PERFORM PSoC® Creator™ Component Datasheet

LIN Slave
3.30
PSoC 3/PSoC 5LP PSoC 4
Features LIN_1 LIN_1
LIN Slave LIN Slave
® FullLIN 2.2, 2.1 or 2.0 Slave Node implementation rxd txd

® Supports compliance with SAE J2602-1 and LIN
1.3 specifications

® Automatic baud rate synchronization

® Fully implements a Diagnostic Class | Slave Node
® Full transport layer support

® Automatic detection of bus inactivity

® Full error detection

® Automatic configuration services

® Customizer for fast and easy configuration

® Import of *.ncf/*.Idf files and *.ncf file export

® Editor for *.ncf/*.Idf files with syntax checking

General Description

The LIN Slave component implements a LIN 2.2 slave node on PSoC 3, PSoC 4, and PSoC 5LP
devices. Options for LIN 2.0, LIN 1.3 or SAE J2602-1 compliance are also available. This
component consists of the hardware blocks necessary to communicate on the LIN bus, and an
API to allow the application code to easily interact with the LIN bus communication. The
component provides an API that conforms to the API specified by the LIN 2.2 Specification.

This component provides a good combination of flexibility and ease of use. A customizer for the
component is provided that allows you to easily configure all parameters of the LIN Slave.

For PSoC 4 devices only, the LIN Slave component is certified by the C&S group GmbH based
on the standard protocol and data link layer conformance tests. A complete certification report
can be made available on request.

For PSoC 3 and PSoC 5LP devices, the LIN Slave component is a prototype component,
because it is not certified for these devices.

Cypress Semiconductor Corporation « 198 Champion Court + San Jose, CA 95134-1709 < 408-943-2600
Document Number: 002-03683 Rev. ** Revised December 17, 2015

https://secure.cypress.com/myaccount/index.cfm?id=25&createCase=CustomerMarketing

LIN Slave PSoC® Creator™ Component Datasheet

Definitions

Many of the definitions given in this datasheet are from the LIN 2.2 specification. In these cases,
refer to the specified section of the LIN 2.2 specification for a proper understanding of the term.

Input/Output Connections

This section describes input and output connections for the LIN Slave.

TXD — Output
This is a digital output terminal. This terminal’s signal is the data that this LIN node sends onto
the LIN bus.

RXD = Input

This is a digital input terminal. This terminal’s signal is the CMOS form of the signals on the
physical LIN bus. Note that this terminal generally also receives any signals that come out of the
TXD terminal. This is because a LIN physical layer transceiver has a built-in loop back that
receives all signals on the bus, whether they are from some other LIN node, or from its own LIN

node.

Schematic Macro Information

For PSoC3/PSoC 5LP, the PSoC Creator Component Catalog contains a schematic macro for
the LIN component. This macro contains already connected and configured pin components.
The schematic macro with the default component configuration is shown below.

LINS
LIN Slave

L_RXD_1 [sa}~—{rxd txd|— >« L_TXD_1

el

== CYPRESS

Page 2 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Component Parameters

Drag a LIN Slave component onto your design and double click it to open the Configure LIN
dialog. The LIN component contains parameters on several tabs.

General Tab
Canfigure 'LIM' @
Mame; LIM 1
" General |" BaudRate | Frames Signals | Transport Lawer | Config, Services © Built-in q b

& Importfile 2 Exportfile | [L7 LIN file text editar

General settingz

Uge automatic responze_error zignal
LIM 1.3 compatibility

LIM 2.0 cormpatibility

Enable J2602-1 compliance

Multiple instance support

1

-

Bug inactivity timeout detection [me]: 7000 2

Break detection threshold [bit times): 11 -

Dratazheet Apply Cancel

General Parameters

Use Automatic response_error Signal

This check box on the tab sets the automatic error signal selection. This box is always selected,
so a 1-bit signal is automatically added in the Signals tab of the customizer. This signal has a
default name of “Response_Error.” The component sets it automatically whenever a response
error occurs. The component also automatically clears this signal after it has been successfully
sent to the master. This signal provides the response error notification to the LIN master as
required by the LIN 2.2 specification.

LIN 1.3 Compatibility

This option selects whether this component is compatible with the LIN 1.3 specification. The
status of this check box affects other areas of the customizer.

Document Number: 002-03683 Rev. ** Page 3 of 53

LIN Slave PSoC® Creator™ Component Datasheet

LIN 2.0 Compatibility

This option selects whether this component is compatible with the LIN 2.0 specification. The
status of this check box affects other areas of the customizer.

Enable J2602-1 Compliance

The SAE J2602-1 specification is parallel to the LIN 2.x specifications. It adds restrictions to the
LIN 2.x requirements. However, there are also a few extra features that are supported by this
component that make it J2602-1 compliant. The status of this check box affects other areas of
the customizer.

Bus Inactivity Timeout Detection

This option controls the availability of the bus inactivity feature and its value. After a specified
time of bus inactivity, the corresponding status bit is set. The value of this bit can be obtained by
L _IOCTL_READ_STATUS operation of the |_ifc_ioctl() function. See the Function Description
section for more information.

Note The minimal timeout value in this field is restricted to 4000 milliseconds, as defined in the
LIN 2.2 specification. When the LIN 1.3 Compatibility option is enabled, this value could be
insufficient for a LIN 1.3 inactivity timeout (25000 bit-times) at bus speed > 6000 bit/s. In such a
case, the application must poll the activity bit using the | _ifc_read_status() function and
implement its own software inactivity timer.

This approach is less optimal in terms of resource usage; however, it is directly defined in the
LIN standard.Multiple instance support

This option enables/disables support for placement of two LIN component instances in the same
project. If two LIN component instances are present on the schematic, this option must be
selected for both instances, and these instances must have different interface numbers.

Interface number

This option defines the interface number of the current component instance. This parameter is
passed in APl dynamic calls as the interface handle definition, for example, if two LIN instances:
LIN_1 with interface number 1 and LIN_2 with interface number 2 are present on the
schematic, the values of these definitions are:

LIN_1 IFC_HANDLE =0, LIN_2_IFC_HANDLE =1

Break Detection Threshold

This option configures slave node break detection threshold. Default value is 11 dominant local
slave bit times. See section 2.3.1.1 of the LIN 2.2 specification for more information about break
detection threshold selection criteria.

General Toolbar

There is a toolbar at the top of the General tab. This toolbar provides access to operations with
files.

Page 4 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

5 Import file & Export file ‘J LIN file text editar

Import File

Clicking this button allows you to import a LIN Description File (LDF) or a Node Capability File
(NCF). An imported file configures the customizer settings to match the configuration of the node
that was selected from the list of the existing nodes of the NCF/LDF file.

If the syntax in the imported file is correct, a list of available nodes is displayed. A similar list is
shown in Figure 1. Choose one of the available node descriptions to import.

Figure 1. List of Available Nodes of NCF File to Import

Basic Transmission Operation example.ncf Import... ﬁ

1. BasicTransmissionOperationExample

2. TransmissionOperationExamplExtended

The syntax for *.ncf and *.Idf files is verified according to the LIN Node Capability Language
Specification (Revision 2.2) and to the LIN Configuration Language Specification (Revision 2.2),
respectively.

If the imported file contains errors, a dialog window similar to Figure 2 is displayed. There are
two options in this case: edit the imported file to correct the errors using LIN Enhanced Editor
Tool (see LIN File Text Editor for more information) or cancel the import by clicking the No
button.

Figure 2. NCF File Import Failed
[import NCF File Status)

o Importing NCF file "Basic TransmissiOn Operation example.ncf” failed.
Do you want to edit this file?

1. Line 23 : Column 2 -> missing ';' at 'bitrate’

Yes [Mo

Document Number: 002-03683 Rev. ** Page 5 of 53

LIN Slave

PSoC® Creator™ Component Datasheet

After the node to import is chosen and the import to the customizer is completed, a dialog box
that describes the importing results is displayed (see Figure 3). The importing results contain the
LIN Slave component parameters that were not affected during import.

Figure 3. NCF File Import Information

Import NCF File Status

5

Node "LIN_1" from NCF file "LIN_slave example ncf"
was imported successfully.

Additional info:

LIN parameters which weren't configured by
MNCF file during importing

General tab

Enable J2602-1 Compliance

Baud Rate tab

Automatic Baud Rate Synchronization

Frames / Signals tab

Transport Layer tab

Use Transport Layer
API Format Selection

Configuration Services

Automatic Configuration Request Handling

Canfianration Candian Calantian

=

Page 6 of 53

P
B

==# CYPRESS

PERFORM

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet

Export File

LIN Slave

This tool enables you to save information about the component configuration into a Node

Capability File (NCF).

Figure 4. NCF File Export Information

Export NCF File Status [

9 Project was successfully exported in file D:
\LIN_Slave_Example.ncf

Additional info:

NCF parameters which weren't exported in file:

Diagnostic definition:

P2_min
ST_min
N_As_timeout
N_Cr_timeout

Frames definition

min_period
max_period

Signals definition

encoding_name

Encoding definition:

all parameters

m

I’"’b

=

£ CYPRESS

PERFORM

Document Number: 002-03683 Rev. **

Page 7 of 53

LIN Slave

LIN File Text Editor

This tool is used to create, edit, and verify the syntax of the NCF/LDF file. The syntax for *.ncf
files is verified according to LIN Node Capability Language Specification (Revisions 2.2, 2.1, and
2.0). The syntax for *.Idf files is verified according to LIN Configuration Language Specification
(Revisions 2.2, 2.1, 2.0, and 1.3).

Figure 5. LIN File Text Editor Tool

PSoC® Creator™ Component Datasheet

LIN Enhanced Editor Tool

=

=1 o Lol W

Lo oo

10
11
12

Fle-0O S HRB P

LIN description file;
LIN protocol wversion
LIN language version
LIN speed = 1%.2 kbps;

N
IS

Nodes {
Master: MSRE, & ms, 0.1 ms ;

Slaves: BasicTransmissionOperationExample;

H

Node attributes
{

There is a toolbar at the top of the LIN Enhanced Editor Tool window (see Figure 6).

