.

7.2 API commands and responses

All commands and responses implemented in the API protocol are described in detail below. API events are
documented separately in the API events section. A master list of all possible error codes resulting from

commands can be found in the Error codes section.

Important things to note about the reference material in the following sections:

1. The 16-bit “result” code is common to every response, and always occupies the same position in the packet

(immediately after the binary header or text name). For simplicity, this “result” field is omitted from each list
of response parameters in the tables below.

2. The “Text” column in each “Command Arguments” table contains the text code for each argument.

Required arguments have a red asterisk (*) next to their text codes. Optional arguments in text mode will

not have a red asterisk.

3. All command arguments are required in binary mode, due to the fact that binary parsing depends on

predictable argument position and byte width for proper data identification and unpacking.

4. The “Command-Specific Result Codes” list appearing for some commands do not include some errors that
may result from command entry or protocol format mistakes. These common errors include:

− 0x0203 – EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND

− 0x0206 – EZS_ERR_PROTOCOL_SYNTAX_ERROR

− 0x0207 – EZS_ERR_PROTOCOL_COMMAND_TIMEOUT

− 0x0209 – EZS_ERR_PROTOCOL_INVALID_CHECKSUM

− 0x020A – EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH

− 0x020B – EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT

User guide 99 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

− 0x020C – EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE

− 0x020D – EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT

− 0x020E – EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA

− 0x020F – EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE

− 0x0210 – EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE

See the Error codes section for details on these and other error codes.

Commands and responses are broken down into the following groups:

• Protocol Group (ID=1)

• System Group (ID=2)

• DFU Group (ID=3)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• GATT Client Group (ID=6)

• SMP Group (ID=7)

• L2CAP Group (ID=8)

• GPIO Group (ID=9)

• CYSPP Group (ID=10)

• iBeacon Group (ID=12)

• Eddystone Group (ID=13)

7.2.1 Protocol group (ID=1)

Protocol methods allow you to change the way the API protocol operates while communicating with an
external host over the serial interface.

The following are the commands within this group:

• protocol_set_parse_mode (SPPM, ID=1/1)

• protocol_get_parse_mode (GPPM, ID=1/2)

• protocol_set_echo_mode (SPEM, ID=1/3)

• protocol_get_echo_mode (GPEM, ID=1/4)

Events within this group are documented in the Protocol group (ID=1) section.

User guide 100 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)

Configure new protocol parse mode. In binary mode, all API packets to and from the module must use a binary

format with a fixed header and payload structure, as described in the reference material. In text mode, all
commands, responses, and events use a human-readable format that is suitable for typing in a terminal. For
more details, see the Protocol structure and communication flow section.

Note: When the protocol mode is changed with this command, the effect is immediate. The response

packet returned will come in the newly configured format, not the previous format.

Binary header

 Type Length Group ID Note

CMD C0 01 01 01 None

RSP C0 02 01 01 None

Text info

Text name Response length Category Note

SPPM 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M New parse mode:

• 0 = Text mode (factory default)

• 1 = Binary mode

Response parameters

None.

Related commands

• protocol_get_parse_mode (GPPM, ID=1/2)

User guide 101 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)

Obtain current protocol parse mode.

Binary header

 Type Length Group ID Note

CMD C0 00 01 02 None

RSP C0 03 01 02 None

Text info

Text name Response length Category Note

GPPM 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Current parse mode:

• 0 = Text mode (factory default)

• 1 = Binary mode

Related commands

• protocol_set_parse_mode (SPPM, ID=1/2)

7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)

Configure new protocol echo mode.

The protocol echo mode applies when using text mode API protocol over UART to communicate with the
module. Enabling echo will result in each input byte being sent back to the host after it is parsed. Local echo
may be desirable during a terminal session, but it is typically simpler disable it for MCU communication so that

the MCU only needs to parse response and event data.

Note: Local echo does not apply in CYSPP data mode, regardless of the protocol format in use. It only
affects communication over the UART interface when using the API protocol in text mode.

Binary header

 Type Length Group ID Note

CMD C0 01 01 03 None

RSP C0 02 01 03 None

Text info

Text name Response length Category Note

SPEM 0x000A SET None

User guide 102 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint8 mode M New echo mode:

0 = Disabled

1 = Enabled (factory default)

Response parameters

None.

Related commands

• protocol_get_echo_mode (GPEM, ID=1/4)

7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

Obtain current protocol echo mode.

Binary header

 Type Length Group ID Note

CMD C0 00 01 04 None

RSP C0 03 01 04 None

Text info

Text name Response length Category Note

GPEM 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Current echo mode:

0 = Disabled

1 = Enabled (factory default)

Related commands

• protocol_set_echo_mode (SPEM, ID=1/3)

User guide 103 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2 System group (ID=2)

System methods relate to the core device and describe functionality such as boot status, setting or obtaining
device address info, and resetting to an initial state.

The following are the commands within this group:

• system_ping (/PING, ID=2/1)

• system_reboot (/RBT, ID=2/2)

• system_dump (/DUMP, ID=2/3)

• system_store_config (/SCFG, ID=2/4)

• system_factory_reset (/RFAC, ID=2/5)

• system_query_firmware_version (/QFV, ID=2/6)

• system_query_unique_id (/QUID, ID=2/7)

• system_query_random_number (/QRND, ID=2/8)

• system_aes_encrypt (/AESE, ID=2/9)

• system_aes_decrypt (/AESD, ID=2/10)

• system_write_user_data (/WUD, ID=2/11)

• system_read_user_data (/RUD, ID=2/12)

• system_set_bluetooth_address (SBA, ID=2/13)

• system_get_bluetooth_address (GBA, ID=2/14)

• system_set_eco_parameters (SECO, ID=2/15)

• system_get_eco_parameters (GECO, ID=2/16)

• system_set_wco_parameters (SWCO, ID=2/17)

• system_get_wco_parameters (GWCO, ID=2/18)

• system_set_sleep_parameters (SSLP, ID=2/19)

• system_get_sleep_parameters (GSLP, ID=2/20)

• system_set_tx_power (STXP, ID=2/21)

• system_get_tx_power (GTXP, ID=2/22)

• system_set_transport (ST, ID=2/23)

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

• system_get_uart_parameters (GTU, ID=2/26)

• system_force_hibernation (/SLEEP, ID=2/29)

Events within this group are documented in the System group (ID=2) section.

User guide 104 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.1 system_ping (/PING, ID=2/1)

Test API communication.

Pinging the module verifies that the host and the module can communicate properly in API mode. The module

should immediately generate a well-formed response to this command if communication is working correctly.
Host-side initialization routines often begin with this step.

The runtime values returned in the response to this command are calculated based on the built-in 32768 Hz

watch clock oscillator (WCO) that is used to manage low-power operation of the Bluetooth® Low Energy stack.
No external hardware is required for this functionality.

Note: Pinging the module does not serve any purpose other than to verify proper communication, or to
obtain runtime since reset. You do not need to ping at regular intervals to keep a connection alive
or prevent the module from entering low-power states. The platform automatically maintains
Bluetooth® LE connections unless commanded otherwise. See the How to manage Sleep states
section for Sleep behavior detail.

Binary header

 Type Length Group ID Note

CMD C0 00 02 01 None

RSP C0 0A 02 01 None

Text info

Text name Response length Category Note

/PING 0x0021 ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 runtime R Number of seconds since boot

uint32 fraction F Fraction of a second (units are 1/32768)

User guide 105 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.2 system_reboot (/RBT, ID=2/2)

Reboot module.

A module reboot takes effect immediately. Any configuration settings not stored in flash will revert to their

boot-level values, and any active connections will be terminated without clean closure (remote peer will detect
a supervision timeout). See the Saving runtime settings in flash section for details about how to store settings
in flash to make them persist across reboots and power-cycles.

Binary header

 Type Length Group ID Note

CMD C0 00 02 02 None

RSP C0 02 02 02 None

Text info

Text name Response length Category Note

/RBT 0x000A ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• system_store_config (/SCFG, ID=2/4) – Used to store all configuration items in flash before

rebooting, if desired.

Related events

• system_boot (BOOT, ID=2/1) – Occurs once the reboot process completes.

User guide 106 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.3 system_dump (/DUMP, ID=2/3)

Dump current device configuration or state information.

Performing a system dump will generate a sequence of system_dump_blob (DBLOB, ID=2/5) API events,

each containing up to 16 bytes, until all data transmission is complete. You can provide this information for
troubleshooting if requested by Infineon support staff.

Binary header

 Type Length Group ID Note

CMD C0 01 02 03 None

RSP C0 04 02 03 None

Text info

Text name Response length Category Note

/DUMP 0x0012 ACTION None

Command arguments

Data type Name Text Description

uint8 type T Type of information to dump:

• 0 = Runtime configuration data (default)

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

Response parameters

Data type Name Text Description

uint16 length L Number of bytes to be dumped

Related commands

• system_store_config (/SCFG, ID=2/4)

Related events

• system_dump_blob (DBLOB, ID=2/5)

User guide 107 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.4 system_store_config (/SCFG, ID=2/4)

Store all configuration settings into flash.

This command applies all runtime settings into the boot-level configuration area stored in non-volatile flash.

See the Configuration settings, storage and protection section for details about different configuration areas.

Note: This command briefly halts CPU execution, and may cause a connectivity loss for any open
connections if this occurs during a precise moment when low-level Bluetooth® LE interrupts
require processing. If possible, only use this command while not connected to avoid this potential
issue.

Binary header

 Type Length Group ID Note

CMD C0 00 02 04 None

RSP C0 02 02 04 None

Text info

Text name Response length Category Note

/SCFG 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• system_factory_reset (/RFAC, ID=2/5)

7.2.2.5 system_factory_reset (/RFAC, ID=2/5)

Reset all settings to factory defaults and reboot.

This command reverts all configuration settings back to the values stored in the factory default area. After

applying these default values, the system reboots immediately.

Note: If you have configured custom serial communication settings using the system_set_transport
(ST, ID=2/23) API command, using this command will undo these changes and may prevent

working communication until you reconfigure your host device to the factory default transport
settings. See the Factory default behavior section for details about these settings.

Binary header

 Type Length Group ID Note

CMD C0 00 02 05 None

RSP C0 02 02 05 None

User guide 108 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

/RFAC 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related events

• system_factory_reset_complete (RFAC, ID=2/3) – Occurs after the settings are reset

• system_boot (BOOT, ID=2/1) – Occurs after the system reboots

Example usage

• Section Factory reset via API command

7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)

Query EZ-Serial firmware version info.

This command provides the same version details that the system_boot (BOOT, ID=2/1) event contains.

Binary header

 Type Length Group ID Note

CMD C0 00 02 06 None

RSP C0 0D 02 06 None

Text info

Text name Response length Category Note

/QFV 0x002C ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 app E Application version number (0x0100010E = 1.0.1 build 14)

uint32 stack S Bluetooth® LE stack version number (0x030200FA = 3.2.0 build 250)

uint16 protocol P API protocol version number (0x0101 = 1.1)

uint8 hardware H Hardware identifier:

0X40 = CYW920822-P4TAI040_P4EPI040

User guide 109 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• system_boot (BOOT, ID=2/1)

7.2.2.7 system_query_unique_id (/QUID, ID=2/7)

Query EZ-Serial module unique identifier. This command is not implemented.

The module’s unique identifier comes from factory-stored data in the chipset’s supervisory flash (SFLASH) area.
The four bytes returned are:

• Die X position

• Die Y position

• Die wafer number

• Die lot number

Binary header

 Type Length Group ID Note

CMD C0 00 02 07 None

RSP C0 07 02 07 None

Text info

Text name Response length Category Note

/QUID 0x0016 ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a id U Unique ID (1 length byte equal to 0x04, followed by 4 data bytes)

uint8a data type requires one prefixed “length” byte before binary parameter

payload

7.2.2.8 system_query_random_number (/QRND, ID=2/8)

Query random number generator for 8-byte pseudo-random sequence.

This command provides simple access to the random number generator in the Infineon Bluetooth® module’s

chipset. The query always provides exactly eight bytes of random data.

Note: This pseudo-random generation mechanism is FIPS PUB 140-2 compliant.

Binary header

 Type Length Group ID Note

CMD C0 00 02 08 None

RSP C0 0B 02 08 None

User guide 110 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

/QRND 0x001E ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a data D Random 8-byte sequence (1 length byte equal to 0x08, followed by 8 data bytes)

Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload

7.2.2.9 system_aes_encrypt (/AESE, ID=2/9)

Generate AES-encrypted cyphertext using provided key, initialization info, and cleartext.

This command provides access to the internal hardware AES engine inside the Infineon Bluetooth® module’s
chipset. The encryption process takes a 16-byte key to initialize the engine, and can encrypt 16 bytes at a time.

Encrypted data may be decrypted with the system_aes_decrypt (/AESD, ID=2/10) API command, using
the same key and nonce.

Binary header

 Type Length Group ID Note

CMD C0 1D 02 09 None

RSP C0 12 02 09 None

Text info

Text name Response length Category Note

/AESE 0x2E ACTION None

Command arguments

Data type Name Text Description

uint8a in_struct I* Input structure (32 bytes):

Bytes 0-15 = 16-byte Key

Bytes 16-31 = Clear text

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.

User guide 111 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8a out O Cyphertext output (16 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands

• system_aes_decrypt (/AESD, ID=2/10)

Example usage

• See How to encrypt and decrypt arbitrary data

7.2.2.10 system_aes_decrypt (/AESD, ID=2/10)

Generate AES-decrypted plaintext using provided key, initialization info, and cyphertext.

This command provides access to the internal hardware AES engine inside the Infineon Bluetooth® module’s
chipset. The decryption process takes a 16-byte key decrypt 16 bytes at a time. Cleartext data may be

encrypted with the system_aes_encrypt (/AESE, ID=2/9) API command, and later decrypted using this
API command with the same key and nonce.

Binary header

 Type Length Group ID Note

CMD C0 1D 02 0A None

RSP C0 12 02 0A None

Text info

Text name Response length Category Note

/AESD 0x2E ACTION

Command arguments

Data type Name Text Description

uint8a in_struct I* Input structure (32 bytes):

Bytes 0-15 = 16-byte Key

Bytes 16-31 = Cyphertext data to be decrypted

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.

User guide 112 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8a out O Cleartext output (16 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary
parameter payload.

Related commands

• system_aes_encrypt (/AESE, ID=2/9)

Example usage

• See How to encrypt and decrypt arbitrary data

7.2.2.11 system_write_user_data (/WUD, ID=2/11)

Write arbitrary data to the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows writing 1-
32 bytes to any position within this 256-byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if
you are writing 32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary header

 Type Length Group ID Note

CMD C0 04-23 02 0B Variable-length command payload, minimum of 4 (0x4), maximum of 35

(0x23)

RSP C0 02 02 0B None

Text info

Text name Response length Category Note

/WUD 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint16 offset O* Offset (0-255)

uint8a data D* Data to write (1-32 bytes)

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

User guide 113 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• system_read_user_data (/RUD, ID=2/12)

7.2.2.12 system_read_user_data (/RUD, ID=2/12)

Read arbitrary data from the user flash storage area.

EZ-serial provides 256 bytes of non-volatile flash storage for application data. This command allows reading 1-
32 bytes from any position within this 256-byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if

you are reading 32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary header

 Type Length Group ID Note

CMD C0 03 02 0C None

RSP C0 03 02 0C Variable-length response payload, minimum of 3 (0x3), maximum of 35

(0x23)

Text info

Text name Response length Category Note

/RUD 0x000D-0x004D ACTION Variable-length response payload, minimum of 13 (0xD),

maximum of 77 (0x4D)

Command arguments

Data type Name Text Description

uint16 offset O* Offset (0-255)

uint8 length L* Number of bytes to read (1-32)

Response parameters

Data type Name Text Description

uint8a data D Data read (1-32 bytes)

uint8a data type requires one prefixed “length” byte before binary parameter

payload

Related commands

• system_write_user_data (/WUD, ID=2/11)

User guide 114 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13)

Configure a new Bluetooth® address.

This address will be visible to remote scanning or connected devices, as long as the module is not operating

with privacy enabled. EZ-Serial uses a fixed public or static random address by default, which is generated
dynamically based on unique properties of the chipset inside each module (including wafer/die data).
Normally, you do not need to change the Bluetooth® address using this command.

Note: When privacy is enabled, remote peer devices will see a random address instead of the fixed
address. Central or peripheral privacy is not the same as encryption. See related commands and

example usage for detail.

Note: EZ-serial received this command, it will return an error code 0x0111 in response package. It means

that you need reset the device to make the address available.

Binary header

 Type Length Group ID Note

CMD C0 06 02 0D None

RSP C0 02 02 0D None

Text info

Text name Response length Category Note

SBA 0x0009 SET None

Command arguments

Data type Name Text Description

macaddr address A New Bluetooth® address. Set all six 0x00 bytes to revert to factory-provided

address.

Response parameters

None.

Related commands

• system_get_bluetooth_address (GBA, ID=2/14)

• smp_set_privacy_mode (SPRV, ID=7/9)

• smp_query_random_address (/QRA, ID=7/4)

Example usage

• See How to use peripheral and central privacy

User guide 115 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14)

Obtain the current Bluetooth® address.

Binary header

 Type Length Group ID Note

CMD C0 00 02 0E None

RSP C0 08 02 0E None

Text info

Text name Response length Category Note

GBA 0x0018 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

macaddr address A Current Bluetooth® address

Related commands

• system_set_bluetooth_address (SBA, ID=2/13)

• smp_query_random_address (/QRA, ID=7/4)

• smp_set_privacy_mode (SPRV, ID=7/9)

7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19)

Configure new system-wide sleep settings.

EZ-Serial automatically enters the most low-power sleep mode available in order to maintain required activity

(including Bluetooth® LE communication, PWM output, and UART output). While Deep Sleep mode provides the
best power efficiency, it also restricts certain operations:

• UART RX requires one or more “dummy” bytes due to the 25 µs CPU wake-up time

• High-resolution PWM output cannot operate since the high-frequency clock is stopped

Note: Enabling Deep Sleep with this API command can result in a seemingly non-responsive UART. To

address this, prefix all transmissions from the host to the module with one or more 0x00 bytes to

ensure that the CPU has enough time to wake up. See the How to manage Sleep states section for
detail.

Binary header

 Type Length Group ID Note

CMD C0 01 02 13 None

RSP C0 02 02 13 None

User guide 116 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

SSLP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 level L New maximum system-wide sleep level:

• 0 = Sleep disabled

• 1 = Normal sleep when possible (factory default)

• 2 = Deep Sleep when possible

Response parameters

None.

Related commands

• system_get_sleep_parameters (GSLP, ID=2/20)

• gpio_set_pwm_mode (SPWM, ID=9/11) – Configure PWM output

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3) – Configure new CYSPP parameters, including
CYSPP data mode sleep level

Example usage

• See Configuring the system-wide sleep level

7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20)

Obtain the current system-wide sleep settings.

Binary header

 Type Length Group ID Note

CMD C0 00 02 14 None

RSP C0 03 02 14 None

Text info

Text name Response length Category Note

GSLP 0x000F GET None

Command arguments

None.

User guide 117 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8 level L Current maximum system-wide sleep level:

0 = Sleep disabled

1 = Normal sleep when possible (factory default)

2 = Deep Sleep when possible

Related commands

• system_set_sleep_parameters (SSLP, ID=2/19)

7.2.2.17 system_set_tx_power (STXP, ID=2/21)

Configure new transmit power for all outgoing radio communications.

This power setting affects all transmissions, including advertising, scan requests and connection requests, and
all packets sent during an active connection. Changes take effect immediately, as soon as the next transmitted

packet begins.

Binary header

 Type Length Group ID Note

CMD C0 01 02 15 None

RSP C0 02 02 15 None

Text info

Text name Response length Category Note

STXP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 power P New transmit power:

• 1 = -20 dBm

• 2 = -10 dBm

• 3 = -6 dBm

• 4 = -4 dBm

• 5 = -2 dBm

• 6 = 0 dBm (factory default)

• 7 = +2 dBm

• 8 = +4 dBm

Response parameters

None.

Related commands

• system_get_tx_power (GTXP, ID=2/22)

User guide 118 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.18 system_get_tx_power (GTXP, ID=2/22)

Obtain current transmit power for all outgoing radio communications.

Binary header

 Type Length Group ID Note

CMD C0 00 02 16 None

RSP C0 03 02 16 None

Text info

Text name Response length Category Note

GTXP 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 power P Current transmit power:

• 1 = -20 dBm

• 2 = -10 dBm (default/maximum for CYBLE-2X20XX-X1)

• 3 = -6 dBm (default/maximum for CYBLE-224110-00 and CYBLE-224116-01)

• 4 = -4 dBm

• 5 = -2 dBm

• 6 = 0 dBm (factory default)

• 7 = +2 dBm

• 8 = +4 dBm

Related commands

• system_set_tx_power (STXP, ID=2/22)

User guide 119 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.19 system_set_transport (ST, ID=2/23)

Configure new host communication interface.

This command configures the interface used for wired external host communication. If a change is successful,

EZ-Serial will send the response packet in the original configuration, and then switch to the new transport
interface.

Note: The current EZ-Serial release supports only the UART transport interface. No other options are
available.

Binary header

 Type Length Group ID Note

CMD C0 01 02 17 None

RSP C0 02 02 17 None

Text info

Text name Response length Category Note

ST 0x0008 SET None

Command arguments

Data type Name Text Description

uint8 interface I New host transport interface:

1 = UART (factory default)

Response parameters

None.

Related commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

User guide 120 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.20 system_get_transport (GT, ID=2/24)

Obtain the current host transport setting.

Binary header

 Type Length Group ID Note

CMD C0 00 02 18 None

RSP C0 03 02 18 None

Text info

Text name Response length Category Note

GT 0x000D GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 interface I Current host transport interface:

0 = reserved

1 = UART (factory default)

Related commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

User guide 121 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.21 system_set_uart_parameters (STU, ID=2/25)

Configure new UART settings for host communication.

This command configures the UART peripheral behavior used for wired external host communication when the

host transport interface is set to “UART” with the system_set_transport (ST, ID=2/23) API command. If
a change is successful, EZ-Serial will send the response packet using the original configuration, and then apply
the new UART settings.

Note: This command affects protected settings, which means you cannot immediately apply changes to
flash. In order to store new settings in non-volatile memory, you must send the command once

without the flash storage bit/flag, and then re-send the same command again with the flash

storage bit/flag set. This prevents accidental permanent communication lock-out resulting from

flash-stored settings that the connected host cannot use. For more details, see the Protected
configuration settings section.

Note: If you have Deep Sleep enabled using the system_set_sleep_parameters (SSLP,
ID=2/19) API command and you are relying on UART data reception to wake the module from
Deep Sleep, the number of dummy bytes needed for wake-up depends on the baud rate chosen,

and the recommended dummy byte depends on whether you have enabled even parity or not. For
more details, see the Avoiding UART data loss or corruption due to Deep Sleep transition section.

Note: Selecting a baud rate below 9600 and using API protocol communication can result in a situation
where EZ-Serial generates API response and event packets faster than the UART interface can

transmit them to the host. If this occurs, data will flow continuously out of the module, but it will
not respond to incoming commands. The most likely trigger for this is by activating a scan with

gap_start_scan (/S, ID=4/10) or starting CYSPP client mode operation (which also begins

a scan), which generate scan result events rapidly.

This non-responsive behavior will be improved in a future release, but may be worked around by one of the
following:

• If using CYSPP, keep the CYSPP pin externally asserted to suppress API output

• If possible, select a faster baud rate

• If possible, reduce the quantity of devices in the environment to decrease the scan result count

Binary header

 Type Length Group ID Note

CMD C0 0A 02 19 None

RSP C0 02 02 19 None

Text info

Text name Response length Category Note

STU 0x0009 SET None

User guide 122 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint32 baud B UART baud rate (Recommand baudrates:

300,9600,19200,115200,230400,460800,1000000):

• Minimum = 300 baud (0x12C)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 1,000,000 baud (0xf4240)

uint8 autobaud A Auto-detect UART baud rate at boot:

0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C Auto-correct UART clock to compensate for wide temperature variation:

0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D UART data bits:

• 7 = 7 data bits

• 8 = 8 data bits (factory default, must always be 8 in current version)

• 9 = 9 data bits

uint8 parity P UART parity:

• 0 = Disabled (factory default, must always be disabled in current version)

• 1 = Odd parity

• 2 = Even parity

uint8 stopbits S UART stop bits:

• 1 = 1 stop bit (factory default, must always be 1 in current version)

• 2 = 1.5 stop bits

• 3 = 2 stop bits

• 4 = 2.5 stop bits

• 5 = 3 stop bits

• 6 = 3.5 stop bits

• 7 = 4 stop bits

Response parameters

None.

Related commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

Example usage

• See How to change the serial communication parameters

• See Avoiding UART data loss or corruption due to Deep Sleep transition

User guide 123 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.2.22 system_get_uart_parameters (GTU, ID=2/26)

Obtain the current UART settings for host communication.

Binary header

 Type Length Group ID Note

CMD C0 00 02 1A None

RSP C0 0C 02 1A None

Text info

Text name Response length Category Note

GTU 0x0032 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 baud B UART baud rate:

• Minimum = 300 baud (0x12C)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 2,000,000 baud (0x1E8480)

uint8 autobaud A Auto-detect UART baud rate at boot:

0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C Auto-correct UART clock to compensate for wide temperature variation:

0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D UART data bits:

• 7 = 7 data bits

• 8 = 8 data bits (factory default, must always be 8 in current version)

• 9 = 9 data bits

uint8 parity P UART parity:

• 0 = Disabled (factory default, must always be disabled in current version)

• 1 = Odd parity

• 2 = Even parity

uint8 stopbits S UART stop bits:

• 1 = 1 stop bit (factory default, must always be 1 in current version)

• 2 = 1.5 stop bits

• 3 = 2 stop bits

User guide 124 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• 4 = 2.5 stop bits

• 5 = 3 stop bits

• 6 = 3.5 stop bits

• 7 = 4 stop bits

Related commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29)

Forced hibernation mode

Binary header

 Type Length Group ID Note

CMD C0 04 02 1D None

RSP C0 02 02 1D None

Text info

Text name Response length Category Note

/SLEEP 0x000C ACTION None

Command arguments

Data type Name Text Description

uint32 timeout T Wake up timeout in ms

0 = disabled (default)

Response parameters

None.

Related commands

None.

7.2.3 DFU group (ID=3)

DFU methods relate to the firmware update process, using wired UART transfer.

The following is the command within the DFU group:

• dfu_reboot (/CDFU, ID=3/1)

Events within this group are documented in the DFU group (ID=3) section.

User guide 125 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.3.1 dfu_reboot (/CDFU, ID=3/1)

Reboot into DFU mode.

Note: There must be a $ followed this command.

This command reboots into the bootloader environment, to begin a local or remote device firmware update
(DFU) procedure. Using this command will immediately stop any current activity, and any configuration

settings not stored in flash will be lost.

See the Device firmware update examples section for details concerning DFU operation.

Binary header

 Type Length Group ID Note

CMD C0 01 03 01 None

RSP C0 02 03 01 None

Text info

Text name Response length Category Note

/CDFU 0x000B ACTION None

Command arguments

Data type Name Text Description

uint8 mode M* DFU boot mode:

1 = Allow only UART bootloading

Response parameters

None.

Related events

• dfu_boot (DFUE, ID=3/1)

Example usage

• See Device firmware update examples

User guide 126 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4 GAP group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning and advertising, connection establishment, and connection maintenance.

The following are the commands within the GAP group:

• gap_connect (/C, ID=4/1)

• gap_cancel_connection (/CX, ID=4/2)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_send_connupdate_response (/CUR, ID=4/4)

• gap_disconnect (/DIS, ID=4/5)

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_query_rssi (/QSS, ID=4/13)

• gap_query_whitelist (/QWL, ID=4/14)

• gap_set_device_name (SDN, ID=4/15)

• gap_get_device_name (GDN, ID=4/16)

• gap_set_device_appearance (SDA, ID=4/17)

• gap_get_device_appearance (GDA, ID=4/18)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_get_adv_parameters (GAP, ID=4/24)

• gap_set_scan_parameters (SSP, ID=4/25)

• gap_get_scan_parameters (GSP, ID=4/26)

• gap_set_conn_parameters (SCP, ID=4/27)

• gap_get_conn_parameters (GCP, ID=4/28)

• gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

• gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)

• gap_start_legacy_coded_adv(/CA, ID=4/31)

• gap_stop_legacy_coded_adv(/CAX, ID=4/32)

• gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33)

• gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)

• gap_start_legacy_coded_scan (/CS, ID=4/35)

• gap_stop_legacy_coded_scan (/CSX, ID=4/36)

• gap_phy_update (/UP, ID=4/37)

• gap_set_extended_adv_data (SEAD, ID=4/38)

User guide 127 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

• gap_get_extended_adv_data (GEAD, ID=4/39)

• gap_set_extended_scan_response_data(SERD, ID=4/40)

• gap_get_extended_scan_response_data(GERD, ID=4/41)

Events within this group are documented in the GAP group (ID=4) section.

7.2.4.1 gap_connect (/C, ID=4/1)

Initiate a connection to a remote device.

In order for this command to succeed, EZ-Serial must not have other ongoing Bluetooth® LE activity. In other
words:

• The module must not be advertising. Use gap_stop_adv (/AX, ID=4/9) to stop, if necessary.

• The module must not be scanning. Use gap_stop_scan (/SX, ID=4/11) to stop, if necessary.

• The module must not be connected already. Use gap_disconnect (/DIS, ID=4/5) to disconnect, if
necessary.

After starting the connection process, the module will begin scanning for a connectable advertisement packet
from the target device. This will continue until it succeeds, or until the connection attempt is canceled with the

gap_cancel_connection (/CX, ID=4/2) API command, or the connection scan timeout period expires (if
it has been set).

When sending this command in text mode, all omitted arguments except address and type will default to

the values set using the gap_set_conn_parameters (SCP, ID=4/27) API command.

Note: If scan_timeout is set to zero, the connection attempt will persist forever until it succeeds or it is
cancelled intentionally. The supervision_timeout parameter governs link loss detection

after a connection is established, and does not affect the connection attempt itself.

Binary header

 Type Length Group ID Note

CMD C0 13 04 01 None

RSP C0 03 04 01 None

Text info

Text name Response length Category Note

/C 0x000D ACTION None

Command arguments

Data type Name Text Description

macaddr address A Target connection address:

Set all 0x00 bytes to use directed connection for whitelisted devices

uint8 type T Address type:

• 0 = Public(User set address)

• 1 = Random/private (Device-generated address)

User guide 128 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint16 interval I Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L Slave latency (connection interval count):

• Minimum = 0, no intervals skipped

• Maximum depends on interval and supervision timeout, such
that: [interval * slave_latency] <
supervision_timeout

uint16 supervision_timeout O Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

uint16 scan_interval V Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms) cannot be

greater than scan_interval

uint16 scan_timeout M Connection scan timeout (seconds):

• 0 to disable

Response parameters

Data type Name Text Description

uint8 conn_handle C Handle assigned to new pending connection
(always 0 in current release due to internal Bluetooth® LE stack
functionality, final non-zero connection handle will be present in

connection event occurring after the connection is established)

Related commands

• gap_connect (/CX, ID=4/2)

• gap_disconnect (/DIS, ID=4/5)

Related events

• gap_connected (C, ID=4/5) – Occurs when an outgoing connection attempt succeeds

Example usage

• See How to connect to a peripheral device

User guide 129 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.2 gap_cancel_connection (/CX, ID=4/2)

Cancel a pending connection attempt.

Use this command to manually end a pending connection attempt to a remote peer device which you

previously initiated with the gap_connect (/C, ID=4/1) API command. This command takes no
parameters because it is not possible to have more than one pending outgoing connection attempt at a time.

Note: This command only applies when ending a connection attempt that has not succeeded yet. To
close an established connection, use the gap_disconnect (/DIS, ID=4/5) API command
instead.

Binary header

 Type Length Group ID Note

CMD C0 00 04 02 None

RSP C0 02 04 02 None

Text info

Text name Response length Category Note

/CX 0x0009 ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Related events

• gap_connected (C, ID=4/5)

Example usage

• See How to cancel a pending connection to a peripheral device

User guide 130 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.3 gap_update_conn_parameters (/UCP, ID=4/3)

Request a connection parameter update for an active connection.

Use this command to change the connection interval, slave latency, and supervision timeout for an active

connection. If the parameter update is successful, EZ-Serial will generate the gap_connection_updated
(CU, ID=4/8) API event after applying new parameters. This will only occur if one or more of the parameters
changes from its previous value.

The behavior following this command depends on the link-layer role (master or slave) of the device which
initiated the request. The master device has final authority over connection parameters.

