

 PSoC® Creator™ Component Datasheet

CypressSemiconductorCorporation•198 Champion Court•SanJose,CA95134-1709•408-943-2600

Document Number: 001-88025 Rev. *A Revised June 20, 2016

Features

 SMBus Slave mode

 PMBus Slave mode

 SMBALERT# pin support

 25 ms Timeout

 Fixed Function (FF) and UDB implementations

 Configurable SM/PM Bus commands

General Description

The System Management Bus (SMBus) and Power Management Bus (PMBus) Slave
component provides a simple way to add an I2C physical layer interface to a PSoC 3 or PSoC 5
design with either SMBus or PMBus protocol running on top of it.

The SMBus is a two-wire interface with various System Management chips that can
communicate with the system host. It uses I2C as a physical layer. The SMBus Slave component
implements most of the SMBus Slave device specifications and provides options for configuring
the slave device parameters. The slave device can communicate with the SMBus Master using
the provided APIs.

The PMBus protocol is a specific implementation of the more generic SMBus protocol. With the
PMBus, the component presents all the possible PMBus commands and allows you to select
which commands are relevant to your application.

When to Use a SM Bus and PM Bus Slave

This component can be used in a design that requires a SMBus or PMBus slave
communications interface. The component handles much of the physical layer requirements in
the hardware. The firmware handles the protocol and memory buffer management; it also
manages the data transfers to/from the I2C.

SM Bus and PM Bus Slave
2.10

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 2 of 36 Document Number: 001-88025 Rev. *A

Input/Output Connections

This section describes the various input and output connections of the SMBus Slave. An asterisk
(*) in the list of I/Os states that the I/O may be hidden on the symbol under the conditions listed
in the description of that I/O.

clock – Input

The clock input should be used as the clock source for the I2C SCL/SDA stuck low timeout timer.
When the Implementation parameter is set to UDB, it needs a clock to provide 16 times of
oversampling.

The clock input is available when the I2C Implementation parameter is set to UDB.

Data rate Clock

10 kbps 160 kHz

50 kbps 800 kHz

100 kbps 1.6 MHz

400 kbps 6.4 MHz

1000 kbps 16 MHz

reset – Input

Hardware reset for UDB I2C implementation. If the active-high reset pin is held to logic high, the
I2C block is held in reset and communication over I2C stops. SDA and SCL should be forced to
high. This is a hardware reset only. Software must be independently reset using the Stop() and
Start() APIs.

sda (SMBDAT) – Input/Output

Serial data (SDA) is the I2C data signal. It is a bidirectional data signal used to transmit or
receive all bus data. The pin connected to sda should be configured as Open-Drain-Drives-Low.
If you select the "External I/O Option" in the customizer, the single sda bidirectional signal is
replaced by a separate input and output (sda_o and sda_i). This is necessary to enable the
multiplexing of multiple I2C busses required by certain applications.

scl (SMBCLK) – Input/Output

Serial clock (SCL) is the master-generated I2C clock. Although the slave never generates the
clock signal, it may hold the clock low, stalling the bus until it is ready to send data or ACK/NAK
the latest data or address. The pin connected to scl should be configured as Open-Drain-Drives-
Low. If you select the "External I/O Option" in the customizer, the single scl bidirectional signal is
replaced by a separate input and output (scl_o and scl_i). This is necessary to enable the
multiplexing of multiple I2C busses required by certain applications.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 3 of 36

smbalert (SMBALERT#) – Output

Alert is the optional SMBus defined SMBALERT# pin. This signal may be selectively enabled.
The alert pin may be asserted/deasserted via APIs described later. The pin connected to
smbalert should be configured as Open-Drain-Drives-Low.

Schematic Macro Information

By default, the PSoC Creator Component Catalog contains two schematic macro
implementations for the SM/PM Bus Slave component. These macros contain already connected
and configured pins and an internally configured clock value that defines data rate. The
schematic macros uses I2C Slave component configured to use fixed function I2C block and
hardware address decode.

SM Bus Slave Macro

This macro provides the correct settings for the SM/PM Bus Slave component in SM Bus mode.
Pins connected to terminals SCL and SDA are configured as bi-directional with Drive Mode set
to Open Drain Drives Low. The component defines the data rate as 100 kHz.

PM Bus Slave Macro

This macro provides the correct settings for the SM/PM Bus Slave component in PM Bus mode.
Pins connected to terminals SCL and SDA are configured as bi-directional with Drive Mode set
to Open Drain Drives Low. The component defines the data rate as 400 kHz.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 4 of 36 Document Number: 001-88025 Rev. *A

Component Parameters

Drag a SM/PM Bus Slave component onto your design and double click it to open the Configure
dialog. By default, the Configure dialog initially displays the General Tab as shown in Figure 1.

General Tab

The General tab provides options to configure the general settings of the SM/PM Bus. The
following parameters are available.

Figure 1. General SM Bus and PM Bus Slave Tab

Export/Import Configuration

The Export/Import Configuration allows you to save and restore the customizer settings to an
external file. This allows for easy loading of preset profiles and retention of custom settings.

Mode

The Mode parameter selects the mode of the component to either SMBus Slave mode or
PMBus Slave mode. If SMBus Slave is selected, then the PMBus Commands tab is disabled.
The Mode also determines the available data rate. In PMBus Slave mode there are only two

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 5 of 36

options: 100 and 400 kHz. In SMBus Slave mode, there are additional 10 and 50 kHz options.
The default setting for this parameter is SMBus Slave mode.

Data Rate

The Data Rate parameter is used to select the I2C data rate. The available options are
dependent on the SM/PMBusMode selection. The PMBus Slave mode allows Data Rate value
of 100 kHz and 400 kHz. The SMBus Slave mode provides options for 10 kHz, 50 kHz, 100 kHz,
and 400 kHz. The default value for the Data Rate parameter is 100 kHz.

Slave address

The Slave address parameter determines the I2C address (7-bit format) of the device. The value
is entered either in decimal or in hexadecimal (if preceded by "0x"). The customizer validates the
address to ensure that it does not conflict with any of the addresses on the SMBus Slave
reserved list. The default value for the Slave address is Default: 0x20.

SMBALERT

The SMBALERT box allows you to configure the optional SMBALERT# output pin for host
notification. If Enable SMBALERT# pin is selected, the pin becomes visible as an output on the
component symbol. The Auto/Manual buttons determine whether the SMBALERT# pin will
automatically de-assert after the host queries the device at the Alert Response Address (GUI
representation of the SetSmbAlertMode() API). The default for this parameter is set to Enabled
Auto.

Paged Commands

This parameter box configures the PMBus PAGE command. The Maximum page parameter
determines the array size for paged commands. All paged commands share this array size. The
default is set to 8 pages. The valid range is from 1 to 32.

SMBus Box

The SMBus box configures the optional SMBus features. It is present only in SMBus Slave
mode.

