

 PSoC® Creator™ Component Data Sheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-49272 Rev. *C Revised May 31, 2016

PRELIMINARY

Features

 2 to 16-bit Data Width

 4 SPI Modes

 Data Rates to 33Mb/s

General Description

The SPI master provides an industry-standard 4-wire master SPI interface. The interface
supports all 4 SPI operating modes, allowing interface with any SPI slave device. In addition to
the standard 8-bit interface, the SPI Master supports a configurable 2 to 16-bit interface for
interfacing to nonstandard SPI word lengths. SPI signals include the standard SCLK, MISO and
MOSI pins and multiple Slave Select (SS) signal generation.

When to use the SPI Master

The SPI master component should be used any time the PSoC device is required to interface
with one or more SPI slave devices. In addition to ‘SPI slave’ labeled devices, the SPI master
can be used with many devices implementing a shift register type interface.

The SPI slave component should be used in instances requiring the PSoC device to interface
with a SPI master device. The Shift Register component should be used in situations where its
low level flexibility provides hardware capabilities not available in the SPI Master component.

Input/Output Connections

This section describes the various input and output connections for the SPI. An asterisk (*) in the
list of I/O’s states that the I/O may be hidden on the symbol under the conditions listed in the
description of that I/O.

clock – Input *

The clock input defines the bit-rate of the serial communication. The bit-rate is 1/2 the input clock
frequency. This input is visible if the “External Clock” parameter is selected. If "Internal Clock" is
used, then you define the desired data bit-rate and the clock needed is solved by PSoC Creator.

Serial Peripheral Interface (SPI) Master
1.20

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 2 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

reset – Input

Resets the SPI state machine to the idle state. This will throw out any data that was currently
being transmitted or received but will not clear data from the FIFO that has already been
received or is ready to be transmitted.

miso – Input

The miso input carries the master input – slave output serial data from a slave device on the bus.
This input is always visible and must be connected.

mosi – Output

The mosi output carries the master output – slave input serial data to the slave device(s) on the
bus. This output is always visible and must be connected.

sclk– Output

The sclk output carries the master synchronization clock output to the slave device(s) on the bus.
This output is always visible and must be connected.

ss – Output

The ss output carries the slave select signal to a slave device(s) on the bus. It is also possible to
connect a digital De-Multiplexer to handle multiple slave devices, or to have a completely
firmware controlled Slave select.

Figure 1: Slave Select Output to De-Multiplexer

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 3 of 18

PRELIMINARY

Figure 2: Firmware Controlled Slave Select(s)

interrupt – Output

The interrupt output is the logical OR of the group of possible interrupt sources. This signal will
go high while any of the enabled interrupt sources are true.

Parameters and Setup

Drag an SPI Master component onto your design. Double-click component symbol to open the
Configure dialog.

If the component will be used for communication with one or more external SPI Slave devices,
then connect the appropriate digital input and output pins.

Note Configure the Pins component connected to the MISO input to unselect the Input
Synchronized parameter (under the Pins component Input tab) to prevent incorrect data
sampling.

The following sections describe the SPI Master parameters, and how they are configured using
the dialog. They also indicate whether the options are hardware or software.

Hardware vs. Software Options

Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value which may be modified at any time with the
API provided. Hardware only parameters are marked with an asterisk (*).

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 4 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

Configure Tab

These are basic parameters expected for every SPI component and are therefore the first
parameters visible to configure.

Mode *

The Mode parameter defines the desired clock phase and clock polarity mode used in the
communication. The options are “Mode 00”, “Mode 01”, “Mode 10” and “Mode 11” which are
defined in the implementation details below.

Data Bits *

The number of data bits defines the bit-width of a single transfer as transferred with the
WriteByte() and ReadByte() API. The default number of bits is a single byte (8-bits). Any integer
from 2 to 16 may be selected.

Shift Direction *

The Shift direction parameter defines the direction the serial data is transmitted. When set to
MSB_First the Most Significant bit is transmitted first through to the Least Significant bit. This is
implemented by shifting the data left. LSB_First is the exact opposite.

Bit Rate *

The Bit-Rate parameter defines the communication speed in Hertz. If the internal clock is
selected this parameter will define the clock frequency of the internal clock as 2X the bit rate.
This parameter has no affect if the external clock option is set.

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 5 of 18

PRELIMINARY

Advanced Tab

Clock Selection *

The Clock Selection parameter allows the user to choose between an internally configured clock
or an externally configured clock or I/O for the data-rate generation. When set to “Internal Clock”
the required clock frequency is calculated and configured by PSoC Creator based on the “Bit
Rate” parameter. When set to “External Clock” the component does not control the data-rate but
can calculate the expected bit-rate.