If used while in the master role (connection to peer initiated locally):

• New connection parameters will always be applied

• Remote peer (slave) will generate gap_connection_updated (CU, ID=4/8) event if running EZ-Serial

• Local device will generate gap_connection_updated (CU, ID=4/8) event after new parameter

application

If used while in the slave role (connection from peer initiated remotely):

• New connection parameters must be confirmed by the master

• Remote peer (master) will generate gap_connection_update_requested (UCR, ID=4/7) event if
running EZ-Serial

• Remote peer (master) must use gap_send_connupdate_response (/CUR, ID=4/4) command if
running EZ-Serial

• Local device will generate gap_connection_updated (CU, ID=4/8) event if master accepts parameters

Binary header

 Type Length Group ID Note

CMD C0 07 04 03 None

RSP C0 02 04 03 None

Text info

Text name Response length Category Note

/UCP 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection to update
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 interval I* Connection interval

uint16 slave_latency L* Slave latency

uint16 supervision_timeout O* Supervision timeout

User guide 131 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• gap_connect (/C, ID=4/1)

• gap_send_connupdate_response (/CUR, ID=4/4)

Related events

• gap_connection_update_requested (UCR, ID=4/7)

• gap_connection_updated (CU, ID=4/8)

7.2.4.4 gap_send_connupdate_response (/CUR, ID=4/4)

Accept or rejects a connection update request.

Use this command after receiving the gap_connection_update_requested (UCR, ID=4/7) API event, which

indicates that a connected slave has requested a connection parameter update.

Binary header

 Type Length Group ID Note

CMD C0 02 04 04 None

RSP C0 02 04 04 None

Text info

Text name Response length Category Note

/CUR 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection for which to send response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 response R* Response:

0 = Accept (new parameters will be applied)

1 = Reject (new parameters will not be applied)

Response parameters

None.

Related commands

• gap_update_conn_parameters (/UCP, ID=4/3)

Related events

• gap_connection_update_requested (UCR, ID=4/7)

User guide 132 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.5 gap_disconnect (/DIS, ID=4/5)

Close an open connection to a remote device.

Use this command to cleanly close a2n established connection with a remote peer device. The connection must

first have been fully opened, indicated by the gap_connected (C, ID=4/5) API event.

Note: This command only applies when closing a connection that is fully open. To cancel a pending
connection attempt, use the gap_cancel_connection (/CX, ID=4/2) API command instead.

Binary header

 Type Length Group ID Note

CMD C0 01 04 05 None

RSP C0 02 04 05 None

Text info

Text name Response length Category Note

/DIS 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection to disconnect

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

Response parameters

None.

Related commands

• gap_connect (/C, ID=4/1)

• gap_cancel_connection (/CX, ID=4/2)

Related events

• gap_disconnected (DIS, ID=4/6)

User guide 133 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.6 gap_add_whitelist_entry (/WLA, ID=4/6)

Add a new Bluetooth® address to the whitelist.

The whitelist is an optional filter for determining which remote peers are allowed to connect, or which the local

module may try to connect to. When whitelist filtering is active, any devices which are not on the whitelist will
not be allowed to connect with the module. You can control whitelist filter usage during advertising, scanning,
or outgoing connect attempts.

Note: You can only use this command while disconnected. Changes to the whitelist are not allowed
during a connection.

Each whitelist entry is made up of two parts: the peer's Bluetooth® address, and the type of address (public or
private). You must specify the correct address type for each peer based on the type of address it is using. This

information is available in scan results and connection details.

Note: The Bluetooth® LE stack in EZ-Serial automatically mirrors the bonded device list into the whitelist.
This behavior accommodates the most common use case for the whitelist, and you may not need
any manual additions or removals from the whitelist.

Binary header

 Type Length Group ID Note

CMD C0 07 04 06 None

RSP C0 03 04 06 None

Text info

Text name Response length Category Note

/WLA 0x000F ACTION None

Command arguments

Data type Name Text Description

macaddr address A* Bluetooth® address

uint8 type T Address type:

0 = Public (default)

1 = Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

Command-specific result codes:

None.

User guide 134 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gap_connect (/C, ID=4/1) – Connect to any whitelisted device by setting target address to all 0x00
bytes

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_set_adv_parameters (SAP, ID=4/23) – Configure whitelist filter for advertising

• gap_set_scan_parameters (SSP, ID=4/25) – Configure whitelist filter for scanning

Related events

• gap_scan_result (S, ID=4/4) – Contains Bluetooth® address and type details prior to connecting

• gap_connected (C, ID=4/5) – Contains Bluetooth® address and type details after connecting

7.2.4.7 gap_delete_whitelist_entry (/WLD, ID=4/7)

Remove a Bluetooth® address from the whitelist.

Use this command to remove a specific device from the whitelist if it is already present. Specify all 0x00 bytes
for the address or leave the argument off in text mode to remove all entries from the whitelist. For details on

whitelist behavior, See the documentation for the gap_add_whitelist_entry (/WLA, ID=4/6) API
command.

Binary header

 Type Length Group ID Note

CMD C0 07 04 07 None

RSP C0 03 04 07 None

Text info

Text name Response length Category Note

/WLD 0x000F ACTION None

Command arguments

Data type Name Text Description

Macaddr address A Bluetooth® address

uint8 type T Address type:

0 = Public (default)

1 = Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

User guide 135 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.8 gap_start_adv (/A, ID=4/8)

Start legacy advertising.

This command begins advertising using the specified parameters, or using the pre-configured default

advertising parameters if in text mode and some arguments are omitted. EZ-Serial must not already be
advertising in order for this command to succeed. However, it is possible to advertise and scan simultaneously.

If you have enabled beaconing (iBeacon or Eddystone) with the p_ibeacon_set_parameters (.IBSP, ID=12/1) API

command or the p_eddystone_set_parameters (.EDDYSP, ID=13/1) API command, EZ-Serial will automatically
rotate between enabled advertisement payloads.payloads, with each payload active for one second.

EZ-Serial will generate the gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state changes.

Note: You can start advertising while connected only if you specify “0” (broadcast-only) for the mode

argument. The Bluetooth® LE stack does not support being connected and connectable at the

same time.

Note: When using the “scannable, undirected” type or “non-connectable, undirected” setting for the

type argument, the advertisement interval must be 100 ms (0xA0) or greater, per the Bluetooth®

specification. Shorter intervals than this will result in an error response.

Binary header

 Type Length Group ID Note

CMD C0 0F 04 08 None

RSP C0 02 04 08 None

Text info

Text name Response length Category Note

/A 0x0008 ACTION None

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery

uint8 type T Advertisement type:

• 0 = Connectable, undirected

• 1 = Connectable, directed

• 2 = Scannable, undirected

• 3 = Non-connectable, undirected

uint16 interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

User guide 136 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8 channels C Advertisement channel selection bitmask (at least one bit must be set):

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

uint8 filter F Advertisement filter policy:

• 0 = Scan request and connect request from any

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 timeout O Advertisement timeout (seconds):

0 to disable

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Response parameters

None.

Related commands

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

Example usage

• See How to advertise as peripheral device

User guide 137 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.9 gap_stop_adv (/AX, ID=4/9)

Stop advertising.

This command immediately stops advertising if it is currently active. Note that advertising may have started as

a result of the gap_start_adv (/A, ID=4/8) or gap_start_legacy_coded_adv (/CA, ID=4/31) API
command, or due to specific configuration settings (GAP parameters, CYSPP profile, iBeacon, or Eddystone)
that automatically begin advertising.

EZ-Serial will generate the gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state
changes.

Binary header

 Type Length Group ID Note

CMD C0 00 04 09 None

RSP C0 02 04 09 None

Text info

Text name Response length Category Note

/AX 0x0009 ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

7.2.4.10 gap_start_scan (/S, ID=4/10)

Start scanning.

This command begins scanning using the specified parameters, or using the pre-configured default scan

parameters if in text mode and some arguments are omitted. EZ-Serial must not already be scanning in order
for this command to succeed. However, it is possible to advertise and scan simultaneously.

EZ-Serial will generate the gap_scan_state_changed (SSC, ID=4/3) API event when the scanning state
changes.

Binary header

 Type Length Group ID Note

CMD C0 0A 04 0A None

RSP C0 02 04 0A None

User guide 138 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

/S 0x0008 ACTION None

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms) cannot be greater than
interval

uint8 active A Active scanning:

• 0 = Passive scanning (default)

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this device
(not support)

• 3 = Accept only from whitelisted devices sending directed advertisements to

this device. (not support)

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0 to disable. Only discovery mode (0 = Observation mode) supports

continuous scanning (timeout = 0)

• 0x0A (default)

Response parameters

None.

User guide 139 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gap_stop_scan (/SX, ID=4/11)

• gap_set_scan_parameters (SSP, ID=4/25)

Related events

• gap_scan_state_changed (SSC, ID=4/3)

• gap_scan_result (S, ID=4/4)

7.2.4.11 gap_stop_scan (/SX, ID=4/11)

Stop scanning.

This command immediately stops scanning if it is currently active. Note that advertising may have started as a
result of the gap_start_scan (/S, ID=4/10) or gap_start_legacy_coded_scan (/CS, ID=4/35) API

command, or due to specific configuration settings (particularly the CYSPP profile settings if the central role is
enabled).

EZ-Serial will generate the gap_scan_state_changed (SSC, ID=4/3) API event when the scanning state changes.

Binary header

 Type Length Group ID Note

CMD C0 00 04 0B None

RSP C0 02 04 0B None

Text info

Text name Response length Category Note

/SX 0x0009 ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gap_start_scan (/S, ID=4/10)

Related events

• gap_scan_state_changed (SSC, ID=4/3)

User guide 140 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.12 gap_query_peer_address (/QPA, ID=4/12)

Query remote peer Bluetooth® address.

This command provides returns the Bluetooth® address of the currently connected remote peer device. An

active connection is required in order to use this command successfully.

Binary header

 Type Length Group ID Note

CMD C0 01 04 0C None

RSP C0 09 04 0C None

Text info

Text name Response length Note

/QPA 0x001E None

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection for which to query remote peer address

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

Response parameters

Data type Name Text Description

macaddr address A Peer Bluetooth® address

uint8 address_type T Address type

Related commands

• gap_connect (/C, ID=4/1)

• gap_query_rssi (/QSS, ID=4/13)

7.2.4.13 gap_query_rssi (/QSS, ID=4/13)

This command provides returns the remote signal strength indication (RSSI) value detected in the packet

received most recently from the currently connected remote peer device. An active connection is required in

order to use this command successfully.

Note: RSSI values in real-world environments often fall in the -50 dBm to -70 dBm range. An RSSI value at
this level does not necessarily indicate a poor connection.

The RSSI value returned in the response is expressed as a signed 8-bit integer. In text mode, it will appear in
two’s complement form. Positive numbers in this form fall in the range [0, 127] and are as they appear.

Negative numbers fall in the range [128, 255] and should have 256 subtracted from them to obtain the real
value.

User guide 141 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Examples:

• 0x03 = +3 dBm

• 0xFF = -1 dBm (0xFF = 255 - 256 = -1)

• 0xF0 = -16 dBm (0xF0 = 240 - 256 = -16)

• 0xC5 = -59 dBm (0xC5 = 197 - 256 = -59)

Binary header

 Type Length Group ID Note

CMD C0 01 04 0D None

RSP C0 03 04 0D None

Text info

Text name Response length Note

/QSS 0x000F None

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection for which to query signal strength
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

Response parameters

Data type Name Text Description

int8 rssi R RSSI value in dBm (between -85 and +5), or 0 if used while not connected

Related commands

• gap_query_peer_address (/QPA, ID=4/12)

7.2.4.14 gap_query_whitelist (/QWL, ID=4/14)

Request a list of whitelisted devices.

This command provides access to the current whitelist. The response from this command includes the number

of devices on the whitelist, and the response will be followed by that many gap_whitelist_entry (WL, ID=4/1) API
events which provide details for each entry.

Binary header

 Type Length Group ID Note

CMD C0 00 04 0E None

RSP C0 03 04 0E None

Text info

Text name Response length Category Note

/QWL 0x000F ACTION None

User guide 142 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 count C Whitelist entry count

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

Related events

• gap_whitelist_entry (WL, ID=4/1)

7.2.4.15 gap_set_device_name (SDN, ID=4/15)

Configure a new device name.

This is typically a UTF-8 string value that is stored in the Device Name characteristic (UUID 0x2A00) in the local
GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP service is mandatory for all
Bluetooth® Smart devices, and the Device Name characteristic is a mandatory part of the GAP service.

Using this command affects the value in the local GATT server Device Name characteristic, and the local name

field in the automatically managed scan response packed used for advertising.

Binary header

 Type Length Group ID Note

CMD C0 01-41 04 0F Variable-length command payload, minimum of 1 (0x01), maximum of 65

(0x41)

RSP C0 02 04 0F None

Text info

Text name Response length Category Note

SDN 0x0009 SET None

Command arguments

Data type Name Text Description

string name N New device name (0-64 bytes, raw ASCII data when in text mode)

Response parameters

None.

Related commands

• gap_get_device_name (GDN, ID=4/16)

User guide 143 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Example usage

• See How to change the device name and appearance

7.2.4.16 gap_get_device_name (GDN, ID=4/16)

Obtain the current device name.

Binary header

 Type Length Group ID Note

CMD C0 00 04 10 None

RSP C0 03-43 04 10 Variable-length response payload, minimum of 3 (0x03), maximum of 67

(0x43)

Text info

Text name Response length Category Note

GDN 0x000C-0x004C GET Variable-length response payload, minimum of 12 (0x0C),

maximum of 76 (0x4C)

Command arguments

None.

Response parameters

Data type Name Text Description

String name N Current device name (0-64 bytes, raw ASCII data when in text mode)

Related commands

• gap_set_device_name (SDN, ID=4/15)

7.2.4.17 gap_set_device_appearance (SDA, ID=4/17)

Configure a new device name.

Define the device appearance value. This is a 16-bit value which is stored in the Appearance characteristic

(UUID 0x2A01) in the local GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP

service is mandatory for every Bluetooth® Smart device, and the Appearance characteristic is a mandatory part

of the GAP service.

Using this command affects the value in the local GATT server Device Appearance characteristic.

Binary header

 Type Length Group ID Note

CMD C0 02 04 11 None

RSP C0 02 04 11 None

User guide 144 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

SDA 0x0009 SET None

Command arguments

Data type Name Text Description

uint16 appearance A New device appearance value (factory default is 0x0000)

Response parameters

None.

Related commands

• gap_get_device_appearance (GDA, ID=4/18)

7.2.4.18 gap_get_device_appearance (GDA, ID=4/18)

Obtain the current device appearance value.

Binary header

 Type Length Group ID Note

CMD C0 00 04 12 None

RSP C0 04 04 12 None

Text info

Text name Response length Category Note

GDA 0x0010 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint16 appearance A Current device appearance value

Related commands

• gap_set_device_appearance (SDA, ID=4/17)

User guide 145 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.19 gap_set_adv_data (SAD, ID=4/19)

Configure new custom advertisement packet data.

Define a new byte sequence for the primary advertisement packet data payload. This content will be visible to

all scanning devices performing a passive or active scan when the Infineon Bluetooth® module is in an
advertising state.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined
data with the gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set
custom data but do not enable user-defined content, the data here will remain unused.

Binary header

 Type Length Group ID Note

CMD C0 01-20 04 13 Variable-length command payload, minimum of 1 (0x01), maximum of 32

(0x20)

RSP C0 02 04 13 None

Text info

Text name Response length Category Note

SAD 0x0009 SET None

Command arguments

Data type Name Text Description

uint8a data D New advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary

parameter payload.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Example usage

• See How to customize advertisement and scan response data

User guide 146 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.20 gap_get_adv_data (GAD, ID=4/20)

Obtain the current custom advertisement packet data.

Binary header

 Type Length Group ID Note

CMD C0 00 04 14 None

RSP C0 03-22 04 14 Variable-length response payload, minimum of 3 (0x03), maximum of 34

(0x22)

Text info

Text name Response length Category Note

GAD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0x0D),

maximum of 75 (0x4B)

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a data D Current advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary

parameter payload.

Related commands

• gap_set_adv_data (SAD, ID=4/19)

7.2.4.21 gap_set_sr_data (SSRD, ID=4/21)

Configure new custom scan response packet payload.

This command defines a new byte sequence for the scan response packet. This content will be visible to all
scanning devices performing an active scan when the Infineon Bluetooth® module is in a scannable advertising

state.

Note: EZ-Serial automatically manages scan response content unless you enable the use of user-defined

data with the gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set
custom data but do not enable user-defined content, the data here will remain unused.

Binary header

 Type Length Group ID Note

CMD C0 01-20 04 15 Variable-length command payload, minimum of 1 (0x01), maximum of 32

(0x20)

RSP C0 02 04 15 None

User guide 147 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

SSRD 0x000A SET None

Command arguments

Data type Name Text Description

uint8a data D New scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary

parameter payload.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

Example usage

• See How to customize advertisement and scan response data

7.2.4.22 gap_get_sr_data (GSRD, ID=4/22)

Obtain the current custom scan response packet data.

Binary header

 Type Length Group ID Note

CMD C0 00 04 16 None

RSP C0 03-22 04 16 Variable-length response payload, minimum of 3 (0x03), maximum of 34

(0x22)

Text info

Text name Response length Category Note

GSRD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0xD),

maximum of 75 (0x4B)

Command arguments

None.

User guide 148 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8a data D Current scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before binary

parameter payload.

Related commands

• gap_set_sr_data (SSRD, ID=4/21)

7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23)

Configure new default advertisement parameters.

These parameters will be used when sending the gap_start_adv (/A, ID=4/8) API command in text mode

without specifying non-default arguments.

The parameters are synchronized with gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29) API

command.

Note: Setting Bit 0 (0x01) of the flags value using this command will enable automatic advertisement on

boot, as described. However, advertisements may automatically start even if this bit is cleared if
the enable setting of CYSPP, iBeacon, or Eddystone is set to the “enable + autostart” setting.

Factory default settings include this value for the CYSPP feature.

Binary header

 Type Length Group ID Note

CMD C0 10 04 17 None

RSP C0 02 04 17 None

Text info

Text name Response length Category Note

SAP 0x0009 SET None

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery (factory default)

uint8 type T Advertisement type:

• 0 = Connectable, undirected (factory default)

• 1 = Connectable, directed

• 2 = Scannable, undirected

• 3 = Non-connectable, undirected

User guide 149 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint16 interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0030 (48 * 0.625 ms = 30 ms)

uint8 channels C Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all bits
set).

uint8 filter L Advertisement filter policy:

• 0 = Scan request and connect request from any (factory default)

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 timeout O Advertisement timeout (seconds):

• 0 to disable (factory default)

uint8 flags F Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon

boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_parameters (GAP, ID=4/24)

User guide 150 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24)

Obtain the current advertisement parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 04 18 None

RSP C0 12 04 18 None

Text info

Text name Response length Category Note

GAP 0x0044 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery (factory default)

uint8 type T Advertisement type:

• (0-3 for legacy adv, 4-5 for periodic adv, 6-A for extended adv)

• 0x00 = Legacy: Connectable, undirected (factory default)

• 0x01 = Legacy:Connectable, directed

• 0x02 = Legacy:Scannable, undirected

• 0x03 = Legacy:Non-connectable, undirected

• 0x04 = Periodic: Undirected

• 0x05 = Periodic: Directed

• 0x06 = Extended: Undirected connectable

• 0x07 = Extended: Directed connectable

• 0x08 = Extended: Non-connectable, non-scannable

• 0x09 = Extended: Non-connectable, scannable

• 0x0A = Extended: Non-connectable anonymous directed

uint16 interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0030 (48 * 0.625 ms = 30 ms)

uint8 channels C Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

User guide 151 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all bits
set).

uint8 filter L Advertisement filter policy:

• 0 = Scan request and connect request from any (factory default)

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 timeout O Advertisement timeout (seconds):

• 0 to disable (factory default)

uint8 flags F Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Related commands

• gap_set_adv_parameters (SAP, ID=4/23)

7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25)

Configure new default scan parameters.

These parameters will be used when sending the gap_start_scan (/S, ID=4/10) API command in text

mode without specifying non-default arguments.

Binary header

 Type Length Group ID Note

CMD C0 0A 04 19 None

RSP C0 02 04 19 None

Text info

Text name Response length Category Note

SSP 0x0009 SET None

User guide 152 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (factory default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this device
(not support)

• 3 = Accept only from whitelisted devices sending directed advertisements to

this device (not support)

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0x0A (factory default)

Response parameters

None.

Related commands

• gap_start_scan (/S, ID=4/10)

• gap_get_scan_parameters (GSP, ID=4/26)

User guide 153 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.26 gap_get_scan_parameters (GSP, ID=4/26)

Obtain the current scan parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 04 1A None

RSP C0 0C 04 1A None

Text info

Text name Response length Category Note

GSP 0x0032 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (factory default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this device

• 3 = Accept only from whitelisted devices sending directed advertisements to

this device

User guide 154 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0x0A (factory default)

Related commands

• gap_set_scan_parameters (SSP, ID=4/25)

7.2.4.27 gap_set_conn_parameters (SCP, ID=4/27)

Configure new default connection parameters.

These parameters will be used when sending the gap_connect (/C, ID=4/1) API command in text mode
without specifying non-default arguments.

Binary header

 Type Length Group ID Note

CMD C0 0C 04 1B None

RSP C0 02 04 1B None

Text info

Text name Response length Category Note

SCP 0x0009 SET None

Command arguments

Data type Name Text Description

uint16 interval I Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

• Maximum depends on interval and supervision timeout, such
that: [interval * slave_latency] <
supervision_timeout

uint16 supervision_timeout O Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

uint16 scan_interval V Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

User guide 155 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint16 scan_window W Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M Connection scan timeout (seconds):

• 0 to disable (factory default)

Response parameters

None.

Related commands

• gap_connect (/C, ID=4/1)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_get_conn_parameters (GCP, ID=4/28)

7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28)

Used to get the current default connection parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 04 1C None

RSP C0 0E 04 1C None

Text info

Text name Response length Category Note

GCP 0x0033 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint16 interval I Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

User guide 156 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• Maximum depends on interval and supervision timeout, such
that: [interval * slave_latency] <
supervision_timeout

uint16 supervision_timeout O Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

uint16 scan_interval V Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M Connection scan timeout (seconds):

• 0 to disable (factory default)

Related commands

• gap_set_conn_parameters (SCP, ID=4/27)

7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

Configure new default advertisement parameters for legacy, extended or periodic advertisement.

These parameters will be used when sending the gap_start_adv (/A, ID=4/8) or gap_start_legacy_coded_adv
(/CA, ID=4/31) API commands in text mode without specifying non-default arguments.

The parameters are synchronized with gap_get_adv_parameters (GAP, ID=4/24) API command.

Binary header

 Type Length Group ID Note

CMD C0 17 04 1D None

RSP C0 02 04 1D None

Text info

Text name Response length Category Note

SACP 0x000A SET None

User guide 157 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data

type

Name Text Description

uint8 Adv_mode P Advertisement mode:

• 0 = Legacy (factory default)

• 1 = Extended

• 2 = Periodic

uint8 Disc_mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery (factory default)

uint8 type T Advertisement type:

• (0-3 for legacy adv, 4-5 for periodic adv, 6-A for extended adv)

• 0x00 = Legacy: Connectable, undirected (factory default)

• 0x01 = Legacy:Connectable, directed

• 0x02 = Legacy:Scannable, undirected

• 0x03 = Legacy:Non-connectable, undirected

• 0x04 = Periodic: Undirected

• 0x05 = Periodic: Directed

• 0x06 = Extended: Undirected connectable

• 0x07 = Extended: Directed connectable

• 0x08 = Extended: Non-connectable, non-scannable

• 0x09 = Extended: Non-connectable, scannable

• 0x0A = Extended: Non-connectable anonymous directed

uint8 Primary_phy H PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint16 interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0030 (48 * 0.625 ms = 30 ms)

uint8 channels C Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07

(all bits set).

User guide 158 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data

type

Name Text Description

uint8 filter L Advertisement filter policy:

• 0 = Scan request and connect request from any (factory default)

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 timeout O Advertisement timeout (seconds):

• 0 to disable (factory default)

uint8 flags F Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon
boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

1: BLE_ADDR_RANDOM

uint8 Secondary_phy E PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint8 Secondary_max_skip S Maximum number of advertising events the controller can skip

before sending the AUX_ADV_IND packets.

• 0: that AUX_ADV_IND PDUs shall be sent prior each advertising

events (factory default)

uint8 Secondary_SID D Advertising SID

• Minimum: 0x00

• Maximum: 0x0F

• Factory default = 0x00

Uint16 Periodic _interval N Advertisement interval (1.25 ms units):

• Minimum = 20 ms

• Maximum = 81.91875 s

• Factory default = 30 ms

Response parameters

None.

User guide 159 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_start_legacy_coded_adv(/CA, ID=4/31)

• gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)

7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)

Obtain the current advertisement parameters for all advertisement modes.

Binary header

 Type Length Group ID Note

CMD C0 00 04 1E None

RSP C0 19 04 1E None

Text info

Text name Response length Category Note

GACP 0x0065 GET None

Command arguments

None.

Response parameters

Data

type
Name Text Description

uint8 Adv_mode P Advertisement mode:

• 0 = Legacy (factory default)

• 1 = Extended

• 2 = Periodic

uint8 Disc_mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery (factory default)

User guide 160 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data

type

Name Text Description

uint8 Type T Advertisement type:

• (0-3 for legacy adv, 4-5 for periodic adv, 6-A for extended adv)

• 0x00 = Legacy: Connectable, undirected (factory default)

• 0x01 = Legacy:Connectable, directed

• 0x02 = Legacy:Scannable, undirected

• 0x03 = Legacy:Non-connectable, undirected

• 0x04 = Periodic: Undirected

• 0x05 = Periodic: Directed

• 0x06 = Extended: Undirected connectable

• 0x07 = Extended: Directed connectable

• 0x08 = Extended: Non-connectable, non-scannable

• 0x09 = Extended: Non-connectable, scannable

• 0x0A = Extended: Non-connectable anonymous directed

uint8 Primary_phy H PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint16 Interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0030 (48 * 0.625 ms = 30 ms)

uint8 Channels C Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07
(all bits set).

uint8 Filter L Advertisement filter policy:

• 0 = Scan request and connect request from any (factory default)

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 Timeout O Advertisement timeout (seconds):

• 0 to disable (factory default)

User guide 161 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data

type

Name Text Description

uint8 Flags F Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon

boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set).

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

uint8 Secondary_phy E PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint8 Secondary_max_skip S Maximum number of advertising events the controller can skip

before sending the AUX_ADV_IND packets.

• 0: that AUX_ADV_IND PDUs shall be sent prior each advertising
events (factory default)

uint8 Secondary_SID D Advertising SID

• Minimum: 0x00

• Maximum: 0x0F

• Factory default = 0x00

Uint16 Periodic_interval N Advertisement interval (1.25 ms units):

• Minimum = 20 ms

• Maximum = 81.91875 s

• Factory default = 30 ms

Related commands

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

User guide 162 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.31 gap_start_legacy_coded_adv (/CA, ID=4/31)

Start advertising for legacy or extended or periodic advertisement.

Function is the same as gap_start_adv (/A, ID=4/8), EZ-Serial will generate the gap_adv_state_changed (ASC,

ID=4/2) API event when the advertising state changes.

Binary header

 Type Length Group ID Note

CMD C0 16 04 1F None

RSP C0 02 04 1F None

Text info

Text name Response length Category Note

/CA 0x0009 ACTION None

Command arguments

Data

type

Name Text Description

uint8 Adv_mode P Advertisement mode:

• 0 = Legacy (factory default)

• 1 = Extended

• 2 = Periodic

uint8 Disc_mode M Discovery mode:

• 0 = Non-discoverable/broadcast-only

• 1 = General discovery (factory default)

uint8 type T Advertisement type:

• (0-3 for legacy adv, 4-5 for periodic adv, 6-A for extended adv)

• 0x00 = Legacy: Connectable, undirected (factory default)

• 0x01 = Legacy:Connectable, directed

• 0x02 = Legacy:Scannable, undirected

• 0x03 = Legacy:Non-connectable, undirected

• 0x04 = Periodic: Undirected

• 0x05 = Periodic: Directed

• 0x06 = Extended: Undirected connectable

• 0x07 = Extended: Directed connectable

• 0x08 = Extended: Non-connectable, non-scannable

• 0x09 = Extended: Non-connectable, scannable

• 0x0A = Extended: Non-connectable anonymous directed

User guide 163 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data

type

Name Text Description

uint8 Primary_phy H PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint16 interval I Advertisement interval (625 µs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0030 (48 * 0.625 ms = 30 ms)

uint8 channels C Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07

(all bits set)

uint8 filter F Advertisement filter policy:

• 0 = Scan request and connect request from any (factory default)

• 1 = Scan request whitelist-only, connect request from any

• 2 = Scan request from any, connect request whitelist-only

• 3 = Scan request and connect request whitelist-only

uint16 timeout O Advertisement timeout (seconds):

• 0 to disable (factory default)

macaddr directAddr A Directed advertisement address

uint8 directAddr

Type

Y Directed address type(if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

uint8 Secondary_phy E PHY:

• 0 = 1M (factory default)

• 1 = 2M

• 2 = Coded

uint8 Secondary_max_skip S Maximum number of advertising events the controller can skip

before sending the AUX_ADV_IND packets.

0: that AUX_ADV_IND PDUs shall be sent prior each advertising

events (factory default)

uint8 Secondary_SID D Advertising SID

• Minimum: 0x00

• Maximum: 0x0F

• Factory default = 0x00

User guide 164 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data

type

Name Text Description

Uint16 Periodic_interval N Advertisement interval (1.25 ms units):

• Minimum = 20 ms

• Maximum = 81.91875 s

• Factory default = 30 ms

Response parameters

None.

Related commands

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_stop_legacy_coded_adv(/CAX, ID=4/32)

• gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

User guide 165 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.32 gap_stop_legacy_coded_adv(/CAX, ID=4/32)

Stop advertising.

This command immediately stops advertising if it is currently active.

Function is the same as gap_stop_adv (/AX, ID=4/9), EZ-Serial will generate the gap_adv_state_changed (ASC,
ID=4/2) API event when the advertising state changes.

Binary header

 Type Length Group ID Note

CMD C0 00 04 20 None

RSP C0 02 04 20 None

Text info

Text name Response length Category Note

/CAX 0x000A ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_start_legacy_coded_adv(/CA, ID=4/31)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

User guide 166 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33)

Configure new default scan parameters with coded phy related.

These parameters will be used when sending the gap_start_scan (/S, ID=4/10) or gap_start_legacy_coded_scan

(/CS, ID=4/35) API commands in text mode without specifying non-default arguments.

Binary header

 Type Length Group ID Note

CMD C0 0F 04 21 None

RSP C0 02 04 21 None

Text info

Text name Response length Category Note

SSCP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (factory default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this

device

• 3 = Accept only from whitelisted devices sending directed
advertisements to this device

User guide 167 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0x0A (factory default)

uint8 phy P PHY:

• Bit 0 (0x1) = 1M

• Bit 1 (0x2) = Coded

uint16 coded_interval C Scan interval (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 Coded_window E Scan window (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

Response parameters

None.

Related commands

• gap_start_scan (/S, ID=4/10)

• gap_get_scan_parameters (GSP, ID=4/26)

• get_scan_legacy_coded_parameters (GSCP, ID=4/34)

• gap_start_legacy_coded_scan (/CS, ID=4/35)

7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)

Obtain the current scan parameters with coded phy related.

Binary header

 Type Length Group ID Note

CMD C0 00 04 22 None

RSP C0 11 04 22 None

Text info

Text name Response length Category Note

GSCP 0x0046 GET None

User guide 168 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (factory default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this
device

• 3 = Accept only from whitelisted devices sending directed

advertisements to this device

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0x0A (factory default)

uint8 phy P PHY:

• Bit 0 (0x1) = 1M

• Bit 1 (0x2) = Coded

uint16 coded

interval

C Scan interval (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

User guide 169 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint16 coded

window

E Scan window (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

Related commands

• gap_set_scan_parameters (SSP, ID=4/25)

• set_scan_legacy_coded_parameters (SSCP, ID=4/33)

7.2.4.35 gap_start_legacy_coded_scan(/CS, ID=4/35)

Start scanning with coded phy parameters.

Function is the same as gap_start_scan (/S, ID=4/10), EZ-Serial will generate the gap_scan_state_changed (SSC,

ID=4/3) API event when the scanning state changes.

Binary header

 Type Length Group ID Note

CMD C0 0F 04 23 None

RSP C0 02 04 23 None

Text info

Text name Response length Category Note

/CS 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 mode M Discovery mode:

• 0 = Observation mode

• 1 = General discovery mode (default)

uint16 interval I Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms) cannot be greater
than interval

uint8 active A Active scanning:

• 0 = Passive scanning (default)

User guide 170 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• 1 = Active scanning

uint8 filter F Whitelist filter policy:

• 0 = Accept all advertising packets (default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this

device (not support)

• 3 = Accept only from whitelisted devices sending directed
advertisements to this device.(not support)

uint8 nodupe D Duplicate filter policy:

• 0 = Disable duplicate result filtering (default)

• 1 = Enable duplicate result filtering

uint16 timeout O Scan timeout (seconds):

• 0 to disable. Only discovery mode (0 = Observation mode) supports

continuous sanning (timeout = 0). 0x0A (default)

uint8 phy P PHY:

• Bit 0 (0x1) = 1M

• Bit 1 (0x2) = Coded

uint16 coded

interval

C Scan interval (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 coded

window

E Scan window (625 μs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

Response parameters

None.

Related commands

• gap_stop_scan (/SX, ID=4/11)

• gap_set_scan_parameters (SSP, ID=4/25)

• get_scan_legacy_coded_parameters (GSCP, ID=4/34)

• gap_stop_legacy_coded_scan (/CSX, ID=4/36)

Related events

• gap_scan_state_changed (SSC, ID=4/3)

• gap_scan_result (S, ID=4/4)

User guide 171 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36)

Stop scanning.