 The Enable receives the byte protocol check box enables/disables support for the SMBus
Receive Byte protocol. If unchecked, any Receive Byte transaction is treated as a bus error.
If checked, the component calls the SMBus_GetReceiveByteResponse() API to determine
the response byte for Receive Byte requests.

 The Support PAGE Command check box allows you to have access to the PAGE command
while in SMBusSlave mode.

 The Support QUERY Command checkbox allows you to have access to the QUERY
command while in SMBusSlave mode.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 6 of 36 Document Number: 001-88025 Rev. *A

If either the PAGE or QUERY commands are enabled, then these commands are added to the
command list on the Custom Commands tab. The properties for these commands are based on
the PMBus specification, but full customization of the command codes is also possible.

The default values for this box are: Enable receives byte protocol unchecked, Support PAGE
Command enabled, Command Code=0x00, Support QUERY command enabled, Command
Code=0x1A.

PM Bus Commands Tab

The PM Bus Commands tab is available when the Mode of the component has been set to
PMBus Slave. The tab presents the entire list of defined commands from the PMBus
specification. The pre-filled information includes the command name, its numeric command
code, and the type of command (i.e., the SMBus protocol). You may enable/disable the
commands that you want the instance of the component to handle. Name, Code, and Type are
Read-Only fields. The available parameters in this tab are outlined below.

Figure 2. PM Bus Commands SM Bus and PM Bus Slave Tab

Format

The Format parameter specifies the numeric format for this command. This format is used by
the component in formulating the response to the QUERY command. The possible format values
available in the QUERY command are Linear, Signed, Direct, Unsigned and VID Mode. This field

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 7 of 36

is only used for purposes of the QUERY command, as the component does not perform any
actual numeric conversion.

Size

For Block and Process Call type commands, you may edit the Size field to specify the size of the
data element. This size does not include the size/count byte that the SMBus protocol appends to
the beginning of block transfers. This field can only be edited for Block or Process Call
commands. For all other types, the Size field comes from the PMBus Specification. The default
value is 16.

Read/Write Config

For each command, you select whether that command is readable and/or writeable via the Read
Config and Write Config parameters. For each, you select None, Auto, or Manual. None
indicates the action is disabled (i.e. set Write Config to None for a Read-Only command). "Auto"
mode commands are handled entirely by the component. They are transferred between the
register store and the I2C transfer buffer without user firmware intervention or notification.
"Manual" commands will be added to the Transaction queue and must be handled by user
firmware. The default value for these parameters is "Manual".

Note: Because of the possible asymmetry between writes and reads and the complex nature of
Process Call protocol, auto mode may not be selected for commands that use that protocol.

Paged

The Paged checkbox indicates whether this command is paged (i.e. indexed) or not. For
commands that are specified as paged, the component automatically generates an array for that
command in the register store. The size of the array is determined by the Maximum Page
parameter. For Auto reads and writes, the component automatically indexes to the correct array
member of a paged parameter based on the current PMBus page (as selected by the last PAGE
command).The default setting for this parameter is unchecked.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 8 of 36 Document Number: 001-88025 Rev. *A

Custom Commands Tab

This tab allows you to modify and customize the Command Name, Code, and Type fields.

Command Name

This is the user specified name for the command. Allowed characters are A-Z (all caps), 0-9, and
the underscore "_". The maximum length is 24 characters. The first character may not be a
number. Command name duplicates are not allowed (including custom command names that
duplicate standard PMBus command names). The Command Name is blank by default.

Command Code

This is the numeric code for this command. It is a hexadecimal value, limited to two characters
(0-9, ssA-F). Duplicate command codes are not allowed. This includes command codes that
conflict with enabled PMBus commands. The Command Code is left blank by default.

Type

The Type specifies the SMBus transfer protocol/data-size used for this command. The possible
values are Send Byte, Read/Write Byte, Read/Write Word, Read/Write Block, Process Call, and
Block Process Call. It is set to Read/Write Byte as default.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 9 of 36

Format

The Format parameter specifies the numeric format for this command. This format is used by
the component in formulating the response to the QUERY command. The possible format values
available in the QUERY command are Linear, Signed, Direct, Unsigned and VID Mode. This field
is only used for purposes of the QUERY command, as the component does not perform any
actual numeric conversion.

Size

For Block and Process Call type commands, you may edit the Size field to specify the size of the
data element. This size does not include the size/count byte that the SMBus protocol appends to
the beginning of block transfers. This field can only be edited for Block or Process Call
commands. For all other types, the Size field comes from the PMBus Specification. The default
value is 16.

Paged

The Paged checkbox indicates whether this command is paged (i.e. indexed) or not. For
commands that are specified as paged, the component automatically generates an array for that
command in the register store. The size of the array is determined by the Pages parameter. For
Auto reads and writes, the component automatically indexes to the correct array member of a
paged parameter based on the current PMBus page (as selected by the last PAGE
command).The default setting for this parameter is unchecked.

Num Pages

The number of pages parameter will default to the total number of pages specified on the
General Tab. Users may elect to reduce this parameter as it applies to this particular command.
Minimum setting is 1. Maximum setting is the total number of pages. This parameter is grayed
out when the Paged checkbox is un-checked.

Read/Write Config

For each command, you select whether that command is readable and/or writeable via the Read
Config and Write Config parameters. For each, you select None, Auto, or Manual. "None"
indicates the action is disabled (i.e. set Write Config to None for a Read-Only command). "Auto"
mode commands are handled entirely by the component. They are transferred between the
register store and the I2C transfer buffer without user firmware intervention or notification.
"Manual" commands will be added to the Transaction queue and must be handled by user
firmware. The default value for these parameters is "Manual".

Note: Because of the possible asymmetry between writes and reads and the complex nature of
Process Call protocol, auto mode may not be selected for commands that use that protocol.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 10 of 36 Document Number: 001-88025 Rev. *A

I2C Configuration Tab

This tab allows you to configure the I2C hardware.

Implementation

This parameter determines whether the I2C hardware is implemented using Fixed Function1 or
UDB. The default mode is set to UDB.

Address decode

This parameter allows you to choose between software and hardware address decoding. For
most applications where the provided APIs are sufficient and only one slave address is required,
hardware address decoding is preferred. In applications where it is preferred to modify the
source code to provide detection of multiple slave addresses or 10-bit addresses, software
address detection must be used. Hardware is the default setting for this parameter. If hardware
address decode is enabled, the block automatically NAKs addresses that are not its own without
CPU intervention. It automatically interrupts the CPU on correct address reception, and holds the
SCL line low until CPU intervention.

1 Fixed function is not applicable for selection when the component is used on PSoC 5. PSoC 5 I2C Fixed function is
not able to recover from bus stock low due bus reset.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 11 of 36

Pins

This parameter determines which type of pins to use for SDA and SCL signal connections. There
are three possible values: Any, I2C0, and I2C1.The default is "Any". "Any" means general-
purpose I/O (GPIO or SIO).