Figure 6. LIN File Text Editor Toolbar

(e D5 HR P
New file Ctrl+N
Open file Ctrl+0O
Save file Ctrl+S
Check syntax Ctrl+H
Find... Ctrl+F

® New File — Creates a new file of the selected LIN file type.

® Open File — Opens the specified existing LIN file.

Exit

® Save File — Saves the created LIN file to the specified location.

Page 8 of 53

el

=¥ CYPRESS

PERFORM

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

® Check Syntax — This control allows you to check whether an *.ncf/*.Idf file syntax is

correct. If there are any syntax errors, the errors are listed in the output area of the editor
window with the line and column numbers of their location and a short error description
(Figure 7). The code lines containing errors are highlighted in red.

Double-clicking the error line in the output area navigates to the line containing an error in

file.

Figure 7. LIN File Syntax Check

1. Line & - Column 21 -> extraneous input -' expecting 'ms’
2. Line 12 : Column 0 -= missing '}' at 'Node_attributes’
3. Line 17 : Column 6 -= missing ;' at 'configured_NAD"

LIN Enhanced Editor Tool)
Fle-DEH & »
6! Nodes 'jJ
T B
8 Master: MSE, 88— ms, 0.1 ms; =
g Slaves: BasicTransmissionOperationExample;
10
11
12 Node attributes
13
14 BasicTransmissionOperationExzample
15 {
16 LIN protocol = "Z2.2"
17 | configured NAD = 0x01;
18 initial NAD = 0x01; -
J,
Errors:

® Find - This tool allows you to find the term specified in the search field in a LIN file. The
Find Next button allocates the next match. If the Mark Line check box of the tool is
selected, the lines containing the necessary term are labeled with yellow circles after
clicking the Find All button. The Style found token check box enables or disables

highlighting of the found token in yellow after clicking the Find All button, as shown in

Figure 8. The Clear button removes all highlighted tokens.

Document Number: 002-03683 Rev. **

Page 9 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Figure 8. LIN File Finding Results

LIN Enhanced Editor Tool <]
Fle* D5 H @ P
O 1 LIN description file; |
O 2 : protocol_version = "Z.2" E
O 3 ¢ language versicon = "Z.2"
() 4 1IN speed = 19.2 kbps;

& Nodes

T A

8 Master: MSR, 8 ms, 0.1 ms;

9 Slaves: BasicTransmissionOperationExample;

101

11

12{ Node_attributes

13 ¢ -
IK ,
[No Errors detected.

All tools are also available in the File menu of the LIN Enhanced Editor Tool (see Figure 5) and
through the appropriate toolbar commands.

Baud Rate Tab
Configure 'LIN' @

MHarnne: LIMN_1

General /~ Baud Rate |* Frames | Signals © Transport Layer © Config, Services | EBuilk-in 4 b

V| Automatic baud rate synchronization

Maminal LIM bus baud rate [baud]: 19200 -
Source Clock Frequency (kHz): 0769
Source clock divider: A

Actual LIM buz baud rate [baud): 19231

D atazhest Apply Cancel

Page 10 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Automatic Baud Rate Synchronization

This option allows you to enable or disable automatic baud rate synchronization. By default, this
option is enabled.

If this option is enabled, the component measures the exact baud rate of the bus from the sync
byte field of each LIN frame header.

If this option is disabled, the component does not measure the baud rate from the sync byte field.
Instead, it receives the sync byte field as a 0x55 data byte.

As required by the LIN 2.2 specification, LIN slave nodes with a frequency deviation of

+1.5 percent or less do not need to use automatic baud rate synchronization to measure the
sync byte field of each frame. However, if the frequency deviation of the LIN slave node is more
than £1.5 percent, then the slave node must use automatic baud rate synchronization to
measure the sync byte field of each frame.

Therefore, frequency deviation specifications must be checked for the clock source from which
BusClIk is derived (this is typically the Internal Main Oscillator (IMO)).

Nominal LIN Bus Baud Rate

Enter the nominal LIN bus baud rate at which this LIN slave node must operate. The maximum
value is 20000 baud and the minimum value is 1000 baud. The customizer does not allow you to
select baud rates outside of this range. The values in the drop down list are 19200, 10417, 9600,
and 2400. However, you can type in any value between 1000 and 20000 in the combo box. If
Nominal LIN Bus Baud Rate is modified, press the Apply button to get new values for the
Source Clock Frequency, Source Clock Divider, and Actual LIN Bus Baud Rate fields.

Source Clock Frequency
This is the clock frequency, oversampled by 16, that is used for the data transmission.

Source Clock Divider

This is the value of the clock divider that is used to get the clock frequency specified in Source
Clock Frequency from the BusCIk.

Actual LIN Bus Baud Rate

The actual value of the bus baud rate is displayed here. The LIN slave will work on this baud
rate. The BusClIk value can be modified to make Nominal LIN Bus Baud Rate equal to Actual
LIN Bus Baud Rate.

Document Number: 002-03683 Rev. ** Page 11 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Frames Tab

This tab is used to configure how the LIN Slave responds to PID values that are sent by the
master on the bus. The settings configured on this tab are used to correctly generate the
component APl and ISR code. During operation, the LIN slave receives a PID with a frame ID in
it that determines how the LIN Slave (the component) must respond.

Configure 'LIM' @
MHarnne: LIMN_1
General |© Baud Rate ' Frames] Signals © Transport Laver | Config, Services [Built-in 4 b
Index MHame Default ID Direction Length Type Agzociation

Publish | v | LR Uncond... [+ Nene + | [aad

LY

it Up
I Down

:

D atazhest Apply Cancel

Frame Configuration Table

The configuration table contains rows and columns. Each row corresponds to one LIN frame.
Note that this tab shows only “user” LIN frames. The MRF and SRF frames are supported by this
component but are not shown in this table.

There are eight possible columns in the data field, as follows:

® The fields in the Index column show an ordering number of each used frame. These
numbers cannot be directly modified.

® The fields in the Name column are used to enter the name of each frame. Any string that
would be valid in C code may be entered. The name of each frame must be unique.

® The fields in the Default ID column are used to define the frame ID that the frame will use
before any configuration requests by the master. Note that these frame IDs are dynamic.
In other words, the LIN master can reconfigure frame IDs at run time. You must enter a

=7 CYPRESS

PERFORM

Page 12 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

value from 0x00 to 0x3B into these cells. The values can be entered in hex or decimal
format.

® The Message ID column is not shown in Error! Reference source not found.. This is
because it is not normally visible. This column is only available if the LIN 2.0
Compatibility check box in the General tab of the customizer has been selected. Any 16-
bit value can be entered. The value can be entered in hex or decimal format. All message
ID values must be unique. Also, message ID values entered into this table should be
unique for the entire LIN cluster. For example, if some other LIN slave has a frame with a
message ID of 0x000F, this component should not have any frames with a message ID of
Ox000F.

® The fields in the Direction column define which direction the data for the frame is sent
(with respect to this slave). Publish means a data transmission; Subscribe means a data
reception.

® The fields in the Length column define how many bytes are received or sent for each
frame. Values from 1 to 8, inclusive, are valid.

® The fields in the Type column are used to define the type of the LIN frame. There are two
types of frames for LIN slave devices: Unconditional and Event-Triggered. You cannot
choose the event-triggered type when the frame is a subscribe frame. In this case, this
cell cannot be modified. If you change this cell from Event-Triggered to Unconditional,
you must change the name of this frame to None in the Association column, if its name
appears in any cells in that column.

Note If J2602-1 Compliance is enabled, the Event-Triggered frames are not accessible.

® The fields in the Association column are used to associate unconditional frames with
event-triggered frames. An event-triggered frame must have at least one unconditional
frame that is associated with it, according to the LIN specification. Therefore, the
Association setting allows the selection of the frame name of any unconditional frames
that are not already associated with an event-triggered frame. The valid values for this
setting are the names of any existing unassociated unconditional frames. Only one
unconditional frame can be associated with an event-triggered frame. As a result, when
one of these cells has the name of an unconditional frame in it, this unconditional frame
name cannot be available to any of the other rows. An event-triggered frame that is
associated with an unconditional frame must have the same length and direction as the
unconditional frame with which it is associated. Therefore, the name of an event-triggered
frame appears only in unconditional frame rows in which these criteria apply. If you click
the global OK button of the customizer, or if you exit this tab by clicking on another tab,
the customizer checks to make sure that there are no event-triggered frames that are not
associated with any unconditional frames.

Note: The total number of frames cannot exceed 60. The total size of all frames is limited
to 256 bytes.

=

CYPRESS

Document Number: 002-03683 Rev. ** Page 13 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Frames Tab Buttons
There are four buttons available on this tab.

® The Add button adds a new frame to the table.

® The Delete button deletes the currently selected frame from the table. The index number
fields are changed accordingly. If a frame is deleted on this tab, any signals that are
packed into it (configured with the Signals tab) are moved into the Unplaced Signals
region (See Sort Signals button in the Signals Tab section).

® You can use the Up and Down buttons to reorder the Index number values for each

frame.
Signals Tab
This tab is used to define the “signals” that are packed into the LIN frames.
Configure 'LIN' =
Mame: LIM_1
General | Baud Rate | Frames Signals] Transpart Laver | Config. Services | Built-in 4 I

+ = X|=Z w1

E| || Signals transparency: 4—@ [\| o =

Unplaced gignalz Framesz & zignals relations
FE Diata 1 Diata 2
| Framet:] | | | [[[[[[[1T]][]]]
4 T r

Legend
[MHame Altribute Type Length [bitz] Position Initia =
Unplaced

Responze_Ermor Rezponze errar Scalar 1 1] 1] e
P T r

D atazhest QK l ‘ Apply | ‘ Cancel

b ¥ CYPRESS

PERFORM

Page 14 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Frames & Signals relations

This graphical region of the Signals tab displays interactive graphics of the frames and the
signals that you have defined with the customizer.

® Frame Graphics — One frame graphic represents each frame defined in the Frames tab
of the customizer.