If this parameter is “Internal Clock” then the clock input is not visible on the symbol.

Rx Buffer Size *

The RX Buffer Size parameter defines the size (in bytes) of memory allocated for a circular data
buffer. If this parameter is set to 1 a single byte FIFO is implemented in the hardware. If the
parameter is set to 2-4 then the 4-byte FIFO is implemented in hardware. All other values up to
255 (8-bit Processor) or 64535 (32-bit Processor) will use the 4-byte FIFO and a memory array
controlled by the supplied API.

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 6 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

Tx Buffer Size *

The TX Buffer Size parameter defines the size (in bytes) of memory allocated for a circular data
buffer. If this parameter is set to 1 a single byte FIFO is implemented in the hardware. If the
parameter is set to 2-4 then the 4-byte FIFO is implemented in hardware. All other values up to
255 (8-bit Processor) or 64535 (32-bit Processor) will use the 4-byte FIFO and a memory array
controlled by the supplied API.

Enable Internal Interrupt

The Enable Internal Interrupt option allows the user to use the predefined ISR of the SPI Master
component. The user may add to this ISR if selected or deselect the internal interrupt and handle
the ISR with an external interrupt component connected to the interrupt output of the SPI Master.

If the user selects a RX or TX buffer size greater than 4 this parameter is set automatically as the
internal ISR is needed to handle transferring data from the FIFO to the RX and/or TX buffer. At
all times the interrupt output pin of the SPI master is visible and useable, outputting the same
signal that goes to the internal interrupt based on the selected status interrupts. This output may
then be used as a DMA request source to DMA from the RX or TX buffer independent of the
interrupt or as another interrupt dependant upon the desired functionality.

Interrupts

The interrupts selection parameters allow the user to configure the internal events that are
allowed to cause an interrupt. Interrupt generation is a masked OR of all of the status register
bits. The bit’s chosen with these parameters defines the mask implemented at the initial
configuration of this component.

Clock Selection

When the internal clock configuration is selected PSoC Creator will calculate the needed
frequency and clock source and will generate the resource needed for implementation.
Otherwise, you must supply the clock and calculate the bit-rate at 1/2 the input clock frequency.

Placement

The SPI Master component is placed throughout the UDB array and all placement information is
provided to the API through the cyfitter.h file.

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 7 of 18

PRELIMINARY

Resources

Resolution

Digital Blocks
API Memory

(Bytes)

Pins (per
External I/O) Datapaths

Macro
cells

Status
Registers

Control
Registers Counter7 Flash RAM

SPI Master
8-bit

1 * 1 1 1 *

SPI Master
16-bit

2 * 1 1 1 *

* Unknown

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name "SPIM_1" to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is "SPIM".

Function Description

void SPIM_Start(void) Enable the SPIM operation.

void SPIM_Stop(void) Disable the SPIM operation.

void SPIM_EnableInt (void) Enables the internal interrupt irq.

void SPIM_DisableInt (void) Disables the internal interrupt irq

void SPIM_SetInterruptMode (uint8 interrupt) Configures the interrupt sources enabled

uint8 SPIM_ReadStatus (void) Returns the current state of the status register

void SPIM_WriteByte (uint8/16 byte)
Places a byte in the transmit buffer which will be sent at the next
available bus time

uint8/16 SPIM_ReadByte (void) Returns the next byte of received data

uint8/uint16 SPIM_GetRxBufferSize (void) Returns the size (in bytes) of the RX memory buffer

uint8/uint16 SPIM_GetTxBufferSize (void) Returns the size (in bytes) of the TX memory buffer

void SPIM_ClearRxBuffer (void) Clears the memory array of all received data

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 8 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

Function Description

void SPIM_ClearTxBuffer (void) Clears the memory array of all transmit data

void SPIM_TxEnable (void) Enables the TX portion of the SPI Master (MOSI)

void SPIM_TxDisable (void) Disables the TX portion of the SPI Master (MOSI)

void SPIM_PutArray (uint16* RamString,
uint8 ByteCount)

Places an array of data into the transmit buffer

void SPIM_ClearFIFO(void) Clears any received data from the RX FIFO

void SPIM_Start(void)

Description: Enable the SPIM operation by enabling the internal clock. If external clock is selected
then this function is only necessary for initial configuration.