UDB clock source

This parameter allows you to choose between an internally configured clock and an externally
configured clock for data rate generation. When set to Internal Clock, PSoC Creator calculates
and configures the required clock frequency based on the Data Rate parameter, taking into
account 16 times oversampling. In External Clock mode, the component does not control the
data rate but displays the actual data rate based on the user-connected clock source. If this
parameter is set to Internal Clock then the clock input is not visible on the symbol. You can enter
the desired tolerance values for the internal clock. Clock tolerances are specified as a
percentage. The default range is -5% to +50%.

Enable UDB slave fixed placement

The Enable UDB slave fixed placement parameter allows you to choose a fixed component
placement that improves the component performance over unconstrained placement. If this
parameter is set, all of the component resources are fixed in the top right corner of the device.
This parameter controls the assignment of pins connected to the component. The choice of pin
assignment is not a determining factor for component performance. This option is only valid if
Implementation is set to UDB. This option is disabled by default. The fixed placement aspect of
the component removes the routing variability. It also allows the fixed placement to continue to
operate the same as a non-fixed placed design would in a fairly empty design.

External IO Buffer

This parameter allows internal I2C bus multiplexing. The internal OE buffer is removed and
bidirectional scl and sda terminals are replaced with separate inputs (sda_i and scl_i) and
outputs (sda_o and scl_o).Application Programming Interface Application Programming Interface
(API) routines allow you to configure the component using software. The following table lists and
describes the interface to each function. The subsequent sections cover each function in more
detail.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 12 of 36 Document Number: 001-88025 Rev. *A

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software at runtime. The following table lists and describes the interface to each function. The
subsequent sections cover each function in more detail.

By default, PSoC Creator assigns the instance name "SMBusSlave_1" to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"SMBusSlave."

Note Some of component API functions are used in component ISR and, therefore, when
building with Keil compiler may provoke a compiler warning prompting. To avoid this, just include
these functions to the ".cyre" file.

Function Description

SMBusSlave_Start() Initializes and enables the SMBus component. The I2C interrupt is
enabled, and the component can respond to the SMBus traffic.

SMBusSlave_Stop() Stops responding to the SMBus traffic. Also disables the interrupt.

SMBusSlave_EnableInt() Enables the I2C interrupt

SMBusSlave_DisableInt() Disables the I2C interrupt.

SMBusSlave_Init() Initializes the I2C registers with initial values provided from the
customizer.

SMBusSlave_Enable() Activates the I2C hardware.Deosn’t enable I2C interrupt required for
normal operation.

SMBusSlave_SetAddress() Sets the I2C slave address.

SMBusSlave_SetAlertResponseAddress() Sets the I2C slave address where the device will respond when in
Alert Response Address Mode.

SMBusSlave_GetNextTransaction() Returns a pointer to the next transaction record in the transaction
queue. If the queue is empty, the function returns NULL.

SMBusSlave_GetTransactionCount() Returns the number of transaction records in the transaction queue.

SMBusSlave_CompleteTransaction() Causes the component to complete the currently pending transaction
at the head of the queue.

SMBusSlave_SetSmbAlert() Asserts or de-asserts the SMBALERT# smbalert pin.

SMBusSlave_SetSmbAlertMode() Determines how the component responds to a SMBus master Read
at the Alert Response Address.

SMBusSlave_HandleSmbAlertResponse() Called by the component when the host responds to the Alert
Response Address and the SMBALERT Mode is set to
FIRMWARE_MODE.

SMBusSlave_GetReceiveByteResponse() Called by the I2C ISR to determine the response byte when it detects
a "Receive Byte" protocol request.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 13 of 36

Function Description

SMBusSlave_HandleBusError() Called by the component whenever a bus protocol error occurs.

SMBusSlave_StoreUserAll() Saves the RAM Register Store to the User Register Store in Flash.

SMBusSlave_RestoreUserAll() Verifies the CRC field of the User Register Store and then copies the
contents of the User Register Store to the RAM Register Store.

SMBusSlave_EraseUserAll() The user calls this function to erase the User Store in flash memory

SMBusSlave_RestoreDefaultAll() Verifies the signature field of the Default Register Store and then
copies the contents of the Default Register Store to the RAM Register
Store.

SMBusSlave_StoreComponentAll() Calls this function to update the parameters of other components in
the system with the current PMBus settings.

SMBusSlave_RestoreComponentAll() Calls this function to update the PMBus Operating Register Store with
the current configuration parameters of other components in the
system.

SMBusSlave_Lin11ToFloat() Converts the argument "linear11" to floating point and returns it.

SMBusSlave_FloatToLin11() Takes the argument "floatvar" (a floating point number) and converts
it to a 16-bit LINEAR11 value (11-bit mantissa + 5-bit exponent),
which it returns.

SMBusSlave_Lin16ToFloat() Converts the argument "linear16" to floating point and returns it.

SMBusSlave_FloatToLin16() Takes the argument "floatvar" (a floating point number) and converts
it to a 16-bit LINEAR16 value (16-bit mantissa), which it returns.

Global Variables

Function Description

SMBusSlave_initVar (static) The initVar variable is used to indicate initial configuration of this component.
This variable is prepended with the component name, in this case, SMBusSlave.
The SMBusSlave_initVar variable is initialized to zero and set to 1 the first time
SMBusSlaveStart() is called. This allows for component initialization without
reinitialization in all subsequent calls to the SMBusSlave Start() routine.

It is necessary to reinitialize the component when the device is going through
sleep cycles. Therefore, the variable is set to zero when going into sleep,
SMBusSlave Sleep(), and set during the reinitialization done in SMBusSlave
Wakeup().

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 14 of 36 Document Number: 001-88025 Rev. *A

void SMBusSlave_Start(void)

Description: This is the preferred method to begin component operation. SMBusSlave_Start() calls the
SMBusSlave_Init() function, and then calls the SMBusSlave_Enable() function.
SMBusSlave_Start() must be called before I2C bus operation. This API enables the I2C
interrupt.

Parameters: None

Return Value: None

Side Effects: None

void SMBusSlave_Stop(void)

Description: This function disables I2C hardware and interrupt. It releases the I2C bus if it was locked up
by the device and sets it to the idle state.

Parameters: None

Return Value: None

Side Effects: None

void SMBusSlave_EnableInt(void)

Description: This function enables the I2C interrupt.

Parameters: None

Return Value: None

Side Effects: None

void SMBusSlave_DisableInt(void)

Description: This function disables the I2C interrupt. This function is not normally required because the
I2C_Stop() function disables the i0nterrupt.

Parameters: None

Return Value: None

Side Effects: If the I2C interrupt is disabled while the I2C is still running, it can cause the I2C bus to lock
up.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 15 of 36

void SMBusSlave_Init(void)

Description: This function initializes or restores the component according to the customizer Configure
dialog settings. It is not necessary to call SMBusSlave_Init() because the
SMBusSlave_Start() API calls this function, which is the preferred method to begin
component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void SMBusSlave_Enable(void)

Description: This function activates the hardware and begins component operation. It is not necessary
to call SMBusSlave_Enable() because the SMBusSlave_Start() API calls this function,
which is the preferred method to begin component operation. If this API is called,
SMBusSlave _Start() or SMBusSlave _Init() must be called first.