Function is the same as gap_stop_scan (/SX, ID=4/11), EZ-Serial will generate the gap_scan_state_changed

(SSC, ID=4/3) API event when the scanning state changes.

Binary header

 Type Length Group ID Note

CMD C0 00 04 24 None

RSP C0 02 04 24 None

Text info

Text name Response length Category Note

/CSX 0x000A ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gap_start_scan (/S, ID=4/10)

• gap_start_legacy_coded_scan (/CS, ID=4/35)

Related events

• gap_scan_state_changed (SSC, ID=4/3)

7.2.4.37 gap_phy_update (/UP, ID=4/37)

Request a PHY update for an active connection.

Binary header

 Type Length Group ID Note

CMD C0 04 04 25 None

RSP C0 02 04 25 None

Text info

Text name Response length Category Note

/UP 0x0009 ACTION None

User guide 172 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection to update
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 TX_phy T* PHY bit:

• 0x00 = Any

• Bit 0 (0x1) = 1M

• Bit 1 (0x2) = 2M

• Bit 2 (0x4) = Coded

uint8 RX_phy R* PHY:

• 0x00 = Any

• Bit 0 (0x1) = 1M

• Bit 1 (0x2) = 2M

• Bit 2 (0x4) = Coded

uint8 Phy_option O* PHY:

• 0 = No preferred coding when transmitting on the LE Coded PHY.

• 1 = Prefers that S=2 coding

• 2 = Prefers that S=8 coding

Response parameters

None.

Related commands

• gap_connect (/C, ID=4/1)

Related events

• gap_phy_updated (PU, ID=4/9)

7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38)

Configure new custom advertisement packet data for extended or periodic advertisement mode. The

maximum extended data length is 1270 bytes.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined

data with the gap_set_adv_parameters (SAP, ID=4/23) or
gap_set_extended_adv_data (SEAD, ID=4/38) API command. If you only set custom data

but do not enable user-defined content, the data here will remain unused.

Note: Not supported in version 1.0.x.x, please use gap_set_adv_data (SAD, ID=4/19) API
command instead.

Note: Default advertising data [02 01 06] is set.

User guide 173 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Binary header

 Type Length Group ID Note

CMD C0 04 26 Variable-length command payload, minimum of 1 (0x01),

maximum of 251(0xFB)

RSP C0 04 26 None

Text info

Text name Response length Category Note

SEAD 0x000B SET None

Command arguments

Data

type

Name Text Description

uint8 type T* Type:

• 0 = Erase all

• 1 = Append advertisement data

uint8a data D New extended advertisement payload data (0-251 bytes),

should be a valid advertisement payload format

Note: uint8a data type requires one prefixed

“length” byte before binary parameter

payload.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

• gap_start_legacy_coded_adv(/CA, ID=4/31)

• gap_get_extended_adv_data (GEAD, ID=4/39)

User guide 174 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.39 gap_get_extended_adv_data (GEAD, ID=4/39)

Obtain the current custom advertisement packet data for extended or periodic advertisement mode.

Note: Not supported in version 1.0.x.x, please use gap_get_adv_data (GAD, ID=4/20) API
command instead.

Binary header

 Type Length Group ID Note

CMD C0 04 39 None

RSP C0 04 39 Variable-length response payload, minimum of 3 (0x03),

maximum of 1653 (0x675)

Text info

Text

name

Response length Category Note

GEAD GET Variable-length response payload, minimum of 13 (0x0D),

maximum of 3373 (0xCF1)

Command arguments

None.

Response parameters

Data

type

Name Text Description

uint8a data D Current advertisement payload data (3-1270 bytes)

Default data is 020106

Note: uint8a data type requires one prefixed

“length” byte before binary parameter
payload.

Related commands

gap_set_extended_adv_data (SEAD, ID=4/38)

User guide 175 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40)

Configure new custom scan response packet payload for extended or periodic advertisement mode. The
maximum extended data length is 1270 bytes.

Note: EZ-Serial automatically manages advertisement content unless you enable the use of user-defined
data with the gap_set_adv_parameters (SAP, ID=4/23) or

gap_set_extended_adv_data (SEAD, ID=4/38) API command. If you only set custom data

but do not enable user-defined content, the data here will remain unused.

Note: Not supported in version 1.0.x.x, please use gap_set_sr_data (SSRD, ID=4/21) API

command instead.

Binary header

 Type Length Group ID Note

CMD C0 04 26 Variable-length command payload, minimum of 1 (0x01),

maximum of 251(0xFB)

RSP C0 04 26 None

Text info

Text name Response length Category Note

SERD SET None

Command arguments

Data

type

Name Text Description

uint8 type T* Type:

• 0 = Erase all

• 1 = Append advertisement data

uint8a data D New extended advertisement payload data (0-251 bytes),

should be a valid advertisement payload format

Note: uint8a data type requires one prefixed
“length” byte before binary parameter

payload.

Response parameters

None.

User guide 176 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)

• gap_start_legacy_coded_adv(/CA, ID=4/31)

• gap_get_extended_scan_response_data(GERD, ID=4/41)

7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41)

Obtain the current custom scan response packet data for extended or periodic advertisement mode.

Note: Not supported in version 1.0.x.x, please use gap_get_adv_data (GAD, ID=4/20) API
command instead.

Binary header

 Type Length Group ID Note

CMD C0 04 39 None

RSP C0 04 39 Variable-length response payload, minimum of 3 (0x03),

maximum of 1653 (0x675)

Text info

Text

name

Response length Category Note

GERD GET Variable-length response payload, minimum of 13 (0x0D),

maximum of 3373 (0xCF1)

Command arguments:

None.

Response parameters

Data

type
Name Text Description

Unit8a data D Current advertisement payload data (0-1270 bytes)

Note: uint8a data type requires one prefixed
“length” byte before binary parameter

payload.

Related commands

• gap_set_extended_scan_response_data(SERD, ID=4/40)

User guide 177 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5 GATT server group (ID=5)

GATT server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the local GATT structure.

The following are the commands within this group:

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_store_db (/SGDB, ID=5/4)

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gatts_send_writereq_response (/WRR, ID=5/13)

• gatts_set_parameters (SGSP, ID=5/14)

• gatts_get_parameters (GGSP, ID=5/15)

• gatts_service_active (/SACT, ID=5/16)

• gatts_service_handle_reset (/RSHL, ID=5/17)

Events within this group are documented in GATT server group (ID=5).

7.2.5.1 gatts_create_attr (/CAC, ID=5/1)

Add a new custom attribute to the local GATT structure.

The new attribute will be given the next available handle. All handles are assigned sequentially. Attributes must
be added in order, and will always be appended to the next available position in the GATT structure.

New attributes must be entered such that the database always has a valid structure, other than possibly being

incomplete while adding other required attributes. EZ-Serial will reject new attribute creation attempts which

would result in an invalid structure and provide a validity report code from the list in EZ-Serial GATT database

validation error codes.

See the How to define custom local GATT services and characteristics and Adopted Bluetooth® SIG GATT profile
structure snippets sections for detailed instructions and example usage, including important guidelines for

permission settings.

Note: Always configure structural declarations (types 0x2800 and 0x2803) to have unrestricted read
permissions (0x01) and no write permissions (0x00) to ensure that clients can properly discover the
basic GATT database structure. Special security requirements should only be applied to
characteristic value attributes or, in limited cases, related configuration descriptors.

User guide 178 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Use the gatts_dump_db (/DGDB, ID=5/5) API command to list the current local GATT database entries in a
format similar to what this command requires.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be
deleted or modified. These attributes occupy the handle range from 1 (0x0001) to 34 (0x0022).

Therefore, the first custom attribute created in a factory default state will receive the handle value
35 (0x0023).

Note: Additions to the GATT structure are not effective and stored in flash immediately until sending

gatts_service_active (/SACT, ID=5/16) API command.
The internal CPU is occupied for approximately 15 ms during each flash write operation, and

during this time no other activity will be processed (UART or Bluetooth® LE communication). Any
UART data sent during this brief window will be lost. Therefore, you should only modify the GATT

structure while disconnected, and you should allow a gap of at least 20 ms between the end of one
API command and the beginning of a new one. If you have enabled hardware flow control using
the system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial will block
incoming data flow during flash writes to prevent serial data corruption or loss.

Binary header

 Type Length Group ID Note

CMD C0 09 05 01 Variable-length command payload, value specified is minimum

RSP C0 06 05 01 None

Text info

Text name Response length Category Note

/CAC 0x0018 ACTION None

Command arguments

Data type Name Text Description

uint16 type T* Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties descriptor

• 0x2901 = Characteristic User Description descriptor

• 0x2902 = Client Characteristic Configuration descriptor

• 0x2903 = Server Characteristic Configuration descriptor

• 0x2904 = Characteristic Format descriptor

• 0x2905 = Characteristic Aggregate Format descriptor

• 0x0000 = Characteristic value attribute or user-defined structure
with SRAM value storage (auto-managed)

• 0x0001 = Characteristic value attribute or user-defined structure
with no value storage (user-managed)

User guide 179 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8 read_permissions R* Attribute read permissions:

• Bit 0 (0x01) = Read permitted

• Bit 1 (0x02) = Encryption required

• Bit 2 (0x04) = Authentication required

• Bit 3 (0x08) = Authorization required

• Bit 4 (0x10) = LE secure connection authentication required

• Bits 5-7 (0xE0) = RESERVED

uint8 write_permissions W* Attribute write permissions:

• Bit 0 (0x01) = Write permitted

• Bit 1 (0x02) = Encryption required

• Bit 2 (0x04) = Authentication required

• Bit 3 (0x08) = Authorization required

• Bit 4 (0x10) = LE secure connection authentication required

• Bit 5-7 (0xE0) = RESERVED

uint8 char_properties C* Characteristic properties (byte 1)

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (requires 0x2900 descriptor)

uint16 length L* Maximum length.

longuint8a data D* Data (UUID or default attribute value where applicable)

Note: longuint8a data type requires two prefixed

“length” bytes before binary parameter payload.

Response parameters

Data type Name Text Description

uint16 handle H New attribute handle (0x0023-0xFFFF)

uint16 valid V GATT database validity status

Related commands

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

User guide 180 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• gatts_db_entry_blob (DGATT, ID=5/4)

Example usage

• See How to define custom local GATT services and characteristics

• See Adopted Bluetooth® SIG GATT profile structure snippets

7.2.5.2 gatts_delete_attr (/CAD, ID=5/2)

Remove one or more attributes from the GATT structure. CYW20822 device only supports remove a service
handle, if specpic the handle number is not a service handle, it will report an error.

If you use this command without a handle in text mode or you supply handle value 0 in either text or binary
mode, then the highest attribute number (most recently added) will be removed. If you supply a non-zero

handle, then the attribute with that handle and all higher handles will be removed.

After removing an attribute with this command, the local GATT database may no longer be strictly valid. See

the EZ-Serial GATT database validation error codes section for possible validity states. Use the gatts_dump_db
(/DGDB, ID=5/5) API command to list the current local GATT database entries.

Note: EZ-Serial includes a fixed set of attributes as part of the core functionality, which cannot be
deleted or modified. These attributes occupy the handle range from 1 (0x0001) to 34 (0x0022).
Therefore, you cannot delete any attribute with a handle value less than 34 (0x0022).

Note: Removals from the GATT structure are set the service to invisible and is stored in flash once the
“result” value in the response indicates success. The deleted handle numbers would be blocked

until send gatts_service_handle_reset (/RSHL, ID=5/17) API command.
The internal CPU is occupied for approximately 15 ms during each flash write operation, and

during this time no other activity will be processed (UART or Bluetooth® LE communication). Any
UART data sent during this brief window will be lost. Therefore, you should only modify the GATT
structure while disconnected, and you should allow a gap of at least 20 ms between the end of one
API command and the beginning of a new one. If you have enabled hardware flow control using

the system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial will block
incoming data flow during flash writes to prevent serial data corruption or loss.

Binary header

 Type Length Group ID Note

CMD C0 02 05 02 None

RSP C0 08 05 02 None

Text info

Text name Response length Category Note

/CAD 0x001F ACTION None

User guide 181 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint16 handle H Attribute handle to remove (includes all higher attributes)

Response parameters

Data type Name Text Description

uint16 count C Number of attributes deleted from GATT structure

uint16 next_handle H Next available attribute handle after removal

uint16 valid V GATT database validity status

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

7.2.5.3 gatts_validate_db (/VGDB, ID=5/3)

Check to ensure the custom GATT structure has no malformed or missing elements.

Use this command to check for errors in the custom GATT structure configured in EZ-Serial. The dynamic GATT
implementation automatically tests for validity issues when making changes to the structure with the

gatts_create_attr (/CAC, ID=5/1) and gatts_delete_attr (/CAD, ID=5/2) API commands, but

this command will provide the same test result upon request without making or attempting any modifications.

See the EZ-Serial GATT database validation error codes section for possible validity states.

EZ-Serial allows only one non-valid state, indicated by the
GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES code (0x0001). This non-valid state is

unavoidable during custom attribute creation, since attributes must be added one at a time, and every new

service or characteristic requires multiple attributes. All other non-valid states prevent the addition of a custom
attribute in the first place. Therefore, running this command should only result in a valid state (0x0000) or the

warning state noted here (0x0001).

Note: If EZ-serial received error code 0x0111 in response package means that you need to reset the
device to make the settings available.

Binary header

 Type Length Group ID Note

CMD C0 00 05 03 None

RSP C0 04 05 03 None

Text info

Text name Response length Category Note

/VGDB 0x0012 ACTION None

Command arguments

None.

User guide 182 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint16 valid V GATT database validity status

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_dump_db (/DGDB, ID=5/5)

7.2.5.4 gatts_store_db (/SGDB, ID=5/4)

Store the current custom GATT structure in flash.

Note: This command has been deprecated and has no effect when used. As of the latest firmware build,
GATT database changes are always written instantly to flash when using either
gatts_create_attr (/CAC, ID=5/1) or gatts_delete_attr (/CAD, ID=5/2).

Binary header

 Type Length Group ID Note

CMD C0 00 05 04 None

RSP C0 02 05 04 None

Text info

Text name Response length Category Note

/SGDB 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

User guide 183 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5.5 gatts_dump_db (/DGDB, ID=5/5)

List current local GATT database attributes.

This command produces a series of gatts_db_entry_blob (DGATT, ID=5/4) API events, one for each

attribute in the current local GATT database. The output is similar to that of the
gatts_discover_descriptors (/DLD, ID=5/8) API command, but in a format that more closely matches
the input parameters of the gatts_create_attr (/CAC, ID=5/1) API command.

You can choose to dump only those attributes in the user-definable range (0x001D and above), or include fixed
attributes as well (0x0001 and above) for complete reference.

Binary header

 Type Length Group ID Note

CMD C0 01 05 05 None

RSP C0 04 05 05 None

Text info

Text name Response length Note

/DGDB 0x0012 None

Command arguments

Data type Name Text Description

uint8 include_fixed F Include fixed attributes:

• 0 = Start from handle 0x0023, do not include fixed attributes (default)

• 1 = Start from handle 0x0012

Response parameters

Data type Name Text Description

uint16 count C Number of entries to be returned

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related events

• gatts_db_entry_blob (DGATT, ID=5/4)

User guide 184 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5.6 gatts_discover_services (/DLS, ID=5/6)

Request a list of all services in the local GATT structure which the attribute handle is reported from 0x12.

This allows convenient discovery of services within the local GATT database. This command does not require

an active connection, since it concerns only local resources. Normally, you should not need to use this
command except during development, since the application should already know all relevant details about its
own local GATT structure. To find all services in the local database, use “0” for both arguments, or explicitly set
0x0001 and 0xFFFF for the beginning and end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command have the same
format as the client-side gattc_discover_result (DR, ID=6/1) events which result from the

gattc_discover_services (/DRS, ID=6/1) API command for discovering remote GATT services.

For local GATT database information that more closely matches the input format required for the

gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API

command instead.

Binary header

 Type Length Group ID Note

CMD C0 04 05 06 None

RSP C0 04 05 06 None

Text info

Text name Response length Category Note

/DLS 0x0011 ACTION None

Command arguments

Data type Name Text Description

uint16 begin B Handle to begin searching (minimum from 0x12)

uint16 end E Handle to end searching (inclusive)

Response parameters

Data type Name Text Description

uint16 count C Number of entries to be returned

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related events

• gatts_discover_result (DL, ID=5/1)

Example usage

• See How to list local GATT services, characteristics, and descriptors

User guide 185 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, make sure that you also enable the encryption bit, or the command will be

rejected with an error result.

7.2.5.7 gatts_discover_characteristics (/DLC, ID=5/7)

Request a list of all characteristics in the local GATT structure which the attribute handle is reported from 0x12

This allows convenient discovery of characteristics within the local GATT database. This command does not
require an active connection, since it concerns only local resources. Normally, you should not need to use this
command except during development, since the application should already know all relevant details about its

own local GATT structure. To find all characteristics in the local database, use “0” for both arguments, or

explicitly set 0x0001 and 0xFFFF for the beginning and end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command have the same format as the

client-side gattc_discover_result (DR, ID=6/1) events which result from the
gattc_discover_characteristics (/DRC, ID=6/2) API command for discovering remote GATT
characteristics.

For local GATT database information that more closely matches the input format required for the

gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API

command instead.

Binary header

 Type Length Group ID Note

CMD C0 06 05 07 None

RSP C0 04 05 07 None

Text info

Text name Response length Category Note

/DLC 0x0011 ACTION None

Command arguments

Data type Name Text Description

uint16 begin B Handle to begin searching (minimum from 0x12)

uint16 end E Handle to end searching (inclusive)

uint16 service S Service UUID filter (0 for all) – currently not implemented in firmware, set to 0

Response parameters

Data type Name Text Description

uint16 count C Number of entries to be returned

User guide 186 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related events

• gatts_discover_result (DL, ID=5/1)

Example usage

• See How to list local GATT services, characteristics, and descriptors

7.2.5.8 gatts_discover_descriptors (/DLD, ID=5/8)

Request a list of all descriptors in the local GATT structure which the attribute handle is reported from 0x12

This allows convenient discovery of descriptors within the local GATT database. This command does not

require an active connection, since it concerns only local resources. Normally, you should not need to use this

command except during development, since the application should already know all relevant details about its
own local GATT structure. To find all descriptors in the local database, use “0” for both arguments, or explicitly
set 0x0001 and 0xFFFF for the beginning and end handles, respectively.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command have the same format as the

client-side gattc_discover_result (DR, ID=6/1) events which result from the gattc_discover_descriptors
(/DRD, ID=6/3) API command for discovering remote GATT descriptors.

For local GATT database information that more closely matches the input format required for the
gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API

command instead.

Binary header

 Type Length Group ID Note

CMD C0 08 05 08 None

RSP C0 04 05 08 None

Text info

Text name Response length Category Note

/DLD 0x0011 ACTION None

Command arguments

Data type Name Text Description

uint16 begin B Handle to begin searching (minimum from 0x12)

uint16 end E Handle to end searching (inclusive)

uint16 service S Service UUID filter (0 for all)

(Ignored in current release, set to 0)

uint16 characteristic C Characteristic UUID filter (0 for all)

(Ignored in current release, set to 0)

User guide 187 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint16 count C Number of entries to be returned

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

Related events

• gatts_discover_result (DL, ID=5/1)

Example usage

• See How to list local GATT services, characteristics, and descriptors

7.2.5.9 gatts_read_handle (/RLH, ID=5/9)

Read the value of an attribute in the local GATT server.

This command does not require an active connection, since it concerns only local resources. To read a value

from a remote attribute on a connected peer, use the gattc_read_handle (/RRH, ID=6/4) API command

instead.

Binary header

 Type Length Group ID Note

CMD C0 02 05 09 None

RSP C0 04+ 05 09 Variable-length response payload, value specified is minimum

Text info

Text name Response length Category Note

/RLH 0x000D+ ACTION Variable-length response payload, value specified is minimum

Command arguments

Data type Name Text Description

uint16 attr_handle H* Handle of attribute to read value from, which attributes handle is from 0x23,

not include fixed attributes

Response parameters

Data type Name Text Description

longuint8a data D Data read from attribute.

Note: longuint8a data type requires two prefixed “length” bytes before

binary parameter payload.

User guide 188 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gatts_write_handle (/WLH, ID=5/10)

• gattc_read_handle (/RRH, ID=6/4)

7.2.5.10 gatts_write_handle (/WLH, ID=5/10)

Write a new value to an attribute in the local GATT server.

This command does not require an active connection, since it concerns only local resources. To write a value to

a remote attribute on a connected peer, use the gattc_write_handle (/WRH, ID=6/5) API command.

Note: Writing data to a local characteristic value attribute will not automatically trigger a notification or

indication of that data to a connected client, even if the client has subscribed to notifications or
indications fo the characteristic. This command only affects the value stored locally in RAM if the

client performs a GATT read operation later. To push data to a client that subscribed to
notifications or indications, use the gatts_notify_handle (/NH, ID=5/11) or

gatts_indicate_handle (/IH, ID=5/12) API command.

Binary header

 Type Length Group ID Note

CMD C0 04 05 0A Variable-length command payload, value specified is minimum

RSP C0 02 05 0A None

Text info

Text name Response length Category Note

/WLH 0x000A ACTION None

Command arguments

Data type Name Text Description

uint16 attr_handle H* Handle of attribute to write new value to, which attributes handle is from

0x23, not include fixed attributes

longuint8a data D* New data to write to attribute.

Note: longuint8a data type requires two prefixed “length” bytes

before binary parameter payload.

Response parameters

None.

Related commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gattc_write_handle (/WRH, ID=6/5)

User guide 189 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5.11 gatts_notify_handle (/NH, ID=5/11)

Notify a new attribute value to a remote GATT client.

Note: This command does not change any locally stored values for the notified attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts_write_handle (/WLH,
ID=5/10) API command.

Binary header

 Type Length Group ID Note

CMD C0 06 05 0B Variable-length command payload, value specified is minimum

RSP C0 02 05 0B None

Text info

Text name Response length Category Note

/NH 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for notification
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 attr_handle H* Handle of attribute to notify

uint8a data D* Data to push to remote client via notification.

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

Related commands

• gatts_write_handle (/WLH, ID=5/10)

• gatts_indicate_handle (/IH, ID=5/12)

User guide 190 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5.12 gatts_indicate_handle (/IH, ID=5/12)

Indicate a new attributes value to a remote GATT client.

If successful, pushing an indicated value to a remote client will result in the gatts_indication_confirmed

(IC, ID=5/3) API event occurring after the client acknowledges the transfer.

Because this method requires client acknowledgement, you cannot attempt another GATT operation until this

confirmation event arrives. A single acknowledged transfer requires two connection intervals: one for the

actual data transfer, and one for the acknowledgement. Using this type of transfer has effects on potential
throughput; see the How to maximize throughput to a remote peer section for details on alternative design
choices.

Note: This command does not change any locally stored values for the indicated attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts_write_handle (/WLH,
ID=5/10) API command.

Binary header

 Type Length Group ID Note

CMD C0 06 05 0C Variable-length command payload, value specified is minimum

RSP C0 02 05 0C None

Text info

Text name Response length Category Note

/IH 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for indication
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 attr_handle H* Handle of attribute to indicate

uint8a data D* Data to indicate.

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

User guide 191 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

• gattc_confirm_indication (/CI, ID=6/6) – Used on remote client to confirm receipt of the
indication

Related events

• gatts_indication_confirmed (IC, ID=5/3) - Occurs on the server after the remote client confirms

receipt of indicated data

• gattc_data_received (D, ID=6/3) – Occurs on the remote client when indicated data is received

7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13)

Respond to a GATT client’s acknowledged write request.

Use this command after receiving a gatts_data_written (W, ID=5/2) API event an acknowledged request
to write data to a local GATT server attribute (the event’s type parameter will be 0x80). Sending a response

value of zero indicates success, while any non-zero value indicates an error. Values 0x01 through 0x7F are errors

defined in the Bluetooth® specification, while values 0x80 through 0xFF are user-defined errors.

EZ-Serial will automatically respond to write requests unless Bit 0 of the GATT server behavior flags is cleared
using the flags field in the gatts_set_parameters (SGSP, ID=5/14) API command, or if the

characteristic being written has Bit 24 set for user data management in the GATT database structure entry

created with the gatts_create_attr (/CAC, ID=5/1) API command.

Binary header

 Type Length Group ID Note

CMD C0 02 05 0D None

RSP C0 02 05 0D None

Text info

Text name Response length Category Note

/WRR 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for response

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 response R* GATT result code for response:

• 0 = Success

• 0x01-0x7F = Error from Bluetooth® specification

• 0x80-0xFF = Error from application (user-defined)

User guide 192 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• gattc_write_handle (/WRH, ID=6/5)

Related events

• gatts_data_written (W, ID=5/2)

7.2.5.14 gatts_set_parameters (SGSP, ID=5/14)

Configure new GATT server parameters.

Binary header

 Type Length Group ID Note

CMD C0 01 05 0E None

RSP C0 02 05 0E None

Text info

Text name Response length Category Note

SGSP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 flags F GATT server behavior flags bitmask:

• Bit 0 (0x01) = Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set).

Response parameters

None.

Related commands

• gatts_send_writereq_response (/WRR, ID=5/13) – Necessary to use for acknowledged client writes

if flags Bit 0 is clear

• gatts_get_parameters (GGSP, ID=5/15)

User guide 193 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.5.15 gatts_get_parameters (GGSP, ID=5/15)

Obtain current GATT server parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 05 0F None

RSP C0 03 05 0F None

Text info

Text name Response length Category Note

GGSP 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 flags F GATT server behavior flags bitmask:

Bit 0 (0x01) = Enable automatic response to acknowledged writes

NOTE: Factory default is 0x01 (all bits set)

Related commands

• gatts_set_parameters (SGSP, ID=5/14)

7.2.5.16 gatts_service_active (/SACT, ID=5/16)

After adding all attributes by the gatts_create_attr command, externally must send the gatts_service_active
command to apply. After applying, the attribute added by the gatts_create_attr command will be stored in
flash.

Binary header

 Type Length Group ID Note

CMD C0 00 05 10 None

RSP C0 02 05 10 None

Text info

Text name Response length Category Note

/SACT 0x000B ACTION None

Command arguments

None.

User guide 194 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• gatts_create_attr (/CAC, ID=5/1)

7.2.5.17 gatts_service_handle_reset (/RSHL, ID=5/17)

This command reorders the attribute handles, and removed the deleted attribute handles which are deleted by
the gatts_delete_attr command.

Binary header

 Type Length Group ID Note

CMD C0 00 05 10 None

RSP C0 02 05 10 None

Text info

Text name Response length Category Note

/RSHL 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• system_reboot (/RBT, ID=2/2)

• gatts_delete_attr (/CAD, ID=5/2)

User guide 195 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.6 GATT client group (ID=6)

GATT client methods relate to the client role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the GATT structures on remote devices, and can only be used while a
device is connected.

The following are the commands within this group:

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_write_handle (/WRH, ID=6/5)

• gattc_confirm_indication (/CI, ID=6/6)

• gattc_set_parameters (SGCP, ID=6/7)

• gattc_get_parameters (GGCP, ID=6/8)

Events within this group are documented in GATT Client Group (ID=6).

7.2.6.1 gattc_discover_services (/DRS, ID=6/1)

Request a list of GATT services from a connected remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the

local GATT structure instead, use the gatts_discover_services (/DLS, ID=5/6) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that

the discovery procedure is finished.

Binary header

 Type Length Group ID Note

CMD C0 05 06 01 None

RSP C0 02 06 01 None

Text info

Text name Response length Category Note

/DRS 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for discovery
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

User guide 196 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• gatts_discover_services (/DLS, ID=5/6)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

• See How to discover a remote server’s GATT structure.

7.2.6.2 gattc_discover_characteristics (/DRC, ID=6/2)

Request a list of GATT characteristics from a connected remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the

local GATT structure instead, use the gatts_discover_characteristics (/DLC, ID=5/7) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be

returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the
discovery procedure is finished.

Binary header

 Type Length Group ID Note

CMD C0 07 06 02 None

RSP C0 02 06 02 None

Text info

Text name Response length Note

/DRC 0x000A None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for discovery
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S Service UUID filter (0 for all)

(Ignored in current release, set to 0)

User guide 197 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• gatts_discover_characteristics (/DLC, ID=5/7)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

• See How to discover a remote server’s GATT structure

7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3)

Request a list of GATT attribute descriptors from a connected remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To discover the

local GATT structure instead, use the gatts_discover_descriptors (/DLD, ID=5/8) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be

returned in advance. Only local GATT server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that
the discovery procedure is finished.

Binary header

 Type Length Group ID Note

CMD C0 09 06 03 None

RSP C0 02 06 03 None

Text info

Text name Response length Category Note

/DRD 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for discovery
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S Service UUID filter (0 for all)

(Ignored in current release, set to 0)

User guide 198 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

uint16 characteristic T Characteristic UUID filter (0 for all)

(Ignored in current release, set to 0)

Response parameters

None.

Related commands

• gatts_discover_descriptors (/DLD, ID=5/8)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

Related events

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

• See How to discover a remote server’s GATT structure

7.2.6.4 gattc_read_handle (/RRH, ID=6/4)

Read the value of an attribute on a remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To read a value

from the local GATT structure instead, use the gatts_read_handle (/RLH, ID=5/9) API command.

Binary header

 Type Length Group ID Note

CMD C0 03 06 04 None

RSP C0 02 06 04 None

Text info

Text name Response length Category Note

/RRH 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for read operation
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 attr_handle H* Handle of remote attribute to read

Response parameters

None.

User guide 199 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gattc_write_handle (/WRH, ID=6/5)

Related events

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs if the client read operation fails

(parameters include error code)

• gattc_data_received (D, ID=6/3) – Occurs if the client read operation succeeds

7.2.6.5 gattc_write_handle (/WRH, ID=6/5)

Write a new value to an attribute on a remote GATT server.

This command performs a GATT client operation, and requires a connection to a remote peer. To write a value
to the local GATT structure instead, use the gatts_write_handle (/WLH, ID=5/10) API command.

Binary header

 Type Length Group ID Note

CMD C0 06 06 05 Variable-length command payload, value specified is minimum

RSP C0 02 06 05 None

Text info

Text name Response length Category Note

/WRH 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for write operation
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 attr_handle H* Handle of remote attribute to write

uint8 type T Type of write to perform:

0 = Simple write – acknowledged (default)

1 = Write without response – unacknowledged

longuint8a data D* New data to write

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Response parameters

None.

Related commands

• gattc_read_handle (/RRH, ID=6/4)

• gatts_send_writereq_response (/WRR, ID=5/13)

User guide 200 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• gatts_data_written (W, ID=5/2) – Occurs on the remote server after using this command on the local
client

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs once the write is acknowledged, if
using acknowledged write type

7.2.6.6 gattc_confirm_indication (/CI, ID=6/6)

Confirm an indication from a remote GATT server.

This command confirms receipt of indicated data from a remote server. Indicated data is pushed from a server
to a client after the client has subscribed to indications for a desired characteristic and that characteristic’s

value has changed. Indicated data will arrive via the gattc_data_received (D, ID=6/3) API event, and
you must use this command to manually confirm the indication if the source parameter of that event shows

indication with manual confirmation needed. See the event documentation for detail.

EZ-Serial will automatically confirm indications unless Bit 0 of the GATT client behavior flags is cleared using

the flags field in the gattc_set_parameters (SGCP, ID=6/7) API command.

Note: If indicated data arrives and requires manual confirmation, you must use this command to
confirm it before performing any other GATT operations.

Binary header

 Type Length Group ID Note

CMD C0 01 06 06 None

RSP C0 02 06 06 None

Text info

Text name Response length Category Note

/CI 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for confirmation
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

Response parameters

None.

Related commands

• gatts_indicate_handle (/IH, ID=5/12) – Used on a remote GATT server to indicate data to a client

• gattc_set_parameters (SGCP, ID=6/7) – Configure local GATT client parameters, including auto-
confirm behavior

User guide 201 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• gatts_indication_confirmed (IC, ID=5/3) – Occurs on a remote GATT server after confirming
indication on the client

• gattc_data_received (D, ID=6/3) – Occurs on the local GATT client when a remote server indicates
data

7.2.6.7 gattc_set_parameters (SGCP, ID=6/7)

Configure new GATT client parameters.

Binary header

 Type Length Group ID Note

CMD C0 01 06 07 None

RSP C0 02 06 07 None

Text info

Text name Response length Category Note

SGCP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 flags F GATT client behavior flags bitmask:

Bit 0 (0x01) = Enable automatic confirmation of remote GATT server indications

Note: Factory default is 0x01 (all bits set).

Response parameters

None.

Related commands

• gattc_confirm_indication (/CI, ID=6/6) – Necessary to use for indicated data if flags Bit 0 is

clear

• gattc_get_parameters (GGCP, ID=6/8)

User guide 202 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.6.8 gattc_get_parameters (GGCP, ID=6/8)

Get current GATT client parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 06 08 None

RSP C0 03 06 08 None

Text info

Text name Response length Category Note

GGCP 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 flags F GATT client behavior flags bitmask:

Bit 0 (0x01) = Enable automatic confirmation of remote GATT server indications

Note: Factory default is 0x01 (all bits set).