Parameters: void

Return Value: void

Side Effects: The first time this function is called it initializes all of the necessary parameters for
execution. i.e. setting the initial interrupt mask, configuring the interrupt service routine,
configuring the bit-counter parameters and clearing the RX FIFO

void SPIM_Stop(void)

Description: Disable the SPIM operation by disabling the internal clock. If external clock is selected
then this function has no affect on the SPIM operation

Parameters: void

Return Value: void

Side Effects: None

void SPIM_EnableInt (void)

Description: Enables the internal interrupt irq

Parameters: void

Return Value: void

Side Effects: None

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 9 of 18

PRELIMINARY

void SPIM_DisableInt (void)

Description: Disables the internal interrupt irq

Parameters: void

Return Value: void

Side Effects: None

void SPIM_SetInterruptMode (uint8 interrupt)

Description: Configures the interrupt sources enabled

Parameters: uint8: Bit-Field containing the interrupts to enable. Based on the bit-field arrangement of
the status register. This value must be a combination of status register bit-masks
defined in the header file.

Return Value: void

Side Effects: None

uint8 SPIM_ReadStatus (void)

Description: Returns the current state of the status register

Parameters: void

Return Value: uint8: Current status register value

Side Effects: Status register bits are clear on read.

void SPIM_WriteByte (uint8/16 byte)

Description: Places a byte in the transmit buffer which will be sent at the next available SPI bus time

Parameters: uint8/16: data byte

Return Value: void

Side Effects: Data may be placed in the memory buffer and will not be transmitted until all other data
has been transmitted. This function blocks until there is space in the output memory
buffer.

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 10 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

uint8/16 SPIM_ReadByte (void)

Description: Returns the next byte of received data

Parameters: void

Return Value: uint8/16: data byte

Side Effects: This function blocks until there is data in the input memory buffer.

uint8/uint16 SPIM_GetRxBufferSize (void)

Description: Returns the number of bytes/words of data currently held in the RX buffer

Parameters: void

Return Value: uint8/uint16: Integer count of the number of bytes/words in the RX buffer

Side Effects: None

uint8/uint16 SPIM_GetTxBufferSize (void)

Description: Returns the number of bytes/words of data currently held in the TX buffer

Parameters: void

Return Value: uint8/uint16: Integer count of the number of bytes/words in the TX buffer

Side Effects: None

void SPIM_ClearRxBuffer (void)

Description: Clears the memory array and RX FIFO of all received data

Parameters: void

Return Value: void

Side Effects: None

void SPIM_ClearTxBuffer (void)

Description: Clears the memory array of all transmit data

Parameters: void

Return Value: void

Side Effects: Will not clear data already placed in the TX FIFO.

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 11 of 18

PRELIMINARY

void SPIM_TxEnable (void)

Description: Enables the TX portion of the SPI Master (MOSI)

Parameters: void

Return Value: void

Side Effects: None

void SPIM_TxDisable (void)

Description: Disables the TX portion of the SPI Master (MOSI)

Parameters: void

Return Value: void

Side Effects: None

void SPIM_PutArray (uint16* RamString, uint8 ByteCount)

Description: Places an array of data into the transmit buffer

Parameters: uint16*: RamString – Location of the first byte of the data to move to the transmit buffer
uint8: ByteCount – Number of bytes in the array.

Return Value: void

Side Effects: None

void SPIM_ClearFIFO (void)

Description: Clears any received data from the RX FIFO

Parameters: void

Return Value: void

Side Effects: None

Defines

SPIM_INIT _INTERRUPTS_MASK

Defines the initial configuration of the interrupt sources chosen in the Configure dialog. This is a
mask of the bits in the status register that have been enabled at configuration as sources for the
interrupt.

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 12 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

Status Register Bits

Table 1 SPIM_STATUS

Bits 7 6 5 4 3 2 1 0

Value Unused Byte
Complete

RX Buf.
Overrun

RX FIFO
Not Empty

RX FIFO
Full

TX FIFO
Not Full

TX FIFO.
Empty

SPI Done

 Byte Complete: Set when a Byte has been transmitted.

 RX FIFO Overrun: Set when RX Data has overrun the 4 byte FIFO or 1 Byte FIFO without
being moved to the Memory array (if one exists)

 RX FIFO Not Empty: Set when the RX Data FIFO is not empty (Does not indicate the
RAM array conditions)

 RX FIFO Full: Set when the RX Data FIFO is full (Does not indicate the RAM array
conditions)

 TX FIFO Not Full: Set when the TX Data FIFO is full (Does not indicate the RAM array
conditions):

 TX FIFO Empty: Set when the TX Data FIFO is empty (Does not indicate the RAM array
conditions):

 SPI Done: Set when all of the data in the transmit FIFO has been sent. This may be used
to signal a transfer complete instead of using the byte complete status.