Parameters: None

Return Value: None

Side Effects: None

void SMBusSlave_SetAddress(uint8 address)

Description: This function sets the I2C slave address.

Parameters: uint8 address: I2C slave address for the primary device. This value can be any address
between 0 and 127 (0x00 to 0x7F). This address is the 7-bit right-justified slave address
and does not include the R/W bit.

Return Value: None

Side Effects: None

voidSMBusSlave_SetAlertResponseAddress(uint8 address)

Description: This function sets the I2C slave address where the device will respond when in Alert
Response Address Mode.

Parameters: uint8 address: I2C slave address for Alert Response mode. This value can be any address
between 0 and 127 (0x00 to 0x7F). This address is the 7-bit right-justified slave address
and does not include the R/W bit.

Return Value: None

Side Effects: None

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 16 of 36 Document Number: 001-88025 Rev. *A

TRANSACTION_STRUCT* SMBusSlave_GetNextTransaction(void)

Description: This function returns a pointer to the next transaction record in the transaction queue. If the
queue is empty, the function returns NULL. Only Manual Reads and Writes will be returned
by this function, as the component will handle any Auto transactions on the queue. In the
case of Writes, it is the responsibility of the user firmware servicing the Transaction Queue
to copy the "payload" to the register store. In the case of Reads, it is the responsibility of
user firmware to update the contents of the variable for this command in the register store.
For both, call SMBusSlave_CompleteTransaction() to free the transaction record.

Note that for Read transactions, the length and payload fields are not used for most
transaction types. The exception to this is Process call, where the Word from the write
phase will be stored in the payload field.

Parameters: None

Return Value: Pointer the next transaction record

Side Effects: None

uint8 SMBusSlave_GetTransactionCount(void)

Description: Returns the number of transaction records in the transaction queue.

Parameters: None

Return Value: uint8: Number of records in the transaction queue

Side Effects: None

void SMBusSlave_CompleteTransaction(void)

Description: Causes the component to complete the currently pending transaction at the head of the
queue. The user firmware transaction handler calls this function after processing a
transaction. This alerts the component code to copy the register variable associated with
the pending Read transaction from the register store to the I2C transfer buffer so that the
transfer may complete. It also advances the queue. Must be called for Reads and Writes.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 17 of 36

void SMBusSlave_SetSmbAlert(uint8 assert)

Description: Asserts or de-asserts the SMBALERT# smbalert pin. As long as SMBALERT# is asserted,
the component will respond to master READ’s to the Alert Response Address. The
response will be the device’s primary slave address. Depending on the mode setting, the
component will automatically de-assert SMBALERT#, call the
SMBusSlave_HandleSmbAlertResponse() API, or do nothing.

Parameters: uint8: assert

Value Description

SMBusSlave_SMBALERT_DEASSERT Deassertsmbalert pin

SMBusSlave_SMBALERT_ASSERT Assert a smbalert pin

Return Value: None

Side Effects: None

void SMBusSlave_SetSmbAlertMode(uint8 alertMode)

Description: This function determines how the component responds to a SMBus master Read at the
Alert Response Address. When SMBALERT# is asserted, the SMBus master may
broadcast a Read to the global Alert Response Address to determine which SMBus device
on the shared bus has asserted SMBALERT#.

In Auto mode, SMBALERT# is automatically deasserted once the bus master successfully
READ’s the Alert Response Address.

In Manual mode, the component will call the API
SMBusSlave_HandleSmbAlertResponse() where user code (in a merge section) is
responsible for deasserting SMBALERT#.

In DO_NOTHING mode, the component will take no action.

Parameters: uint8: alertMode a byte that defines SMBALERT pin mode.

Value Description

SMBusSlave_DO_NOTHING Do nothing with SMBALERT# pin

SMBusSlave_AUTO_MODE Automatically deassert SMBALERT# pin

SMBusSlave_FIRMWARE_MODE User is respinsible for deasserting
SMBALERT# pin

Return Value: None

Side Effects: None

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 18 of 36 Document Number: 001-88025 Rev. *A

void SMBusSlave_HandleSmbAlertResponse(void)

Description: This API is called by the component when the host responds to the Alert Response
Address and the SMBALERT Mode is set to FIRMWARE_MODE. This function contains a
merge code section where the user inserts code to run after the Master has responded. For
example, the user might update a status register and de-assert the SMBALERT# pin.

Parameters: None

Return Value: None

Side Effects: None

uint8 SMBusSlave_GetReceiveByteResponse(void)

Description: This function is called by the I2C ISR to determine the response byte when it detects a
"Receive Byte" protocol request. This function includes a merge code section where the
user may insert their code to override the default return value of this function – which is
0xFF. This function will be called in ISR context. Therefore, user merge code must be fast,
non-blocking, and may only call re-entrant functions.

Parameters: None

Return Value: uint8: User-Specified status byte

Value Description

SMBusSlave_RET_UNDEFINED Default return status

Side Effects: None

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 19 of 36

void SMBusSlave_HandleBusError(uint8 errorCode)

Description: This API is called by the component whenever a bus protocol error occurs. Examples of
bus errors would be: invalid command, data underflow, and clock stretch violation. This
function is only responsible for the aftermath of an error since the component will already
handle errors in a deterministic manner. This function is primarily for the purpose of
notifying user firmware that an error has occurred. For example, in a PMBus device this
would give user firmware an opportunity to set the appropriate error bit in the
STATUS_CML register.

Parameters: uint8 errorCode:

Value Description

SMBusSlave_ERR_READ_FLAG Read Flag was incorrectly set

SMBusSlave_ERR_RD_TO_MANY_BYTES Host attempts to read to many
bytes

SMBusSlave_ERR_WR_TO_MANY_BYTES Host attempts to write to many
bytes

SMBusSlave_ERR_UNSUPORTED_CMD Received command is unsupported

SMBusSlave_ERR_INVALID_DATA Received data is invalid

SMBusSlave_ERR_TIMEOUT Bus reset timeout occured

SMBusSlave_ERR_WR_TO_FEW_BYTES Host attempts to write to few bytes

Return Value: None

Side Effects: None

uint8 SMBusSlave_StoreUserAll(char * flashRegs)

Description: This function saves the RAM Register Store to the User Register Store in Flash. The CRC
field in the Register Store data structure is recalculated and updated prior to the save. This
function does not perform storing anything to Flash by default. Instead it contains a merge
region where user can implement an algorithm of storing Operating Memory to flash.

Parameters: flashRegs:

A pointer to a location in Flash where Operating Memory (RAM) should be

stored.