® Signal Graphics — Each signal graphic represents one signal defined for the LIN slave.
The graphic for a signal appears as a solid bar (see Error! Reference source not
found.). A signal can be placed on top of the frames using drag and drop. These signals
occupy bits or bytes of the frames.

Clicking on a signal selects that signal. Rolling over a signal causes relevant information about
that signal to appear in a tool-tip.

Unplaced Signals

This graphical region is a temporary region where the signals are stored after they have been
added, but not placed. Signals can be moved back and forth between the Unplaced Signals
region and the Frames & Signals relations region.

Note If a frame is deleted on the Frames tab, any signals that are packed into it (configured with
the Signals tab) are moved into the Unplaced Signals region.

response_error

The 1-bit response_error signal is automatically added in the Signals tab of the customizer. You
can change the name of the response_error signal, but you cannot delete it from the Signals
tab.

There can be only one instance of the response_error signal and its name must be unique for
this component. The response_error signal is a Boolean signal and can be placed anywhere on
a frame that is published by the LIN slave.

The purpose of this signal is to report status information to the LIN master.

For additional information about this signal see section 2.7.3 “Reporting to the Cluster” of the LIN
2.2 specification.

Signals Toolbar

There is a toolbar at the top of the Signals tab. This toolbar provides an easy way to manage the
signals on the tab.

4= X|2 R 5|2 ERD

Signals transparency: 4—@ F-| o =

Document Number: 002-03683 Rev. ** Page 15 of 53

PSoC® Creator™ Component Datasheet

LIN Slave
The Add Signal button adds a signal to the Unplaced Signals region. The Delete Signal

1. Add/Delete buttons
button removes selected signals from the component. The Delete All Signals button

removes all existing signals.
This control opens the Signal Properties window for the selected signal. This window

2. Signal Properties button
can be used to change the properties for the signal. Note that the properties window for a

signal can also be accessed by double clicking on a signal.

3. Find Signal button
This button allows you to search for a certain signal.
4. Sort Signals button
This button sorts the signals in the Unplaced Signals region. Signals can be sorted by

Name, Length, or Type.
5. Renumber Signals button
This button renumbers the signal index values in ascending order.

6. Move buttons

The Unplace Signal button moves the selected signal from the Frames & Signals
relations region to the Unplaced Signals region.
The Unplace All Signals button moves all signals to the Unplaced Signals region.

7. Show/Hide Event-triggered frames button

This button allows you to show or hide the frames graphics that correspond to event-

triggered frames in the Frames & Signals relations region.

8. Show/Hide Legend button
This button allows you to show or hide the legend area describing the signals’ properties.

9. Signals Transparency slider
This slider sets the transparency for signals graphics.

10.Print buttons
These buttons print out the Frames & Signals relations region.

el

=/ CYPRESS

Document Number: 002-03683 Rev. **

Page 16 of 53

PSoC® Creator™ Component Datasheet LIN Slave

Signal Properties Window

Adding Signals

There is an Add Signal button on the tool bar. This button causes a new window to appear with
signal property options that can be configured (see Figure 9). After the properties have been
configured, a new signal is added. The various signal properties that can be configured on this
window are described in this section.

Figure 9. Signal Properties Window

e Signal Properties X
Main signal properties Signal appearance
Attribute: USER SIGNAL Fill color: |
: Not Avaliable
[k e Signal description
MName: Signald
Type: |Sca|ar -

Length (bits): 8

A 4]

Initial value: o

Preview:

I Signal0 | [TP PP Pl PPl dr]

l OK I ‘ Cancel ‘

Name

The Name property is used to choose the name of the signal. The default signal name is
Signalx, where ‘X’ is equal to the index number of the signal. The name entered for the signal
must be a valid symbol name in C code.

Note If several signals have the same name:

® These signals must have equal “Type”, “Length”, and “Initial Value” properties.

® One Frame cannot accept two or more duplicates.

Signals can have duplicates only on Data Frames which “Direction” property is set to
“Publish.”

== CypRESS

Document Number: 002-03683 Rev. ** Page 17 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Type

This property is used to select the type of the signal. There are two types of signal, as defined in
the LIN 2.2 specification. A Scalar signal is 1 to 16 bits in length and a ByteArray signal is 1 to 8
bytes in length.

Length

This property is used to select the length of the signal. Scalar signals can have a length of 1 to
16 bits. A ByteArray signal can have a length of 1 to 8 bytes.

Initial Value

This property is used to select the initial value for the signal. This value must be entered in
decimal format.

Fill Color
This control is used to select a color for the signal graphic.

Signal Description

This property can be used to enter any relevant description or other information related to the
signal.

Preview
This graphical area shows what the signal will look like when it is added.

Page 18 of 53 Document Number: 002-03683 Rev. **

LIN Slave

PSoC® Creator™ Component Datasheet
Transport Layer Tab
Configure 'LIM' @
MHarnne: LIMN_1
General |© Baud Rate | Frames | Signals »* Transport Layer [~ Config. Services EBuil-in 4 b
V| Usze transport layer
AF| format selection Tranzport layer data butfer lenagths
b amimurm meszage length; 12 =
T queus length; 32 :
32

@ Cooked transport laper AP
Raw tranzport layer AP

——— R queue length;
001 - ? ?
Application should provide buffer with length
not less than "'Maxinun message length”

Iritial MAD

QK l ‘ Apply

D atazhest

If the Use Transport Layer check box is not selected, the slave node will not support the
Transport Layer. If it is selected, the slave node component will support the Transport Layer. See

Use Transport Layer
the LIN 2.2 specification for detailed information on the Transport Layer.

APl Format Selection

This control is used to select the format for the Transport Layer API functions. There is a
cooked format is recommended for LIN slave applications. Raw API is intended for LIN

Cooked Transport Layer API option and a Raw Transport Layer API option. Typically, the

gateway applications.

The cooked format is used to send and receive Transport Layer messages using just one API
function for each message. The raw format is used to send or receive each frame that makes up

a Transport Layer message using one API function call for each frame.
The two formats of the Transport Layer API are defined by the LIN 2.2 specification in section

7.4.
Page 19 of 53

—_—

CYPRESS
Document Number: 002-03683 Rev. **

LIN Slave PSoC® Creator™ Component Datasheet

Initial NAD

This field is used to select the Network Address (NAD) of the slave node. The NAD is used in
MRF and SRF frames to address one particular slave node in a cluster. Note that this field is
used to select the Initial NAD for the node. The NAD of a slave node can change at run time.

By default, the Initial NAD value can be in the range from 0x01 to OxFF. The NAD value of 0x00
is reserved for a “Go To Sleep” command. The NAD value of OX7E is reserved as a “Functional
NAD” which is used for diagnostic services. The NAD value of Ox7F is reserved as a “wildcard”

NAD. Therefore, the customizer restricts you from entering 0x00, OX7E, or Ox7F into this field.

If J2602-1 Compliance checkbox is checked, the Initial NAD value on the Transport Layer Tab is
restricted to 0x60 to Ox6F. The default value is 0x60. The initial value range is further restricted
based on the number of frames that are used on the Frames tab of the customizer. See Table 1
for more information.

Table 1. Initial NAD Restriction Based on the Number of Frames Used in Slave Node

Number of Frames Available Initial NAD Values
lto4 0x60 to Ox6F
5t08 0x60, 0x62, 0x64, 0x66, 0x68, Ox6A, 0X6C, OX6E, OX6F
9to 16 0x60, 0x64, 0x68, Ox6E, Ox6F
More than 16 OX6E, Ox6F

Maximum Message Length

This property is used to select the maximum Transport Layer message length that this slave
node supports. The minimum value is 6, because there are up to six Transport Layer message
data bytes in messages that use only one frame. This component only supports Transport Layer
messages with lengths up to 4095 bytes. Note that the actual Transport Layer message buffer is
located in the application code of the node.

TX Queue Length/RX Queue Length

These properties are only applicable when the Raw Transport Layer API format is selected.
When using the raw API format, there is a message “queue” that buffers the frame response
data that is being sent or received. If the slave cannot update the queues very quickly, then the
gueue lengths should be made longer. If the slave can update the queues very quickly, then the
gueues can be made shorter to decrease RAM use. The component supports queue lengths
from 8 to 2048 with 8-byte steps. The default size of each queue is 32 bytes.

Page 20 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Configuration Services Tab

Configure 'LIM' @
MHarnne: LIMN_1
General | Baud Rake | Frames | Signals | Transport Layer . Config. Services | Builk-in 1 b

V| Automatic configuration request handling

Canfiguration service selection Slave infarmation
Service OxB0 - "Assign NAD" Supplier ID: 0x | 7FFE

Service 0=B1 - "Azzign frame identifier” Function |D: 0w |FFFE
V| Service 0=B2 - "Read by identifier"
Service 0xB3 - "Conditional change MAD"

Al Al Al

Wariant: 0w |0

Service 0xB4 - "Data dump"
Service 0xBS - “esign MAD wia SHPD"
Service OxBE - "Save configuration'

| Service BT - "dasign frame identifier range"'

| D atazhest | [QK l | Apply | | Cancel |

The LIN 2.2 specification defines Configuration Service requests that the slave must support
(some are mandatory and some are optional with regard to the LIN 2.2 specification). This
component supports all mandatory requests and some optional service requests.

There are eight total configuration service requests (OxBO to 0xB7). There is a list of these
services in Table 4.6 of the LIN 2.2 specification. This component supports some of them. You
have the option of disabling or enabling each of the supported services individually. The
configuration service requests are described in section 4.2.5 of the LIN 2.2 specification.

Automatic Configuration Request Handling

The component is designed so that it automatically handles configuration service requests. In
other words, you do not have to use any API or application code to service these requests from
the master. However, you can disable this automatic handling and handle these requests with
your own custom application code.

To simplify this option, there is an Automatic Configuration Request Handling check box on
this tab. If the box is selected, all of the other options on the tab are available. If the box is not
selected, then all of the other options on the tab are disabled.