SPIM_TXBUFFERSIZE

Defines the amount of memory to allocate for the TX memory array buffer. This does not include
the 4 bytes included in the FIFO. If this value is greater than 4, interrupts are implemented which
move data to the FIFO from the circular memory buffer automatically.

SPIM_RXBUFFERSIZE

Defines the amount of memory to allocate for the RX memory array buffer. This does not include
the 4 bytes included in the FIFO. If this value is greater than 4, interrupts are implemented which
move data from the FIFO to the circular memory buffer automatically.

SPIM_DATAWIDTH

Defines the number of bits per data transfer chosen in the Configure dialog.

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 13 of 18

PRELIMINARY

Sample Firmware Source Code

The following is a C language example demonstrating the basic functionality of the SPI Master
component. This example assumes the component has been placed in a design with the default
name "SPIM_1."

Note If you rename your component you must also edit the example code as appropriate to
match the component name you specify.

#include <device.h>

void main()

{

 uint8 i = 0;

 uint8 val = 0;

 SPIM_1_Start();

while(1)

 {

 SPIM_1_WriteByte(i++);

 val = SPIM_1_ReadByte();

 }

}

Functional Description

Default Configuration

The default configuration for the SPIM is as an 8-bit SPIM with Mode 00 configuration. By
Default the Internal clock is selected with a bit-rate of 12Mb/s.

SPIM Mode: 00

Mode 00 defines the Clock Phase of 0 and the Clock Polarity of 0 which has the following
characteristics:

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 14 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

SPIM Mode: 01

Mode 01 defines the Clock Phase of 0 and the Clock Polarity of 1 which has the following
characteristics:

SPIM Mode: 10

Mode 10 defines the Clock Phase of 1 and a Clock Polarity of 0 which has the following
characteristics:

SPIM Mode: 11

Mode 11 defines the Clock Phase of 1 and a Clock Polarity of 1 which has the following
characteristics:

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 15 of 18

PRELIMINARY

SPIM ShiftDir: MSB_First

When setting the Shift Direction parameter to MSB_First the data is shifted out Most Significant
bit first. For an 8-bit Transfer with Mode 00 the transfer looks like this:

SPIM ShiftDir: LSB_First

When setting the Shift Direction parameter to LSB_First the data is shifted out Least Significant
bit first. For an 8-bit Transfer with Mode 00 the transfer looks like this:

Block Diagram and Configuration

The SPIM is only available as a UDB configuration of blocks. The API is described above and
the registers are described here to define the overall implementation of the SPIM.

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 16 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

The implementation is described in the following block diagram.

Figure 3 UDB Implementation

CPU Access

TX/RX

Shift

Register

mosi

Bit-

Counter

miso

Clock 2x

Bit-Rate

Control Logic

sclk

reset ss

clock*

Registers

Status

The status register is a read only register which contains the various status bits defined for the
SPIM. The value of this registers is available with the SPIM_ReadStatus() and function call. The
interrupt output signal is generated from an OR’ing of the masked bit-fields within the status
register. You can set the mask using the SPIM_SetInterruptMode() function call and upon
receiving an interrupt you can retrieve the interrupt source by reading the Status register with the
SPIM_ReadStatus () function call. The Status register is clear on read so the interrupt source is
held until the SPIM_ReadStatus() function is called. All operations on the status register must
use the following defines for the bit-fields as these bit-fields may be moved around within the
status register at build time.

There are several bit-fields masks defined for the status registers. Any of these bit-fields may be
included as an interrupt source. The bit-fields indicated with an * are configured as sticky bits in
the status register, all other bits are configured as real-time indicators of status. The #defines are
available in the generated header file (.h) as follows:

SPIM_STS_SPI_DONE *

Defined as the bit-mask of the Status register bit “SPI Done”.

PSoC® Creator™ Component Data Sheet Serial Peripheral Interface (SPI) Master

Document Number: 001-49272 Rev. *C Page 17 of 18

PRELIMINARY

SPIM_STS_TX_FIFO_EMPTY

Defined as the bit-mask of the Status register bit “Transmit FIFO Empty”.

SPIM_STS_TX_FIFO_NOT_FULL

Defined as the bit-mask of the Status register bit “Transmit FIFO Not Full”.

SPIM_STS_RX_FIFO_FULL

Defined as the bit-mask of the Status register bit “Receive FIFO Full”.

SPIM_STS_RX_FIFO_NOT_EMPTY

Defined as the bit-mask of the Status register bit “Receive FIFO Not Empty”.

SPIM_STS_RX_FIFO_OVERRUN *

Defined as the bit-mask of the Status register bit “Receive FIFO Overrun”.

SPIM_STS_BYTE_COMPLETE *

Defined as the bit-mask of the Status register bit “Byte Complete”.