Return Value: uint8: One of following standard return statuses

Value Description

CYRET_SUCCESS Action completed successfully

CYRET_MEMORY Memory problem occured

Side Effects: None

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 20 of 36 Document Number: 001-88025 Rev. *A

uint8 SMBusSlave_RestoreUserAll(char * flashRegs)

Description: This function verifies the CRC field of the User Register Store and then copies the contents
of the User Register Store to the RAM Register Store. This function does not perform
restoring Register Store from Flash by default. Instead it contains a merge region where
user can implement an algorithm of restoring data to Operating Memory (RAM).

Parameters: flashRegs:

A pointer to a location in Flash where Operating Memory (RAM) is

stored.

Return Value: uint8: One of following standard return statuses.

Value Description

CYRET_SUCCESS CRC matches and Operating Memory was
updated from user Register Store (Flash)

CYRET_BAD_DATA Data is bad. CRC doesn’t match

Side Effects: None

uint8 SMBusSlave_EraseUserAll(void)

Description: The user calls this function to erase the User Store in flash memory. This function consists
of merge region and that means that user has to implement its own mechanism to erase
the contents of User Store in flash memory.

Parameters: None

Return Value: uint8: One of following standard return statuses.

Value Description

CYRET_SUCCESS Action completed successfully

Or other user-determined non-SUCCESS status

Side Effects: None

uint8 SMBusSlave_RestoreDefaultAll(void)

Description: This function verifies the signature field of the Default Register Store and then copies the
contents of the Default Register Store to the RAM Register Store.

Parameters: None

Return Value: uint8: One of following standard return statuses.

Value Description

CYRET_SUCCESS Action completed successfully

CYRET_BAD_DATA Data is bad. CRC does not match

Side Effects: None

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 21 of 36

uint8 SMBusSlave_StoreComponentAll(void)

Description: The user calls this function to update the parameters of other components in the system
with the current PMBus settings. Because this action is very application specific, this
function consists almost entirely of a merge section. The only component provided firmware
is a return value variable (retval) which is initialized to CYRET_SUCCESS and returned at
the end of the function. The rest of the function must be user provided.

Parameters: None

Return Value: uint8: One of following standard return statuses.

Value Description

CYRET_SUCCESS Action completed successfully

Or other user-determined non-SUCCESS status.

Side Effects: None

uint8 SMBusSlave_RestoreComponentAll(void)

Description: The user calls this function to update the PMBus Operating Register Store with the current
configuration parameters of other components in the system. Because this action is very
application specific, this function consists almost entirely of a merge section. The only
component provided firmware is a return value variable (retval) which is initialized to
CYRET_SUCCESS and returned at the end of the function. The rest of the function must
be user provided.

Parameters: None

Return Value: uint8: One of following standard return statuses.

Value Description

CYRET_SUCCESS Action completed successfully

Or other user-determined non-SUCCESS status.

Side Effects: None

float SMBusSlave_Lin11ToFloat (uint16 linear11)

Description: This function converts the argument "linear11" to floating point and returns it.

Parameters: uint16 linear11: A number in LINEAR11 format.

Return Value: float: The linear11 parameter converted to floating point

Side Effects: None

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 22 of 36 Document Number: 001-88025 Rev. *A

uint16 SMBusSlave_FloatToLin11 (float floatvar)

Description: This function takes the argument "floatvar" (a floating point number) and converts it to a 16-
bit LINEAR11 value (11-bit mantissa + 5-bit exponent), which it returns.

Parameters: float floatvar: A floating point number

Return Value: uint16: floatvar converted to LINEAR11

Side Effects: None

float SMBusSlave_Lin16ToFloat(uint16 linear16, int8 inExponent)

Description: This function converts the argument "linear16" to floating point and returns it. The argument
Linear16 contains the mantissa. The argument inExponent is the 5-bit 2’s complement
exponent to use in the conversion.

Parameters: uint16 linear16: The 16-bit mantissa of a LINEAR16 number.

 int8inExponent: The 5-bit exponent of a LINEAR16 number. Packed in the lower 5 bits. 2’s
Complement.

Return Value: float: The parameters converted to floating point

Side Effects: None

uint16 SMBus_FloatToLin16(float floatvar, int8 outExponent)

Description: This function takes the argument "floatvar" (a floating point number) and converts it to a 16-
bit LINEAR16 value (16-bit mantissa), which it returns. The argument outExponent is the 5-
bit 2’s complement exponent to use in the conversion.

Parameters: floatfloatvar: A floating point number to be converted to LINEAR16.

 int8outExponent: User provided 5-bit exponent to use in the conversion.

Return Value: uint16: The parameters converted to LINEAR16.

Side Effects: None

Bootloader Support

The SMBus and PMBus Slave component can be used as a communication component for the
Bootloader. For more information about the Bootloader, refer to the "Bootloader System" section
of the System Reference Guide.

The SMBus and PMBus Slave component provides a set of API functions for Bootloader use.

Function Description

SMBusSlave_CyBtldrCommStart Starts the SMBus and PMBus Slave component and enables its interrupt.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 23 of 36

Function Description

SMBusSlave_CyBtldrCommStop Disables the SMBus and PMBus Slave component and disables its
interrupt.

SMBusSlave_CyBtldrCommReset Sets read and write I2C buffers to the initial state and resets the slave
status.

SMBusSlave_CyBtldrCommWrite Allows the caller to write data to the bootloader host. This function
manages polling to allow a block of data to be completely sent to the host
device.

SMBusSlave_CyBtldrCommRead Allows the caller to read data from the bootloader host. This function
manages polling to allow a block of data to be completely received from
the host device.

void SMBusSlave_CyBtldrCommStart(void)

Description: Starts the communication component and enables the interrupt. The read buffer initial
state is full and the read always is 0xFFu. The write buffer is clear and ready to receive a
command.

Parameters: None

Return Value: None

Side Effects: This function enables component interrupt. If I2C is enabled without the interrupt enabled,
it could lock up the bus.

void SMBusSlave_CyBtldrCommStop(void)

Description: Disables the communication component and disables the interrupt.

Parameters: None

Return Value: None

Side Effects: None

void SMBusSlave_CyBtldrCommReset(void)

Description: Sets buffers to the initial state and reset the statuses. The read buffer initial state is full and
the read always is 0xFFu. The write buffer is clear and ready to receive a command.

Parameters: None

Return Value: None

Side Effects: None

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 24 of 36 Document Number: 001-88025 Rev. *A

cystatus SMBusSlave_CyBtldrCommRead(uint8 * Data, uint16 size, uint16 *
count, uint8 timeOut)

Description: Receives the command from the Host. All bytes are received by the I2C ISR and stored in
internal I2C buffer. The function checks status with timeout to detemine the end of transfer
and then copy data to bootloader buffer. After exist this function the I2C ISR is able to
receive more data.

Parameters: uint8 *Data: Pointer to storage for the block of data to be read from the bootloader host

uint16 size: Number of bytes to be read

uint16 *count: Pointer to the variable to write the number of bytes actually read

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, see the "Return Codes" section of
the System Reference Guide.