Related commands

• gattc_set_parameters (SGCP, ID=6/7)

User guide 203 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7 SMP group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used

for working with privacy, encryption, pairing, and bonding between two devices.

The following are the commands within this group:

• smp_query_bonds (/QB, ID=7/1)

• smp_delete_bond (/BD, ID=7/2)

• smp_pair (/P, ID=7/3)

• smp_query_random_address (/QRA, ID=7/4)

• smp_send_pairreq_response (/PR, ID=7/5)

• smp_send_passkeyreq_response (/PE, ID=7/6)

• smp_generate_oob_data (/GOOB, ID=7/7)

• smp_clear_oob_data (/COOB, ID=7/8)

• smp_set_privacy_mode (SPRV, ID=7/9)

• smp_get_privacy_mode (GPRV, ID=7/10)

• smp_set_security_parameters (SSBP, ID=7/11)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

• smp_get_fixed_passkey (GFPK, ID=7/14)

Events within this group are documented in SMP group (ID=7).

7.2.7.1 smp_query_bonds (/QB, ID=7/1)

Request a list of bonded devices.

This command accesses the current bonded device list. Bonded devices are those which have previously paired
(exchanged encryption data) and bonded (stored the exchanged encryption data).

The response from this command includes the number of bonded devices, and the response will be followed by
that many smp_bond_entry (B, ID=7/1) API events that provide details for each device.

Note: EZ-Serial currently supports a maximum of 3 bonded devices at the same time. To bond with

additional devices after all four bond slots are full, you must delete one of the existing bonds with
the smp_delete_bond (/BD, ID=7/2) API command.

Binary header

 Type Length Group ID Note

CMD C0 00 07 01 None

RSP C0 03 07 01 None

Text info

Text name Response length Category Note

/QB 0x000E ACTION None

User guide 204 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 count C Bond entry count

Related commands

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

Related events

• smp_bond_entry (B, ID=7/1) – Occurs once for each bonded device after requesting bond list

7.2.7.2 smp_delete_bond (/BD, ID=7/2)

Remove a bonded device.

This command removes the stored encryption key data for a device that has previously paired (exchanged

encryption data) and bonded (stored the exchanged encryption data).

Binary header

 Type Length Group ID Note

CMD C0 07 07 02 None

RSP C0 03 07 02 None

Text info

Text name Response length Category Note

/BD 0x000E ACTION None

Command arguments

Data type Name Text Description

Macaddr address A* Bluetooth® address

uint8 type T Address type:

0 = Public (default)

1 = Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated bond entry count

Related commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

User guide 205 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.3 smp_pair (/P, ID=7/3)

Initiate pairing process with a connected device.

Note: EZ-Serial currently supports a maximum of 3 bonded devices at the same time. To bond with
additional devices after all three bond slots are full, you must delete one of the existing bonds with
the smp_delete_bond (/BD, ID=7/2) API command.

Binary header

 Type Length Group ID Note

CMD C0 05 07 03 None

RSP C0 02 07 03 None

Text info

Text name Response length Category Note

/P 0x0008 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for pairing
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 mode M Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption (no

MITM,

factory default)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with

MITM)

• 0x13 = Mode 1, Level 4 – LE Secure Connections (reported by remote
peers only, not locally implemented in current EZ-Serial firmware)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing (no
MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing (with

MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

Note: Factory default is 16 bytes (0x10).

uint8 pairprop P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

User guide 206 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

Note: Factory default is 0x00 (no bits set).

Response parameters

None.

Related commands

• smp_send_pairreq_response (/PR, ID=7/5) – Use when remote device initiates pairing and auto-

accept flag bit is not disabled

• smp_send_passkeyreq_response (/PE, ID=7/6) – Use if MITM protection is enabled and pairing

requires passkey entry

• smp_set_security_parameters (SSBP, ID=7/11) – Use to configure default security settings

Related events

• smp_pairing_requested (P, ID=7/2) – Occurs when remote device initiates pairing

• smp_pairing_result (PR, ID=7/3) – Occurs when pairing process completes (success or failure)

• smp_encryption_status (ENC, ID=7/4) – Occurs when encryption status changes during a pairing

process

• smp_passkey_display_requested (PKD, ID=7/5) – Occurs when pairing process requires displaying
a passkey to the user

• smp_passkey_entry_requested (PKE, ID=7/6) – Occurs when pairing process requires the user to

enter a passkey

7.2.7.4 smp_query_random_address (/QRA, ID=7/4)

Request the current local random address.

When peripheral or central privacy is enabled with the smp_set_privacy_mode (SPRV, ID=7/9) API
command, the Bluetooth® connection address visible to remote devices while advertising or scanning will be
random (private) instead of the fixed (public) Bluetooth® address that can be configured or obtained using the

system_set_bluetooth_address (SBA, ID=2/13) and system_get_bluetooth_address (GBA,
ID=2/14) API commands. This type of privacy helps to avoid profiling by a passive eavesdropper.

Binary header

 Type Length Group ID Note

CMD C0 00 07 04 None

RSP C0 08 07 04 None

Text info

Text name Response length Category Note

/QRA 0x0019 ACTION None

User guide 207 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

macaddr address A Random address

Related commands

• smp_set_privacy_mode (SPRV, ID=7/9)

7.2.7.5 smp_send_pairreq_response (/PR, ID=7/5)

Send a response to a pairing request from a remote device.

EZ-Serial will automatically accept pairing requests unless Bit 0 of the security behavior flags is cleared using
the flags field in the smp_set_security_parameters (SSBP, ID=7/11) API command. If the auto-

accept feature is disabled, use this command to manually accept or deny a remotely initiated pairing process.

Binary header

 Type Length Group ID Note

CMD C0 03 07 05 None

RSP C0 02 07 05 None

Text info

Text name Response length Category Note

/PR 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for sending response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 response R* Response (0 = accept, non-zero = reject)

Response parameters

None.

Related commands

• smp_pair (/P, ID=7/3) – Used to initiate pairing

Related events

• smp_pairing_requested (P, ID=7/2) – Occurs when a remote device requests pairing

• smp_pairing_result (PR, ID=7/3) – Occurs after a pairing process completes (successfully or
otherwise)

User guide 208 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.6 smp_send_passkeyreq_response (/PE, ID=7/6)

Send a passkey value back to a remote device that requested it.

Use this command after receiving the smp_passkey_entry_requested (PKE, ID=7/6) API event, or when

I/O capabilities are set to “Display + Yes/No” to indicate acceptance after receiving the
smp_passkey_display_requested (PKD, ID=7/5) API event.

Binary header

 Type Length Group ID Note

CMD C0 05 07 06 None

RSP C0 02 07 06 None

Text info

Text name Response length Note

/PE 0x0009 None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for sending response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint32 passkey P* Passkey value (000000-999999, 0x0 – 0x0F423F)

Response parameters

None.

Related commands

• smp_pair (/P, ID=7/3)

Related events

• smp_passkey_display_requested (PKD, ID=7/5)

• smp_passkey_entry_requested (PKE, ID=7/6)

User guide 209 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.7 smp_generate_oob_data (/GOOB, ID=7/7)

Generate out-of-band data for pairing.

EZ-Serial supports the use of out-of-band (OOB) encryption key sharing for added security during pairing with

compatible devices. This command does not directly set OOB data. Instead, it generates OOB data based on a
16-byte input key. You must use the same key on the remote device to generate matching OOB data in order to
successfully pair using out-of-band key exchange.

Ensure that you generate OOB data on both sides of the connection before initiating the pairing process on
either side.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using this
command. If you set OOB data and then attempt to pair with a device that does not support OOB
pairing, or that does not have the correct matching key set, pairing will always fail. To clear OOB
data and revert to the standard pairing and key generation/exchange process, either reset the
module via hardware or software or use the smp_clear_oob_data (/COOB, ID=7/8) API

command.

Binary header

 Type Length Group ID Note

CMD C0 13 07 07 None

RSP C0 02 07 07 None

Text info

Text name Response length Category Note

/GOOB 0x000B ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for applying OOB data

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8a key K* 16-byte key with which to generate OOB data.

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Response parameters

None.

Related commands

• smp_clear_oob_data (/COOB, ID=7/8)

Example usage

• See How to use out-of-band pairing

User guide 210 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.8 smp_clear_oob_data (/COOB, ID=7/8)

Clear previously set out-of-band data for pairing.

Note: EZ-Serial will always attempt to use OOB encryption data for pairing if you have set it using the
smp_generate_oob_data (/GOOB, ID=7/7) API command. If you set OOB data and then
attempt to pair with a device that does not support OOB pairing, or that does not have the correct

matching OOB security data set, pairing will always fail. To clear OOB data and revert to the

standard pairing and key generation/exchange process, use this command or else reset the
module via hardware or software.

Binary header

 Type Length Group ID Note

CMD C0 01 07 08 None

RSP C0 03 07 08 None

Text info

Text name Response length Category Note

/COOB 0x0010 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for applying OOB data

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

Response parameters

Response parameters

Data type Name Text Description

uint8 Conn_handle C Connection handle

.

Related commands

• smp_generate_oob_data (/GOOB, ID=7/7)

User guide 211 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.9 smp_set_privacy_mode (SPRV, ID=7/9)

Configure new privacy settings.

Use this command to enable or disable peripheral or central privacy. Enabling privacy in each mode causes the

Bluetooth® connection address used in related states to be random (private) instead of fixed (public). This can
make passive profiling by a remote observer more difficult.

Peripheral privacy affects the Bluetooth® connection address broadcast during advertisements, which the

remote central device may log or use for a scan request or connection request. Central privacy affects the
Bluetooth® connection address used for scan requests or connection requests when scanning for or
communicating with a remote device.

Binary header

 Type Length Group ID Note

CMD C0 03 07 09 None

RSP C0 02 07 09 None

Text info

Text name Response length Category Note

SPRV 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M Privacy mode bitmask:

• Bit 0 (0x01) = Enable peripheral privacy

• Bit 1 (0x02) = Enable central privacy

Note: Factory default is 0x00 (no bits set).

uint16 interval I Randomization interval (seconds)

• Max:41400 (11.5 hours)

Response parameters

None.

Related commands

• smp_get_privacy_mode (GPRV, ID=7/10)

User guide 212 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.10 smp_get_privacy_mode (GPRV, ID=7/10)

Obtain current privacy settings.

Binary header

 Type Length Group ID Note

CMD C0 00 07 0A None

RSP C0 05 07 0A None

Text info

Text name Response length Category Note

GPRV 0x0016 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M Privacy mode bitmask:

• Bit 0 (0x01) = Enable peripheral privacy

• Bit 1 (0x02) = Enable central privacy

Note: Factory default is 0x00 (no bits set)

uint16 interval I Randomization interval (seconds)

Related commands

• smp_set_privacy_mode (SPRV, ID=7/9)

7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11)

Configure new security and bonding parameters.

These parameters will be used when the smp_pair (/P, ID=7/3) API command is used without specifying

non-default arguments. These values are reported to the remote device as part of the pairing process and affect

the type of key generation and exchange that takes place during pairing and bonding.

Note: Changing the I/O capabilities will affect the command/event flow necessary to complete a pairing
and bonding process. See the the related commands and events for details concerning each one’s
use. Also, MITM protection requires I/O capabilities other than “No Input + No Output” in order to
function correctly.

User guide 213 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Binary header

 Type Length Group ID Note

CMD C0 06 07 0B None

RSP C0 02 07 0B None

Text info

Text name Response length Category Note

SSBP 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption (no MITM,

factory default)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with MITM)

• 0x13 = Mode 1, Level 4 – LE Secure Connections (reported by remote peers
only, not locally implemented in current EZ-Serial firmware)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing (no MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing (with MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack functionality, set

to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

Note: Factory default is 16 bytes (0x10).

uint8 pairprop P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Note: Factory default is 0x00 (no bits set).

uint8 io I I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate “yes” or
“no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and “yes” or
“no”

• 3 = No Input + No Output – no ability to display or input anything (factory
default)

• 4 = Keyboard + Display – ability to provide full numeric input and display

User guide 214 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

uint8 flags F Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

Note: Factory default is 0x01.

Response parameters

None.

Related commands

• smp_pair (/P, ID=7/3)

• smp_send_pairreq_response (/PR, ID=7/5)

• smp_send_passkeyreq_response (/PE, ID=7/6)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

• smp_passkey_display_requested (PKD, ID=7/5)

• smp_passkey_entry_requested (PKE, ID=7/6)

7.2.7.12 smp_get_security_parameters (GSBP, ID=7/12)

Obtain current security and bonding parameters.

Binary header

 Type Length Group ID Note

CMD C0 00 07 0C None

RSP C0 08 07 0C None

Text info

Text name Response length Category Note

GSBP 0x0028 GET None

Command arguments

None.

User guide 215 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8 mode M Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption (no MITM,

factory default)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with MITM)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing (no
MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing (with MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack functionality,

set to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

Note: Factory default is 16 bytes (0x10).

uint8 pairprop P Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Note: Factory default is 0x00 (no bits set).

uint8 io I I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate “yes” or
“no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and “yes” or

“no”

• 3 = No Input + No Output – no ability to display or input anything (factory
default)

• 4 = Keyboard + Display – ability to provide full numeric input and display

uint8 flags F Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

Note: Factory default is 0x01.

Related commands

• smp_set_security_parameters (SSBP, ID=7/11)

User guide 216 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.7.13 smp_set_fixed_passkey (SFPK, ID=7/13)

Configure new fixed passkey value.

While the Bluetooth® specification describes that the passkey should be randomized during pairing, you can

configure a fixed (non-random) 6-digit passkey between 000000 and 999999 using this command and
configuring the local I/O capabilities to the “Display Only” value. During pairing, EZ-Serial will generate the
smp_passkey_display_requested (PKD, ID=7/5) API event containing the value configured here. The remote
peer must then enter this key in order to pair successfully.

Note: The fixed passkey defined here will only take effect if you enable fixed passkey use by setting Bit 1

(0x02) of the security flags parameter and set the “Display Only” I/O capabilities value (0x00) using

the smp_set_security_parameters (SSBP, ID=7/11) API command. If both of these

conditions are not met, then the stack will revert to the default behavior of using a random
passkey.

Binary header

 Type Length Group ID Note

CMD C0 04 07 0D None

RSP C0 02 07 0D None

Text info

Text name Response length Category Note

SFPK 0x000A SET None.

Command arguments

Data type Name Text Description

uint32 passkey P Fixed passkey value

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0.

Response parameters

None.

Related commands

• smp_pair (/P, ID=7/3)

• smp_send_pairreq_response (/PR, ID=7/5)

• smp_get_fixed_passkey (GFPK, ID=7/14)

• smp_set_security_parameters (SSBP, ID=7/11)

User guide 217 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

• smp_passkey_display_requested (PKD, ID=7/5)

Example usage

• See Pairing and bonding with a fixed passkey

7.2.7.14 smp_get_fixed_passkey (GFPK, ID=7/14)

Obtain current fixed passkey value.

Binary header

 Type Length Group ID Note

CMD C0 00 07 0E None

RSP C0 06 07 0E None

Text info

Text name Response length Category Note

GFPK 0x0015 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 passkey P Fixed passkey value

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0.

Related commands

• smp_set_fixed_passkey (SFPK, ID=7/13)

User guide 218 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8 L2CAP group (ID=8)

L2CAP methods relate to the Logical Link Control and Adaptation Protocol layer of the Bluetooth® stack. These
methods are used for working directly with low-level data transfer between two connected devices.

The following are the commands within this group:

• l2cap_connect (/LC, ID=8/1)

• l2cap_disconnect (/LDIS, ID=8/2)

• l2cap_register_psm (/LRP, ID=8/3)

• l2cap_send_connreq_response (/LCR, ID=8/4)

• l2cap_send_credits (/LSC, ID=8/5)

• l2cap_send_data (/LD, ID=8/6)

Events within this group are documented in L2CAP group (ID=8).

7.2.8.1 l2cap_connect (/LC, ID=8/1)

Open a direct L2CAP channel to a connected device.

EZ-Serial provides one extra dedicated L2CAP channel for connection-oriented communication, bypassing the

GATT/ATT layers of the stack. L2CAP connections use a credit-based flow control mechanism, where the

receiving side grants a certain number of credits to the transmitting side to control its ability to send data over
the open channel. For further details, see the example usage in How to communicate using an L2CAP channel.

Note: Most consumer smartphones and tablets available at the time of this publication do not support

direct L2CAP connectivity. You must use standard GATT-based APIs to communicate with these
devices.

Binary header

 Type Length Group ID Note

CMD C0 0B 08 01 None

RSP C0 02 08 01 None

Text info

Text name Response length Category Note

/LC 0x0009 ACTION None

User guide 219 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for L2CAP channel
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 remote R* Remote Protocol Service Multiplexer (PSM)

uint16 local L* Local Protocol Service Multiplexer (PSM)

uint16 mtu T* Maximum Transmission Unit (MTU)

uint16 mps P* Maximum Payload Size (MPS), must be less than or equal to MTU

uint16 credits Z* Transmission credits initially granted to remote device

Response parameters

None.

Related commands

• l2cap_disconnect (/LDIS, ID=8/2)

• l2cap_register_psm (/LRP, ID=8/3) – Use on both local and remote devices to register a PSM before
initiating a connection

• l2cap_send_connreq_response (/LCR, ID=8/4) – Use on the remote device to accept or reject a
connection request

Related events

• l2cap_connection_requested (LCR, ID=8/1) – Occurs on the remote device after requesting a
connection

• l2cap_connection_response (LC, ID=8/2) – Occurs locally after a remote device responds to a

connection request

Example usage

• See How to communicate using an L2CAP channel

User guide 220 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8.2 l2cap_disconnect (/LDIS, ID=8/2)

Close a previously opened L2CAP channel.

Binary header

 Type Length Group ID Note

CMD C0 02 08 02 None

RSP C0 02 08 02 None

Text info

Text name Response length Category Note

/LDIS 0x000B ACTION None

Command arguments

Data type Name Text Description

uint16 channel N* Local PSM channel to disconnect

Response parameters

None.

Related commands

• l2cap_connect (/LC, ID=8/1)

Related events

• l2cap_disconnected (LDIS, ID=8/4)

Example usage

• See How to communicate using an L2CAP channel

User guide 221 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8.3 l2cap_register_psm (/LRP, ID=8/3)

Register a new L2CAP PSM channel.

You must use this command before initiating an L2CAP connection to a remote device. The remote device must
also have the same command (or equivalent) run prior to the connection attempt. The low credit watermark
value controls at which point the local device will generate the l2cap_rx_credits_low (LRCL, ID=8/5) API event,

signaling that you should send additional credits to allow continued data flow.

Binary header

 Type Length Group ID Note

CMD C0 04 08 03 None

RSP C0 02 08 03 None

Text info

Text name Response length Category Note

/LRP 0x000A ACTION None

Command arguments

Data type Name Text Description

uint16 channel N* Local PSM channel to register

uint16 watermark W Low credit watermark (default = 0)

Response parameters

None.

Related commands

• l2cap_connect (/LC, ID=8/1)

Related events

• l2cap_rx_credits_low (LRCL, ID=8/5) – Occurs locally when the remote device’s transmit credits reach the

watermark level

Example usage

• See How to communicate using an L2CAP channel

User guide 222 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8.4 l2cap_send_connreq_response (/LCR, ID=8/4)

Respond to an incoming L2CAP connection request.

Binary header

 Type Length Group ID Note

CMD C0 0B 08 04 None

RSP C0 02 08 04 None

Text info

Text name Response length Category Note

/LCR 0x000A ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for L2CAP response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 channel N* Remote Protocol Service Multiplexer (PSM)

uint16 response R* Response (0 = accept, non-zero = reject)

uint16 mtu M* Maximum Transmission Unit (MTU)

uint16 mps P* Maximum Payload Size (MPS), must be less than or equal to MTU

uint16 credits Z* Transmission credits initially granted to remote device

Response parameters

None.

Related commands

• l2cap_connect (/LC, ID=8/1) – Used to initiate an L2CAP connection

Related events

• l2cap_connection_requested (LCR, ID=8/1) – Occurs locally when a remote device initiates an L2CAP

connection

• l2cap_connection_response (LC, ID=8/2) – Occurs on the remote device after sending the response to a

connection request

Example usage

• See How to communicate using an L2CAP channel

User guide 223 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8.5 l2cap_send_credits (/LSC, ID=8/5)

Send additional transmission credits for L2CAP channel.

Use this command if you receive the l2cap_rx_credits_low (LRCL, ID=8/5) API event, indicating that the remote

end of a given L2CAP channel has few or no credits remaining to send data. You can also use this command
preemptively to keep the remote device from running out of credits. The remote device will be unable to send
more data if it runs out of credits until the local device grants additional credits with this command.

Binary header

 Type Length Group ID Note

CMD C0 04 08 05 None

RSP C0 02 08 05 None

Text info

Text name Response length Category Note

/LSC 0x000A ACTION None

Command arguments

Data type Name Text Description

uint16 channel N* Channel ID

uint16 credits Z* Credits

Response parameters

None.

Related commands

• l2cap_connect (/LC, ID=8/1) – Used on the initiating side to grant first block of credits to the remote

device

• l2cap_send_connreq_response (/LCR, ID=8/4)

Related events

• l2cap_data_received (LD, ID=8/3)

• l2cap_rx_credits_low (LRCL, ID=8/5)

• l2cap_tx_credits_received (LTCR, ID=8/6)

Example usage

• See How to communicate using an L2CAP channel

User guide 224 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.8.6 l2cap_send_data (/LD, ID=8/6)

Send data over an open L2CAP channel.

Each transmission with this command uses one TX credit, regardless of length. To maximize throughput, make

sure you fill the packet with as many bytes as possible based on the data available in your transmission buffer.

Binary header

 Type Length Group ID Note

CMD C0 05 08 06 Variable-length command payload, value specified is minimum

RSP C0 02 08 06 None

Text Info

Text name Response length Category Note

/LD 0x0009 ACTION None

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle over which to send data

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint16 channel N* Channel ID over which to send data

longuint8a data D* Data (0-23 bytes)

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Response parameters

None.

Related events

• l2cap_data_received (LD, ID=8/3) – Occurs on the remote device after data arrives

Example usage

• See How to communicate using an L2CAP channel

User guide 225 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9 GPIO group (ID=9)

GPIO methods relate to the physical pins on the module.

The following are the commands within this group:

• gpio_query_logic (/QIOL, ID=9/1)

• gpio_query_adc (/QADC, ID=9/2)

• gpio_set_function (SIOF, ID=9/3)

• gpio_get_function (GIOF, ID=9/4)

• gpio_set_drive (SIOD, ID=9/5)

• gpio_get_drive (GIOD, ID=9/6)

• gpio_set_logic (SIOL, ID=9/7)

• gpio_get_logic (GIOL, ID=9/8)

• gpio_set_interrupt_mode (SIOI, ID=9/9)

• gpio_get_interrupt_mode (GIOI, ID=9/10)

• gpio_set_pwm_mode (SPWM, ID=9/11)

• gpio_get_pwm_mode (GPWM, ID=9/12)

Events within this group are documented in GPIO group (ID=9)

GPIO API Method Guidelines

All GPIO methods follow the same basic argument pattern for port and pin selection and modification (except

for those relating to PWM and ADC behavior, which use channel numbers for predefined pins). These API
methods have the following features in common:

• The initial port (“P”) argument is a zero-based index for the port number

• If present, the following mask (“M”) argument is a bitmask for selecting which pins to modify

• If present, all additional arguments are also bitmasks to apply to the selected pin range

• SET command responses return the affected (“A”) parameter, a bitmask showing which pins were

affected

Some ports do not have all pins physically exposed on the module. If you select any non-exposed pins, the
command processor will silently ignore them (they will be cleared from the mask value and the affected

return value).

Some pins have special functions assigned to them and enabled by default from the factory. If you select any

special-function pins for modification, the command processor will store the new values in the general
configuration settings, but the new values will not take effect unless you disable the special functions on those

pins using the gpio_set_function (SIOF, ID=9/3) API command. See GPIO reference for details about
which pins have these functions and how to disable them.

Using bitmasks for selection and new value application allows a single command to affect multiple pins in a
complex way. Many single operations would otherwise require multiple commands. The following example

illustrates how one gpio_set_logic (SIOL, ID=9/7) API command can set alternating logic state output
levels across Port 2 on the CYBLE-212019-00 module. Note that the CYBLE-212019-00 module does not expose
P2.1, P2.5, or P2.7.

User guide 226 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

• Command received:

SIOL,P=2,M=FF,L=AA

 Port: 2

 Pins: FF (select all)

 Logic: AA (0b10101010)

Result:

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

HIGH LOW HIGH LOW HIGH LOW HIGH LOW

• Command processor clears bits from the selection mask for any non-exposed pins to avoid unexpected
behavior

Result:

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

X X X

• Logic states applied, response sent:

@R,000F,SIOL,0000,A=5D

 Result: 0000 (success)

 Affected: 5D (01011101)

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

N/A LOW N/A LOW HIGH LOW N/A LOW

7.2.9.1 gpio_query_logic (/QIOL, ID=9/1)

Read the active low/high logic state of pins on the selected port.

See GPIO pin map for supported modules for a pin map table showing pin availability.

Note: This command returns immediate logic state of the pins on the specified port by reading that
port’s status register. This may be different from the pulled/driven states that you have configured

using the gpio_set_logic (SIOL, ID=9/7) API command, due to external drive signals and
strengths. To obtain the configured logic output settings rather than the immediate logic states,

use the gpio_get_logic (GIOL, ID=9/8) API command.

Binary header

 Type Length Group ID Note

CMD C0 01 09 01 None

RSP C0 03 09 01 None

Text info

Text name Response length Category Note

/QIOL 0x0010 ACTION None

User guide 227 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Command arguments

Data type Name Text Description

uint8 Pin P* Pin number

Response parameters

Data type Name Text Description

uint8 logic L Pin logic mask (set bit for high, clear for low)

Related commands

• gpio_set_logic (SIOL, ID=9/7) – Use to set output/pull logic state internally (may be overridden by

external connections)

• gpio_get_logic (GIOL, ID=9/8) – Use to get output logic settings (not the same as actual logic levels)

Related events

• gpio_interrupt (INT, ID=9/1) – Includes port logic state at moment interrupt occurred

7.2.9.2 gpio_query_adc (/QADC, ID=9/2)

Read the immediate analog voltage level on the selected channel.

EZ-Serial provides a single dedicated ADC input pin (ADC) for reading analog voltages. The ADC supports an

input voltage range of 0 V minimum to VBAT maximum. Use this command to perform a single ADC conversion.
Once the conversion completes, the module will transmit the result back in response parameters.

You can use the ADC pin as a normal digital GPIO, but performing an analog read with this command will
reconfigure the pin back to a high-impedance analog input state.

See GPIO pin map for supported modules for a pin map table showing ADC pin assignment.

Binary header

 Type Length Group ID Note

CMD C0 02 09 02 None

RSP C0 14 09 02 None

Text info

Text name Response length Category Note

/QADC 0x0037 ACTION None

Command arguments

Data type Name Text Description

uint8 channel N* ADC channel (4 only)

uint8 reference R Voltage reference for conversion

(Ignored in current release, set to 0)

User guide 228 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint16 value A Raw ADC conversion value, 0 – 1023(0x0 – 0x7FF)

uint32 uvolts U Scaled ADC result in microvolts, 0 – VBAT

uint32 voltage R Scaled ADC result in volts. format: IEEE-754

uint16 offset O ADC offset

uint32 gain C ADC gain. format: IEEE-754

R = gain*(raw + offset*2)/4=0.25 * (C * (A + (O * 2)))

U=R*1000000

7.2.9.3 gpio_set_function (SIOF, ID=9/3)

Configure new special function assignment on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

Note: Only P13 supports to configure to GPIO mode.

Binary header

 Type Length Group ID Note

CMD C0 03 09 03 None

RSP C0 03 09 03 None

Text info

Text name Response length Category Note

SIOF 0x000F SET None

Command arguments

Data type Name Text Description

uint8 Pin P* GPIO Pin number

uint8 enable E Pin function mask (1 to enable, 0 to disable)

uint8 drive D Pin function drive mode

Response parameters

Data type Name Text Description

uint8 affected A 1 for affected, 0 for unaffected

Related commands

• gpio_get_function (GIOF, ID=9/4)

User guide 229 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9.4 gpio_get_function (GIOF, ID=9/4)

Get current special function assignment on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

 Type Length Group ID Note

CMD C0 01 09 04 None

RSP C0 04 09 04 None

Text info

Text name Response length Category Note

GIOF 0x0014 GET None

Command arguments

Data type Name Text Description

uint8 Pin P* GPIO Pin number

Response parameters

Data type Name Text Description

uint8 enable E Pin function (1 indicates enabled, 0 indicates disabled)

uint8 drive D Pin function drive mode

Related commands

• gpio_set_function (SIOF, ID=9/3)

7.2.9.5 gpio_set_drive (SIOD, ID=9/5)

Configure new drive mode for selected pins. This command is not implemented.

Using the last four arguments of this command, you can configure every possible drive mode supported by the

chipset. describes each resulting drive mode from all combinations:

 GPIO Drive mode table

Drive Mode Index Drive mode

0 Analog input, high impedance

1 Digital input, high impedance

2 Digital input, pull-up

3 Digital output, strong drive

4 Digital output, open-drain drives high

5 Digital output, open-drain drives low

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

User guide 230 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Binary header

 Type Length Group ID Note

CMD C0 06 09 05 None

RSP C0 03 09 05 None

Text info

Text name Response length Category Note

SIOD 0x000F SET None

Command arguments

Data type Name Text Description

uint8 Pin P* Pin number

uint8 drive D GPIO Pin drive mode

Response parameters

Data type Name Text Description

uint8 affected A 1 for affected, 0 for unaffected)

Related commands

• gpio_get_drive (GIOD, ID=9/6)

7.2.9.6 gpio_get_drive (GIOD, ID=9/6)

Get current new drive mode for selected pins. This command is not implemented.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

 Type Length Group ID Note

CMD C0 01 09 06 None

RSP C0 06 09 06 None

Text info

Text name Response length Category Note

GIOD 0x001E GET None

Command arguments

Data type Name Text Description

uint8 pin P* GPIO Pin number

Response parameters

Data type Name Text Description

uint8 drive D GPIO Pin drive mode

User guide 231 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gpio_set_drive (SIOD, ID=9/5)

7.2.9.7 gpio_set_logic (SIOL, ID=9/7)

Configure new output logic for selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.
See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks
work.

Note: This command sets new drive/pull logic levels by writing to the data register of the selected port.

Depending on the configured drive mode and external connections, the logic levels in the port

status register may not match with the new configured state. Make sure you have configured the
correct function behavior, drive mode, and external signals if the gpio_query_logic
(/QIOL, ID=9/1) API command reports an unexpected state.

Binary header

 Type Length Group ID Note

CMD C0 02 09 07 None

RSP C0 03 09 07 None

Text info

Text name Response length Category Note

SIOL 0x000F SET None

Command arguments

Data type Name Text Description

uint8 pin P* GPIO Pin number

uint8 logic L Pin logic (1 for high, 0 for low)

Response parameters

Data type Name Text Description

uint8 affected A 1 for affected, 0 for unaffected

Related commands

• gpio_get_logic (GIOL, ID=9/8)

User guide 232 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9.8 gpio_get_logic (GIOL, ID=9/8)

Obtain current output logic for selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Note: This command does not return the immediate logic level of any pins. Instead, it returns the
configured logic values set using the gpio_set_logic (SIOL, ID=9/7) API command. To
obtain the actual logic states reported by the port status register, use the gpio_query_logic
(/QIOL, ID=9/1) API command instead.

Binary header

 Type Length Group ID Note

CMD C0 01 09 08 None

RSP C0 03 09 08 None

Text info

Text name Response length Note

GIOL 0x000F None

Command arguments

Data type Name Text Description

uint8 pin Pin* GPIO Pin number

Response parameters

Data type Name Text Description

uint8 logic L Pin logic (1 for high, 0 for low)

Related commands

• gpio_query_logic (/QIOL, ID=9/1)

• gpio_set_logic (SIOL, ID=9/7)

User guide 233 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9.9 gpio_set_interrupt_mode (SIOI, ID=9/9)

Configure new edge detection interrupt settings on selected pins.

Use this command to enable or disable edge change interrupts on available pins. All exposed pins support both

rising and falling edge detection, reported via the gpio_interrupt (INT, ID=9/1) API event.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

See the general overview in GPIO group (ID=9), for guidelines on how pin selection and configuration masks

work.

Note: Pins with certain special functions enabled will generate interrupts internally for processing.

These interrupts occur regardless of whether you enable or disable them with this API command.

Binary header

 Type Length Group ID Note

CMD C0 03 09 09 None

RSP C0 03 09 09 None

Text info

Text name Response length Category Note

SIOI 0x000F SET None

Command arguments

Data type Name Text Description

uint8 pin P* GPIO Pin number

uint8 rising R Rising-edge interrupts (set bit to enable, clear to disable)

uint8 falling F Falling-edge interrupts (set bit to enable, clear to disable)

Response parameters

Data type Name Text Description

uint8 affected A 1 for affected, 0 for unaffected

Related commands

• gpio_get_interrupt_mode (GIOI, ID=9/10)

Related events

• gpio_interrupt (INT, ID=9/1)

User guide 234 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10)

Obtain current edge detection interrupt settings on selected pins.