TX Data

The TX data register contains the transmit data value to send. This is implemented as a FIFO in
the SPIM. There is a software state machine to control data from the transmit memory buffer to
handle much larger portions of data to be sent. All API dealing with the transmitting of data must
go through this register to place the data onto the bus. If there is data in this register and flow
control indicates that data can be sent, then the data will be transmitted on the bus. As soon as
this register (FIFO) is empty no more data will be transmitted on the bus until it is added to the
FIFO. DMA may be setup to fill this FIFO when empty using the TX_DATA_ADDR address
defined in the header file.

RX Data

The RX data register contains the received data. This is implemented as a FIFO in the SPIM.
There is a software state machine to control data movement from this receive FIFO into the
memory buffer. Typically the RX interrupt will indicate that data has been received at which time
that data has several routes to the firmware. DMA may be setup from this register to the memory
array or the firmware may simply poll for the data at will. This will use the RX_DATA_ADDR
address defined in the header file.

Serial Peripheral Interface (SPI) Master PSoC® Creator™ Component Data Sheet

Page 18 of 18 Document Number: 001-49272 Rev. *C

PRELIMINARY

Conditional Compilation Information

The SPIM requires only one conditional compile definition to handle the 8 or 16 bit Datapath
configuration necessary to implement the expected NumberOfDataBits configuration it must
support. It is required that the API conditionally compile Data Width defined in the parameter
chosen. The API should never use these parameters directly but should use the define listed
below.

SPIM_DATAWIDTH

This defines how many data bits will make up a single “byte” transfer.

References

Not applicable

DC and AC Electrical Characteristics

The following values are indicative of expected performance and based on initial characterization
data.

5.0V/3.3V DC and AC Electrical Characteristics

Parameter Typical Min Max Units Conditions and Notes

Input

 Input Voltage Range --- Vss to Vdd V

 Input Capacitance --- --- pF

 Input Impedance --- --- 

 Maximum Clock Rate --- 67 MHz

© Cypress Semiconductor Corporation, 2009-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

	Features
	General Description
	When to use the SPI Master

	Input/Output Connections
	clock – Input *
	reset – Input
	miso – Input
	mosi – Output
	sclk– Output
	ss – Output
	interrupt – Output

	Parameters and Setup
	Hardware vs. Software Options
	Configure Tab
	Mode *
	Data Bits *
	Shift Direction *
	Bit Rate *

	Advanced Tab
	Clock Selection *
	Rx Buffer Size *
	Tx Buffer Size *
	Enable Internal Interrupt
	Interrupts

	Clock Selection
	Placement
	Resources
	Application Programming Interface
	void SPIM_Start(void)
	void SPIM_Stop(void)
	void SPIM_EnableInt (void)
	void SPIM_DisableInt (void)
	void SPIM_SetInterruptMode (uint8 interrupt)
	uint8 SPIM_ReadStatus (void)
	void SPIM_WriteByte (uint8/16 byte)
	uint8/16 SPIM_ReadByte (void)
	uint8/uint16 SPIM_GetRxBufferSize (void)
	uint8/uint16 SPIM_GetTxBufferSize (void)
	void SPIM_ClearRxBuffer (void)
	void SPIM_ClearTxBuffer (void)
	void SPIM_TxEnable (void)
	void SPIM_TxDisable (void)
	void SPIM_PutArray (uint16* RamString, uint8 ByteCount)
	void SPIM_ClearFIFO (void)
	Defines
	SPIM_INIT _INTERRUPTS_MASK

	Status Register Bits
	SPIM_TXBUFFERSIZE
	SPIM_RXBUFFERSIZE
	SPIM_DATAWIDTH

	Sample Firmware Source Code
	Functional Description
	Default Configuration
	SPIM Mode: 00
	SPIM Mode: 01
	SPIM Mode: 10
	SPIM Mode: 11
	SPIM ShiftDir: MSB_First
	SPIM ShiftDir: LSB_First

	Block Diagram and Configuration
	Registers
	Status
	SPIM_STS_SPI_DONE *
	SPIM_STS_TX_FIFO_EMPTY
	SPIM_STS_TX_FIFO_NOT_FULL
	SPIM_STS_RX_FIFO_FULL
	SPIM_STS_RX_FIFO_NOT_EMPTY
	SPIM_STS_RX_FIFO_OVERRUN *
	SPIM_STS_BYTE_COMPLETE *

	TX Data
	RX Data
	Conditional Compilation Information
	SPIM_DATAWIDTH

	References
	DC and AC Electrical Characteristics
	5.0V/3.3V DC and AC Electrical Characteristics