Any service that is enabled in this tab is automatically handled by this component. Whenever any
of these automatically handled requests occur during LIN bus operation, the corresponding MRF
and SRF frames will not be available to the application through the Transport Layer API. If a
service request is not automatically handled (that is, if it is not enabled on this tab), then the

Document Number: 002-03683 Rev. ** Page 21 of 53

LIN Slave PSoC® Creator™ Component Datasheet

corresponding MRF and SRF frames of the configuration service request must be received or
sent by the application using the Transport Layer API.

Configuration Service Selection

Each of the supported configuration service requests is listed on the tab with a check box. You
can individually select the services that you want to be automatically handled.

Service 0xBO — “Assign NAD”
This is an optional service in the LIN 2.2 specification.
This is a service request where a new NAD value is assigned to the slave node.

This service request is not likely to be needed for this component, due to the highly-
programmable nature of PSoC devices. The PSoC can easily configure its NAD to a
desired value after it boots up, and probably does not need the LIN master to request a
NAD change.

Service 0xB1 — “Assign Frame ldentifier”

This is an obsolete service in the LIN 2.2 specification. It is only available if the LIN 2.0
Compatibility checkbox has been selected on the General tab of the customizer.

This configuration service request is used to change the frame ID value for a frame to
which this slave node responds.

This service is not described in the LIN 2.2 specification. It is only described in the LIN 2.0
specification in section 2.5.1. This service is available in this component for backwards
compatibility purposes.

Service 0xB2 — “Read by identifier”

This configuration service request is mandatory according to the LIN 2.2 specification.
This request is used to allow the LIN master to read the slave's identification information
(Supplier ID, Function ID, Variant). This component only supports the LIN Product
Identification version of this request.

Service 0xB3 — “Conditional Change NAD”

This is an optional service in the LIN 2.2 specification.

This is very similar to the Assign NAD configuration service. One major difference is that
this service uses the slave’s current (volatile) NAD instead of the initial (nonvolatile) NAD.
When this request occurs, the slave does some logic processing on the data bytes
received from the master and only updates its current (volatile) NAD if the result of the
processing is zero.

Service 0xB4 - “Data Dump”

This service request is optional in the LIN 2.2 specification and is not supported by this
component.

el

% CYPRESS

I

i

Page 22 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

B Service 0xB5 — “Assign NAD via SNPD” (Targeted Reset)

“Assign NAD via SNPD” (0xB5) service is not supported by the LIN 2.2 specification.
However, when the Enable J2602-1 Compliance check box is selected on the General
tab, this service (0xB5) has a different meaning: Targeted Reset, which is supported by
the component.

If a Targeted Reset request is processed by this slave, a flag is set in the
L_IOCTL_READ_STATUS operation of the |_ifc_ioctl() function to let the application know
that a Targeted Reset should occur. Refer to the API description for more information.

B Service 0xB6 — “Save Configuration”
This is an optional service request in the LIN 2.2 specification.

The slave device can save its configuration data (NAD value and PID values) in
nonvolatile memory (flash). However, the application code must implement the actual
flash writing operations.

When this configuration service request occurs, the Save Configuration flag in the status
returned by the |_ifc_read_status() API function is set. This lets the application know that it
must save its current LIN slave node configuration information to nonvolatile memory
(flash).

B Service 0xB7 — “Assign frame identifier range”

This is a mandatory configuration service request in the LIN 2.2 specification.

This service allows the LIN master to change the volatile frame PID values for the slave’s
frames.

Slave Information

If you have checked the Automatic Configuration Request Handling check box, three fields
become available.

The fields are Supplier ID, Function ID, and Variant. The Supplier ID is a 16-bit value, but its
valid range is from 0x0000 to Ox7FFE. The Function ID is also 16 bits, and its valid range is
0x0000 to OXFFFE. The Variant is 8 bits and its valid range is from 0x00 to OxFF.

These values are used in the configuration service requests to differentiate between the different
slave nodes in a LIN cluster. So, these values act as a type of slave address in some ways.

Clock Selection

PSoC Creator calculates the needed frequency and clock source and generates the resource
needed for implementation. The clock tolerance must be +1.5 percent when the Automatic
Baud Rate Synchronization option is disabled and +14 percent when it is not. A warning will be
displayed if the clock cannot be generated within this limit. In this case, you should modify the
Master Clock source in the DWR.

Document Number: 002-03683 Rev. ** Page 23 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Placement
Only one component instance can be placed per PSoC 3 or PSoC 5LP design.

Placement of two components is allowed for PSoC 4 design with the assistance of the
LIN_Dynamic component.

LIN_Dynamic Component

The LIN component is linked with a hidden design-wide LIN_Dynamic component, which is
always present in a design to support the placement of multiple instances of the LIN component.

The LIN_Dynamic component routes all LIN dynamic API calls to the appropriate instance of the
component. Dynamic API functions consist of a single switch statement that calls the
corresponding static API function depending on the passed parameters:

® | signal_handle for signal interaction functions
® | flag_handle for notification functions

® | ifc_handle for interface management and transport layer functions

Notes:

® The |_signal_and | _flag_handles are defined in the LIN.h file and enumerated in range
(0..127) for the first LIN instance and in range(128..255) for the second instance.

® The |_ifc_handles are also defined in the LIN.h file. They are equal to 0 for the first LIN
instance and 1 for second instance.

Additionally, the LIN_Dynamic component contains an implementation of |_sys_init() API
function, which is common for all LIN component instances as defined by the LIN Specification.

LIN Version and Updates

The LIN_Dynamic version must be the same as LIN component used in the design. Therefore,
both the LIN and the LIN_Dynamic components must be updated synchronously.

The LIN_Dynamic component is also shown in the Component Update Tool because of its
nature as a design-wide component. If you do not have a LIN component in your design, then no
action is required, and the LIN_Dynamic component is inactive and colored gray.

el

7l EEYPRESS

I

i

Page 24 of 53 Document Number: 002-03683 Rev. **

|_bool |_sys_init()

|_sys_init()

PSoC® Creator™ Component Datasheet

Application Programming Interface

LIN Slave

Application Programming Interface (API) routines allow you to configure the component using

software. The following tables list and describe the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “LIN_1” to the first instance of a component
in a given design. You can rename the instance to any unique value that follows the syntactic
“LIN.”

rules for identifiers. The instance name becomes the prefix of every global function name,
Core API Functions

variable, and constant symbol. For readability, the instance name used in the following table is

Initialization Subgroup

Function

Description
Initializes the LIN core.

Description:

Static Prototype:
Dynamic Prototype: None
Parameters: None

Return Value:

Side Effects:

Initializes the LIN core. If the Automatic Baud Rate Synchronization parameter is
enabled in the Configure dialog, then this function saves the initial SYSCLK-to-
UARTCLK divider’s value, calculated by PSoC Creator. If the parameter is not
enabled, this function does nothing.

|_bool |_sys_init(void)

Always returns zero.
None

Signal Interaction Functions Subgroup

In all static signal API calls that follow, the “sss” is the name of the signal, for example,

|_u8_rd_EngineSpeed(). For dynamic signal API calls that follow, the “sss” is a signal handle, as
defined in Application Programming Interface.
Function Description
|_bool_rd() Reads and returns the current value of the signal for one-bit signals.
[u8_rd() Reads and returns the current value of the signal for signals of two to eight bits.
[ul6_rd() Reads and returns the current value of the signal for signals of 9 to 16 bits.
W/ Creness
Document Number: 002-03683 Rev. **

Page 25 of 53

PSoC® Creator™ Component Datasheet

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

| u8 rd()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

Page 26 of 53

LIN Slave
Function Description

|_bytes rd() Reads and returns the current values of the selected bytes in the signal.

|_bool_wr() Sets the current value of the signal for one-bit signals to v.

| u8_ wr() Sets the current value of the signal for signals of two to eight bits.

[ul6_wr() Sets the current value of the signal for signals of 9 to 16 bits.

|_bytes wr() Sets the current values of the selected bytes in the signal.

|_bool_rd()

Description: Reads and returns the current value of the signal for one-bit signals. If an invalid

signal handle is passed into the function, no action is taken, function returns 0x00.
|_bool |_bool _rd_sss(void)

|_bool |_bool_rd(l_signal_handle sss)

sss: Signal handle of the signal to read.

Returns the current value of the signal.

None

Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.

| u81 _u8_rd_sss(void)

I_u8 1_u8_rd(l_signal_handle sss)

sss: Signal handle of the signal to read
Returns the current value of the signal.

None

el

CYPRESS

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet

| ul6 _rd()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_bytes rd()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

Document Number: 002-03683 Rev. **

LIN Slave

Reads and returns the current value of the signal. If an invalid signal handle is
passed into the function, no action is taken, function returns 0x00.

| ul6 1 ul6_rd_sss(void)

| ul6 |_ul6_rd(l_signal_handle sss)
Sss: Signal handle of the signal to read
Returns the current value of the signal.

This function does not guarantee that the data bytes that are read are atomic. If it is
necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

Reads and returns the current values of the selected bytes in the signal. The sum of
the start and count parameters must never be greater than the length of the byte
array. Note that when the sum of start and count is greater than the length of the
signal byte array, an accidental data is read.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array is 8 bytes long, numbered 0 to 7. Reading bytes from 2 to 6
from a user-selected array requires start to be 2 (skipping byte 0 and 1) and count
to be 5. In this case, byte 2 is written to user_selected_array[0] and all consecutive
bytes are written into user_selected_array in ascending order.

void |_bytes_rd_sss(l_u8 start, | _u8 count, |_u8* const data)
void |_bytes_rd(_signal_handle sss, |_u8 start, |_u8 count, |_u8* const data)

sss: Signal handle of the signal to read

start: First byte to read from

count: Number of bytes to read

data: Pointer to array, in which the data read from the signal is stored

None

This function does not guarantee that the data bytes that are read are atomic. If it is
necessary for the data bytes to be atomic, then the application must ensure that this
is the case.