Side Effects: None

cystatus SMBusSlave_CyBtldrCommWrite(uint8 * Data, uint16 size, uint16 *
count, uint8 timeOut)

Description: Transmits the status of executed command to the Host. The function updates the I2C read
buffer with response and releases it to the host. All reads return 0xFF till the buffer will be
released. All bytes are transferred by the I2C ISR. The function waits with timeout till all
bytes will be read. After exit this function the reads return 0xFF.

Parameters: uint8 *Data: Pointer to the block of data to be written to the bootloader host

uint16 size: Number of bytes to be written

uint16 *count: Pointer to the variable to write the number of bytes actually written

uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout

Return Value: cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information see the "Return Codes" section of
the System Reference Guide.

Side Effects: Temporary enables component interrupt when called on a start of clock stretching during
"Bootloader Write" transaction but disables the interrupt before return from this function (to
meet manual command handling behavior). When called not using "Bootloader Write" -
always leaves component interrupt enabled.

Macros

 SMBusSlave_FL_ADDR_TO_ROW(addr) – Extracts Flash row number from specified
address.

 SMBusSlave_FL_ADDR_TO_ARRAYID(addr) - Extracts Flash array ID from specified
address.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 25 of 36

 SMBusSlave_SIZE_TO_ROW(size) – Calculates and returns the number of Flash rows
required to store the number of data defined by size.

 SMBusSlave_MAX_PAGES – Specifies the maximum number of pages used by paged
commands.

 SMBusSlave_NUM_COMMANDS – Defines the number of pages for paged commands.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The SMBus and PMBus Slave component has not been verified for MISRA-C:2004 coding
guidelines compliance.

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

Interrupt Service Routine

SMBus and PMBus Slave component uses two ISR for operation. First, ISR handles command
decoding and data transactions over the SM/PM Bus. Second, is a 25 ms timeout interrupt that is
designed to reset the bus when a stuck low condition occurs.

Functional Description

The theory of operation of this component is very similar to an I2C Slave component. All
references the SMBus specification refers to the SMBus specification version 2.0. Key
functionalities of the component are highlighted in this section.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 26 of 36 Document Number: 001-88025 Rev. *A

I2C Physical Layer

The physical layer of the SM/Pm Bus slave component is based on the I2C protocol. The three
main differences that impact this component are:

The SMBus specification mandates that the component must reset and release the SCL and
SDA lines if the SCL signal is detected stuck low for 25 ms. This is described in more detail in
the AC & DC Electrical Performance Requirements section. This component also monitors the
SDA line and resets if it is also stuck low for 25 ms as an extra precaution.

The SMBus Specification mandates that the component must not stretch the clock more than 25
ms (cumulative) in any given transfer. The slave is allowed to delay transfers when it is busy by
pulling SCL low (clock stretching) provided that the cumulative stretch time in any transaction
does not exceed 25 ms

Addition of an SMBALERT# pin to notify the host that the device needs attention

SMBus/PMBus Addressing

Every SMBus/PMBus slave device has an I2C address. The following addresses are reserved for
specific SMBus usage and must not be used as the generic slave address for a SMBus/PMBus
slave.

Slave Address (Bits 7:1) R/W# bit (Bit 0) Comment

0000 000 0 General Call Address

0000 000 1 START byte

0000 001 X CBUS address

0000 010 X Reserved for different bus format

0000 011 X Reserved for future use

0000 1XX X Reserved for future use

0101 000 X Reserved for ACCESS bus host

0110 111 X Reserved for ACCESS bus default address

1111 0XX X Reserved for 10-bit slave addressing

1111 1XX X Reserved for future use

0001 000 X Reserved for SMBus Host

0001 100 X SMBus Alert Response Address

1100 001 X SMBus Device Default Address

If the user enables the SMBALERT# pin option, the component responds to its primary address
and the Alert Response Address.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 27 of 36

SMBus/PMBus Protocols

Nine different protocols are defined in the SMBus Specification. A summary of these protocols
and their support statuses are shown below.

Protocol Support Status Comment

Quick Command Not Supported SMBus only

Send Byte Supported Both

Receive Byte Supported SMBus only

Write Byte/Word Supported Both

Read Byte/Word Supported Both

Process Call Supported Both

Block Write/Read Supported Both

Block Write/Block Read Process Call Supported Both

SMBus Host Notify Protocol Not Supported Both

Key concepts that characterize the SM/PM Bus component are as follows.

Neither SMBus nor PMBus use the concept of a sub-address or an I2C register map. All transfers
are command based. Immediately following the I2C slave address is a command code.
Commands can be write-only, read-only or read/write. In SMBus, the definition of the commands
and their read/write restrictions are almost entirely up to the user. In PMBus, the commands are
largely pre-defined but there are a range of command codes that are unassigned and available
for "manufacturer-specific" implementations.

For read transactions, the host switches between writing the read command code to reading the
requested data by issuing a REPEATED START bus condition. The STOP bit is only generated
once the entire transaction is completed. An example is shown below:

SMBus and PMBus are little-endian protocols (i.e. the least significant byte of a multi-byte data-
type is transmitted first on the bus). It is a requirement that from the PSoC perspective, all
registers be stored in the PSoC native endian format. The component is responsible for correctly
translating endianess between PSoC and the I2C buffer. This only applies to 16-bit word
transfers.

The SMBus Specification does not define any of the command codes;they are up to the user to
define. However, the PMBus Specification Part II, Appendix I does define all 255 possible
command codes; 46 of these are up to the user to define (called manufacturer specific
commands).

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 28 of 36 Document Number: 001-88025 Rev. *A

Register Stores Concept

According to the PMBus Specification II 5.4.2 – "Every Parameter That Can Be Written Must Be
Readable. In general, any command that accepts a value for writing must also return that value
when read. For this purpose, a concept of Register Stores is used.

Figure 3. Register Stores Concept

User Register Store

(Flash)

Operating Memory

Register Store

(RAM)

Default Register Store

(Flash)

SMBusSlave_Defaults.c

SMBus/PMBus

Host

Component Register

Store

(Component API’s)

RESTORE_DEFAULT_ALL
SMBus_RestoreDefaultAll()

RESTORE_USER_ALL
SMBus_RestoreUserAll()

STORE_USER_ALL
SMBus_StoreUserAll()

SMBus_RestoreComponenttAll()

SMBus_StoreComponenttAll()

Operating Memory Register Store

This is the RAM version of the register store. Runtime SMBus/PMBus commands modify this
version of the register store. Since this register store is located in RAM, its contents are assumed
to be invalid at reset.

Default Register Store

A Flash version of the register store containing default values for all of the SMBus/PMBus
parameters. At startup, the Default Register Store can be copied to the Operating Memory
Register Store to initialize the Operating Register Store. The parameter values in the default
register store are fixed at compile/link time. User is responsible to provide a default values for
parameters in register store. To do open the SMBusSlave_Defaults.c, copy the parameters from
commend block and paste them to the merge region below. If you do that they will be stored in
SMBusSlave_regsDefault and every time on startup Operating Memory will be initialized with

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 29 of 36

these parameters. Another way to initialize Operating Memory with default values is to call
SMBus_RestoreDefaultAll(). This function can be used in user handler for
RESTORE_DEFAULT_ALL (0x12) PM Bus command.