See GPIO pin map for supported modules for a pin map table showing pin availability and default assignment.

Binary header

 Type Length Group ID Note

CMD C0 01 09 0A None

RSP C0 04 09 0A None

Text info

Text name Response length Category Note

GIOI 0x0014 GET None

Command arguments

Data type Name Text Description

uint8 pin P* GPIO Pin number

Response parameters

Data type Name Text Description

uint8 rising R Rising-edge interrupts (1 to enable, 0 to disable)

uint8 falling F Falling-edge interrupts (1 to enable, 0 to disable)

Related commands

• gpio_set_interrupt_mode (SIOI, ID=9/9)

Related events

• gpio_interrupt (INT, ID=9/1)

7.2.9.11 gpio_set_pwm_mode (SPWM, ID=9/11)

Configure new PWM output behavior for selected channel.

EZ-Serial provides two dedicated PWM output pins (PWM0, PWM1). You can enable PWM output on any of the
two PWM channels using this API command. PWM channels are controlled via independent 8MHZ~250kHZ
clocks, and can each use separate dutysettings available from 0% ~100% with 1/64 steps for complete

flexibility.

Enabling PWM on each channel means you cannot use that pin for other generic I/O. To return a PWM channel
pin to standard functionality, use the gpio_set_pwm_mode (SPWM, ID=9/11) API command to disable PWM

output on that pin. See GPIO pin map for supported modules for a pin map table showing pin availability and

default assignment.

User guide 235 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Note: Enabling PWM output on one or more channels will automatically prevent the CPU from entering
Deep Sleep under any circumstances. This happens because the high-frequency clock required to

generate the PWM signal cannot operate while the CPU is in Deep Sleep. To allow Deep Sleep
mode again, you must disable all PWM output. See How to manage Sleep states for further detail.

Binary header

 Type Length Group ID Note

CMD C0 06 09 0B None

RSP C0 02 09 0B None

Text info

Text name Response length Category Note

SPWM 0x000A SET None

Command arguments

Data type Name Text Description

uint8 channel N* Channel number (2, 5)

uint8 enable E* Enable PWM output (0 to disable, 1 to enable)

uint8 polarity P* Output Polarity

0: High

1: Low

uint16 clock F* Clock frequency value:

8000 kHz ~ 250 kHz

250 kHz supports 16 steps of duty cycles

500 kHz supports 32 steps of duty cycles

1000 kHz supports 16 steps of duty cycles

4000 kHz supports 4 steps of duty cycles

8000 kHz supports 2 steps of duty cycles

uint8 duty percentage D* PWM duty value:

0% <= duty <= 100%

Response parameters

None.

Related commands

• gpio_get_pwm_mode (GPWM, ID=9/12)

User guide 236 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.9.12 gpio_get_pwm_mode (GPWM, ID=9/12)

Obtain current PWM output behavior for selected channel.

See GPIO pin map for supported modules section for a pin map table showing pin availability and default

assignment.

Binary header

 Type Length Group ID Note

CMD C0 01 09 0C None

RSP C0 09 09 0C None

Text info

Text name Response length Category Note

GPWM 0x0020 GET None

Command arguments

Data type Name Text Description

uint8 channel N* Channel number (2, 5)

Response parameters

Data type Name Text Description

uint8 enable E Enable PWM output (0 to disable, 1 to enable)

uint8 polarity P Output Polarity

0: High

1: Low

uint16 clock F Clock frequency value:

8000 kHz ~ 250 kHz

uint8 duty percentage D PWM duty value:

 duty value

Related commands

• gpio_set_pwm_mode (SPWM, ID=9/11)

User guide 237 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.10 CYSPP group (ID=10)

CYSPP methods relate to the Infineon Serial Port Profile.

The following are the commands within this group:

• p_cyspp_check (.CYSPPCHECK, ID=10/1)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

• p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

• p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)

• p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

• p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Events within this group are documented in the CYSPP group (ID=10) section.

You can find further details and examples concerning CYSPP operation in the following sections:

• Using CYSPP mode

• Configuring the CYSPP data mode sleep level

• Cable replacement examples with CYSPP

7.2.10.1 p_cyspp_check (.CYSPPCHECK, ID=10/1)

Check whether a connected peer device includes support for the CYSPP service.

This command requires an active connection, and performs a service and descriptor discovery to identify the
required elements for CYSPP operation. If detection completes successfully, EZ-Serial will generate the

p_cyspp_status (.CYSPP, ID=10/1) API event with the “CYSPP peer support verified” bit set. However, it will not

automatically enter CYSPP mode even upon verifying remote peer compatibility.

Binary header

 Type Length Group ID Note

CMD C0 00 0A 01 None

RSP C0 02 0A 01 None

Text info

Text name Response length Category Note

.CYSPPCHECK 0x0011 ACTION None

Command arguments

None.

Response parameters

None.

User guide 238 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

Related events

• p_cyspp_status (.CYSPP, ID=10/1)

7.2.10.2 p_cyspp_start (.CYSPPSTART, ID=10/2)

Activate CYSPP operation.

Use this command to start CYSPP via the API protocol, rather than asserting the CYSPP pin or configuring

automatic start with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. EZ-Serial will
choose the role used for CYSPP operation based on the role setting configured with the

p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command.

Binary header

 Type Length Group ID Note

CMD C0 00 0A 02 None

RSP C0 02 0A 02 None

Text info

Text name Response length Category Note

.CYSPPSTART 0x0011 ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• p_cyspp_check (.CYSPPCHECK, ID=10/1)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

Related events

• p_cyspp_status (.CYSPP, ID=10/1)

User guide 239 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.10.3 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Configure new CYSPP behavior settings.

Use this command to control how CYSPP behaves. You can find example usage and practical explanations of

how these settings affect behavior in the Using CYSPP mode and Cable replacement examples with CYSPP
sections.

Note: Disabling CYSPP with this API method will cause EZ-Serial to hide the relevant GATT database
attributes from client discovery. All other visible attributes will remain the same and keep their
original handles, but those inside the CYSPP attribute range will be hidden an unusable by

connected clients. This will remain in effect until you enable the profile again or assert the CYSPP

pin.

Note: If server_security parameter changed, there will be an error code (0x111) generated, the settings
will be available after reboot.

Binary header

 Type Length Group ID Note

CMD C0 13 0A 03 None

RSP C0 02 0A 03 None

Text info

Text name Response length Category Note

.CYSPPSP 0x000E SET None

Command arguments

Data type Name Text Description

uint8 enable E Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G GAP role to use:

• 0 = Peripheral/server (factory default)

• 1 = Central/client

uint16 company C Company ID value for automatic advertisement payload Manufacturer

Data:

Note: Factory default is 0x0131 (Infineon Semiconductor).

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R Remote connection key to search for while scanning (central role)

uint32 remote_mask M Bitmask for bits in remote key which must match for a central-role

connection

User guide 240 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8 sleep_level P Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Normal sleep when possible

• 2 = Deep Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower level.

uint8 server_security S CYSPP server security requirement to allow writing CYSPP data from a

client:

• 0 = No security required (factory default)

• 1 = Encryption required

• 2 = Authentication required

• 3 = Encryption and Authentication required

uint8 client_flags F Client GATT usage flags while operating CYSPP in the central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only).

Response parameters

None.

Related commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

• p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

Related events

• gap_adv_state_changed (ASC, ID=4/2) – May occur if CYSPP is set to start automatically in peripheral role

• gap_scan_state_changed (SSC, ID=4/3) – May occur if CYSPP is set to start automatically in central role

• p_cyspp_status (.CYSPP, ID=10/1)

Example usage

• Using CYSPP mode

• Configuring the CYSPP data mode sleep level

• Cable replacement examples with CYSPP

User guide 241 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Obtain current CYSPP behavior settings.

Binary header

 Type Length Group ID Note

CMD C0 00 0A 04 None

RSP C0 15 0A 04 None

Text info

Text name Response length Category Note

.CYSPPGP 0x004F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 enable E Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G GAP role to use:

• 0 = Peripheral/server (factory default)

• 1 = Central/client

uint16 company C Company ID value for automatic advertisement packet payload

Manufacturer Data:

Note: Factory default is 0x0131 (Infineon Semiconductor).

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R Remote connection key to search for while scanning (central role)

uint32 remote_mask M Bitmask for bits in remote key which must match for a central-role

connection

uint8 sleep_level P Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Normal sleep when possible

• 2 = Deep Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower level.

uint8 server_security S CYSPP server security requirement for writing CYSPP data from a client:

User guide 242 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• 0 = No security required

• 1 = Encryption required

• 2 = Authentication required

• 3 = Encryption and Authentication required

uint8 client_flags F Client GATT usage flags while operating CYSPP in the central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only).

Related commands

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

Configure new preset attribute handles for CYSPP central/client operation.

Use this command to specify the remote GATT server handles manually for data and optional RX flow control. If
you know these handles in advance and can guarantee that they will not change, then configuring them here

causes EZ-Serial to skip the GATT discovery process that normally occurs during CYSPP client operation.

EZ-Serial’s internal GATT structure has the following attribute handles:

 Acknowledged Data Unacknowledged Data RX Flow Control

Value 0x0014 0x0017 0x001A

Configuration 0x0015 0x0018 0x001B

To disable preset attribute handles and allow automatic discovery for every CYSPP client connection, set all
four handle values to 0 (factory default).

Note: EZ-Serial uses the data_value_handle and data_cccd_handle settings for client-role

data pipe setup and data transfer, whether or not you have configured the client_flags

setting to require acknowledged data using the p_cyspp_set_parameters (.CYSPPSP,
ID=10/3) API command.In other words, if you configure unacknowledged data transfers (factory

default), set these values to the unacknowledged handles; or, if you configure acknowledged data
transfers, you should set these values to the acknowledged handles.

Note: These settings only apply when operating CYSPP in the central/client role. They have no impact on
CYSPP peripheral/server behavior.

Binary header

 Type Length Group ID Note

CMD C0 08 0A 05 None

RSP C0 02 0A 05 None

User guide 243 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Response length Category Note

.CYSPPSH 0x000E SET None

Command arguments

Data type Name Text Description

uint16 data_value_handle A Data characteristic value handle

uint16 data_cccd_handle B Data characteristic configuration handle

uint16 rxflow_value_handle C RX flow control characteristic value handle

uint16 rxflow_cccd_handle D RX flow control characteristic configuration handle

Response parameters

None.

Related commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Related events

• p_cyspp_status (.CYSPP, ID=10/1)

7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)

Obtain current preset attribute handles for CYSPP central/client operation.

Binary header

 Type Length Group ID Note

CMD C0 00 0A 06 None

RSP C0 0A 0A 06 None

Text info

Text name Response length Category Note

.CYSPPGH 0x002A GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint16 data_value_handle A Data characteristic value handle

uint16 data_cccd_handle B Data characteristic configuration handle

uint16 rxflow_value_handle C RX flow control characteristic value handle

uint16 rxflow_cccd_handle D RX flow control characteristic configuration handle

User guide 244 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)

7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

Control how incoming serial data from an external host is packetized for CYSPP transmission.

Use this command to control whether or how incoming serial data is assembled into specific packets for
transmission to the remote peer over a CYSPP connection. Packetization does not affect the content or
ordering of serial data in any way, but only affects certain buffering and transmission timing.

Note: CYSPP packetization does not affect any outgoing UART serial data (module-to-host), nor does it

affect incoming serial data while in command mode (i.e. the CYSPP data pipe is not open). It

impacts only the incoming serial data while CYSPP data mode is active.

At 115200 baud, a single byte takes about 80 microseconds to transfer. EZ-Serial checks for new bytes at least
every 20 microseconds and processes whatever is available. Because of this, a continuous serial byte stream
from an external host may be delivered to a remote CYSPP peer with multiple GATT transfers even if all of the

data could fit in a single packet (for example, two bytes sent as two single-byte transfers). Although the data
will always be delivered completely and in the correct order, this results in potentially unnecessary complexity

on the receiving end, which must buffer and combine incoming data if it does not handle it as a continuous
data stream.

To address this behavior, EZ-Serial provides this API command to control incoming data packetization. There

are five different modes:

• Mode 0: Immediate

This mode reads and transmits data as quickly as possible, always sending as much data as is available as

soon as the Bluetooth® LE stack allows a new transmission. In this mode, the first byte or two bytes of a new

transmission will usually be sent in a single packet even if more data is arriving at the same time.

The [wait] and [length] settings are irrelevant in this mode.

• Mode 1: Anticipate (factory default with 5 ms wait and 20 byte length)

This mode waits up to [wait] milliseconds in anticipation for at least [length] bytes to arrive from the
external host. If the target byte count is reached before the wait time expires, all available bytes will be
transmitted immediately. If the configured wait time expires before reaching the target byte count, all
available bytes will be transmitted at that time. Anticipate mode is suitable for most general operations and

will not negatively impact throughput if the incoming serial data arrives fast enough to keep the UART
receive buffer full.

The [wait] setting must be between 1 and 255. The [length] setting must be between 1 and 128, which is the

internal UART RX software buffer size.

User guide 245 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

• Mode 2: Fixed

This mode waits indefinitely until at least [length] bytes have been read, then transmits exactly that many
bytes. Fixed mode is best used in cases where the host sends chunks of data which are always of the same

size. Setting a [length] value that is larger than the GATT MTU payload size will result in multiple

transmissions once all data has been buffered. For example, a fixed packet length of 32 bytes with the
default GATT MTU size of 23 bytes (usable payload size of 20 bytes) will result in one 20-byte packet followed
by one 12-byte packet. The MTU depends on the value negotiated by the client after connection.

The [length] setting must be between 1 and 128, which is the internal UART RX software buffer size. The
[wait] setting is irrelevant in this mode.

• Mode 3: Variable

This mode requires an additional length value from the host before each packet to indicate how many bytes
to expect. EZ-Serial consumes this byte (it is not transmitted to the remote peer), and then waits until
exactly that many bytes to have been read before transmitting them. Variable mode is suitable for

applications that require packets of differing lengths and which can accommodate an extra transmitted
byte from the host indicating each packet’s length.

For example, the host can send [04 61 62 63 64] to transmit the 4-byte ASCII string “abcd” to the remote

peer in a single packet. Or, the host can send [05 61 62 63 64 65 03 66 67 68] to transmit “abcdefgh” in two
packets (“abcde” followed by “def”).

The prefixed packet length byte must not be greater than 128. Values greater than this will be capped at

128. The [wait] and [length] settings are irrelevant in this mode.

• Mode 4: End-of-packet

This mode buffers data until the configured end-of-packet byte is encountered in the data stream, or until

either the MTU payload size or UART RX buffer has filled. End-of-packet (EOP) mode allows variable-length

packets without knowing in advance how long the packet will be.

The EOP byte defaults to 0x0D (the carriage return byte, often expressed as ‘\r’ in code). However, you can

change it to any value between 0x00 and 0xFF. When the EOP byte occurs in the data stream, all buffered

data up to that point including the EOP byte itself will be transmitted to the remote side.

In this mode, EZ-Serial will also transmit buffered data under two other conditions:

− If the GATT MTU payload size is less than the UART RX buffer size (128 bytes) and enough data is buffered
to fill a single GATT packet, one packet’s worth of data will be transmitted. The default GATT MTU is 23

bytes with a usable payload size of 20 bytes.

− If the GATT MTU payload size is greater than the UART RX buffer size (128 bytes) and the RX buffer is full,
128 bytes of data will be transmitted. This can only occur in cases where the connected client has
negotiated a GATT MTU greater than 131 bytes (actual transmit payload is MTU - 3 bytes).

For the “Anticipate” mode (1), you must consider the UART baud rate when choosing the [wait] and [length]
values. A 5 ms wait time is suitable for a 20-byte target length at 115200 baud, but this is not enough time to

read in 20 bytes at 9600 baud (for example). If you change the baud rate, be sure to choose a [wait] value
that allows the target packet length to be filled under normal operating conditions. Table 71 contains “safe”
wait values for 20-byte packets at common baud rates for reference.

User guide 246 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

 Common UART timing for 20-byte packets

baud rate Single bit duration 20 bytes at 8/N/1 (200 bits) Safe wait value example

300 3.333 ms ~667 ms 800ms (0x320)

9600 104 us ~21 ms 32 ms (0x20)

192 17.4 us ~3.5 ms 5 ms (0x05)

115200 8.68 us ~1.7 ms 5 ms (0x05)

230400 4.34 us 868 us 2 ms (0x02)

460800 2.17 us 434 us 1 ms (0x01)

1000000 1.09 us 217 us 1 ms (0x01)

The single-bit duration for any baud rate can be calculated in microseconds using this equation:

Bit time = 1,000,000 us / [baud]

Standard UART settings of 8 data bits, no parity, and 1 stop bit yield a total of 10 bits per byte. For a 20-byte
packet, this requires allowance for 200 bits.

Note: If the packet length used in Anticipate, Fixed, Variable, or End-of-Packet modes exceeds the GATT
MTU usable payload size (20 bytes on many platforms), then the packets will be broken apart to fit

within this lower-level constraint. For example, using Fixed mode with [length] set to 32 bytes will
result in two transmitted packets each time the target length is reached: first a 20-byte packet and
then a 12-byte packet.

Binary header

 Type Length Group ID Note

CMD C0 04 0A 07 None

RSP C0 02 0A 07 None

Text info

Text name Response length Category Note

.CYSPPSK 0x000E SET None

Command arguments

Data type Name Text Description

uint8 mode M Packetization mode:

0 = Immediate: transmit incoming data as soon as possible

1 = Anticipate: wait a short time to attempt a minimum buffer threshold

2 = Fixed: buffer and send packets of exactly one size

3 = Variable: specify the size of every packet with a prefixed length byte

4 = End-of-packet: transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate), only support mode 0 and mode 1.

User guide 247 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

uint8 wait W Anticipation delay (uinit: 10milliseconds), used only in “Anticipate” mode:

Minimum = 0x01 (10 millisecond)

Maximum = 0x0D (130 millisecond)

Note: Factory default is 0x1 (10 milliseconds).

uint8 length L Fixed/anticipated packet length (bytes), used only in “Anticipate” or “Fixed”

mode:

Minimum = 0x01 (1 byte)

Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU).

uint8 eop E End-Of-Packet byte:

Note: Factory default is 0x0D(‘\r’ carriage return).

Response parameters

None.

Related commands

• p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Obtain current CYSPP packetization settings.

Binary header

 Type Length Group ID Note

CMD C0 00 0A 08 None

RSP C0 06 0A 08 None

Text info

Text name Response length Category Note

.CYSPPGK 0x0022 GET None

Command arguments

None.

User guide 248 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

Data type Name Text Description

uint8 mode M Packetization mode:

0 = Immediate: transmit incoming data as soon as possible

1 = Anticipate: wait a short time to attempt a minimum buffer threshold

2 = Fixed: buffer and send packets of exactly one size

3 = Variable: specify the size of every packet with a prefixed length byte

4 = End-of-packet: transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate).

uint8 wait W Anticipation delay (unit: 10 milliseconds), used only in “Anticipate” mode:

Minimum = 0x01 (10 millisecond)

Maximum = 0x0D (130 millisecond)

Note: Factory default is 0x1 (10 milliseconds).

uint8 length L Fixed/anticipated packet length (bytes), used only in “Anticipate” and “Fixed”

modes:

Minimum = 0x01 (1 byte)

Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU).

uint8 eop E End-Of-Packet byte:

Note: Factory default is 0x0D(‘\r’ carriage return).

Related commands

• p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

7.2.11 iBeacon group (ID=12)

iBeacon methods relate to iBeacon setup and operation.

The following are the commands within this group:

• p_ibeacon_set_parameters (.IBSP, ID=12/1)

• p_ibeacon_get_parameters (.IBGP, ID=12/2)

Events within this group are documented in the iBeacon group (ID=12) section.

User guide 249 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.11.1 p_ibeacon_set_parameters (.IBSP, ID=12/1)

Configure new iBeacon behavior.

For details on iBeacon broadcasting, see the example usage and the official documentation from Apple.

Binary header

 Type Length Group ID Note

CMD C0 1A 0C 01 None

RSP C0 02 0C 01 None

Text info

Text name Response length Category Note

.IBSP 0x000B SET None

Command arguments

Data type Name Text Description

uint8 enable E Enable iBeacon broadcast:

0 = Disable (factory default)

1 = Enable

2 = Enable + auto-start

uint16 interval I Advertisement interval for iBeacon broadcasting (625 µs units):

Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)

Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 company C Company ID value in broadcast packet payload Manufacturer Data:

Note: Factory default is 0x0131 (Infineon Semiconductor).

Uint16 major J iBeacon 16-bit major value:

Note: Factory default is 0x0001.

Uint16 minor N iBeacon 16-bit minor value:

Note: Factory default is 0x0001.

uint8a uuid U iBeacon UUID (must contain 16 bytes of data):

Note: Factory default is E2C56DB5-DFFB-48D2-B060-D0F5A71096E0
(AirLocate).

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

https://developer.apple.com/ibeacon/

User guide 250 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8_t Tx Power T A TX power level in 2's compliment, indicating the signal strength one meter

from the device.

Note: Factory default is 0xC0 (Convert it to int8_t by user).

Response parameters

None.

Related commands

• p_ibeacon_get_parameters (.IBGP, ID=12/2)

Related events

• gap_adv_state_changed (ASC, ID=4/2) – May occur if iBeacon is set to start automatically

Example usage

• See How to configure iBeacon transmissions

7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2)

Sets up iBeacon behavior.

Binary header

 Type Length Group ID Note

CMD C0 00 0C 02 None

RSP C0 1C 0C 02 None

Text info

Text name Response length Category Note

.IBGP 0x0054 GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 enable E Enable iBeacon broadcast:

0 = Disable (factory default)

1 = Enable

2 = Enable + auto-start

uint16 interval I Advertisement interval for iBeacon broadcasting (625 µs units):

Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)

Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

User guide 251 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint16 company C Company ID value in broadcast packet payload Manufacturer Data:

Note: Factory default is 0x0131 (Infineon Semiconductor).

Uint16 major J iBeacon 16-bit major value:

Note: Factory default is 0x0001.

Uint16 minor N iBeacon 16-bit minor value:

Note: Factory default is 0x0001.

uint8a uuid U iBeacon UUID (must contain 16 bytes of data):

Note: Factory default is E2C56DB5-DFFB-48D2-B060-D0F5A71096E0
(AirLocate).

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

uint8_t Tx Power T A TX power level in 2's compliment, indicating the signal strength one meter

from the device.

Note: Factory default is 0xC0 (Convert it to int8_t by user).

Related commands

• p_ibeacon_set_parameters (.IBSP, ID=12/1)

7.2.12 Eddystone group (ID=13)

Eddystone methods relate to Eddystone beacon setup and operation.

The following are the commands within this group:

• p_eddystone_set_parameters (.EDDYSP, ID=13/1)

• p_eddystone_get_parameters (.EDDYGP, ID=13/2)

Events within this group are documented in the Eddystone group (ID=13) section.

User guide 252 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1)

Configure new Eddystone beacon behavior.

For details on Eddystone frame types and data, see the example usage and the official documentation from

Google.

Note: Eddystone telemetry (TLM) frames typically contain data that updates frequently. EZ-Serial does
not automatically change any data contained in Eddystone beacon packets. If you wish to
broadcast telemetry data, you must regularly update its content from an external host device with
this API command.

Binary header

 Type Length Group ID Note

CMD C0 05-18 0D 01 Variable-length command payload, minimum of 5 (0x05), maximum of 24

(0x18)

RSP C0 02 0D 01 None

Text info

Text name Response length Category Note

.EDDYSP 0x000D SET None

Command arguments

Data type Name Text Description

uint8 enable E Enable Eddystone beacon broadcast:

• 0 = Disable (factory default)

• 1 = Enable

• 2 = Enable + auto-start

uint16 interval I Advertisement interval for Eddystone broadcasting (625 µs units):

• Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint8 type T Eddystone frame type:

• 0x00 = UID

• 0x10 = URL (factory default)

• 0x20 = Telemetry

uint8a data D Eddystone frame data (0-19 bytes)

Note: Factory default value results in Infineon webpage. “

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

https://github.com/google/eddystone
https://github.com/google/eddystone
http://www.infineon.com/

User guide 253 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Response parameters

None.

Related commands

• p_eddystone_get_parameters (.EDDYGP, ID=13/2)

Related events

• gap_adv_state_changed (ASC, ID=4/2) – May occur if Eddystone beaconing is set to start
automatically

Example usage

• See How to configure Eddystone transmissions

7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2)

Obtain current Eddystone beacon behavior.

Binary header

 Type Length Group ID Note

CMD C0 00 0D 02 None

RSP C0 07-1A 0D 02 Variable-length response payload, minimum of 7 (0x07), maximum of 26

(0x1A)

Text info

Text name Response length Category Note

.EDDYGP 0x0021-0x0047 GET Variable-length response payload, minimum of 33 (0x21),

maximum of 71 (0x47)

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 enable E Enable Eddystone beacon broadcast:

• 0 = Disable (factory default)

• 1 = Enable

• 2 = Enable + auto-start

uint16 interval I Advertisement interval for Eddystone broadcasting (625 µs units):

• Minimum = 0x00A0 (160 * 0.625 ms = 100 ms, factory default)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint8 type T Eddystone frame type:

• 0x00 = UID

• 0x10 = URL (factory default)

User guide 254 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

• 0x20 = Telemetry

uint8a data D Eddystone frame data (0-19 bytes)

Note: Factory default value results in Infineon webpage.

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload.

Related commands

• p_eddystone_set_parameters (.EDDYSP, ID=13/1)

7.3 API events

All events implemented in the API protocol are described in detail below. API commands and responses are
documented separately in the API commands and responses section.

A master list of all possible error codes appearing in certain events can be found in the Error codes section.

Commands and responses are broken down into the following groups:

• Protocol Group (ID=1)

• System Group (ID=2)

• DFU Group (ID=3)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• GATT Client Group (ID=6)

• SMP Group (ID=7)

• L2CAP Group (ID=8)

• GPIO Group (ID=9)

• iBeacon Group (ID=12)

• Eddystone Group (ID=13)

7.3.1 Protocol group (ID=1)

Protocol methods allow you to change the way the API protocol operates while communicating with an

external host over the serial interface.

The protocol group currently has no events. Commands within this group are documented in the
Protocol group (ID=1)section.

http://www.infineon.com/

User guide 255 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.2 System group (ID=2)

System methods relate to the core device, describing things like boot, device address info, and resetting to an
initial state.

The following are the events within this group:

• system_boot (BOOT, ID=2/1)

• system_error (ERR, ID=2/2)

• system_factory_reset_complete (RFAC, ID=2/3)

• system_factory_test_entered (TFAC, ID=2/4)

• system_dump_blob (DBLOB, ID=2/5)

Commands within this group are documented in the System group (ID=2) section.

7.3.2.1 system_boot (BOOT, ID=2/1)

EZ-Serial module has booted and is ready to process commands.

Binary header

Type Length Group ID Note

80 12 02 01 None

Text info

Text name Event Length Note

BOOT 0x003B None

Event parameters

Data type Name Text Description

uint32 app E Application version number

uint32 stack S Bluetooth® LE stack version number

uint16 protocol P API protocol version number

uint8 hardware H Hardware identifier:

• 0x40 = CYW920822-P4TAI040

uint8 cause C Cause of boot event:

• 0x01 = Hardware power-on/reset

• 0x02 = Wake from hibernation mode

• 0x03 = Reserved

• 0x04 = Software reboot via API command

• 0x05 = Factory reset completed

• 0x06 = DFU process completed with update

• 0x07 = DFU process canceled without update

macaddr address A Bluetooth® address

User guide 256 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• system_reboot (/RBT, ID=2/2)

• system_factory_reset (/RFAC, ID=2/5)

7.3.2.2 system_error (ERR, ID=2/2)

System error has occurred.

This may be triggered by a malformed command, an operation that failed or could start due to an invalid

operational state, or a low-level hardware failure. See the Error codes for a list of all possible errors.

Binary header

Type Length Group ID Note

80 02 02 02 None

Text info

Text name Event Length Note

ERR 0x000B None

Event parameters

Data type Name Text Description

uint16 error E Error code describing what went wrong

7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3)

Factory reset complete.

This event will occur after sending the system_factory_reset (/RFAC, ID=2/5) API command, or
asserting (LOW) the FACTORY_TR and CYSPP pins at boot time. EZ-Serial transmits this event using the
originally configured host interface settings (if different from the default). After generating this event, the
module will reboot immediately, and the default settings will take effect.

Note: If you triggered a factory reset using the GPIO method at boot time, the final reboot back into an
operational state will only occur after you de-assert one or both of the pins. This safeguard
prevents an endless loop of factory resets if both pins remain asserted.

Binary header

Type Length Group ID Note

80 00 02 03 None

Text Info

Text name Event Length Note

RFAC 0x0005 None

Event parameters

None.

User guide 257 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• system_factory_reset (/RFAC, ID=2/5)

7.3.2.4 system_factory_test_entered (TFAC, ID=2/4)

Manufacturing test mode active.

This event occurs if you assert (LOW) the FACTORY_TR pin at boot time. The module will remain in this state
until you reset or power-cycle it. Test mode is currently only intended for internal use during Infineon
manufacturing.

Binary header

Type Length Group ID Note

80 00 02 04 None

Text info

Text name Event Length Note

TFAC 0x0005 None

Event parameters

None.

7.3.2.5 system_dump_blob (DBLOB, ID=2/5)

Single data blob of requested configuration type or system state.

Binary header

Type Length Group ID Note

80 04-14 02 05 Variable-length event payload, minimum of 4 (0x04), maximum of 20 (0x14)

Text info

Text name Event Length Note

DBLOB 0x0015-0x0035 Variable-length event payload, minimum of 21 (0x15), maximum of 53 (0x35)

Event parameters

Data type Name Text Description

uint8 type T Type of information being dumped:

• 0 = Runtime configuration data

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

uint16 offset O Blob start offset

uint8a data D Dumped blob of data

User guide 258 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Note: uint8a data type requires one prefixed “length” byte before binary

parameter payload.

Related commands

• system_dump (/DUMP, ID=2/3)

7.3.3 DFU group (ID=3)

DFU methods relate to the firmware update process, using either wired UART or over-the-air GATT-based

firmware transfer.

The following is the event within this group:

• dfu_boot (DFUE, ID=3/1)

Commands within this group are documented in the DFU group (ID=3) section.

7.3.3.1 device_firmware_upgrade (DFUE, ID=3/1)

Booted into DFU mode.

This event indicates that the system is ready to receive a new firmware image from an external host (UART).

Note: In DFU mode, the UART interface default operates at 115200 baud, 8/N/1 with no flow control, the

user can change parameters by system_set_uart_parameters (STU, ID=2/25).

Binary header

Type Length Group ID Note

80 01 03 01 None

Text info

Text name Event Length Note

DFUE 0x000A None

Event parameters

Data type Name Text Description

uint8 mode R DFU mode:

0 = successfully entered DFU mode.

1 = Timeout.

2 = Only Security check fail

3 = DFU process more than 90s.

Related commands

• dfu_reboot (/CDFU, ID=3/1)

User guide 259 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related events

• system_boot (BOOT, ID=2/1)

Example usage

• See Device firmware update examples

7.3.4 GAP group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning, advertising, connection establishment, and connection maintenance.

The following are the events within this group:

• gap_whitelist_entry (WL, ID=4/1)

• gap_adv_state_changed (ASC, ID=4/2)

• gap_scan_state_changed (SSC, ID=4/3)

• gap_scan_result (S, ID=4/4)

• gap_connected (C, ID=4/5)

• gap_disconnected (DIS, ID=4/6)

• gap_connection_update_requested (UCR, ID=4/7)

• gap_connection_updated (CU, ID=4/8)

• gap_phy_updated (PU, ID=4/9)

Commands within this group are documented in the GAP group (ID=4) section.

7.3.4.1 gap_whitelist_entry (WL, ID=4/1)

Details about a single entry in the whitelist table.

Binary header

Type Length Group ID Note

80 07 04 01 None

Text info

Text name Event Length Note

WL 0x0017 None

Event parameters

Data type Name Text Description

Macaddr address A Bluetooth® address

uint8 type T Address type:

• 0 = Public

• 1 = Random/private

User guide 260 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_query_whitelist (/QWL, ID=4/14)

7.3.4.2 gap_adv_state_changed (ASC, ID=4/2)

Indicates that the module has started or stopped advertising, due to a scheduled timeout, automated process,
or intentional action.

Binary header

Type Length Group ID Note

80 02 04 02 None

Text info

Text name Event Length Note

ASC 0x000E None

Event parameters

Data type Name Text Description

uint8 state S Advertising state:

• 0 = Stopped

• 1 = Active

uint8 reason R Reason for state change:

• 0 = User command

• 1 = Reserved

• 2 = Configured timeout expired

• 3 = CYSPP operation state change

• 4 = iBeacon operation state change

• 5 = Eddystone operation state change

• 6 = Disconnection

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_parameters (SAP, ID=4/23)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

User guide 261 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.3 gap_scan_state_changed (SSC, ID=4/3)

Indicates that the module has started or stopped scanning, due to a scheduled timeout or intentional action.

Binary header

Type Length Group ID Note

80 02 04 03 None

Text info

Text name Event Length Note

SSC 0x000E None

Event parameters

Data type Name Text Description

uint8 state S Scanning state:

• 0 = Stopped

• 1 = Active

uint8 reason R Reason for state change:

• 0 = User command

• 1 = NOT USED

• 2 = Configured timeout expired

• 3 = CYSPP operation state change

Related commands

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

7.3.4.4 gap_scan_result (S, ID=4/4)

Details about an advertisement or scan a response packet.