Page 27 of 53

LIN Slave

|_bool_wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

| u8 wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

| ul6_wr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

Page 28 of 53

PSoC® Creator™ Component Datasheet

Writes the value v to the signal. If an invalid signal handle is passed into the
function, no action is taken.

void |_bool_wr_sss(l_bool v)
void |_bool_wr(l_signal_handle sss, |_bool v)

sss: Signal handle of the signal to write
v: Value of the signal to be set

None

None

Writes the value v to the signal. If an invalid signal handle is passed into the function,
no action is taken.

void |_u8_wr_sss(l_u8 v)
void |_u8_wr(l_signal_handle sss, |_u8 v)

sss: Signal handle of the signal to write
v: Value of the signal to be set

None

None

Writes the value v to the signal. If an invalid signal handle is passed into the function,
no action is taken.

void |_ul16_wr_sss(l_ul6 v)
void |_u16_wr(l_signal_handle sss, |_ul6 v)

sss: Signal handle of the signal to write;
v: Value of the signal to be set.

None

This function does not guarantee that the data bytes that are written will be read
atomically by the LIN master. If it is necessary for the data bytes to be atomic, then
the application must ensure that this is the case.

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

|_bytes wr()

Description: Writes the current value of the selected bytes to the signal specified by the name sss.
The sum of start and count must never be greater than the length of the byte array,
although the device driver may choose not to enforce this in run time. Note that when
the sum of start and count is greater than the length of the signal byte array an
accidental memory area is affected.

If an invalid signal handle is passed into the function, no action is taken.

Assume that a byte array signal is 8 bytes long, numbered 0 to 7. Writing byte 3 and 4
of this array requires start to be 3 (skipping bytes 0, 1, and 2) and count to be 2. In this
case, byte 3 of the byte array signal is written from user_selected_array[0] and byte 4
is written from user_selected_array[1].

Static Prototype: void |_bytes wr_sss(l_u8 start, |_u8 count, const |_u8* const data)
Dynamic Prototype: void |_bytes_wr(l_signal_handle sss, | u8 start, |_u8 count, const |_u8* const data)

Parameters: sss: Signal handle of the signal to write
start: First byte to write to
count: Number of bytes to write
data: Pointer to array, in which the data to transmit to LIN master is located

Return Value: None

Side Effects: This function does not guarantee that the data bytes that are written are read atomically
by the LIN master. If it is necessary for the data bytes to be atomic, then the application
must ensure that this is the case.

Notification Functions Subgroup

Notification flags are used to synchronize the application program with the LIN core. The flags
are automatically set by the LIN core and can only be tested or cleared by the application
program. A notification flag can correspond with a signal, a signal in a particular frame (in the
case that the same signal is packed into multiple frames), or a frame. A flag is set by this
component when the corresponding signal or frame is successfully sent or received.

In all of the following flag API routines the “fff” is the name of the flag, for example,
|_flg_tst RxEngineSpeed(). For the dynamic flag API routines the “fff’ is a signal handle, as
defined earlier in Application Programming Interface.

Function Description
|_flg_tst() Returns a boolean indicating the current state of the flag.
|_flg_clr() Sets the current value of the flag to zero.

Document Number: 002-03683 Rev. ** Page 29 of 53

LIN Slave

|_flg_tst()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

|_flg_clr()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

PSoC® Creator™ Component Datasheet

This function returns current state of the flag specified by the name “fff.” It returns
false if the flag is cleared and true otherwise. If this routine returns a “true” value, then
it indicates that the corresponding signal or frame has been successfully sent or
received.

|_bool |_flg_tst_fff(void)
|_bool |_flg_tst(l_flag_handle fff)
fff: Name of the flag handle

Returns a C boolean indicating the current state of the flag specified by the name “fff”".
false: The flag is cleared,;
true: The flag is not cleared.

None

Clears the flag that is specified by the name “fff”. This routine should be used to clear
a flag after it has been tested (after |_flg_tst() API). The component does not
automatically clear notification flags. This routine is the only way that a notification
flag can be cleared.

void |_flg_clr_fff(void)

void I_flg_clr(l_flag_handle fff)
fff: Name of the flag handle
None

None

Interface Management Functions* Subgroup

These calls manage the specific interfaces (the logical channels to the bus). Each interface is
identified by its interface name, denoted by the “iii” extension for each static API call, for
example, |_ifc_init_MyLinlfc(). For static prototypes, the interface name is the same as the
component instance name. This component supports a maximum of two interfaces. Therefore,
there will never be more than two valid identifiers for “iii.” For dynamic prototypes, iii is a number
defined as MyLinlfc_IFC_HANDLE. It is equal to O for a single instance and equal to 0 or 1 when
both interfaces are present in the schematic.

Function Description
I_ifc_init() Initializes the LIN Slave component.
|_ifc_wake_up() Transmits one wakeup signal.
|_ifc_ioctl() Controls functionality beyond the specification.
I_ifc_rx() The LIN Slave component calls this API routine automatically.

Page 30 of 53

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Function Description
|_ifc_tx() The LIN Slave component calls this API routine automatically.
|_ifc_aux() The LIN Slave component calls this API routine automatically.
|_ifc_read_status() Returns the status of the specified LIN interface.

|_ifc_init()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_ifc_wake_up()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_ifc_init() initializes the LIN Slave component instance that is specified by the name
“iii.” It sets up internal functions such as the baud rate and starts up digital blocks that
are used by the LIN Slave component. This is the first call that must be performed,
before using any other interface-related LIN Slave API functions.

|_bool I_ifc_init_iii(void)

|_bool I_ifc_init(l_ifc_handle iii)

iii: Name of the interface handle

The function returns zero if the initialization was successful and nonzero if it failed.

None

This function transmits one wakeup signal. The wakeup signal is transmitted directly
when this function is called. When you call this API function, the application is
blocked until a wakeup signal is transmitted on the LIN bus. The CyDelayUs()
function is used as the timing source. The delay is calculated based on the clock
configuration entered in PSoC Creator.

void |_ifc_wake_up_iii(void)

void |_ifc_wake_up(l_ifc_handle iii)
iii: Name of the interface handle
None

None

Document Number: 002-03683 Rev. ** Page 31 of 53

LIN Slave

|_ifc_ioctl()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Page 32 of 53

PSoC® Creator™ Component Datasheet

This API controls functionality that is not covered by the other API calls. This function
is used to control this component in device-specific ways.

For the operations that are supported by this function, refer to the Component
Parameters section.

|_ul6 I_ifc_ioctl_iii(l_ioctl_op op, void* pv)

|_ul6 |_ifc_ioctl(l_ifc_handle iii, |_ioctl_op op, void* pv)

iii: Name of the interface handle to which the operation defined in op is applied
op: Parameter used to specify the operation

pv: Pointer to a set of optional parameters for the specified operation that must be
provided to the function

The following table describes the possible operations and their code values supported
by the |_ifc_ioctl API function. The parameter list in the table shows how many
parameters there are and what data type they have.

“op” Operation “pv” Parameter -

(Symbolic Name) Ve List DAL
L_IOCTL_READ_STATUS 0x00u None Optional status indicators
L_IOCTL_SET _BAUD_RATE 0x01u |_ul6 Modify baud rate
L_IOCTL_SLEEP 0X02u None Prepare device for low-power-mode

entry
L 10CTL WAKEUP 0x03u None Restore component state after
- - wakeup
Return current number of sync field
L_IOCTL_SYNC_COUNTS 0x04u None timer counts
L IOCTL_SET_SERIAL_NUMBER | 0x05u |_u8* Update the pointer to the serial
number

There is no error code value returned for the operation selected. This means that you
must ensure that the values passed into the function are correct.

L_IOCTL_READ_STATUS operation

The first bit in this byte is the flag that indicates that there has been no signaling on
the bus for a certain elapsed time (available when the Bus Inactivity Timeout
Detection option is enabled). If the elapsed time is past a certain threshold, this flag is
set. Calling this API clears all status bits after they are returned. The second bit is the
flag that indicates that a Targeted Reset service request (0xB5) was received (when
J2602-1 Compliance is enabled).

Symbolic Name Value Description

No signal was detected on the bus for a certain

LIN_IOCTL_STS_BUS_INACTIVITY 0x0001u }
- - = - elapsed time

Targeted Reset service request (0xB5) was

LIN_IOCTL_STS_TARGET_RESET 0x0002u received

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Return Value:
(cont.)

Side Effects:

I_ifc_rx()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_ifc_tx()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

L_IOCTL_SET_BAUD_RATE operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SLEEP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_WAKEUP operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

L_IOCTL_SYNC_COUNTS operation

Returns current number of sync field timer counts for it 8 of the synchronization field
byte.
L_IOCTL_SET_SERIAL_NUMBER operation

Returns 0 if operation succeeded and 1 if an invalid operation parameter was passed
to the function.

None

The LIN Slave component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void |_ifc_rx_iii(void)

void |_ifc_rx(I_ifc_handle iii)

ii: Name of the interface handle
None

None

The LIN Slave component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void I_ifc_tx_iii(void)

void I_ifc_tx(l_ifc_handle iii)

iii: Name of the interface handle
None

None

Document Number: 002-03683 Rev. ** Page 33 of 53

LIN Slave

|_ifc_aux()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:
Return Value:

Side Effects:

|_ifc_read_status()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects: None

PSoC® Creator™ Component Datasheet

The LIN Slave component calls this API routine automatically. Therefore, this API
routine must not be called by the application code. It is only listed here to show
compliance with the LIN specification.

void |_ifc_aux_iii(void)

void |_ifc_aux(l_ifc_handle iii)
iii: Name of the interface handle
None

None

This function returns the status of the previous communication. Refer to the LIN 2.2
specification for detailed information on each status information field in the LIN Slave
status word.

|_ul6 |_ifc_read_status _iii(void)
| ul6 |_ifc_read_status(l_ifc_handle iii)
iii.: Name of the interface handle

The call returns the status word (16-bit value), as shown in the following table:

15|14|13|12|11|10|9|87 6 5 4 3 2 1 0
Last frame PID 0| Save Event Bus Go Over | Successful | Errorin
configu | triggered | activity | to run transfer response
ration frame sleep
collision

The status word is only set based on a frame transmitted or received by the node
(except bus activity). The status word is cleared after API is called.