User Register Store

This is another Flash version of the register store. Unlike the Default Register Store, which is
essentially read-only, the User Register Store can be updated based on the current contents of
the Operating Register Store. As storing data into Flash is very implementation specific, the
component doesn’t perform storing anything into Flash; it provides two API functions with merge
regions that can be used for that purpose. SMBusSlave_StoreUserAll() does perform
calculations of CRC required for checking data validness at restore.

To design your own method of storing data into a Flash, please refer to System Reference Guide
that comes with PSoC Creator. Section 10 of System Reference Guide has basic information
and also a description of functions that work with Flash. There are also a set of macros provided
in the component that may be useful when working with Flash.

Component Register Store

The primary motivation for the component register store is to allow PMBus to extract parameters
from and configure standard PSoC Creator components (thus, the name – Component Register
Store). Creator components have their own configuration parameters, which are usually set up
with the component customizer. These parameters are accessed at runtime via component
specific SMBusSlave_StoreComponentAll()/SMBusSlave_RestoreComponentAll() API’s. The
component parameters accessible via the API’s comprise the component register store. At
startup, user PMBus firmware may want to:

 Update the other component settings based on PMBus parameters stored in User or Default
register stores, or

 Update the PMBus register store based on the component settings.

Special case commands

PAGE command

The PMBus PAGE (Code 0x00) command (PMBus Part II – Section 11.10) allows the access of
multiple logical PMBus devices at the same PMBus I2C address. For example, a PMBus power
supervisor that controls multiple power rails could provide access to the commands/parameters
for each rail on its own page. The page can be thought of as an index into an array of
commands/registers. Once the page is set via the PAGE command, the page setting is
persistent until set again by another PAGE command.

In PMBus mode, the component has built-in support for the PAGE command. In SMBus mode,
the user has the option to enable the PAGE command and specify the command code to use for
PAGE.

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 30 of 36 Document Number: 001-88025 Rev. *A

If the PAGE command is enabled, the valid range of the PAGE command values are between 1
and 32, and must be within the Max Page setting determined by the user. The exception is the
"All Pages" wild card setting, which is 0xFF. The "All Pages" wild card setting is only valid for
write transactions, and must always be handled in "Manual" mode. If the PAGE is set to 0xFF,
the following transactions are treated as errors:

 An attempt to Read from a Paged command

 An attempt to Write to a Paged command that is configured as Manual

Even in a PMBus device with multiple pages, some commands are not-dependent on the current
page and are always handled in the same way regardless of the PAGE setting. For example, the
PMBUS_REVISION command, which returns the PMBus version that the device supports, is
common to all pages. Thus, there is a concept of Page commands and Common commands. For
each SMBus/PMBus command, the customizer allows the user to specify whether the command
is Paged or Common. When a command is marked as Paged, the component defines an array in
the Register Store for that command.

QUERY Command

The PMBus QUERY (Code 0x1A) command is used to ask a PMBus device if it supports a given
command, and if so, what data formats it supports for that command. In PMBus mode, the
component has built-in support for the QUERY command. In SMBus mode, the user has the
option to enable the QUERY command and specify the command code to use for QUERY.

This command uses the Block Write-Block Read Process Call described in the SMBus
specification. For the write portion of the process call, the one data byte is an unsigned binary
integer, the value of which is equal to the command code of the command being investigated.
For the read portion of the process call, the one data byte is an unsigned binary integer with
values as follows:

Bits Value Meaning

7 1 Command is supported

0 Command is not supported

6 1 Command is supported for write

0 Command is not supported for write

5 1 Command is supported for read

0 Command is not supported for read

4:2 000 Linear Data Format used

001 16 bit signed number

010 Reserved

011 Direct Mode Format used

100 8 bit unsigned number

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 31 of 36

Bits Value Meaning

101 VID Mode Format used

110 Manufacturer specific format used

111 Command does not return numeric data. This is also used for
commands that return blocks of data.

1:0 XX Reserved for future use

All of the information in the above table can be generated based on user selections in the
Customizer. If the command code investigated with QUERY isn’t supported then "0x00" is
returned in this case.

Bootloader Commands

When the component is placed in a "Bootloader" project, two additional commands become
available in the Configure dialog on the Custom Commands tab. These commands are
BOOTLOAD_READ and BOOTLOAD_WRITE with default command codes of 0xFD and 0xFC,
respectively. They add a capability to the component to act as a communication component for
the Bootloader component.

These two commands interact with the bootloader component placed on a design schematic.
After placing the bootloader component, select "Custom interface" in the bootloader component
Configure dialog.

Resources

The resource figures for the fixed function implementation SM/PM Bus Slave component are
listed below. The data was collected with data rate set to 400 kbps.

PSoC 3

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

I2C Fixed
Blocks

Interrupts

SM Bus / PM Bus(UDB) 3 32 2 6 - 2

SM Bus / PM Bus(Fixed
Function)

2 9 1 4 1 2

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 32 of 36 Document Number: 001-88025 Rev. *A

PSoC 5

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

I2C Fixed
Blocks

Interrupts

SM Bus / PM Bus(UDB) 3 32 2 6 - 2

SM Bus / PM Bus(Fixed
Function)

N/A N/A N/A N/A N/A N/A

PSoC 5LP

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

I2C Fixed
Blocks

Interrupts

SM Bus / PM Bus(UDB) 3 32 2 6 – 2

SM Bus / PM Bus(Fixed
Function)

1 5 2 2 1 2

API Memory Usage

The component memory usage varies significantly depending on the compiler, device, number of
APIs used and component configuration. The following table provides the memory usage for all
APIs available in the given component configuration.

The measurements have been done with an associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

SM Bus Slave (Fixed
Function)

5421 198 N/A N/A 3756 222

SM Bus Slave (UDB) 5494 194 3844 142 3844 142

PM Bus Slave (Fixed
Function)

7366 1790 N/A N/A 4892 3366

PM Bus Slave (UDB) 7439 1786 4976 3354 4968 3354

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 33 of 36

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

SMBus and PMBus Slave DC Specifications

Parameter Description Min Typ[2] Max Units

IDD Component current consumption

SMBus (UDB) DataRate = 50kbps – 380 – μA

SMBus (Fixed Function) – 670 – μA

PMBus (UDB) DataRate = 100kbps – 440 – μA

PMBus (Fixed Function) – 620 – μA

SMBus (UDB) DataRate = 400kbps – 720 – μA

SMBus (Fixed Function) – 860 – μA

PMBus (UDB) DataRate = 400kbps – 750 – μA

PMBus (Fixed Function) – 980 – μA

SMBus and PMBus Slave AC Specifications

Parameter Description Min Typ Max Unit

fSCL SCL clock frequency –

–

–

–

–

–

100

400

1000

kHz

fCLOCK Component input clock frequency − 16 × fSCL − kHz

tRESET Reset pulse width − 2 − tCY_clock
3

tLOW Low period of the SCL clock 4.7

1.3

0.5

–

–

–

−

–

–

μs

tHIGH High period of the SCL clock 4.0

0.6

0.26

–

–

–

−

–

–

μs

tHD_STA Hold time after a (Repeated) start condition 4.0 – − μs

2. Device IO and clock distribution current are not included. The values are at 25 °C. Data was measured at
BUS_CLK set to 24 MHz.
3 tCY_clock = 1/fCLOCK. This is the cycle time of one clock period