This event occurs while scanning for remote devices. If you have enable active scanning, most peripherals will

provide two separate packets delivered via this API: one advertisement packet and one scan response packet.
Passive scanning will result in only the first of those two. Scan response packets typically contain less critical

data, such as the friendly name of the device, or its transmit power.

Binary header

Type Length Group ID Note

80 0D-2C 04 04 Variable-length event payload, minimum of 13 (0x0D), maximum of 44 (0x2C)

User guide 262 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Event Length Note

S 0x0030-0x006E Variable-length event payload, minimum of 48 (0x30), maximum of 110(0x6E)

Event parameters

Data type Name Text Description

uint8 result_type R Scan result type:

• 0 = Connectable undirected advertisement packet

• 1 = Connectable directed advertisement packet

• 2 = Scannable undirected advertisement packet

• 3 = Non-connectable undirected advertisement packet

• 4 = Scan response packet

• 5 = Extended advertisement packet

• 6 = Extended scan response packet

• 7 = Periodic advertisement packet

macaddr address A Bluetooth® address

uint8 address_type T Address type:

• 0 = Public

• 1 = Random/private

int8 rssi S RSSI

uint8 bond B Bond entry (0 for no bond)

uint8a data D Advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload.

uint8_t primary PHY P Primary PHY:

• 1.: 1M

• 3: Coded PHY

uint8_t secondary

PHY

C Secondary PHY:

• 0: No packet on secondary PHY

• 1. 1M

• 2. 2M

• 3. Coded PHY

Related commands

• gap_connect (/C, ID=4/1)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• gap_set_scan_parameters (SSP, ID=4/25)

User guide 263 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Example usage

• See How to scan for peripheral devices

7.3.4.5 gap_connected (C, ID=4/5)

Connection established with a remote device.

Binary header

Type Length Group ID Note

80 0F 04 05 None

Text info

Text name Event Length Note

C 0x0035 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth® address

uint8 type T Address type:

0 = Public

1 = Random/private

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

uint8 bond B Bond entry (0 for no bond)

Related commands

• gap_connect (/C, ID=4/1)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_send_connupdate_response (/CUR, ID=4/4)

• gap_disconnect (/DIS, ID=4/5)

Related events

• gap_disconnected (DIS, ID=4/6)

• gap_connection_update_requested (UCR, ID=4/7)

• gap_connection_updated (CU, ID=4/8)

Example usage

• See How to connect to a peripheral device

User guide 264 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.6 gap_disconnected (DIS, ID=4/6)

Connection to a remote device has closed.

For a list of possible disconnection reasons, see the 0x900 range of codes in the EZ-Serial system error codes

section. These are the most common reasons:

• 0x0908 – Page timeout (unexpected loss of connectivity, no response within supervision timeout)

• 0x0913 – Remote user terminated connection (cleanly closed from remote side)

• 0x0916 – Connection terminated by local host (cleanly closed from local side)

• 0x093E – Connection failed to be established (connection initiated locally, but peer did not respond to
request)

Binary header

Type Length Group ID Note

80 03 04 06 None

Text info

Text name Event Length Note

DIS 0x0010 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R Reason for disconnection

Related commands

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Example usage

• See How to disconnect from a peripheral device

User guide 265 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.7 gap_connection_update_requested (UCR, ID=4/7)

A remote peer has requested a connection parameter update.

To accept or reject the new request, use the gap_send_connupdate_response (/CUR, ID=4/4) API

command. An argument of “0” for that command will accept, and non-zero will reject.

Note: This event and the gap_send_connupdate_response (/CUR, ID=4/4) API command for
replying only apply when operating as the Bluetooth® LE master device. In the slave role, the
specification requires that the slave accept whatever connection parameters the master supplies.
When connected as a slave, a connection update request from a master will result only in the

gap_connection_updated (CU, ID=4/8) API event.

Binary header

Type Length Group ID Note

80 09 04 07 None

Text info

Text name Event Length Note

UCR 0x0025 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Handle of connection requesting new parameters

uint16 interval_min I Minimum connection interval

uint16 interval_max X Maximum connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

Related commands

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_send_connupdate_response (/CUR, ID=4/4)

Related events

• gap_connection_updated (CU, ID=4/8)

User guide 266 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.8 gap_connection_updated (CU, ID=4/8)

Active connection has negotiated and applied new parameters.

This event occurs on the slave side after a master requests new parameters or accepts the new parameters

requested by the slave. It also occurs on the master side after a slave requests new parameters and the master
accepts the request.

Note: A connection update request sent from a slave but rejected will not result in any events indicating
the rejection. The slave must assume that the original parameters are in effect until after it
receives this API event.

Binary header

Type Length Group ID Note

80 07 04 08 None

Text info

Text name Event Length Note

CU 0x001D None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

Related commands

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_send_connupdate_response (/CUR, ID=4/4)

Related events

• gap_connection_update_requested (UCR, ID=4/7)

User guide 267 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.4.9 gap_phy_updated(PU, ID=4/9)

Details about a PHY information.

Binary header

Type Length Group ID Note

80 03 04 09 None

Text info

Text name Event length Note

PU 0x0013 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint8 TX phy T PHY:

1 = 1M

2 = 2M

3 = Coded

uint8 RX phy R PHY:

1 = 1M

2 = 2M

3 = Coded

Related commands

• gap_phy_update (/UP, ID=4/37)

7.3.5 GATT server group (ID=5)

GATT server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the local GATT structure.

The following are the events within this group:

• gatts_discover_result (DL, ID=5/1)

• gatts_data_written (W, ID=5/2)

• gatts_indication_confirmed (IC, ID=5/3)

• gatts_db_entry_blob (DGATT, ID=5/4)

Commands within this group are documented in GATT client group (ID=6).

.

User guide 268 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.5.1 gatts_discover_result (DL, ID=5/1)

Details about a single entry in the local GATT database.

This event occurs while discovering local services, characteristics, or descriptors.

Binary header

Type Length Group ID Note

80 08+ 05 01 Variable-length event payload, value specified is minimum

Text info

Text name Event Length Note

DL 0x0020+ Variable-length event payload, value specified is minimum

Event parameters

Data type Name Text Description

uint16 attr_handle H Attribute handle

uint16 attr_handle_rel R Related attributes handle:

• If discovering services, the end handle for the service group

• If discovering characteristics, the value handle that holds the
application data

• If discovering descriptors, always 0 (not applicable)

uint16 type T Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties descriptor

• 0x2901 = Characteristic User Description descriptor

• 0x2902 = Client Characteristic Configuration descriptor

• 0x2903 = Server Characteristic Configuration descriptor

• 0x2904 = Characteristic Format descriptor

• 0x2905 = Characteristic Aggregate Format descriptor

• 0x0000 = Characteristic value attribute or user-defined structure (see
UUID)

User guide 269 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

uint8 properties P Characteristic properties bitmask, only non-zero during characteristic

discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

uint8a uuid U UUID

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload.

Related commands

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

7.3.5.2 gatts_data_written (W, ID=5/2)

The remote GATT client has written data to a local attribute.

A connected remote client can write data to a local attribute using either acknowledged unacknowledged write
operations Acknowledged writes require two full connection intervals to complete: one for the data transfer

from client to server, and one for the acknowledgment back from server to client. Unacknowledged writes may
occur multiple times within the same connection interval, and therefore provide greater throughput potential.

EZ-Serial automatically responds to acknowledged writes except in two cases:

• You have disabled automatic responses using the gatts_set_parameters (SGSP, ID=5/14) API

command

• The attribute written to has the “User data management” bit set in its properties value, set during creation
with the gatts_create_attr (/CAC, ID=5/1) API command

In these cases, the type parameter of this event will have the high bit (0x80) set, indicating that you must

manually respond to the write using the gatts_send_writereq_response (/WRR, ID=5/13) API
command. This acknowledgment is required before any other GATT operations can occur on either the local or

remote side. Failing to respond within 30 seconds will result in client disconnection.

Binary header

Type Length Group ID Note

80 06 05 02 Variable-length event payload, value specified is minimum

User guide 270 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Text info

Text name Event Length Note

W 0x0016+ Variable-length event payload, value specified is minimum

Event parameters

Data type Name Text Description

uint8 conn_handle C Handle of connection from which the write came

uint16 attr_handle H Attribute handle

uint8 type T Write type:

• 0x00 = Simple write – acknowledged

• 0x01 = Write without response – unacknowledged

• 0x80 = Simple write requiring manual response via API command

longuint8a data D Written data

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Related commands

• gatts_send_writereq_response (/WRR, ID=5/13) – Required after acknowledged writes when

manual response bit is set

• gattc_write_handle (/WRH, ID=6/5) – Used on the client side to write data to a remote GATT server
attribute

7.3.5.3 gatts_indication_confirmed (IC, ID=5/3)

Remote GATT client has confirmed receipt of indicated data.

This event occurs after a client receives and confirms that data pushed using the gatts_indicate_handle
(/IH, ID=5/12) API command.

Binary header

Type Length Group ID Note

80 03 05 03 None

Text info

Text name Event Length Note

IC 0x000F None

Event parameters

Data type Name Text Description

uint8 conn_handle C Handle of connection from which confirmation came

uint16 attr_handle H Attribute handle use for indication

User guide 271 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Related commands

• gatts_indicate_handle (/IH, ID=5/12)

Related events

• gattc_data_received (D, ID=6/3) – Occurs on the remote client after receiving indicated data

7.3.5.4 gatts_db_entry_blob (DGATT, ID=5/4)

Single entry from the GATT structure definition.

This event presents a local dynamic GATT attribute definition in a format that simplifies reentry using the
gatts_create_attr (/CAC, ID=5/1) API command. For details about the data provided in this event, see

How to define custom local GATT services and characteristics.

Note: This event includes the attribute handle and the absolute group end value, neither of which are
part of the data entered when creating a new custom attribute. Be sure to remove the handle and
absolute group end if you are directly copying the content from these output lines into new

commands by hand.

Binary header

Type Length Group ID Note

80 10-20 05 04 Variable-length event payload, minimum of 16 (0x10), maximum of 32 (0x20)

Text info

Text name Event Length Note

DGATT 0x0037-0x0057 Variable-length event payload, minimum of 55 (0x37), maximum of 87 (0x57)

Event parameters

Data type Name Text Description

uint16 handle H Attribute handle (0x0001 – 0xFFFF)

uint16 type T* Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties descriptor

• 0x2901 = Characteristic User Description descriptor

• 0x2902 = Client Characteristic Configuration descriptor

• 0x2903 = Server Characteristic Configuration descriptor

• 0x2904 = Characteristic Format descriptor

• 0x2905 = Characteristic Aggregate Format descriptor

• 0x0000 = Characteristic value attribute or user-defined structure

with SRAM value storage (auto-managed)

User guide 272 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• 0x0001 = Characteristic value attribute or user-defined structure
with no value storage (user-managed)

uint8 read_permissions R* Attribute read permissions:

• Bit 0 (0x01) = Read permitted

• Bit 1 (0x02) = Encryption required

• Bit 2 (0x04) = Authentication required

• Bit 3 (0x08) = Authorization required

• Bit 4 (0x10) = LE secure connection authentication required

• Bits 5-7 (0xE0) = RESERVED

uint8 write_permissions W* Attribute write permissions:

• Bit 0 (0x01) = Write permitted

• Bit 1 (0x02) = Encryption required

• Bit 2 (0x04) = Authentication required

• Bit 3 (0x08) = Authorization required

• Bit 4 (0x10) = LE secure connection authentication required

• Bit 5-7 (0xE0) = RESERVED

uint8 char_properties C* Characteristic properties (byte 1)

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (requires 0x2900 descriptor)

uint16 length L Maximum length

longuint8a data D Data (UUID or default attribute value where applicable)

Note: longuint8a data type requires two prefixed

“length” bytes before binary parameter payload.

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

User guide 273 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.6 GATT Client Group (ID=6)

GATT client methods relate to the client role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the GATT structures on remote devices, and can only be used while a
device is connected.

The following are the events within this group:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

• gattc_data_received (D, ID=6/3)

• gattc_write_response (WRR, ID=6/4)

Commands within this group are documented in the GATT client group (ID=6) section.

7.3.6.1 gattc_discover_result (DR, ID=6/1)

Details about a single entry in the remote GATT database.

This event occurs while you are discovering remote services, characteristics, or descriptors.

Binary header

Type Length Group ID Note

80 09-19 06 01 Variable-length event payload, minimum of 9 (0x09), maximum of 25 (0x19)

Text info

Text name Event Length Note

DR 0x0025-0x0044 Variable-length event payload, minimum of 37 (0x25), maximum of 69 (0x45)

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 attr_handle_rel R Related attribute handle:

• If discovering services, the end handle for the service group

• If discovering characteristics, the value handle that holds the

application data

• If discovering descriptors, always 0 (not applicable)

uint16 type T Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties descriptor

• 0x2901 = Characteristic User Description descriptor

• 0x2902 = Client Characteristic Configuration descriptor

User guide 274 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Data type Name Text Description

• 0x2903 = Server Characteristic Configuration descriptor

• 0x2904 = Characteristic Format descriptor

• 0x2905 = Characteristic Aggregate Format descriptor

• 0x0000 = Characteristic value attribute or user-defined structure (see

UUID)

uint8 properties P Characteristic properties bitmask, only non-zero during characteristic

discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

uint8a uuid U UUID (16-bit, 32-bit, or 128-bit)

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload.

Related commands

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

• See How to discover a remote server’s GATT structure

User guide 275 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2)

Remote GATT client operation has completed.

This event occurs after requesting a GATT client operation that may require an unknown length of time or

quantity of returned results before it is finished, such as a remote GATT descriptor discovery. Since you cannot
perform multiple GATT client operations simultaneously, your application logic must wait for this event, and
only continue with additional client operations after the event occurs.

See the following related Commands list for specific commands that trigger this event.

Binary header

Type Length Group ID Note

80 03 06 02 None

Text info

Text name Event Length Note

RPC 0x0010 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 result R GATT result code for procedure:

0 = Success

0x01-0x7F = Error from Bluetooth® specification

0x80-0xFF = Error from application (user-defined)

Related commands

• gattc_discover_services (/DRS, ID=6/1) – Always triggers this event upon completion

• gattc_discover_characteristics (/DRC, ID=6/2) – Always triggers this event upon completion

• gattc_discover_descriptors (/DRD, ID=6/3) – Always triggers this event upon completion

• gattc_read_handle (/RRH, ID=6/4) – Triggers this event if read fails, otherwise triggers
gattc_data_received (D, ID=6/3)

Related events

• gattc_discover_result (DR, ID=6/1) – Occurs during a remote GATT discovery prior to this event

Example usage

• See How to discover a remote server’s GATT structure

User guide 276 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.6.3 gattc_data_received (D, ID=6/3)

Remote GATT server has returned or pushed a value from one of its attributes.

This event occurs after sending a read request with the gattc_read_handle (/RRH, ID=6/4) API

command, or when a remote GATT server pushes a data update using a notification or indication after the
client subscribes to either of these transfer types on supported characteristics. The source parameter

describes which operation triggered the event.

If the data received came from a remote GATT server indication and you have disabled automatic confirmations
by clearing the auto-confirm bit of the flags argument in the gattc_set_parameters (SGCP, ID=6/7)

API command, you must manually confirm the indication before performing any other operations. If the

source parameter of this event has the high bit (0x80) set, use the gattc_confirm_indication (/CI,

ID=6/6) API command.

Binary header

Type Length Group ID Note

80 06-1A 06 03 Variable-length event payload, minimum of 6 (0x06), maximum of 26 (0x1A)

Text info

Text name Event Length Note

D 0x0016-0x003E Variable-length event payload, minimum of 22 (0x16), maximum of 62 (0x3E)

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 handle H Attribute handle

uint8 source S Transfer source:

• 0x00 = GATT client read request

• 0x01 = GATT server notification

• 0x02 = GATT server indication

• 0x82 = GATT server indication requiring manual confirmation

longuint8a data D Received value (0-20 bytes)

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Related commands

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_confirm_indication (/CI, ID=6/6)

User guide 277 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.6.4 gattc_write_response (WRR, ID=6/4)

Remote GATT server acknowledged GATT client write operation.

This event occurs after attempting an acknowledged write operation with the gattc_write_handle (/WRH,

ID=6/5) API command. If the write is accepted by the remote server, the result value will be 0. Any non-zero
result value indicates an error.

Binary header

Type Length Group ID Note

80 05 06 04 None

Text info

Text name Event Length Note

WRR 0x0017 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 result R GATT result code:

• 0 = Success

• 0x601-0x067F = Error from Bluetooth® specification

• 0x680-0x06FF = Error from remote server application (user-defined)

Related commands

• gattc_write_handle (/WRH, ID=6/5)

• gatts_send_writereq_response (/WRR, ID=5/13)

7.3.7 SMP group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used

for working with encryption, pairing, and bonding between two peers.

The following are the events within this group:

• smp_bond_entry (B, ID=7/1)

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

• smp_passkey_display_requested (PKD, ID=7/5)

• smp_passkey_entry_requested (PKE, ID=7/6)

Commands within this group are documented in the SMP group (ID=7) section.

User guide 278 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.7.1 smp_bond_entry (B, ID=7/1)

Details about a single entry in the bonding table.

This event occurs once after a new bond is created as a result of the pairing process, or multiple times (based

on bond list count) after requesting the bond list with the smp_query_bonds (/QB, ID=7/1) API command.

Binary header

Type Length Group ID Note

80 08 07 01 None

Text info

Text name Event Length Note

B 0x001B None

Event parameters

Data type Name Text Description

uint8 handle B Bonded device handle (1-3)

macaddr address A Bluetooth® address

uint8 type T Address type:

• 0 = Public

• 1 = Random/private

Related commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3)

7.3.7.2 smp_pairing_requested (P, ID=7/2)

Remote device has requested pairing.

When this event occurs, you must use the smp_send_pairreq_response (/PR, ID=7/5) API command to continue

the process, unless the auto-accept bit is set in the flags setting of the smp_set_security_parameters (SSBP,
ID=7/11) API command.

Binary header

Type Length Group ID Note

80 05 07 02 None

Text info

Text name Event Length Note

P 0x0018 None

User guide 279 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint8 mode M Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption (no
MITM)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with
MITM)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing (no

MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing (with
MITM)

uint8 bonding B Bond during pairing process:

(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 1 always)

uint8 keysize K Encryption key size (7-16), value ignored if pairing initiated by slave device

uint8 pairprop P Pairing properties:

• Bit 0 (0x01): MITM enabled for Secure Connections (SC)

Related commands

• smp_pair (/P, ID=7/3)

• smp_send_pairreq_response (/PR, ID=7/5)

• smp_set_security_parameters (SSBP, ID=7/11)

Related events

• smp_pairing_result (PR, ID=7/3)

7.3.7.3 smp_pairing_result (PR, ID=7/3)

Pairing process has ended.

This event indicates that the pairing process is finished, successfully or otherwise. If the result parameter is

0, then pairing has completed successfully, and the smp_bond_entry (B, ID=7/1) API event will follow if

bonding is enabled. Any non-zero result value indicates failure.

Binary header

Type Length Group ID Note

80 03 07 03 None

Text info

Text name Event Length Note

PR 0x000F None

User guide 280 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 result R Result

Related commands

• smp_pair (/P, ID=7/3)

Related events

• smp_encryption_status (ENC, ID=7/4)

• smp_bond_entry (B, ID=7/1)

7.3.7.4 smp_encryption_status (ENC, ID=7/4)

Encryption status has changed.

This event confirms that a link has transitioned between plaintext and encrypted status during the pairing

process. Indicates encrypted (S=01) for LTK encryption only not for STK encryption (LE legacy pairing)

Binary header

Type Length Group ID Note

80 02 07 04 None

Text info

Text name Event Length Note

ENC 0x000E None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint8 status S Encryption status:

• 0 = Not encrypted

• 1 = Encrypted

Related commands

• smp_pair (/P, ID=7/3)

Related events

• smp_pairing_result (PR, ID=7/3)

User guide 281 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.7.5 smp_passkey_display_requested (PKD, ID=7/5)

Remote peer requires passkey display for entry or comparison during pairing.

This event provides the local device with the passkey generated as part of the pairing process, so that the local

device may display or otherwise make it available to the user for entry or comparison on the remote device.
This type of passkey generation and display will be used if the local I/O capabilities are set to “Display Only” or
“Display + Yes/No” using the smp_set_security_parameters (SSBP, ID=7/11) API command.

If you have configured I/O capabilities of “Display + Yes/No” for the local device and this event occurs, you must
use the smp_send_passkeyreq_response (/PE, ID=7/6) API command to confirm valid comparison. In
this case, the passkey argument to that command will be ignored.

Binary header

Type Length Group ID Note

80 05 07 05 None

Text info

Text name Event Length Note

PKD 0x0014 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint32 passkey P Passkey to display (should be displayed to the user in decimal format)

Related commands

• smp_send_passkeyreq_response (/PE, ID=7/6)

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_passkey_entry_requested (PKE, ID=7/6)

User guide 282 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.7.6 smp_passkey_entry_requested (PKE, ID=7/6)

Remote peer requested passkey entry during pairing.

This event indicates that a remote device has generated and displayed a passkey that must be entered locally

and sent back for comparison. If this occurs, you must reply with the smp_send_passkeyreq_response
(/PE, ID=7/6) API command. If the pairing process completes successfully, EZ-Serial will generate the
smp_pairing_result (PR, ID=7/3) API event with a success result code (0).

Binary header

Type Length Group ID Note

80 01 07 06 None

Text info

Text name Event Length Note

PKE 0x0009 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

Related commands

• smp_send_passkeyreq_response (/PE, ID=7/6)

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_passkey_display_requested (PKD, ID=7/5)

7.3.8 L2CAP group (ID=8)

L2CAP methods relate to the Logical Link Control and Adaptation Protocol layer of the Bluetooth® stack. These
methods are used for working directly with low-level data transfer between two connected devices.

The following are the events within this group:

• l2cap_connection_requested (LCR, ID=8/1)

• l2cap_connection_response (LC, ID=8/2)

• l2cap_data_received (LD, ID=8/3)

• l2cap_disconnected (LDIS, ID=8/4)

• l2cap_rx_credits_low (LRCL, ID=8/5)

• l2cap_tx_credits_received (LTCR, ID=8/6)

• l2cap_command_rejected (LREJ, ID=8/7)

Commands within this group are documented in the L2CAP group (ID=8) section.

User guide 283 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.8.1 l2cap_connection_requested (LCR, ID=8/1)

Received an L2CAP connection request.

Binary header

Type Length Group ID Note

80 0B 08 01 None

Text info

Text name Event Length Note

LCR 0x002C None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 channel N Channel ID

uint16 local L Local device Protocol Service Multiplexer (PSM)

uint16 mtu M Maximum Transmission Unit (MTU)

uint16 mps P Maximum Payload Size (MPS)

uint16 credits Z Credits

Related commands

• l2cap_connect (/LC, ID=8/1)

• l2cap_send_connreq_response (/LCR, ID=8/4)

Related events

• l2cap_connection_response (LC, ID=8/2)

7.3.8.2 l2cap_connection_response (LC, ID=8/2)

Received a response to a transmitted L2CAP connection request.

Binary header

Type Length Group ID Note

80 0B 08 02 None

Text info

Text name Event Length Note

LC 0x002B None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 response R Response

User guide 284 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

uint16 channel N Channel

uint16 mtu M Maximum Transmission Unit (MTU)

uint16 mps P Maximum Payload Size (MPS)

uint16 credits Z Credits

Related commands

• l2cap_connect (/LC, ID=8/1)

• l2cap_send_connreq_response (/LCR, ID=8/4)

Related events

• l2cap_connection_requested (LCR, ID=8/1)

7.3.8.3 l2cap_data_received (LD, ID=8/3)

Received a data block from remote peer over an open L2CAP channel.

Binary header

Type Length Group ID Note

80 04 08 03 Variable-length event payload, value specified is minimum

Text info

Text name Event Length Note

LD 0x000D Variable-length event payload, value specified is minimum

Event parameters

Data type Name Text Description

uint16 channel N Channel ID

longuint8a data D Data

Note: longuint8a data type requires two prefixed “length” bytes

before binary parameter payload.

Related commands

• l2cap_send_data (/LD, ID=8/6)

Related events

• l2cap_connection_requested (LCR, ID=8/1)

• l2cap_connection_response (LC, ID=8/2)

• l2cap_rx_credits_low (LRCL, ID=8/5)

User guide 285 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.8.4 l2cap_disconnected (LDIS, ID=8/4)

Previously open L2CAP channel to a remote device has been disconnected.

Binary header

Type Length Group ID Note

80 05 08 04 None

Text info

Text name Event Length Note

LDIS 0x0018 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 channel N Channel ID

uint16 reason R Reason for disconnection

Related commands

• l2cap_connect (/LC, ID=8/1)

• l2cap_disconnect (/LDIS, ID=8/2)

• l2cap_register_psm (/LRP, ID=8/3)

Related events

• l2cap_connection_requested (LCR, ID=8/1)

• l2cap_connection_response (LC, ID=8/2)

7.3.8.5 l2cap_rx_credits_low (LRCL, ID=8/5)

Open L2CAP channel connection has crossed the defined threshold for low remaining credits.

This event occurs on the receiving side and indicates that more credits must be sent to the transmitting device
via the l2cap_send_credits (/LSC, ID=8/5) API command to ensure that the transmitting device will be
able to continue to send data.

Binary header

Type Length Group ID Note

80 05 08 05 None

Text info

Text name Event Length Note

LRCL 0x0018 None

User guide 286 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 channel N Channel ID

uint16 credits Z Credits remaining

Related commands

• l2cap_send_credits (/LSC, ID=8/5)

7.3.8.6 l2cap_tx_credits_received (LTCR, ID=8/6)

Open L2CAP channel connection received more TX credits from the remote peer.

This event occurs on the transmitting side, and indicates that it is safe to send more data to the remote device

with the l2cap_send_data (/LD, ID=8/6) API command.

Binary header

Type Length Group ID Note

80 05 08 06 None

Text info

Text name Event Length Note

LTCR 0x0018 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 channel N Channel ID

uint16 credits Z Credits received

Related commands

• l2cap_send_data (/LD, ID=8/6)

User guide 287 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.3.8.7 l2cap_command_rejected (LREJ, ID=8/7)

L2CAP command has been rejected by the remote peer.

Binary header

Type Length Group ID Note

80 05 08 07 None

Text info

Text name Event Length Note

LREJ 0x0018 None

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 channel N Channel ID

uint16 reason R Reason for rejection

7.3.9 GPIO group (ID=9)

GPIO methods relate to the physical pins on the module.

The following is the event within this group:

• gpio_interrupt (INT, ID=9/1)

Commands within this group are documented in the GPIO group (ID=9) section.

7.3.9.1 gpio_interrupt (INT, ID=9/1)

A configured GPIO interrupt has occurred.

This event is generated for GPIO edge changes that have enabled interrupts via the

gpio_set_interrupt_mode (SIOI, ID=9/9) API command.

Note: This event is suppressed for pins that have functions enabled using the gpio_set_function
(SIOF, ID=9/3) API command. While interrupts occur internally for many functional pins, the

interrupt API event is disabled to prevent unintentional or unnecessary API traffic. To allow
generation of this event for those pins, disable the function for those pins.

Binary header

Type Length Group ID Note

80 08 09 01 None

Text info

Text name Event Length Note

INT 0x0020 None

User guide 288 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Event parameters

Data type Name Text Description

uint8 Pin P GPIO Pin number

uint8 logic L Port logic state mask (set bits indicates HIGH)

uint32 runtime R Number of seconds since boot

uint16 fraction F Fraction of a second (units are 1/32768)

Related commands

• gpio_set_interrupt_mode (SIOI, ID=9/9)

7.3.10 CYSPP group (ID=10)

CYSPP methods relate to the Infineon Serial Port Profile.

The following is the event within this group:

• p_cyspp_status (.CYSPP, ID=10/1)

Commands within this group are documented in the CYSPP group (ID=10) section.

7.3.10.1 p_cyspp_status (.CYSPP, ID=10/1)

CYSPP operational status has changed.

Note: If this event occurs within EZ-Serial and data mode is active (either Bit 0 or Bit 1 set and the CYSPP
GPIO pin is not externally deasserted), then the wired serial interface will be logically disconnected
from the API protocol parser and routed to the CYSPP data pipe instead. For this reason, this event

will never be transmitted out the serial interface with Bit 5 set (0x20), since outgoing API events are

suppressed while operating in CYSPP data mode.

Binary header

Type Length Group ID Note

80 01 0A 01 None

Text info

Text name Event Length Note

.CYSPP 0x000C None

User guide 289 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Event parameters

Data type Name Text Description

uint8 status S CYSPP status bitmask:

• Bit 0 (0x01) = Unacknowledged data subscribed

• Bit 1 (0x02) = Acknowledged data subscribed

• Bit 2 (0x04) = RX flow subscribed

• Bit 3 (0x08) = RX flow blocked by remote server

• Bit 4 (0x10) = CYSPP peer support verified

• Bit 5 (0x20) = Data mode active (used internally)

Related commands

• p_cyspp_check (.CYSPPCHECK, ID=10/1)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Example usage

• See Cable replacement examples with CYSPP.

7.3.11 iBeacon group (ID=12)

iBeacon methods relate to iBeacon setup and operation.

There are currently no API events related to iBeacon functionality. Commands within this group are

documented in the iBeacon group (ID=12) section.

7.3.12 Eddystone group (ID=13)

Eddystone methods relate to Eddystone beacon setup and operation.

There are currently no API events related to Eddystone functionality. Commands within this group are
documented in the Eddystone group (ID=13) section.

7.4 Error codes

7.4.1 EZ-Serial system error codes

Table 72 shows the complete list of all result/error codes generated by EZ-Serial. See the command and event
reference material in the API commands and responses and API events sections for specific details about each
result in the context of the responses and events where they are triggered.