User-Provided Callouts

The component does not need these callouts because it works only on Cypress chips; you can
enable/disable interrupts using PSoC Creator macros.

|_sys_irg_disable()

Page 34 of 53

PERFORM

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Node Configuration Functions

Function Description
Id_read_configuration() Serializes the current configuration and copies it to the area (data pointer) provided
by the application.
Id_set_configuration() Configures the NAD and the PIDs according to the configuration specified by input
parameter.
Id_read_by id_callout() Used when the master node transmits a read by identifier request with an identifier in

the user defined area.

Id_read_configuration()

Description: This function is used to read the NAD and PID values from volatile memory. This
function can be used to read the current configuration data, and then save this data
into nonvolatile (flash) memory. The application should save the configuration data to
flash when the “Save Configuration" bit is set in the LIN status register (returned by
|_ifc_read_status()).

The configuration data that is read is a series of bytes. The first byte is the current
NAD of the slave.

The next bytes are the current PID values for the frames that the slave responds to.
The PID values are in the order in which the frames appear in the LDF or NCF file.

Static Prototype: None
Dynamic Prototype: | _u8Id_read_configuration(l_ifc_handle iii, |_u8* const pData, |_u8* length)
Parameters: iii: Name of the interface handle;

pData: Array into which configuration data is to be read

length: Size of configuration data in bytes. The value pointed to the length pointer
parameter is set to the actual length of the configuration data.

Return Value: The function returns values listed in the following table.
Symbolic Name Description
LD_READ_OK Returned if the configuration data read was successful

LD_LENGTH_TOO_SHORT | Returned if the value pointed to by the length pointer parameter is
less than the actual length of the configuration data

Side Effects: None

Document Number: 002-03683 Rev. ** Page 35 of 53

LIN Slave

Id_set_configuration()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

Page 36 of 53

PSoC® Creator™ Component Datasheet

This function is used to set the volatile NAD and PID values of the slave node. This
can be used to modify the NAD and PID values at run time. This should normally only
be done just after bootup or after the master requests it. Otherwise, if the slave
changes its NAD or PID values, or both, the master may no longer be able to
communicate with the slave.

See the Id_read_configuration function() for information on what the configuration
data contains and how it is stored.

None
|_u8Id_set_configuration(l_ifc_handle iii, const |_u8* const pData, |_ul6 length)

iii: Name of the interface handle
pData: Array of configuration data which is to be applied to the slave node
length: Size of configuration data in bytes

The function return values are listed in the following table.

Symbolic Name Description

LD_SET_OK Returned if the configuration data was successfully set

LD_LENGTH_NOT_CORRECT | Returned if the value of the length parameter is not equal to the
value of the configuration data of the slave node

LD_DATA_ERROR Returned if the configuration data was not set correctly

None

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Id_read_by id_callout()

Description: This callout is used when the master node transmits a read by identifier request with
an identifier in the user-defined area. The slave node application is called from the
driver when such a request is received.

Note This function has no implementation. Implement this function with the desired
functionality and override the default return value of the function which is
LD _NEGATIVE_RESPONSE.

Static Prototype: None
Dynamic Prototype: | u8Id_read_by id_callout (I_ifc_handle iii, |_u8 id, |_u8* frameData)

Parameters: ii. Name of the interface handle

id: Identifier in the user defined area (32 to 63), from the read by identifier
configuration request

frameData: Points to a data area with 5 bytes. This area is used by the application to
set up the positive response.

Return Value: The function return values are listed in the following table.

Symbolic Name Description

LD_NEGATIVE_RESPONSE | The default returns status of the API. It is always returned if you do
not modify the API and reassign this to some other status.

LD_NO_RESPONSE You can set this status manually. If set, it specifies that no
response will be provided for the service.

LD_POSITIVE_RESPONSE You can set this status manually. If set, it specifies that response
will be provided for the service. The response will be pointed by the
frameData parameter.

Side Effects: None

== CYPRESS

Document Number: 002-03683 Rev. ** Page 37 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Transport Layer Functions

The Transport Layer is a higher-level layer of the LIN network stack. This layer allows the
application to send or receive data in “message” format instead of “frame” format. Messages can
be many bytes that are sent or received using multiple frames. The Transport Layer is used for
configuration services, diagnostic service, or custom user-defined implementations.

API functions that send and receive Transport Layer messages have two different formats. There
is a cooked format and a raw format. This component only supports using one format of the
Transport Layer API functions. The API format is chosen in the Transport Layer tab of the
component customizer.

Note To use the LIN Transport Layer API functions, Transport Layer use must be enabled on the
Transport Layer tab of the LIN Slave Component customizer.

Initialization Subgroup

Function Description

Id_init() Initializes or reinitializes the raw and the cooked layers. All transport layer buffers will
be initialized. If there is an ongoing diagnostic frame transporting a cooked or raw
message on the bus, it will not be aborted.

Id_init()

Description: This routine initializes or reinitializes the Transport Layer of the slave node. This API
must be called before using any Transport Layer API functions. It must also be
called before the slave node can do any Transport Layer communication. If the API
is called in the middle of an ongoing diagnostic frame transporting a cooked or raw
message on the bus, the message is be aborted; instead, the API waits until the
message is completed.

Static Prototype: None
Dynamic Prototype: void Id_init(l_ifc_handle iii)

Parameters: ii. Name of the interface handle
Return Value: None
Side Effects: None

Raw Transport Layer APl Functions Subgroup

Function Description
Id_put_raw() The call queues the transmission of 8 bytes of data in one frame.
Id_get_raw() Copies the oldest received diagnostic frame data to the memory specified by input
parameter.
Id_raw_tx_status() Returns the status of the raw frame transmission function.

Page 38 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Function Description
Id_raw_rx_status() Returns the status of the raw frame receive function
Id_put_raw()
Description: This function is used to allow the application code to send data using the Transport

Layer. It essentially copies some data from a user application array to a frame buffer
array. This function is used to send one frame of a complete Transport Layer
message at a time. Therefore, a multiframe Transport Layer message requires
multiple calls to this API function. You should always check to see if there is a place
for the frame in the buffer before calling this API.

Static Prototype: None
Dynamic Prototype: void Id_put_raw(l_ifc_handle iii, const |_u8* const Id_data)

Parameters: iii: Name of the interface handle
Id_data: Array of data bytes to be sent

Return Value: None
Side Effects: None
Id_get_raw()
Description: This function is used to allow the application code to receive data using the

Transport Layer. It essentially copies some data from a frame buffer array to a user
application array. This function is used to receive one frame of a complete
Transport Layer message at a time. Therefore, a multiframe Transport Layer
message requires multiple calls to this API function. If the receive queue is empty,
no data is copied. You should always check to see if there is a place for the frame
in the buffer before calling this API.

Static Prototype: None
Dynamic Prototype: void Id_get_raw(l_ifc_handle iii, |_u8* const |d_data)
Parameters: iii: Name of the interface handle

Id_data: Array to which the oldest received diagnostic frame data will be copied

Return Value: None

Side Effects: None

Document Number: 002-03683 Rev. ** Page 39 of 53

LIN Slave

Id_raw_tx_status()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

Id_raw_rx_status()

Description:

Static Prototype:

Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

PSoC® Creator™ Component Datasheet

This call returns the status of the last performed frame transmission on the bus when

a raw APl was used.

None

|_u8ld_raw_tx_status(l_ifc_handle iii)

ii. Name of the interface handle

Symbolic Name

Description

LD_QUEUE_EMPTY

The transmit queue is empty. If previous calls to Id_put_raw() have
been made, all frames in the queue have been transmitted.

LD_QUEUE_AVAILABLE

The transmit queue contains entries, but is not full.

LD_QUEUE_FULL

The transmit queue is full and cannot accept further frames.

LD_TRANSMIT_ERROR

LIN protocol errors occurred during the transfer; initialize and redo the
transfer.

None

This call returns the status of the last performed frame reception on the bus when a

raw APl was used.

None

I_u8 Id_raw_rx_status(l_ifc_handle iii)

ii. Name of the interface handle.

Symbolic Name

Description

LD_NO_DATA

The receive queue is empty.

LD_DATA_AVAILABLE

The receive queue contains data that can be read.

LD_RECEIVE_ERROR

LIN protocol errors occurred during the transfer. Initialize and redo the
transfer.

None

Cooked Transport Layer APl Functions Subgroup

Function

Description

Id_send_message()

Packs the information specified by data and length into one or multiple diagnostic
frames. The frames are transmitted to the master node with the address NAD.

Id_receive_message()

Prepares the LIN diagnostic module to receive one message and store it in the buffer
pointed to by data. At the call, length specifies the maximum length allowed. When the
reception has completed, length is changed to the actual length and NAD to the NAD

in the message.

Id_tx_status()

Returns the status of the last made call to Id_send_message().

Page 40 of 53

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Function Description

Id_rx_status() Returns the status of the last made call to Id_receive_message().

Id_send_message()

Description: This function allows the application code to send data using the Transport Layer. It
is responsible for queuing up data to automatically be sent over the course of
multiple SRF frames. This function is used to send a complete Transport Layer
message. Therefore, a multiframe Transport Layer message requires only one call
to this API function. The length value must be between 6 and 4095 bytes.

If there is a message in progress, the call returns with no action.

Static Prototype: None

Dynamic void Id_send_message(l_ifc_handle iii, |_ul6 length, | _u8 nad, const |_u8* const
Prototype: Id_data)

Parameters: iii: Name of the interface handle

length: Size of data to be sent in bytes
nad: Address of the slave node to which data is sent
Id_data : Array of data to be sent. The value of the RSID is the first byte in the data

area
Return Value: None
Side Effects: The call is asynchronous, that is, not suspended until the message has been sent,

and the buffer may not be changed by the application as long as calls to
Id_tx_status() return LD_IN_PROGRESS.