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 34 of 36 Document Number: 001-88025 Rev. *A

Parameter Description Min Typ Max Unit

0.6

0.26

–

–

–

–

tSU_STA Setup time for a repeated start condition 4.7

0.6

0.26

–

–

–

−

–

–

μs

tHD_DAT Data hold time 5.0

–

–

–

–

–

−

–

–

μs

tSU_DAT Data setup time 250

100

50

–

–

–

−

–

–

ns

tSU_STO Setup time for stop condition 4.0

0.6

0.26

–

–

–

−

–

–

μs

tBUF Bus free time between a stop and start condition 4.7

1.3

0.5

–

–

–

−

–

–

μs

tFLASH_WRITE - 40.64 - ms

Figure 4. Data Transition Timing Diagram

tSU_STOtSU_STAtHD_DATtHD_STA

SCL

SDA

tLOW tSU_DATtHIGH

SRS P

tBUF

S

tHD_STA

4 Value was obtained by storing a Register Store configured for PM Bus mode with all PM Bus commands enabled
with their default configuration at BUS_CLK of 24 MHz.

PSoC® Creator™ Component Datasheet SM Bus and PM Bus Slave

Document Number: 001-88025 Rev. *A Page 35 of 36

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.10.a Minor datasheet edits.

2.10 The issue related to inability of changing the
PAGE to 0xFF (“all pages” wildcard) was fixed.

2.0 The PMBus Register store was made to be
always declared using arrays for paged
commands even when the user selects only 1
page in the design.

This was an error that might lead to code
restructuring,

Added "Pages" column to the Custom
Commands table.

This is a new parameter that defines the page number
for specific custom command.

Fixed issue with incomplete block writes
transactions.

The code was changed to verify if the number of bytes
specified by "Byte count" field equals to number of
received data bytes. Previously code verified if
number of data equals to the "Size" parameter for
specific block command that is entered by user in the
component customizer.

Removed compilation error that is occured in
case when SMBALERT pin was left
unconnected.

Fixed issue which caused erroneous generation
of bus error in while processing of page
indexed, manual command when page was set
to "all pages" wildcard.

Restricted slave address from using addresses
reserved for specific SMBus usage.

This was a bug as component didn’t validate the
address,

Fixed minor incorrections

The new function was added -
SMBusSlave_EraseUserAll().

1.10 Added MISRA Compliance section. The component was not verified for MISRA
compliance.

Updated SMBus and PMBus Slave with the
latest version of the I2C and Control Register
components.

1.0 First release

SM Bus and PM Bus Slave PSoC® Creator™ Component Datasheet

Page 36 of 36 Document Number: 001-88025 Rev. *A

© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

	Features
	General Description
	When to Use a SM Bus and PM Bus Slave

	Input/Output Connections
	clock – Input
	reset – Input
	sda (SMBDAT) – Input/Output
	scl (SMBCLK) – Input/Output
	smbalert (SMBALERT#) – Output

	Schematic Macro Information
	SM Bus Slave Macro
	PM Bus Slave Macro

	Component Parameters
	General Tab
	Export/Import Configuration
	Mode
	Data Rate
	Slave address
	SMBALERT
	Paged Commands
	SMBus Box

	PM Bus Commands Tab
	Format
	Size
	Read/Write Config
	Paged

	Custom Commands Tab
	Command Name
	Command Code
	Type
	Format
	Size
	Paged
	Num Pages
	Read/Write Config

	I2C Configuration Tab
	Implementation
	Address decode
	Pins
	UDB clock source
	Enable UDB slave fixed placement
	External IO Buffer

	Application Programming Interface
	Global Variables
	void SMBusSlave_Start(void)
	void SMBusSlave_Stop(void)
	void SMBusSlave_EnableInt(void)
	void SMBusSlave_DisableInt(void)
	void SMBusSlave_Init(void)
	void SMBusSlave_Enable(void)
	void SMBusSlave_SetAddress(uint8 address)
	voidSMBusSlave_SetAlertResponseAddress(uint8 address)
	TRANSACTION_STRUCT* SMBusSlave_GetNextTransaction(void)
	uint8 SMBusSlave_GetTransactionCount(void)
	void SMBusSlave_CompleteTransaction(void)
	void SMBusSlave_SetSmbAlert(uint8 assert)
	void SMBusSlave_SetSmbAlertMode(uint8 alertMode)
	void SMBusSlave_HandleSmbAlertResponse(void)
	uint8 SMBusSlave_GetReceiveByteResponse(void)
	void SMBusSlave_HandleBusError(uint8 errorCode)
	uint8 SMBusSlave_StoreUserAll(char * flashRegs)
	uint8 SMBusSlave_RestoreUserAll(char * flashRegs)
	uint8 SMBusSlave_EraseUserAll(void)
	uint8 SMBusSlave_RestoreDefaultAll(void)
	uint8 SMBusSlave_StoreComponentAll(void)
	uint8 SMBusSlave_RestoreComponentAll(void)
	float SMBusSlave_Lin11ToFloat (uint16 linear11)
	uint16 SMBusSlave_FloatToLin11 (float floatvar)
	float SMBusSlave_Lin16ToFloat(uint16 linear16, int8 inExponent)
	uint16 SMBus_FloatToLin16(float floatvar, int8 outExponent)
	Bootloader Support
	void SMBusSlave_CyBtldrCommStart(void)
	void SMBusSlave_CyBtldrCommStop(void)
	void SMBusSlave_CyBtldrCommReset(void)
	cystatus SMBusSlave_CyBtldrCommRead(uint8 * Data, uint16 size, uint16 * count, uint8 timeOut)
	cystatus SMBusSlave_CyBtldrCommWrite(uint8 * Data, uint16 size, uint16 * count, uint8 timeOut)

	Macros
	MISRA Compliance
	Sample Firmware Source Code
	Interrupt Service Routine
	Functional Description
	I2C Physical Layer
	SMBus/PMBus Addressing
	SMBus/PMBus Protocols
	Register Stores Concept
	Operating Memory Register Store
	Default Register Store
	User Register Store
	Component Register Store
	Special case commands
	PAGE command
	QUERY Command

	Bootloader Commands

	Resources
	PSoC 3
	PSoC 5
	PSoC 5LP

	API Memory Usage
	DC and AC Electrical Characteristics
	SMBus and PMBus Slave DC Specifications
	SMBus and PMBus Slave AC Specifications

	Component Changes