 EZ-Serial system error codes

Code (Hex) Name Description

0000 EZS_ERR_SUCCESS Operation successful, no error

0100 EZS_ERR_CORE Core system error category

0101 EZS_ERR_CORE_NULL_POINTER Null pointer encountered (internal

error)

User guide 290 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0102 EZS_ERR_CORE_MALLOC_FAILED Memory allocation failed (internal

error)

0103 EZS_ERR_CORE_BUFFER_OVERFLOW Buffer overflow (internal error)

0104 EZS_ERR_CORE_FEATURE_NOT_IMPLEMENTED Unsupported feature (internal error)

0105 EZS_ERR_CORE_TASK_SCHEDULE_OVERFLOW Task scheduling attempted but

schedule is full

0106 EZS_ERR_CORE_TASK_QUEUE_OVERFLOW Task queue attempted but queue is

full

0107 EZS_ERR_CORE_INVALID_STATE Invalid state for requested

operation

0108 EZS_ERR_CORE_OPERATION_NOT_PERMITTED Operation not permitted

0109 EZS_ERR_CORE_INSUFFICIENT_RESOURCES Insufficient resources for requested

action

010A EZS_ERR_CORE_FLASH_WRITE_NOT_PERMITTED Unable to perform flash write at

this time

010B EZS_ERR_CORE_FLASH_WRITE_FAILED Flash write operation failed during

write

010C EZS_ERR_CORE_HARDWARE_FAILURE Internal chipset hardware failure

010D EZS_ERR_CORE_BLE_INITIALIZATION_FAILED Could not initialize the Bluetooth®

LE stack

010E EZS_ERR_CORE_REPEATED_ATTEMPTS Repeated attempts to initialize the

Bluetooth® LE stack

010F EZS_ERR_CORE_TX_POWER_READ Could not read radio TX power

0110 EZS_ERR_CORE_DB_VERIFICATION_FAILED Verification prevented custom

attribute addition

0111 EZS_ERR_CORE_SYS_REBOOT_REQUIRED

System reboot was required or the

settings would not be updated

0200 EZS_ERR_PROTOCOL Protocol error category

0201 EZS_ERR_PROTOCOL_UNRECOGNIZED_PACKET_TYPE Unsupported packet type for text

parsing

(internal error)

0202 EZS_ERR_PROTOCOL_UNRECOGNIZED_ARGUMENT_TYPE Unsupported argument type for

text parsing

(internal error)

0203 EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND Command group/method not valid

or unrecognized

0204 EZS_ERR_PROTOCOL_UNRECOGNIZED_RESPONSE Response group/method invalid or

unrecognized

(internal error)

0205 EZS_ERR_PROTOCOL_UNRECOGNIZED_EVENT Event group/method invalid or

unrecognized

(internal error)

User guide 291 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0206 EZS_ERR_PROTOCOL_SYNTAX_ERROR Syntax error while parsing text

command

0207 EZS_ERR_PROTOCOL_COMMAND_TIMEOUT Binary command packet
transmission not completed in the

required time

0208 EZS_ERR_PROTOCOL_RESPONSE_PENDING Command already sent but

response is still pending

0209 EZS_ERR_PROTOCOL_INVALID_CHECKSUM Binary command packet has invalid

checksum

020A EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH Command length is greater than

maximum

020B EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT Incorrect number of parameters

provided

020C EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE Command parameter outside of

acceptable range

020D EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT Text-mode command missing

required arguments

020E EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA Invalid hexadecimal data provided

(not 0-9, A-F)

020F EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE Invalid escape sequence

0210 EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE Invalid macro sequence

0211 EZS_ERR_PROTOCOL_FLASH_SETTINGS_PROTECTED Attempted direct flash write of

protected setting

0300 EZS_ERR_GPIO GPIO error category

0301 EZS_ERR_GPIO_PORT_NOT_SUPPORTED Selected port in GPIO command

not supported

0400 EZS_ERR_LL Link layer error category

0401 EZS_ERR_LL_CONTROLLER_BUSY Link layer controller busy

0402 EZS_ERR_LL_NO_DEVICE_ENTITY Device entity not available

0403 EZS_ERR_LL_NOT_IN_BOND_LIST Device not found in bond list

0404 EZS_ERR_LL_DEVICE_ALREADY_EXISTS Device already exists

0500 EZS_ERR_GAP GAP error category

0501 EZS_ERR_GAP_INVALID_CONNECTION_HANDLE Invalid connection handle specified

0502 EZS_ERR_GAP_CONNECTION_REQUIRED Connection required, but none is

available

0503 EZS_ERR_GAP_ROLE Incorrect GAP role for this

operation

0504 EZS_ERR_GAP_ADV_QUEUE_OVERFLOW Advertisement queue attempted

but queue is full

0600 EZS_ERR_GATT GATT error category

0601 EZS_ERR_GATT_INVALID_ATTRIBUTE_HANDLE Invalid attribute handle for GATT

operation

User guide 292 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0602 EZS_ERR_GATT_READ_NOT_PERMITTED Read not permitted on this

attribute

0603 EZS_ERR_GATT_WRITE_NOT_PERMITTED Write not permitted on this

attribute

0604 EZS_ERR_GATT_INVALID_PDU Invalid PDU for requested

operation

0605 EZS_ERR_GATT_INSUFFICIENT_AUTHENTICATION Insufficient authentication for

requested operation

0606 EZS_ERR_GATT_REQUEST_NOT_SUPPORTED Request not supported

0607 EZS_ERR_GATT_INVALID_OFFSET Invalid offset specified for

requested operation

0608 EZS_ERR_GATT_INSUFFICIENT_AUTHORIZATION Insufficient authorization for

requested operation

0609 EZS_ERR_GATT_PREPARE_WRITE_QUEUE_FULL Prepare write queue full, cannot

prepare new write

060A EZS_ERR_GATT_ATTRIBUTE_NOT_FOUND Attribute not found in database

060B EZS_ERR_GATT_ATTRIBUTE_NOT_LONG Attribute not long when long

operation requested

060C EZS_ERR_GATT_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size

060D EZS_ERR_GATT_INVALID_ATTRIBUTE_LENGTH Invalid attribute length

060E EZS_ERR_GATT_UNLIKELY_ERROR Unlikely error occurred, unknown

cause

060F EZS_ERR_GATT_INSUFFICIENT_ENCRYPTION Insufficient encryption for

requested operation

0610 EZS_ERR_GATT_UNSUPPORTED_GROUP_TYPE Unsupported group type specified

in Read By Group Type operation

0611 EZS_ERR_GATT_INSUFFICIENT_RESOURCES Insufficient resources to perform

operation

0680 EZS_ERR_GATT_CLIENT_NOT_SUBSCRIBED Client has not subscribed to

updates on characteristic (local

error code when sending

notifications or indications)

0700 EZS_ERR_L2CAP L2CAP error category

0701 EZS_ERR_L2CAP_NOT_IN_BOND_LIST Device not found in bond list

0702 EZS_ERR_L2CAP_PSM_WRONG_ENCODING Wrong L2CAP PSM encoding

0703 EZS_ERR_L2CAP_PSM_ALREADY_REGISTERED L2CAP PSM already registered

0704 EZS_ERR_L2CAP_PSM_NOT_REGISTERED L2CAP PSM not registered

0705 EZS_ERR_L2CAP_CONNECTION_ENTITY_NOT_FOUND L2CAP connection entity not found

0706 EZS_ERR_L2CAP_CHANNEL_NOT_FOUND L2CAP channel not found

0707 EZS_ERR_L2CAP_PSM_NOT_IN_RANGE L2CAP PSM is not in range

0800 EZS_ERR_SMP SMP error category

User guide 293 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0801 EZS_ERR_SMP_OOB_NOT_AVAILABLE Out-of-band pairing data is not

available

0802 EZS_ERR_SMP_SECURITY_OPERATION_FAILED Security operation failed

0803 EZS_ERR_SMP_MIC_AUTH_FAILED Message integrity check

authentication failed

0900 EZS_ERR_SPEC Bluetooth® Core Specification error

category

0901 EZS_ERR_SPEC_UNKNOWN_HCI_COMMAND Unknown HCI Command

0902 EZS_ERR_SPEC_UNKNOWN_CONNECTION_IDENTIFIER Unknown Connection Identifier

0903 EZS_ERR_SPEC_HARDWARE_FAILURE Hardware Failure

0904 EZS_ERR_SPEC_PAGE_TIMEOUT Page Timeout

0905 EZS_ERR_SPEC_AUTHENTICATION_FAILURE Authentication Failure

0906 EZS_ERR_SPEC_PIN_OR_KEY_MISSING PIN or Key Missing

0907 EZS_ERR_SPEC_MEMORY_CAPACITY_EXCEEDED Memory Capacity Exceeded

0908 EZS_ERR_SPEC_CONNECTION_TIMEOUT Connection Timeout

0909 EZS_ERR_SPEC_CONNECTION_LIMIT_EXCEEDED Connection Limit Exceeded

090A EZS_ERR_SPEC_SYNCHRONOUS_CONN_LIMIT

_DEVICE_EXCEEDED

Synchronous Connection Limit to a

Device Exceeded

090B EZS_ERR_SPEC_ACL_CONNECTION_ALREADY_EXISTS ACL Connection Already Exists

090C EZS_ERR_SPEC_COMMAND_DISALLOWED Command Disallowed

090D EZS_ERR_SPEC_CONNECTION_REJECTED

_LIMITED_RESOURCES

Connection Rejected due to Limited

Resources

090E EZS_ERR_SPEC_CONNECTION_REJECTED

_SECURITY_REASONS

Connection Rejected due to

Security Reasons

090F EZS_ERR_SPEC_CONNECTION_REJECTED

_UNACCEPTABLE_BDADDR

Connection Rejected due to

Unacceptable BD_ADDR

0910 EZS_ERR_SPEC_CONNECTION_ACCEPT

_TIMEOUT_EXCEEDED

Connection Accept Timeout

Exceeded

0911 EZS_ERR_SPEC_UNSUPPORTED_FEATURE

_OR_PARAMETER_VALUE

Unsupported Feature or Parameter

Value

0912 EZS_ERR_SPEC_INVALID_HCI_COMMAND_PARAMETERS Invalid HCI Command Parameters

0913 EZS_ERR_SPEC_REMOTE_USER_TERMINATED

_CONNECTION

Remote User Terminated

Connection

0914 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED

_LOW_RESOURCES

Remote Device Terminated

Connection due to Low Resources

0915 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED

_POWER_OFF

Remote Device Terminated

Connection due to Power Off

0916 EZS_ERR_SPEC_CONNECTION_TERMINATED

_BY_LOCAL_HOST

Connection Terminated by Local

Host

0917 EZS_ERR_SPEC_REPEATED_ATTEMPTS Repeated Attempts

0918 EZS_ERR_SPEC_PAIRING_NOT_ALLOWED Pairing Not Allowed

User guide 294 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0919 EZS_ERR_SPEC_UNKNOWN_LMP_PDU Unknown LMP PDU

091A EZS_ERR_SPEC_UNSUPPORTED_REMOTE

_LMP_FEATURE

Unsupported Remote Feature /

Unsupported LMP Feature

091B EZS_ERR_SPEC_SCO_OFFSET_REJECTED SCO Offset Rejected

091C EZS_ERR_SPEC_SCO_INTERVAL_REJECTED SCO Interval Rejected

091D EZS_ERR_SPEC_SCO_AIR_MODE_REJECTED SCO Air Mode Rejected

091E EZS_ERR_SPEC_INVALID_LMP_LL_PARAMETERS Invalid LMP Parameters / Invalid LL

Parameters

091F EZS_ERR_SPEC_UNSPECIFIED_ERROR Unspecified Error

0920 EZS_ERR_SPEC_UNSUPPORTED_LMP_LL

_PARAMTER_VALUE

Unsupported LMP Parameter Value

/ Unsupported LL Parameter Value

0921 EZS_ERR_SPEC_ROLE_CHANGE_NOT_ALLOWED Role Change Not Allowed

0922 EZS_ERR_SPEC_LMP_LL_RESPONSE_TIMEOUT LMP Response Timeout / LL

Response Timeout

0923 EZS_ERR_SPEC_LMP_ERROR_TRANSACTION_COLLISION LMP Error Transaction Collision

0924 EZS_ERR_SPEC_LMP_PDU_NOT_ALLOWED LMP PDU Not Allowed

0925 EZS_ERR_SPEC_ENCRYPTION_MODE_NOT_ACCEPTABLE Encryption Mode Not Acceptable

0926 EZS_ERR_SPEC_LINK_KEY_CANNOT_BE_CHANGED The link Key cannot be Changed

0927 EZS_ERR_SPEC_REQUESTED_QOS_NOT_SUPPORTED Requested QoS Not Supported

0928 EZS_ERR_SPEC_INSTANT_PASSED Instant Passed

0929 EZS_ERR_SPEC_PAIRING_WITH_UNIT_KEY

_NOT_SUPPORTED

Pairing with Unit Key Not

Supported

092A EZS_ERR_SPEC_DIFFERENT_TRANSACTION_COLLISION Different Transaction Collision

092B /* 0x2B reserved */ Reserved

092C EZS_ERR_SPEC_QOS_UNACCEPTABLE_PARAMETER =

0x092C

QoS Unacceptable Parameter

092D EZS_ERR_SPEC_QOS_REJECTED QoS Rejected

092E EZS_ERR_SPEC_CHANNEL_CLASSIFICATION

_NOT_SUPPORTED

Channel Classification Not

Supported

092F EZS_ERR_SPEC_INSUFFICIENT_SECURITY Insufficient Security

0930 EZS_ERR_SPEC_PARAMETER_OUT_OF

_MANDATORY_RANGE

Parameter Out Of Mandatory Range

0931 /* 0x31 reserved */ Reserved

0932 EZS_ERR_SPEC_ROLE_SWITCH_PENDING = 0x0932 Role Switch Pending

0933 /* 0x33 reserved */ Reserved

0934 EZS_ERR_SPEC_RESERVED_SLOT_VIOLATION = 0x0934 Reserved Slot Violation

0935 EZS_ERR_SPEC_ROLE_SWITCH_FAILED Role Switch Failed

0936 EZS_ERR_SPEC_EXTENDED_INQUIRY_RSP_TOO_LARGE Extended Inquiry Response Too

Large

0937 EZS_ERR_SPEC_SSP_NOT_SUPPORTED_BY_HOST Secure Simple Pairing Not

Supported By Host

User guide 295 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

Code (Hex) Name Description

0938 EZS_ERR_SPEC_HOST_BUSY_PAIRING Host Busy - Pairing

0939 EZS_ERR_SPEC_CONNECTION_REJECTED

_NO_SUITABLE_CHANNEL

Connection Rejected due to No

Suitable Channel Found

093A EZS_ERR_SPEC_CONTROLLER_BUSY Controller Busy

093B EZS_ERR_SPEC_UNACCEPTABLE

_CONNECTION_PARAMETERS

Unacceptable Connection

Parameters

093C EZS_ERR_SPEC_DIRECTED_ADVERTISING_TIMEOUT Directed Advertising Timeout

093D EZS_ERR_SPEC_CONNECTION_TERMINATED

_MIC_FAILURE

Connection Terminated due to MIC

Failure

093E EZS_ERR_SPEC_CONNECTION_FAILED

_TO_BE_ESTABLISHED

Connection Failed to be Established

093F EZS_ERR_SPEC_MAC_CONNECTION_FAILED MAC Connection Failed

0940 EZS_ERR_SPEC_COARSE_CLOCK_ADJ_REJECTED Coarse Clock Adjustment Rejected
but Will Try to Adjust Using Clock

Dragging

EEEE EZS_ERR_UNKNOWN Unknown problem

(internal error)

User guide 296 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.4.2 EZ-Serial GATT database validation error codes

Table 73 shows the complete list of result/error codes generated by EZ-Serial during dynamic GATT database

validation. See the How to define custom local GATT services and characteristics section and the
documentation for the related GATT Server Group (ID=5) API command methods for detail.

 EZ-Serial GATT validation error codes

Code (Hex) Name Description

0000 GATTS_DB_VALID_OK Validation passed with no

warnings or errors

0001 GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES Structure is valid, but more

attributes are required

0002 GATTS_DB_VALID_ERROR_ATTRIBUTE_LIMIT_EXCEEDED Attribute count limit exceeded

0003 GATTS_DB_VALID_ERROR_ATTRIBUTE_DATA_EXCEEDED Runtime attribute value data byte

limit exceeded

0004 GATTS_DB_VALID_ERROR_CONSTANT_DATA_EXCEEDED Constant default data byte limit is

exceeded

0005 GATTS_DB_VALID_ERROR_CCCD_LIMIT_EXCEEDED CCCD attribute limit exceeded

0006 GATTS_DB_VALID_ERROR_SVC_DECL_REQUIRED Service declaration required

0007 GATTS_DB_VALID_ERROR_UNEXPECTED_SVC_DECL Unexpected service declaration

0008 GATTS_DB_VALID_ERROR_CHAR_DECL_REQUIRED Characteristic declaration

required

0009 GATTS_DB_VALID_ERROR_UNEXPECTED_CHAR_DECL Unexpected characteristic

declaration

000A GATTS_DB_VALID_ERROR_CHAR_VALUE_REQUIRED Characteristic value attribute

required

000B GATTS_DB_VALID_ERROR_UNEXPECTED_DESCRIPTOR Specified descriptor is not allowed

at this position

000C GATTS_DB_VALID_ERROR_INVALID_ATT_PROPERTIES Attribute properties not

compatible with type

000D GATTS_DB_VALID_ERROR_INVALID_ATT_LENGTH Invalid attribute length

000E GATTS_DB_VALID_ERROR_INVALID_ATT_DATA Attribute data not compatible with

type

User guide 297 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

API protocol reference

7.5 Macro definitions

Macros in EZ-Serial are simple codes that result in text substitution within the parser. Macros may be used in
either text mode or binary mode. Macros always begin with the ‘%’ character and are followed by one or more
alphanumeric characters (A-Z, 0-9). Macros are not case-sensitive.

 Macro definitions

Code Description Example

input

Example

output

Note

%M1 Byte #1 of local

public MAC address

MyDevice

%M1

MyDevice 00 Examples assume that the local device has a
public MAC address of 00:A0:50:E3:83:5F.

%M2 Byte #2 of local

public MAC address

MyDevice

%M2

MyDevice A0

%M3 Byte #3 of local

public MAC address

MyDevice

%M3

MyDevice 50

%M4 Byte #4 of local

public MAC address

MyDevice

%M4

MyDevice E3

%M5 Byte #5 of local

public MAC address

MyDevice

%M5

MyDevice 83

%M6 Byte #6 of local

public MAC address

MyDevice

%M6

MyDevice 5F

Macros may be used in series with or without special separators, as long as the entire macro code (including the

‘%’ byte) remains intact. For example, to use the last three bytes of the MAC address in the same string,

separated by the ‘:’ byte, use the following:

MyDevice %M4:%M5:%M6

This string is particularly useful for setting a module-specific device name using the gap_set_device_name
(SDN, ID=4/15) API command without needing to query or track the MAC address separately by hand.

User guide 298 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

GPIO reference

8 GPIO reference

This section describes the various GPIO connections provided by the EZ-Serial firmware on supported modules.

It also provides details on the default boot state and what behavior to expect in different operational modes.

8.1 GPIO pin map for supported modules

The EZ-Serial firmware can be run on multiple Infineon Bluetooth® LE modules, some of which have unique pin
configurations. The assignment of special functions for supported modules is described in Table 75.

Each pin is shown with its assigned module pin and the effective pin when use the CYW920822M2P4XXI040-EVK
Evaluation Kit. Pins that have been remapped on evaluation modules are shown in bold in Table 75.

 GPIO pin map on supported modules

 Pin name Pin assignment

CYW20822 module

Digital

Functions

UART_RX P25

UART_TX P23

UART_RTS P24

UART_CTS P11

CONNECTION P13

CYSPP P30

LP_MODE P22

UART1_TX P33

PWM PWM0 P20

PWM1 P10

ADC ADC P9

8.2 GPIO pin map for supported modules

EZ-Serial provides 11 special-function digital GPIO pins, two optional PWM output pins for generating flexible
PWM signals, and one optional analog input pin for ADC reads.

User guide 299 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

GPIO reference

8.2.1 EZ-Serial GATT database validation error codes

Table 76 details the functionality of each digital function GPIO pin. Pins with the “Optional” column showing

Yes may have their special functionality disabled using the gpio_set_function (SIOF, ID=9/3) API
command, which will allow them to be configured as GPIOs and used for API-based input, output, or interrupts.

 GPIO pin functionality detail

Pin Name Direction Details Optional

UART_RX Input UART Communication RX signal for incoming data from an external

host device.

No

UART_TX Output UART Communication TX signal for outgoing data to external host

device

No

UART_RTS Output UART Communication RTS signal signifying local receive permission

(flow control)

Yes

UART_CTS Input UART Communication CTS signal detecting remote receive permission

(flow control)

Yes

CONNECTION Output Description:

Bluetooth® LE connection or CYSPP data pipe readiness status. When

the CYSPP pin is asserted, the external host can use this pin to detect

when data sent to the module will be immediately transmitted to the

remote peer.

Status indicator logic (active-low):

• When CYSPP pin is deasserted (API command mode active)

• LOW – remote Bluetooth® LE peer device is connected

• HIGH – no remote Bluetooth® LE peer device is connected

• When CYSPP pin is asserted (CYSPP mode active)

• LOW – CYSPP data stream fully available (connected and ready)

• HIGH – CYSPP data stream not available (disconnected or not ready)

Default boot state:

• HIGH (no connection)

Yes

CYSPP Input Description:

CYSPP mode control. The external host can use this pin to begin
automatic CYSPP operation without the need for any API commands.
This pin is also internally pulled high or low based on software-
triggered entry or exit to and from CYSPP data mode. If connected to a

high-impedance input pin (weaker than 5.6k pull), this pin may be used

as a status indicator for software-based CYSPP mode changes.

Otherwise, it should be driven externally to the desired state.

Control signal logic (active-low):

• LOW – module enters CYSPP data mode

• HIGH – module exits CYSPP data mode and returns to API command
mode

Default boot state:

No

User guide 300 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

GPIO reference

Pin Name Direction Details Optional

• Internally pulled HIGH (command mode active, CYSPP data mode
inactive)

UART1_TX Output Output UART log with baud rate 115200.

LP_MODE Input Description:

• Low-power status control. The external host can use this pin to
affect the sleep behavior of the module, specifically by either

preventing or allowing entry into sleep modes.

• Control signal logic (active-low):

− LOW – CPU is kept in active mode

− HIGH – CPU is allowed (but not forced) to sleep

Default boot state:

• Internally pulled HIGH (sleep allowed)

No

P32 Output Description:

P32 is a strap option for benign boot that, if high, instructs the M0 CPU

to stop the boot process and go into an idle state.

• CYSPP status indicator logic:

− LOW – API commands or remote Bluetooth® LE client GATT client

transactions have entered CYSPP data mode

− HIGH – API commands or remote Bluetooth® LE peer GATT client
transactions have exited CYSPP data mode

Default boot state:

• HIGH (API commands)

-

8.2.2 PWM output pins

EZ-Serial provides two dedicated PWM output pins (PWM0, PWM1). You can enable PWM output on any of the

four PWM channels using the gpio_set_pwm_mode (SPWM, ID=9/11) API command. PWM channels are

controlled via independent 24 MHz clocks, and can each use separate divider, prescaler, period, and compare
settings for complete flexibility.

Enabling PWM on each channel means you cannot use that pin for other generic I/O. To return a PWM channel

pin to standard functionality, use the gpio_set_pwm_mode (SPWM, ID=9/11) API command to disable PWM
output on that pin.

Note: Enabling PWM output on one or more channels will automatically prevent the CPU from entering
Deep Sleep under any circumstances. This happens because the high-frequency clock required to
generate the PWM signal cannot operate while the CPU is in Deep Sleep. To allow Deep Sleep
mode again, you must disable all PWM output. See the How to manage Sleep states section for
more detail.

User guide 301 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

GPIO reference

8.2.3 Analog input pins (ADC)

EZ-Serial provides a single dedicated ADC input pin (ADC) for reading analog voltages. The ADC supports an
input voltage range of 0 V minimum to VBAT maximum. To perform a single ADC conversion, use the
gpio_query_adc (/QADC, ID=9/2) API command. Once the conversion completes, the module will
transmit the result in the response to this command.

You can use the ADC pin as a normal digital GPIO, but using the gpio_query_adc (/QADC, ID=9/2) API
command will reconfigure the pin back to a high-impedance analog input state.

8.3 Functional capabilities

It is important to understand the intended use case for certain GPIO-related functions provided by the EZ-Serial
firmware, especially digital interrupt detection and analog-to-digital conversion (ADC). This helps ensure that
your expectations will be met.

8.3.1 Digital interrupt detection

The internal chipset is capable of detecting and responding to interrupts extremely quickly. However, EZ-Serial

generates an API event packet for each monitored edge change. These events are queued when they occur and
transmitted out to the host as API event packets. To avoid overflowing the limited outgoing API packet queue,

events that cannot fit into the queue are simply discarded. This means that if edge changes occur faster than

API event packet transmissions can keep up, some interrupts will not be reported.

8.3.2 Analog-to-digital conversion

Similar to the previous section describing interrupt detection, the ADC operates very quickly but incurs
significant processing overhead in order to transmit conversion results to an external host via API event

packets. The EZ-Serial firmware platform provides a way to perform on-demand single ADC reads on individual
analog channels, such as what might be involved in periodic battery voltage measurements or analog light, gas,

or temperature sensor readings.

User guide 302 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Infineon GATT profile reference

9 Infineon GATT profile reference

The EZ-Serial platform makes use of a few custom GATT profiles defined by Infineon Semiconductor. The

service UUIDs, characteristic UUIDs, special permissions, and overall structure are outlined here for quick
reference. Much more detailed reference material can be found on the wireless connectivity webpage.

9.1 CYSPP profile

The Infineon Serial Port Profile (CYSPP) provides bidirectional serial data transfer between two remote devices,
each of which passes data in through a single local hardware serial interface. It supports both acknowledged

transfers and unacknowledged transfers and provides a mechanism for virtual flow control in both the RX and
TX direction.

The profile contains a single service (“CYSPP”), which contains three characteristics for data transfer and flow
control (“Acknowledged Data”, “Unacknowledged Data”, and “RX Flow”). The structural outline of this profile is
as follows:

1. CYSPP Service: UUID 65333333-A115-11E2-9E9A-0800200CA100

a) Acknowledged Data

Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA101 (Write, Indicate)

The Acknowledged Data Characteristic is used to send and receive data in an acknowledged fashion. The
EZ-Serial firmware is able to fully track every transfer in both directions. This characteristic has a variable

length, supporting transfers in each direction of up to 20 bytes per packet.

− Configuration descriptor: UUID 0x2902

b) Unacknowledged Data

Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA102 (Write without response, Notify)

The Unacknowledged Data Characteristic is used to send and receive data in an unacknowledged fashion.
The EZ-Serial firmware cannot track transfers using this mode once they have been accepted by the

Bluetooth® LE stack. This provides less control, but the lack of acknowledgments also allows for much
greater maximum throughput. This characteristic has a variable length, supporting transfers in each
direction of up to 20 bytes per packet.

− Configuration descriptor: UUID 0x2902

c) RX Flow

Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA103 (Indicate)

The RX Flow Characteristic is used to indicate to the client that the server can no longer safely receive new
data. If the client subscribes to indications from this characteristic, the server will assume that the client will
obey flow control signals. This characteristic is one byte in length. An indicated value of “0” means that it is
safe for the client to send data, while a value of “1” means that the client must refrain from sending data.

− Configuration descriptor: UUID 0x2902

https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD1253

User guide 303 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10 Configuration example reference

The configuration examples provided in this section are each designed to work independently, assuming in

each case that the platform is initially configured using factory default settings. Applying all of the commands
in one example and then immediately following this with the commands from another example may result in
changes to the first set of behavior that is no longer in line with the expected results.

You can return a module to factory defaults as a baseline configuration at any time by using the
system_factory_reset (/RFAC, ID=2/5) API command. This reset command is not explicitly included in
any of the configuration snippets within this section.

10.1 Factory default settings

While you can return to the factory default settings on the module by performing a factory reset, it is also
helpful to know what those settings are for comparison or to explicitly change one or more individual settings
back to the default value without reverting all customizations at once. The following is a comprehensive list of

commands that will return the EZ-Serial module to default behavior:

SPPM,M=00

SPEM,M=01

SSLP,L=01

STXP,P=07 (lower values on some modules for regulatory compliance)

ST,I=01

STU,B=0001C200,A=00,C=00,F=00,D=08,P=00,S=01

SDN,N=EZ-Serial %M4:%M5:%M6

SDA,A=0000

SAD,D=

SSRD,D=

SAP,M=02,T=00,I=0030,C=07,L=00,O=0000,F=00

SSP,M=02,I=0100,W=0100,A=00,F=00,D=00,O=0000

SCP,I=0006,L=0000,O=0064,V=0100,W=0100,M=0000

SGSP,F=01

SGCP,F=01

SPRV,M=00,I=012C

SSBP,M=11,B=01,K=10,P=00,I=03,F=01

• CYSPPSP,E=02,G=00,C=0131,L=00000000,R=00000000,M=00000000,P=02,S=00,F=02

• CYSPPSH,A=0000,B=0000,C=0000,D=0000

• CYSPPSK,M=01,W=05,L=14,E=0D

• IBSP,E=00,I=00A0,C=0131,J=0001,N=0001,U=E2C56DB5DFFB48D2B060D0F5A71096E0

• EDDYSP,E=00,I=00A0,T=10,D=006379707265737300

Note that the above commands affect only RAM. To make them permanent, apply all settings to flash using the
system_store_config (/SCFG, ID=2/4) API command.

User guide 304 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2 Adopted Bluetooth® SIG GATT profile structure snippets

The snippets below demonstrate how to add various GATT service and characteristic structural elements to
support official profiles defined by the Bluetooth® SIG, and some other common services.

Note: These database structures concern only the GATT server side of the profiles in question. GATT
client operations depend on the client device.

Note: The information provided in this section only covers the basic GATT structure, but does not include

any specific values that may be necessary or helpful for specific functionality. Many characteristics
also have flexible length values that depend on application design, such as those inside the Device

Information Service (0x180A) or Human Interface Device Service (0x1812). See the official
Bluetooth® SIG documentation or other related resources linked under each service for further
detail.

Note: Additions to and removals from the GATT structure are always stored in flash. As long as the

“result” value in the response indicates success, the change will be effective immediately and will

persist through power cycles and resets. The internal CPU is occupied for approximately 15 ms
during each flash write operation, and during this time no other activity will be processed (UART or

Bluetooth® LE communication). Any UART data sent during this brief window will be lost.
Therefore, you should only modify the GATT structure while disconnected, and you should allow a

gap of at least 20 ms between the end of one API command and the beginning of a new one. If you
have enabled hardware flow control using the system_set_uart_parameters (STU,
ID=2/25) API command, EZ-Serial will block incoming data flow during flash writes to prevent

serial data corruption or loss.

10.2.1 Generic access service (0x1800)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

Note: This service is included in the EZ-Serial application. It is always present in the fixed, nonremovable
part of the GATT structure. Do not add another instance of this service to the EZ-Serial application.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0018

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=002A

/CAC,T=0000,R=01,W=00,C=02,L=0040,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=012A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=042A

/CAC,T=0000,R=01,W=00,C=02,L=0008,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A62A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 305 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.2 Generic attribute service (0x1801)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

Note: This service is include in the EZ-Serial application. It is always present in the fixed, nonremovable
part of the GATT structure. Do not add another instance of this service to the EZ-Serial application.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0118

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=052A

/CAC,T=0000,R=00,W=00,C=20,L=0004,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.3 Immediate alert service (0x1802)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0218

/CAC,T=2803,R=01,W=00,C=04,L=0000,D=062A

/CAC,T=0000,R=02,W=02,C=04,L=0001,D=

/SACT

10.2.4 Link loss service (0x1803)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0318

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=062A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/SACT

10.2.5 TX power service (0x1804)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0418

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=072A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.6 Current time service (0x1805)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0518

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=2B2A

/CAC,T=0000,R=01,W=00,C=12,L=000A,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=0F2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=142A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 306 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.7 Reference time update service (0x1806)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0618

/CAC,T=2803,R=01,W=00,C=04,L=0000,D=162A

/CAC,T=0000,R=02,W=02,C=04,L=0001,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=172A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/SACT

10.2.8 Next DST change service (0x1807)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0718

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=112A

/CAC,T=0000,R=01,W=00,C=02,L=0008,D=

/SACT

10.2.9 Glucose service (0x1808)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0818

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=182A

/CAC,T=0000,R=00,W=00,C=10,L=000A,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=342A

/CAC,T=0000,R=00,W=00,C=10,L=0003,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=512A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=522A

/CAC,T=0000,R=02,W=02,C=28,L=0003,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.10 Health thermometer service (0x1809)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0918

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=1C2A

/CAC,T=0000,R=00,W=00,C=20,L=0005,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=1D2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=1E2A

/CAC,T=0000,R=00,W=00,C=10,L=0005,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=212A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 307 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.11 Device information service (0x180A)

In the following commands, most identification data attributes are given 16-byte lengths (L=0010). You will

most likely need to modify these lengths according to the data you intend to write into the characteristics.

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0A18

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=292A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=242A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=252A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=272A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=262A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=282A

/CAC,T=0000,R=01,W=00,C=02,L=0010,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=232A

/CAC,T=0000,R=01,W=00,C=02,L=0008,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=2A2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=502A

/CAC,T=0000,R=01,W=00,C=02,L=0007,D=

/SACT

10.2.12 Heart rate service (0x180D)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0D18

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=372A

/CAC,T=0000,R=00,W=00,C=10,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=382A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=392A

/CAC,T=0000,R=02,W=02,C=08,L=0001,D=

/SACT

10.2.13 Phone alert status service (0x180E)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0E18

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=3F2A

/CAC,T=0000,R=01,W=00,C=12,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=412A

/CAC,T=0000,R=01,W=00,C=12,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=04,L=0000,D=402A

/CAC,T=0000,R=02,W=02,C=04,L=0001,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 308 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.14 Battery service (0x180F)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=0F18

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=192A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2904,R=01,W=00,C=02,L=0007,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.15 Blood pressure service (0x1810)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1018

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=352A

/CAC,T=0000,R=00,W=00,C=20,L=0007,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=362A

/CAC,T=0000,R=00,W=00,C=10,L=0007,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=492A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/SACT

10.2.16 Alert notification service (0x1811)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1118

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=472A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=462A

/CAC,T=0000,R=00,W=00,C=10,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=482A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=452A

/CAC,T=0000,R=00,W=00,C=10,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=442A

/CAC,T=0000,R=02,W=02,C=08,L=0002,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 309 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.17 Human interface device service (0x1812)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1218

/CAC,T=2803,R=01,W=00,C=06,L=0000,D=4E2A

/CAC,T=0000,R=01,W=01,C=06,L=0001,D=

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=4D2A

/CAC,T=0000,R=01,W=00,C=12,L=0000,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2908,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=4B2A

/CAC,T=0000,R=01,W=00,C=02,L=0000,D=

/CAC,T=2907,R=01,W=00,C=02,L=0000,D=

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=222A

/CAC,T=0000,R=01,W=00,C=12,L=0008,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0E,L=0000,D=322A

/CAC,T=0000,R=01,W=01,C=0E,L=0008,D=

/CAC,T=2803,R=01,W=00,C=12,L=0000,D=332A

/CAC,T=0000,R=01,W=00,C=12,L=0003,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=4A2A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=04,L=0000,D=4C2A

/CAC,T=0000,R=02,W=02,C=04,L=0001,D=

/SACT

10.2.18 Scan parameters service (0x1813)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1318

/CAC,T=2803,R=01,W=00,C=04,L=0000,D=4F2A

/CAC,T=0000,R=02,W=02,C=04,L=0004,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=312A

/CAC,T=0000,R=00,W=00,C=10,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.19 Running speed and cadence service (0x1814)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1418

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=532A

/CAC,T=0000,R=00,W=00,C=10,L=0004,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=542A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=5D2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=552A

/CAC,T=0000,R=02,W=02,C=28,L=0006,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 310 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.20 Cycling speed and cadence service (0x1816)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1618

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=5B2A

/CAC,T=0000,R=00,W=00,C=10,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=5C2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=5D2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=552A

/CAC,T=0000,R=02,W=02,C=28,L=0006,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.21 Cycling power service (0x1818)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1818

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=632A

/CAC,T=0000,R=00,W=00,C=10,L=0004,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2903,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=652A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=5D2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=642A

/CAC,T=0000,R=00,W=00,C=10,L=0001,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=662A

/CAC,T=0000,R=02,W=02,C=28,L=0005,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.22 Location and navigation service (0x1819)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1918

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=6A2A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=672A

/CAC,T=0000,R=00,W=00,C=10,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=692A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=6B2A

/CAC,T=0000,R=02,W=02,C=28,L=0005,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=682A

/CAC,T=0000,R=00,W=00,C=10,L=0006,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 311 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

/SACT

10.2.23 Body composition service (0x181B)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1B18

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=9B2A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=9C2A

/CAC,T=0000,R=00,W=00,C=20,L=002A,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.24 User data service (0x181C)

You will need to modify the lengths of the first three characteristics according to the data you intend to use

with them. Also, the reference code lists 65 attribute definitions, but your application may not need to use all of
these. See the official specification for this service on the Bluetooth® SIG website for details.