Document Number: 002-03683 Rev. ** Page 41 of 53

LIN Slave

Id_receive_message()

Description:

Static Prototype:
Dynamic Prototype:

Parameters:

Return Value:

Side Effects:

Id_tx_status()

Description:

Static Prototype:
Dynamic Prototype:
Parameters:

Return Value:

Side Effects:

Page 42 of 53

PSoC® Creator™ Component Datasheet

This function allows the application code to receive data using the Transport Layer.
It is responsible for receiving multiple MRF frames and copying all of the data of the
message to a user application buffer array. This function is used to receive a
complete Transport Layer message. Therefore, a multiframe Transport Layer
message requires only one call to this API function. The length value must be
between 6 and 4095 bytes.

None

void Id_receive_message(l_ifc_handle iii, |_ul6* const length, |_u8* const nad,
|_u8* const Id_data)

iii: Name of the interface handle
length: Size of data to be received in bytes
nad: Address of the slave node from which data is received

Id_ata: Array of data to be received. The value of the SID is the first byte in the data
area.

None

The call is asynchronous, that is, not suspended until the message has been
received, and the buffer may not be changed by the application as long as calls to
Id_tx_status() return LD_IN_PROGRESS.

This function returns the status of the last call made to Id_send_message() and the
last Transport Layer data transmission on the bus.

None
I_u8Id_tx_status(l_ifc_handle iii)
iii: Name of the interface handle.

The following values can be returned.

Symbolic Name Description

LD_IN_PROGRESS The transmission is not yet completed.

LD_COMPLETED The transmission has completed successfully (and you can issue a new
Id_send_message call()). This value is also returned after initialization of
the transport layer.

LD_FAILED The transmission ended in an error. The data was only partially sent. The
transport layer must be reinitialized before processing further messages.
To find out why a transmission has failed, check the status management
function |_read_status().

LD_N_AS_TIMEOUT [The transmission failed because of an N_As timeout, and current message
transmission will be aborted. See Section 3.2.5 of the LIN 2.2 specification.

None

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Id_rx_status()

Description: This function returns the status of the last call made to Id_receive_message() and the
last Transport Layer data reception on the bus.

Static Prototype: None

Dynamic Prototype: | _u8Id_rx_status(l_ifc_handle iii)

Parameters: li: Name of the interface handle
Return Value: The following values can be returned:
Symbolic Name Description

LD_IN_PROGRESS The reception is not yet completed.

LD_COMPLETED The reception has completed successfully and all information (length, NAD,
data) is available. You can also issue a new Id_receive_message() call.
This value is also returned after initialization of the transport layer.

LD_FAILED The reception ended in an error. The data was only partially received and
should not be trusted. Initialize before processing further transport layer
messages. To find out why a reception has failed, check the status
management function |_read_status().

LD_N_CR_TIMEOUT | The reception failed because of an N_Cr timeout, and current message
reception will be aborted. See Section 3.2.5 of the LIN 2.2 specification.

LD_WRONG_SN The reception failed because of an unexpected sequence number.

Side Effects: None

Non-LIN-Specified API

Function Description
LIN_Start() Starts the component operation.
LIN_Stop() Stops the component operation.
LIN_Start()
Description: Starts the component operation. This function is not required.
Static Prototype: None

Dynamic Prototype: | _bool LIN_Start()
Parameters: None

Return Value: Zero: The initialization succeeded.
Nonzero: The initialization failed.

Side Effects: None

Document Number: 002-03683 Rev. ** Page 43 of 53

LIN Slave PSoC® Creator™ Component Datasheet

LIN_Stop()
Description: Stops the component operation. This function is not required.
Static Prototype: None

Dynamic Prototype: | _bool LIN_Stop()

Parameters: None
Return Value: None
Side Effects: None

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the component’s generated source files,
perform the following:

® Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“‘uncomment” the function call from the component’s source code.

® Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

® Write the function implementation (in any user file).

Callback Function Associated Macro Description

LIN_BLIN_ISR_EntryCallback | LIN_BLIN_ISR_ENTRY_CALLBACK | Used at the beginning of the LIN_BLIN_ISR()
interrupt handler to perform additional application-
specific actions.

LIN_BLIN_ISR_ExitCallback LIN_BLIN_ISR_EXIT_CALLBACK Used at the end of the LIN_BLIN_ISR() interrupt
handler to perform additional application-specific
actions.

LIN_UART_ISR_EntryCallback | LIN_UART_ISR_ENTRY_CALLBACK | Used at the beginning of the LIN_UART_ISR()
interrupt handler to perform additional application-
specific actions (PSoC 3/PSoC 5LP).

LIN_UART_ISR_EXxitCallback LIN_UART_ISR_EXIT_CALLBACK Used at the end of the LIN_UART_ISR() interrupt
handler to perform additional application-specific
actions (PSoC 3/PSoC 5LP).

|_ifc_rx_LIN_Callback L_IFC_RX_LIN_CALLBACK Used in the |_ifc_rx_LIN() function to perform
additional application-specific actions.

1 The callback function name is formed by component function name optionally appended by short explanation
and “Callback” suffix.

= __¥§

¥ CYPRESS

PERFORM

Page 44 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Callback Function [Associated Macro Description

|_ifc_aux_LIN_Callback L_IFC_AUX_LIN_CALLBACK Used in the |_ifc_aux_LIN() function to perform
additional application-specific actions.

Id_read_by id_callout LIN_Cal | LD_READ_BY_ID_CALLOUT_LIN_C | Used inthe Id_read_by_id_callout_LIN() function to
Iback ALLBACK perform additional application-specific actions.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

® project deviations — deviations that are applicable for all PSoC Creator components

® gspecific deviations — deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The LIN Slave component has the following specific deviations:

MISRA- Rule Class
C:2004 (Required/

Rule Advisory) Rule Description Description of Deviation(s)
1.1 R This rule states that code shall conform | Nesting of control structures (statements)
to C ISO/IEC 9899:1990 standard. exceeds 15 - program does not conform

strictly to 1ISO:C90.

In practice, most compilers will support a
much more liberal nesting limit and therefore
this limit may only be relevant when strict
conformance is required. By comparison,
ISO:C99 specifies a limit of 127 "nesting
levels of blocks.

Document Number: 002-03683 Rev. ** Page 45 of 53

LIN Slave PSoC® Creator™ Component Datasheet
MISRA- Rule Class
C:2004 (Required/
Rule Advisory) Rule Description Description of Deviation(s)

8.7 R Obijects shall be defined at block scope | The reason of this violation is that in some
if they are only accessed from within a | configurations following internal variables are
single function. That is, minimize the used only in one function:
scope of objects and variables. LIN_LinSlaveConfig

LIN_prevPci,
messageldTable

11.3 A Cast between a pointer to volatile Casting performed when accessing SCB
object and an integral type. internal registers.

114 A A cast should not be performed Section 7.2.5.4 of LIN 2.2 specification
between a pointer to object type and a | defines |_ifc_ioctl() with following prototype —
different pointer to object type. |_ul6 |_ifc_ioctl (I_ifc_handle iii, |_ioctl_op

op, void* pv).

Depending on the operation the “pv”
parameter may be converted to pointer to
unsigned char or to unsigned short (I_ul6).

12.4 R Right hand operand of '&&' or ’||"is an | Expression operates with volatile variable. It
expression with possible side effects. is safe as these variables are accessed only

from interrupt routine.

13.7 R Boolean operations whose results are | Depending on the component setup there
invariant shall not be permitted. may be condition checks whose results are

invariant. For example when

Id_read_by id_callout() is used it always
returns LD_NEGATIVE_RESPONSE unless
the user will override it. But component
performs condition check for all of three
possible return values in its source code.

14.1 R There shall be no unreachable code. This comes in pair with 13.7. Depending on
This refers to code which cannot, the component setup there may be condition
under any circumstances, be reached. | checks whose results are invariant. This

results in unreachable code.

14.7 R A function shall have a single point of | The |_ifc_rx() function has a complex
exit at the end of the function. conditional structure and two more “return’

paths are added to return immediately after
receiving of BREAK sequence or if
spurious interrupt occurs.

15.5 R This 'switch' statement contains only a | This 'switch' is generated in customizer.

single path - it is redundant.

Number of its paths depends on quantity of
signals or frames defined by user.

Page 46 of 53

el

CYPRESS

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet

LIN Slave

MISRA- Rule Class
C:2004 (Required/
Rule Advisory) Rule Description Description of Deviation(s)

16.7 A A pointer parameter in a function Section 7.2.5.4 of LIN 2.2 specification
prototype should be declared as defines |_ifc_ioctl() with following prototype —
pointer to const if the pointer is not |_ul6 |_ifc_ioctl (I_ifc_handle iii, |_ioctl_op
used to modify the addressed object. op, void* pv).

In some cases, depending on configuration
the “pv” parameter of may not be modified.

17.4 R Array indexing shall be the only To conform to the LIN 2.2 specification the
allowed form of pointer arithmetic. This | component defines several API functions that
still bans the incrementing of a pointer | use pointers as parameters. These pointers
that was not declared as an array. are used to define arrays of data and array

indexing is used to access the data.

19.7 A A function shall be used in preference | The following macro is used to increase
to a function-like macro performance:

LIN_SWAP_U8_TO_U16();
LIN_ABS().

PSoC 3 Reentrancy Support

The CylintClearPending() function can be concurrently called because it is called from two
different interrupts inside of the LIN component. While not reentrant by default, it can be made to
support reentrancy to eliminate “MULTIPLE CALL TO FUNCTION” warning during compilation.
Refer to the “Reentrant Code in PSoC 3” topic in the PSoC Creator Help for more information.
Also, the component example project has reentrancy support added.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with associated compiler configured in Release mode with
optimization set for Size. For a specific design the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 3 (Keil_PK51)

PSoC 5LP (GCC)

PSoC 4 (GCC)

Configuration Flash SRAM Flash SRAM Flash SRAM
Bytes Bytes Bytes Bytes Bytes Bytes
LIN_Slave_Example project 8115 169 4638 179 4222 181

—_—

<=7 CYPRESS

Document Number: 002-03683 Rev. **

Page 47 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Functional Description

PSoC and LIN Bus Hardware Interface

You need a LIN physical layer transceiver device when the PSoC LIN slave node is connected
directly to a LIN bus. In this case, the TxD pin of the LIN component connects to the TXD pin of
the transceiver, and the RxD pin connects to the RXD pin of the transceiver. The LIN transceiver
device is required because the PSoC's electrical signal levels are not compatible with the
electrical signals on the LIN bus.