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1C18

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8A2A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=902A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=872A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=802A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=852A

/CAC,T=0000,R=01,W=01,C=0A,L=0004,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8C2A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=982A

/CAC,T=0000,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8E2A

/CAC,T=0000,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=962A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8D2A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=922A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=912A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=7F2A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=832A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=932A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=862A

/CAC,T=0000,R=01,W=01,C=0A,L=0004,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=972A

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 312 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

/CAC,T=0000,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8F2A

/CAC,T=0000,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=882A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=892A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=7E2A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=842A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=812A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=822A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=8B2A

/CAC,T=0000,R=01,W=01,C=0A,L=0004,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=942A

/CAC,T=0000,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=952A

/CAC,T=0000,R=01,W=01,C=0A,L=0001,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=992A

/CAC,T=0000,R=01,W=01,C=0A,L=0004,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=9A2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=9F2A

/CAC,T=0000,R=02,W=02,C=28,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=A22A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/SACT

10.2.25 Weight scale service (0x181D)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1D18

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=9E2A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=9D2A

/CAC,T=0000,R=00,W=00,C=20,L=0013,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.26 Bond management service (0x181E)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1E18

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=A42A

/CAC,T=0000,R=02,W=02,C=08,L=0001,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A52A

/CAC,T=0000,R=01,W=00,C=02,L=0003,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 313 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

10.2.27 Continuous glucose monitoring service (0x181F)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1F18

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=A72A

/CAC,T=0000,R=00,W=00,C=10,L=0006,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A82A

/CAC,T=0000,R=01,W=00,C=02,L=0006,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A92A

/CAC,T=0000,R=01,W=00,C=02,L=0005,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=AA2A

/CAC,T=0000,R=01,W=01,C=0A,L=0009,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=AB2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=522A

/CAC,T=0000,R=02,W=02,C=28,L=0003,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=28,L=0000,D=AC2A

/CAC,T=0000,R=02,W=02,C=28,L=000F,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

10.2.28 Environmental sensing service (0x181A)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=1A18

/CAC,T=2803,R=01,W=00,C=20,L=0000,D=7D2A

/CAC,T=0000,R=00,W=00,C=20,L=0002,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=732A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=722A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=7B2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=6C2A

/CAC,T=0000,R=01,W=00,C=02,L=0003,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0006,D=

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 314 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=742A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=7A2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=6F2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=772A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=752A

/CAC,T=0000,R=01,W=00,C=02,L=0003,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0006,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=782A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=6D2A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0008,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=6E2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=712A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=702A

User guide 315 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=762A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=792A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A32A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=2C2A

/CAC,T=0000,R=01,W=00,C=02,L=0002,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A02A

/CAC,T=0000,R=01,W=00,C=02,L=0004,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=A12A

/CAC,T=0000,R=01,W=00,C=02,L=0006,D=

/CAC,T=290C,R=01,W=00,C=02,L=000B,D=

/CAC,T=290D,R=01,W=00,C=02,L=0002,D=

/CAC,T=2901,R=01,W=00,C=02,L=0000,D=

/CAC,T=2906,R=01,W=00,C=02,L=0004,D=

/SACT

10.2.29 HTTP proxy service (0x1823)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=2318

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=B62A

/CAC,T=0000,R=02,W=02,C=08,L=0000,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=B72A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/CAC,T=2803,R=01,W=00,C=0A,L=0000,D=B92A

/CAC,T=0000,R=01,W=01,C=0A,L=0000,D=

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=BA2A

https://www.bluetooth.com/develop-with-bluetooth/

User guide 316 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Configuration example reference

/CAC,T=0000,R=02,W=02,C=08,L=0001,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=B82A

/CAC,T=0000,R=00,W=00,C=10,L=0003,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=02,L=0000,D=BB2A

/CAC,T=0000,R=01,W=00,C=02,L=0001,D=

/SACT

10.2.30 Apple notification center service

(7905F431-B5CE-4E99-A40F-4B1E122D00D0)

Official documentation for this service can be found on the Bluetooth® SIG Developer webpage.

/CAC,T=2800,R=01,W=00,C=00,L=0000,D=D0002D121E4B0FA4994ECEB531F40579

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=BD1DA299E625588CD94201630D12BF9F

/CAC,T=0000,R=00,W=00,C=10,L=0008,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/CAC,T=2803,R=01,W=00,C=08,L=0000,D=D9D9AAFDBD9B2198A849E145F3D8D169

/CAC,T=0000,R=02,W=02,C=08,L=0006,D=

/CAC,T=2803,R=01,W=00,C=10,L=0000,D=FB7B7CCE6AB344BEB54BD624E9C6EA22

/CAC,T=0000,R=00,W=00,C=10,L=0000,D=

/CAC,T=2902,R=01,W=01,C=0A,L=0002,D=

/SACT

https://www.bluetooth.com/develop-with-bluetooth/

User guide 317 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Glossary

Glossary

ADC

Analog-to-Digital Conversion (ADC)

AES

Advanced Encryption Standard (AES)

API

Application Programming Interface (API)

CCCD

Client Characteristic Configuration Descriptor (CCCD)

CPU

Central Processing Unit(CPU)

CYSPP

Cypress (Infineon) Serial Port Profile (CYSPP)

DFU

device firmware update (DFU)

ECO

External crystal oscillator (ECO)

GAP

Generic Access Profile (GAP)

GATT

generic attribute profile (GATT)

GPIO

General Purpose Input Output (GPIO)

L2CAP

Logic link control and adaptation protocol (L2CAP)

User guide 318 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Glossary

MAC

Medium Access Control (MAC)

MCU

Microcontroller Unit (MCU)

MITM

Man in the Middle (MITM)

OTA

over-the-air (OTA)

PWM

Pulse Width Modulation (PWM)

RSSI

Remote Signal Strength Indication (RSSI)

SMP

Security Manager Protocol (SMP)

TTL

True-Type Logic (TTL)

UART

Universal Asynchronous Receiver-Transmitter (UART)

UUID

universally unique identifier (UUID)

WCO

Watch crystal oscillator (WCO)

User guide 319 002-39351 Rev. *B

 2025-11-12

EZ-Serial firmware platform user guide for CYW20822 module

Revision history

Revision history

Document

revision

Date Description of changes

** 2024-03-04 Initial release.

*A 2024-07-15 Updated the note in Hardware and communication features section.

Updated Table 22.

Updated Avoiding UART data loss or corruption due to Deep Sleep

transition section.

Added Table 23.

Updated Table 32.

Updated Table 33.

Updated Table 63.

Updated the newest FW build support text mode and binary mode for

every command in API protocol reference chapter.

*B 2025-11-12 Updated 3.1.1.2
Updated 7.2.2.1
Updated 7.2.4.23

Updated 7.2.4.24

Updated 7.2.4.30

Updated 7.2.4.36
Updated 7.2.4.38

Updated 7.2.4.39
Updated 7.2.4.41

Updated 7.2.7.7
Updated 7.2.7.8

Updated 7.2.7.14
Updated 7.2.9.2

Updated 7.2.9.12
Updated 7.2.10.8

Updated 7.2.11.2
Updated 7.2.12
Updated 7.2.12.2

Updated system_dump_blob in 7.3.3.1
Updated device_firmware_upgrade 7.3.3.1

Updated 7.3.4.9
Updated 7.3.5.4

Updated 7.3.6.2
Updated 7.3.6.3
Updated 7.3.6.4

Updated 7.3.7.1
Updated 7.3.7.2

Updated 7.3.7.3
Updated 7.3.8.1

Updated 7.3.9.1

 Important Notice

Edition 2025-11-12

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2025 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document Reference Number

002-39351 *B

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.
For the avoidance of doubt, Infineon disclaims all warranties
of non-infringement of third-party rights and implied
warranties such as warranties of fitness for a specific
use/purpose or merchantability.
Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.
The data contained in this document is exclusively intended
for technically qualified and skilled customer representatives.
It is the responsibility of the customer to evaluate the
suitability of the Product for the intended application and the
customer’s specific use and to verify all relevant technical
data contained in this document in the intended application
and the customer’s specific use. The customer is responsible
for properly designing, programming, and testing the
functionality and safety of the intended application, as well as
complying with any legal requirements related to its use.
Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall
responsibility for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:
Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security Breaches.
If this document includes or references software:
The software is owned by Infineon under the intellectual property
laws and treaties of the United States, Germany, and other
countries worldwide. All rights reserved. Therefore, you may use
the software only as provided in the software license agreement
accompanying the software.
If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in the
software (a) for software provided in source code form, to modify
and reproduce the software solely for use with Infineon hardware
products, only internally within your organization, and (b) to
distribute the software in binary code form externally to end users,
solely for use on Infineon hardware products. Any other use,
reproduction, modification, translation, or compilation of the
software is prohibited. For further information on the Product,
technology, delivery terms and conditions, and prices, please
contact your nearest Infineon office or visit
https://www.infineon.com

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Disclaim er

mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 How to use this guide
	1.2 Block diagram
	1.3 Block diagram
	1.3.1 Bluetooth® LE communication features
	1.3.2 Hardware and communication features
	1.3.3 Development limitations

	2 Getting started
	2.1 Prerequisites
	2.2 Factory default behavior
	2.3 Connecting a host device
	2.3.1 Connecting the serial interface
	2.3.2 Connecting GPIO pins
	2.3.3 Connecting the CYW920822M2P4XXI040-EVK

	2.4 Communicating with a host device
	2.4.1 Using the API protocol in text mode
	2.4.1.1 Text mode protocol characteristics
	2.4.1.2 Text mode API command categories
	2.4.1.3 Text mode API command categories

	2.4.2 Using the API protocol in binary mode
	2.4.2.1 Binary mode protocol characteristics
	2.4.2.2 Binary mode API example

	2.4.3 Key similarities and differences between text and binary command mode
	2.4.4 API protocol format autodetection
	2.4.5 Using CYSPP mode
	2.4.5.1 Starting CYSPP operation
	2.4.5.2 Sending and receiving data in CYSPP data mode
	2.4.5.3 Exiting CYSPP mode
	2.4.5.4 Customizing CYSPP behavior for specific needs
	2.4.5.5 Understanding CYSPP connection keys
	2.4.5.6 Using the CYSPP peripheral connection key
	2.4.5.7 Using the CYSPP central connection key and mask
	2.4.5.8 CYSPP configuration and pin states

	2.5 Configuration settings, storage and protection
	2.5.1 Factory, boot, runtime, and automatic settings
	2.5.2 Saving runtime settings in flash
	2.5.3 Protected configuration settings

	2.6 Where to find related material
	2.6.1 Latest EZ-Serial firmware image
	2.6.2 Latest host API protocol library
	2.6.3 Comprehensive API reference

	3 Operational examples
	3.1 System setup examples
	3.1.1 How to identify the running firmware and Bluetooth® LE stack version
	3.1.1.1 Getting version details from boot event
	3.1.1.2 Getting version details from boot event

	3.1.2 How to change the serial communication parameters
	3.1.3 How to change the device name and appearance
	3.1.4 How to change the output power
	3.1.5 How to manage Sleep states
	3.1.5.1 Configuring the system-wide sleep level
	3.1.5.2 Configuring the CYSPP data mode sleep level
	3.1.5.3 Preventing sleep with the LP_MODE pin
	3.1.5.4 Preventing activity with the ATEN_SHDN pin
	3.1.5.5 Avoiding UART data loss or corruption due to Deep Sleep transition

	3.1.6 How to perform a factory reset
	3.1.6.1 Factory reset via API command

	3.2 Cable replacement examples with CYSPP
	3.2.1 How to get started in CYSPP mode
	3.2.1.1 How to start CYSPP in peripheral mode
	3.2.1.2 How to start CYSPP in central mode

	3.3 GAP peripheral examples
	3.3.1 How to advertise as peripheral device
	3.3.2 How to stop advertising as a peripheral device
	3.3.3 How to customize advertisement and scan response data

	3.4 GAP central examples
	3.4.1 How to scan for peripheral devices
	3.4.2 How to stop scanning for peripheral devices
	3.4.3 How to connect to a peripheral device
	3.4.4 How to cancel a pending connection to a peripheral device
	3.4.5 How to disconnect from a peripheral device

	3.5 GATT server examples
	3.5.1 How to define custom local GATT services and characteristics
	3.5.1.1 Understanding custom GATT limitations
	3.5.1.2 Building custom services and characteristics
	3.5.1.3 Choosing the correct GATT permissions

	3.5.2 How to list local GATT services, characteristics, and descriptors
	3.5.2.1 Discovering local GATT services
	3.5.2.2 Discovering local GATT characteristics
	3.5.2.3 Discovering local GATT descriptors

	3.5.3 How to read and write local GATT attribute values
	3.5.3.1 Reading local GATT data
	3.5.3.2 Writing local GATT data

	3.5.4 How to notify and indicate data to a remote client
	3.5.4.1 Notifying data to a remote client
	3.5.4.2 Indicating data to a remote client

	3.5.5 How to detect and process written data from a remote client

	3.6 GATT client examples
	3.6.1 How to discover a remote server’s GATT structure
	3.6.1.1 Discovering remote GATT services
	3.6.1.2 Discovering remote GATT characteristics
	3.6.1.3 Discovering remote GATT descriptors

	3.6.2 How to read and write remote GATT attribute values
	3.6.3 How to detect notified or indicated values from a remote GATT server

	3.7 Security and encryption examples
	3.7.1 How to use peripheral and central privacy
	3.7.2 How to bond with or without MITM protection
	3.7.2.1 Understanding I/O capabilities
	3.7.2.2 Controlling automatic pairing request acceptance
	3.7.2.3 Pairing and bonding in “just works” mode without MITM protection
	3.7.2.4 Pairing and bonding with full I/O capabilities and MITM protection
	3.7.2.5 Pairing and bonding with a fixed passkey

	3.7.3 How to use out-of-band pairing
	3.7.4 How to encrypt and decrypt arbitrary data

	3.8 iBeacon examples
	3.8.1 How to configure iBeacon transmissions
	3.8.2 How to configure Eddystone transmissions

	3.9 Performance testing examples
	3.9.1 How to maximize throughput to a remote peer
	3.9.1.1 How to maximize throughput to an iOS device
	3.9.1.2 How to maximize throughput to an android device

	3.9.2 How to minimize power consumption
	3.9.2.1 How to minimize power consumption while broadcasting
	3.9.2.2 How to minimize power consumption while broadcasting

	3.9.3 How to communicate using an L2CAP channel

	3.10 Device firmware update examples
	3.10.1 How to use the DFU Bootloader over UART
	3.10.2 How to upgrade firmware Over the Air (OTA)

	4 Application design examples
	4.1 Smart MCU host with 4-wire UART and full GPIO connections
	4.1.1 Hardware design
	4.1.2 Module configuration
	4.1.3 Host configuration

	4.2 Dumb terminal host with CYSPP and simple GPIO state indication
	4.2.1 Hardware design
	4.2.2 Module configuration
	4.2.3 Module configuration

	4.3 Module-only application with beacon functionality
	4.3.1 Hardware design
	4.3.2 Module configuration
	4.3.3 Host configuration

	5 Host API library
	5.1 Host API library overview
	5.1.1 High-level architecture
	5.1.2 Host library design

	5.2 Implementing a project using the host API library
	5.2.1 Basic application architecture
	5.2.2 Exposed API functions
	5.2.3 Command macros
	5.2.4 Convenience macros

	5.3 Porting the host API library to different platforms
	5.4 Using the API definition JSON file to create a custom library

	6 Troubleshooting guidelines
	6.1 UART communication issues
	6.2 Bluetooth® LE connection issues
	6.3 GPIO signal issues

	7 API protocol reference
	7.1 Protocol structure and communication flow
	7.1.1 API protocol formats
	7.1.1.1 Text format overview
	7.1.1.2 Binary format overview

	7.1.2 API protocol data types
	7.1.3 Binary format details
	7.1.3.1 Byte ordering and structure packing
	7.1.3.2 Binary packet header

	7.2 API commands and responses
	7.2.1 Protocol group (ID=1)
	7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)
	7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)
	7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)
	7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

	7.2.2 System group (ID=2)
	7.2.2.1 system_ping (/PING, ID=2/1)
	7.2.2.2 system_reboot (/RBT, ID=2/2)
	7.2.2.3 system_dump (/DUMP, ID=2/3)
	7.2.2.4 system_store_config (/SCFG, ID=2/4)
	7.2.2.5 system_factory_reset (/RFAC, ID=2/5)
	7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)
	7.2.2.7 system_query_unique_id (/QUID, ID=2/7)
	7.2.2.8 system_query_random_number (/QRND, ID=2/8)
	7.2.2.9 system_aes_encrypt (/AESE, ID=2/9)
	7.2.2.10 system_aes_decrypt (/AESD, ID=2/10)
	7.2.2.11 system_write_user_data (/WUD, ID=2/11)
	7.2.2.12 system_read_user_data (/RUD, ID=2/12)
	7.2.2.13 system_set_bluetooth_address (SBA, ID=2/13)
	7.2.2.14 system_get_bluetooth_address (GBA, ID=2/14)
	7.2.2.15 system_set_sleep_parameters (SSLP, ID=2/19)
	7.2.2.16 system_get_sleep_parameters (GSLP, ID=2/20)
	7.2.2.17 system_set_tx_power (STXP, ID=2/21)
	7.2.2.18 system_get_tx_power (GTXP, ID=2/22)
	7.2.2.19 system_set_transport (ST, ID=2/23)
	7.2.2.20 system_get_transport (GT, ID=2/24)
	7.2.2.21 system_set_uart_parameters (STU, ID=2/25)
	7.2.2.22 system_get_uart_parameters (GTU, ID=2/26)
	7.2.2.23 system_force_hibernation (/SLEEP, ID=2/29)

	7.2.3 DFU group (ID=3)
	7.2.3.1 dfu_reboot (/CDFU, ID=3/1)

	7.2.4 GAP group (ID=4)
	7.2.4.1 gap_connect (/C, ID=4/1)
	7.2.4.2 gap_cancel_connection (/CX, ID=4/2)
	7.2.4.3 gap_update_conn_parameters (/UCP, ID=4/3)
	7.2.4.4 gap_send_connupdate_response (/CUR, ID=4/4)
	7.2.4.5 gap_disconnect (/DIS, ID=4/5)
	7.2.4.6 gap_add_whitelist_entry (/WLA, ID=4/6)
	7.2.4.7 gap_delete_whitelist_entry (/WLD, ID=4/7)
	7.2.4.8 gap_start_adv (/A, ID=4/8)
	7.2.4.9 gap_stop_adv (/AX, ID=4/9)
	7.2.4.10 gap_start_scan (/S, ID=4/10)
	7.2.4.11 gap_stop_scan (/SX, ID=4/11)
	7.2.4.12 gap_query_peer_address (/QPA, ID=4/12)
	7.2.4.13 gap_query_rssi (/QSS, ID=4/13)
	7.2.4.14 gap_query_whitelist (/QWL, ID=4/14)
	7.2.4.15 gap_set_device_name (SDN, ID=4/15)
	7.2.4.16 gap_get_device_name (GDN, ID=4/16)
	7.2.4.17 gap_set_device_appearance (SDA, ID=4/17)
	7.2.4.18 gap_get_device_appearance (GDA, ID=4/18)
	7.2.4.19 gap_set_adv_data (SAD, ID=4/19)
	7.2.4.20 gap_get_adv_data (GAD, ID=4/20)
	7.2.4.21 gap_set_sr_data (SSRD, ID=4/21)
	7.2.4.22 gap_get_sr_data (GSRD, ID=4/22)
	7.2.4.23 gap_set_adv_parameters (SAP, ID=4/23)
	7.2.4.24 gap_get_adv_parameters (GAP, ID=4/24)
	7.2.4.25 gap_set_scan_parameters (SSP, ID=4/25)
	7.2.4.26 gap_get_scan_parameters (GSP, ID=4/26)
	7.2.4.27 gap_set_conn_parameters (SCP, ID=4/27)
	7.2.4.28 gap_get_conn_parameters (GCP, ID=4/28)
	7.2.4.29 gap_set_adv_legacy_coded_phy_parameters (SACP, ID=4/29)
	7.2.4.30 gap_get_adv_legacy_coded_phy_parameters (GACP, ID=4/30)
	7.2.4.31 gap_start_legacy_coded_adv (/CA, ID=4/31)
	7.2.4.32 gap_stop_legacy_coded_adv(/CAX, ID=4/32)
	7.2.4.33 gap_set_scan_legacy_coded_parameters (SSCP, ID=4/33)
	7.2.4.34 gap_get_scan_legacy_coded_parameters (GSCP, ID=4/34)
	7.2.4.35 gap_start_legacy_coded_scan(/CS, ID=4/35)
	7.2.4.36 gap_stop_legacy_coded_scan(/CSX, ID=4/36)
	7.2.4.37 gap_phy_update (/UP, ID=4/37)
	7.2.4.38 gap_set_extended_adv_data (SEAD, ID=4/38)
	7.2.4.39 gap_get_extended_adv_data (GEAD, ID=4/39)
	7.2.4.40 gap_set_extended_scan_response_data(SERD, ID=4/40)
	7.2.4.41 gap_get_extended_scan_response_data(GERD, ID=4/41)

	7.2.5 GATT server group (ID=5)
	7.2.5.1 gatts_create_attr (/CAC, ID=5/1)
	7.2.5.2 gatts_delete_attr (/CAD, ID=5/2)
	7.2.5.3 gatts_validate_db (/VGDB, ID=5/3)
	7.2.5.4 gatts_store_db (/SGDB, ID=5/4)
	7.2.5.5 gatts_dump_db (/DGDB, ID=5/5)
	7.2.5.6 gatts_discover_services (/DLS, ID=5/6)
	7.2.5.7 gatts_discover_characteristics (/DLC, ID=5/7)
	7.2.5.8 gatts_discover_descriptors (/DLD, ID=5/8)
	7.2.5.9 gatts_read_handle (/RLH, ID=5/9)
	7.2.5.10 gatts_write_handle (/WLH, ID=5/10)
	7.2.5.11 gatts_notify_handle (/NH, ID=5/11)
	7.2.5.12 gatts_indicate_handle (/IH, ID=5/12)
	7.2.5.13 gatts_send_writereq_response (/WRR, ID=5/13)
	7.2.5.14 gatts_set_parameters (SGSP, ID=5/14)
	7.2.5.15 gatts_get_parameters (GGSP, ID=5/15)
	7.2.5.16 gatts_service_active (/SACT, ID=5/16)
	7.2.5.17 gatts_service_handle_reset (/RSHL, ID=5/17)

	7.2.6 GATT client group (ID=6)
	7.2.6.1 gattc_discover_services (/DRS, ID=6/1)
	7.2.6.2 gattc_discover_characteristics (/DRC, ID=6/2)
	7.2.6.3 gattc_discover_descriptors (/DRD, ID=6/3)
	7.2.6.4 gattc_read_handle (/RRH, ID=6/4)
	7.2.6.5 gattc_write_handle (/WRH, ID=6/5)
	7.2.6.6 gattc_confirm_indication (/CI, ID=6/6)
	7.2.6.7 gattc_set_parameters (SGCP, ID=6/7)
	7.2.6.8 gattc_get_parameters (GGCP, ID=6/8)

	7.2.7 SMP group (ID=7)
	7.2.7.1 smp_query_bonds (/QB, ID=7/1)
	7.2.7.2 smp_delete_bond (/BD, ID=7/2)
	7.2.7.3 smp_pair (/P, ID=7/3)
	7.2.7.4 smp_query_random_address (/QRA, ID=7/4)
	7.2.7.5 smp_send_pairreq_response (/PR, ID=7/5)
	7.2.7.6 smp_send_passkeyreq_response (/PE, ID=7/6)
	7.2.7.7 smp_generate_oob_data (/GOOB, ID=7/7)
	7.2.7.8 smp_clear_oob_data (/COOB, ID=7/8)
	7.2.7.9 smp_set_privacy_mode (SPRV, ID=7/9)
	7.2.7.10 smp_get_privacy_mode (GPRV, ID=7/10)
	7.2.7.11 smp_set_security_parameters (SSBP, ID=7/11)
	7.2.7.12 smp_get_security_parameters (GSBP, ID=7/12)
	7.2.7.13 smp_set_fixed_passkey (SFPK, ID=7/13)
	7.2.7.14 smp_get_fixed_passkey (GFPK, ID=7/14)

	7.2.8 L2CAP group (ID=8)
	7.2.8.1 l2cap_connect (/LC, ID=8/1)
	7.2.8.2 l2cap_disconnect (/LDIS, ID=8/2)
	7.2.8.3 l2cap_register_psm (/LRP, ID=8/3)
	7.2.8.4 l2cap_send_connreq_response (/LCR, ID=8/4)
	7.2.8.5 l2cap_send_credits (/LSC, ID=8/5)
	7.2.8.6 l2cap_send_data (/LD, ID=8/6)

	7.2.9 GPIO group (ID=9)
	7.2.9.1 gpio_query_logic (/QIOL, ID=9/1)
	7.2.9.2 gpio_query_adc (/QADC, ID=9/2)
	7.2.9.3 gpio_set_function (SIOF, ID=9/3)
	7.2.9.4 gpio_get_function (GIOF, ID=9/4)
	7.2.9.5 gpio_set_drive (SIOD, ID=9/5)
	7.2.9.6 gpio_get_drive (GIOD, ID=9/6)
	7.2.9.7 gpio_set_logic (SIOL, ID=9/7)
	7.2.9.8 gpio_get_logic (GIOL, ID=9/8)
	7.2.9.9 gpio_set_interrupt_mode (SIOI, ID=9/9)
	7.2.9.10 gpio_get_interrupt_mode (GIOI, ID=9/10)
	7.2.9.11 gpio_set_pwm_mode (SPWM, ID=9/11)
	7.2.9.12 gpio_get_pwm_mode (GPWM, ID=9/12)

	7.2.10 CYSPP group (ID=10)
	7.2.10.1 p_cyspp_check (.CYSPPCHECK, ID=10/1)
	7.2.10.2 p_cyspp_start (.CYSPPSTART, ID=10/2)
	7.2.10.3 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
	7.2.10.4 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)
	7.2.10.5 p_cyspp_set_client_handles (.CYSPPSH, ID=10/5)
	7.2.10.6 p_cyspp_get_client_handles (.CYSPPGH, ID=10/6)
	7.2.10.7 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)
	7.2.10.8 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

	7.2.11 iBeacon group (ID=12)
	7.2.11.1 p_ibeacon_set_parameters (.IBSP, ID=12/1)
	7.2.11.2 p_ibeacon_get_parameters (.IBGP, ID=12/2)

	7.2.12 Eddystone group (ID=13)
	7.2.12.1 p_eddystone_set_parameters (.EDDYSP, ID=13/1)
	7.2.12.2 p_eddystone_get_parameters (.EDDYGP, ID=13/2)

	7.3 API events
	7.3.1 Protocol group (ID=1)
	7.3.2 System group (ID=2)
	7.3.2.1 system_boot (BOOT, ID=2/1)
	7.3.2.2 system_error (ERR, ID=2/2)
	7.3.2.3 system_factory_reset_complete (RFAC, ID=2/3)
	7.3.2.4 system_factory_test_entered (TFAC, ID=2/4)
	7.3.2.5 system_dump_blob (DBLOB, ID=2/5)

	7.3.3 DFU group (ID=3)
	7.3.3.1 device_firmware_upgrade (DFUE, ID=3/1)

	7.3.4 GAP group (ID=4)
	7.3.4.1 gap_whitelist_entry (WL, ID=4/1)
	7.3.4.2 gap_adv_state_changed (ASC, ID=4/2)
	7.3.4.3 gap_scan_state_changed (SSC, ID=4/3)
	7.3.4.4 gap_scan_result (S, ID=4/4)
	7.3.4.5 gap_connected (C, ID=4/5)
	7.3.4.6 gap_disconnected (DIS, ID=4/6)
	7.3.4.7 gap_connection_update_requested (UCR, ID=4/7)
	7.3.4.8 gap_connection_updated (CU, ID=4/8)
	7.3.4.9 gap_phy_updated(PU, ID=4/9)

	7.3.5 GATT server group (ID=5)
	7.3.5.1 gatts_discover_result (DL, ID=5/1)
	7.3.5.2 gatts_data_written (W, ID=5/2)
	7.3.5.3 gatts_indication_confirmed (IC, ID=5/3)
	7.3.5.4 gatts_db_entry_blob (DGATT, ID=5/4)

	7.3.6 GATT Client Group (ID=6)
	7.3.6.1 gattc_discover_result (DR, ID=6/1)
	7.3.6.2 gattc_remote_procedure_complete (RPC, ID=6/2)
	7.3.6.3 gattc_data_received (D, ID=6/3)
	7.3.6.4 gattc_write_response (WRR, ID=6/4)

	7.3.7 SMP group (ID=7)
	7.3.7.1 smp_bond_entry (B, ID=7/1)
	7.3.7.2 smp_pairing_requested (P, ID=7/2)
	7.3.7.3 smp_pairing_result (PR, ID=7/3)
	7.3.7.4 smp_encryption_status (ENC, ID=7/4)
	7.3.7.5 smp_passkey_display_requested (PKD, ID=7/5)
	7.3.7.6 smp_passkey_entry_requested (PKE, ID=7/6)

	7.3.8 L2CAP group (ID=8)
	7.3.8.1 l2cap_connection_requested (LCR, ID=8/1)
	7.3.8.2 l2cap_connection_response (LC, ID=8/2)
	7.3.8.3 l2cap_data_received (LD, ID=8/3)
	7.3.8.4 l2cap_disconnected (LDIS, ID=8/4)
	7.3.8.5 l2cap_rx_credits_low (LRCL, ID=8/5)
	7.3.8.6 l2cap_tx_credits_received (LTCR, ID=8/6)
	7.3.8.7 l2cap_command_rejected (LREJ, ID=8/7)

	7.3.9 GPIO group (ID=9)
	7.3.9.1 gpio_interrupt (INT, ID=9/1)

	7.3.10 CYSPP group (ID=10)
	7.3.10.1 p_cyspp_status (.CYSPP, ID=10/1)

	7.3.11 iBeacon group (ID=12)
	7.3.12 Eddystone group (ID=13)

	7.4 Error codes
	7.4.1 EZ-Serial system error codes
	7.4.2 EZ-Serial GATT database validation error codes

	7.5 Macro definitions

	8 GPIO reference
	8.1 GPIO pin map for supported modules
	8.2 GPIO pin map for supported modules
	8.2.1 EZ-Serial GATT database validation error codes
	8.2.2 PWM output pins
	8.2.3 Analog input pins (ADC)

	8.3 Functional capabilities
	8.3.1 Digital interrupt detection
	8.3.2 Analog-to-digital conversion

	9 Infineon GATT profile reference
	9.1 CYSPP profile

	10 Configuration example reference
	10.1 Factory default settings
	10.2 Adopted Bluetooth® SIG GATT profile structure snippets
	10.2.1 Generic access service (0x1800)
	10.2.2 Generic attribute service (0x1801)
	10.2.3 Immediate alert service (0x1802)
	10.2.4 Link loss service (0x1803)
	10.2.5 TX power service (0x1804)
	10.2.6 Current time service (0x1805)
	10.2.7 Reference time update service (0x1806)
	10.2.8 Next DST change service (0x1807)
	10.2.9 Glucose service (0x1808)
	10.2.10 Health thermometer service (0x1809)
	10.2.11 Device information service (0x180A)
	10.2.12 Heart rate service (0x180D)
	10.2.13 Phone alert status service (0x180E)
	10.2.14 Battery service (0x180F)
	10.2.15 Blood pressure service (0x1810)
	10.2.16 Alert notification service (0x1811)
	10.2.17 Human interface device service (0x1812)
	10.2.18 Scan parameters service (0x1813)
	10.2.19 Running speed and cadence service (0x1814)
	10.2.20 Cycling speed and cadence service (0x1816)
	10.2.21 Cycling power service (0x1818)
	10.2.22 Location and navigation service (0x1819)
	10.2.23 Body composition service (0x181B)
	10.2.24 User data service (0x181C)
	10.2.25 Weight scale service (0x181D)
	10.2.26 Bond management service (0x181E)
	10.2.27 Continuous glucose monitoring service (0x181F)
	10.2.28 Environmental sensing service (0x181A)
	10.2.29 HTTP proxy service (0x1823)
	10.2.30 Apple notification center service (7905F431-B5CE-4E99-A40F-4B1E122D00D0)

	Glossary
	Revision history
	Disclaimer