Some LIN transceiver devices also have an "enable" or "sleep" input signal that is used to control
the operational state of the device. The LIN component does not provide this control signal.
Instead, use a pin used to output the desired signal to the LIN transceiver device if this signal is
needed.

Note After the component goes into Sleep mode, the SCB is disconnected from the Txd pin and
this pin goes into high-impedance state. It is a responsibility of the user's code to avoid
generation of low-level pulse. The simplest way is to disable the external LIN transceiver before
entering Sleep mode. While disabled, the transceiver can still transfer wake-up pulses from the
LIN bus to the Rxd pin, so a wake-up event will not be missed.

Figure 10. Hardware Interface between PSoC and LIN Bus

PSoC LIN Transceiver |

I

RXD Signal I

rxd RXD |

LIN

component TXD Signal 0
0
txd » TXD =
3

Control Signal (optional)
Pin --—t-—————————————— - NSLP

Page 48 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Resources

The LIN component (for PSoC 3/PSoC 5LP) is placed throughout the UDB array. The
component utilizes the following resources.

Resource Type

Configuration Datapath |, . | Status | Control DMA R
Cells Cells Cells Channels P
LIN_Slave_Example project 4 42 3 3 - 2

The LIN component (for PSoC 4) is based on an SCB fixed block. The component utilizes the
following resources.

Resource Type
Configuration Datapath |, . . | Status | Control DMA S
Cells Cells Cells Channels P
P4_SCB_LIN_Slave_ - - - - - 1+1
Example project (SysTick callback
handler)
P4_SCB_LIN_Slave_Multi_ - - - - - 242
Instance Example project (SysTick callback
handlers)

DC and AC Electrical Characteristics

For information about DC and AC Electrical Characteristics refer to the “LIN Physical Layer
Specification” chapter of the LIN 2.2 Specification.

Specifications are valid for —40 °C < Ta <85 °C and T < 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Note The data for the PSoC 4200L device is preliminary. Final data will be delivered in an
upcoming Component Pack.

DC Characteristics

Fixed UART DC Specifications

Parameter Description Min Typ Max Units
luarT1 Block current consumption at 100Kbit/s - - 9 HA
luarT1 Block current consumption at 100Kbit/s for - - 55 HA

PSoC 4100 BLE / PSoC 4200 BLE,
PSoC 4100M / PSoC 4200M,

Document Number: 002-03683 Rev. ** Page 49 of 53

LIN Slave PSoC® Creator™ Component Datasheet

Parameter Description Min Typ Max Units
PSoC 4200L

UDB based UART DC Specifications

Parameter Description Min Typ Max Units
luarT2 Block current consumption at 100Kbit/s - - 85 HA
luarT2 Block current consumption at 1000 Kbits/sec - - 312 HA

for PSoC 4200L

Performance Characteristics

Symbol Description Conditions Min | Typ Max Units
Feaub Baud Rate Bus Clock = 66 MHz 1 - 20 kbaud
Bus Clock = 48 MHz 1 - 20 kbaud

Bus Clock = 24 MHz 1 - 20 kbaud

Bus Clock =12 MHz 1 - 10 kbaud

Bus Clock = 6 MHz 1 - 5 kbaud

Bus Clock = 3 MHz 1 - 25 kbaud

Nisr ISR Length - - 729 CPU
Cycles

tisrLAT ISR Latency - - 1/ (Feaup) s

Fesaup parameter is limited by Bus Clock only when automatic baud rate synchronization is
enabled (for clock source with a frequency deviation of £1.5 percent or more).

Above Feaup values are calculated from formulae:
Feaub max < Fsus_cik /(16* DIVIDER_VALUE)

Where biviber_vaLue = 75. This conservative value provides frequency tuning with granularity of
1/75=1,33%.As LIN Spec. defines deviation after synchronization < +/-2%, pivipEr_vALUE can be
reduced to 25 (4%) for clock source with low short-term deviation.

Maximal ISR Latency is 1 bit-time because transmitter must be disabled at the edge of new
symbol when previously sent symbol received back as erroneous.

Page 50 of 53 Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Component Errata

Cypress ID | Version Problem Workaround
203203 All On PSoC3/PSoC 5LP, the Automatic Use External clock source (with tolerance <
baud rate syncronization fails when +/-0.5%) when using component on PSoC3/5.

consequental Break symbols arrive

- Disable ‘Automatic baud rate syncronization’
without SYNC byte between them.

checkbox in the customizer

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.30 Added PSoC 4200L device support, and New device support.
updated characterization data.

3.20.b Datasheet update. Added Macro Callbacks section.

Added certification statement for PSoC 4 devices,
as well as a statement to explain that this a
prototype component for PSoC 3 and PSoC 5LP.

3.20.a Added a note to the Bus Inactivity Timeout Clarified the minimal timeout value and compatibility
Detection parameter section. with LIN 1.3.

3.20 Added Errata section Component validation
Added LIN_Dynamic Component section. To explain the use of the LIN_Dynamic component.
Added recommendations about Sleep mode Validation report

entering procedure concerned to control of
external transceiver

Added 11.3,12.4,14.7,15.5 MISRA violations MISRA related change.

Added support for SCB based LIN component | Component support for PSoC 4200 device family.

Break Detection Threshold setting options The break width options available for SCB are
needs to be changed based on the hardware limited (only whole no. values). This automatically
implementation has to update the drop down options based on

hardware implementation (UDBs for PSoC 3/
PSoC 5LP; SCB for PSoC 4).

Any integer field in an imported NCF/LDF file Customer Request.
should be imported properly if it is an integer
value in decimal float format (example: 10.0).

Allow multiple instances of LIN component (v2.x | Customer Request.
and v1.3) in a single project based on hardware

VL9 Component APIs might get affected based on the
availability.

number of component instance in the project.

Added Hover window settings as Auto Baud Based on review comments
rate sync, LIN bus Baud rate and slave

Document Number: 002-03683 Rev. ** Page 51 of 53

LIN Slave PSoC® Creator™ Component Datasheet
Version Description of Changes Reason for Changes / Impact
information (Supplier ID & Function ID)
Edited the datasheet. Updated DC and AC Electrical Characteristics
section with PSoC 4100M/PSoC 4200M data.
1.30.b Added Component Errata section applicable to | Document that the component was changed, but
v1.30 only. there is no impact to designs.
1.30.a Minor datasheet edits.
1.30 Support of PSoC 5 family devices was removed
from the component.
Following variables were declared as “static”: MISRA related change. These functions are
LIN_Slave_FindPidindex(); designated only for internal component’s usage.
LIN_Slave_EndFrame();
LIN_Slave_SetAssociatedFlags();
LIN_Slave_GetEtFlagValue();
LIN_Slave_ClearEtFlagValue();
LIN_Slave_ProcessMrf();
LIN_Slave_LinProductld();
LIN_Slave_Messageld().
The number of 45 global variables were MISRA related change. These variables are
declared as “static” designated only for internal component’s usage.
The MISRA Compliance section was updated. | The component was verified for MISRA compliance.
The API Memory Usage section was updated The new APl memory usage numbers were
inserted.
1.20 Added MISRA Compliance section. The component was not verified for MISRA
compliance.
Updated LIN Slave with the latest version of the
Clock and Interrupt components
1.10 Updated component characterization data.

Added PSoC 5LP support.

Added all component APIs with the
CYREENTRANT keyword when they are
included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which functions
are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

Description of 0xB5 service was modified to
insert more clarity on the service usage

Page 52 of 53

el

CYPRESS

Document Number: 002-03683 Rev. **

PSoC® Creator™ Component Datasheet LIN Slave

Version Description of Changes Reason for Changes / Impact
depending on component configuration.

1.0.a Minor datasheet edits and updates

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 002-03683 Rev. ** Page 53 of 53

	Features
	General Description
	Definitions
	Input/Output Connections
	TXD – Output
	RXD – Input

	Schematic Macro Information
	Component Parameters
	General Tab
	General Parameters
	Use Automatic response_error Signal
	LIN 1.3 Compatibility
	LIN 2.0 Compatibility
	Enable J2602-1 Compliance
	Bus Inactivity Timeout Detection
	This approach is less optimal in terms of resource usage; however, it is directly defined in the LIN standard.Multiple instance support
	Interface number
	Break Detection Threshold

	General Toolbar
	Import File
	Export File
	LIN File Text Editor

	Baud Rate Tab
	Automatic Baud Rate Synchronization
	Nominal LIN Bus Baud Rate
	Source Clock Frequency
	Source Clock Divider
	Actual LIN Bus Baud Rate

	Frames Tab
	Frame Configuration Table
	Frames Tab Buttons

	Signals Tab
	Frames & Signals relations
	Unplaced Signals
	response_error
	Signals Toolbar

	Signal Properties Window
	Adding Signals
	Name
	Type
	Length
	Initial Value
	Fill Color
	Signal Description
	Preview

	Transport Layer Tab
	Use Transport Layer
	API Format Selection
	Initial NAD
	Maximum Message Length
	TX Queue Length/RX Queue Length

	Configuration Services Tab
	Automatic Configuration Request Handling
	Configuration Service Selection
	Slave Information

	Clock Selection
	Placement
	LIN_Dynamic Component
	LIN Version and Updates

	Application Programming Interface
	Core API Functions
	Initialization Subgroup
	l_bool l_sys_init()

	Signal Interaction Functions Subgroup
	l_bool_rd()
	l_u8_rd()
	l_u16_rd()
	l_bytes_rd()
	l_bool_wr()
	l_u8_wr()
	l_u16_wr()
	l_bytes_wr()

	Notification Functions Subgroup
	l_flg_tst()
	l_flg_clr()

	Interface Management Functions* Subgroup
	l_ifc_init()
	l_ifc_wake_up()
	l_ifc_ioctl()
	l_ifc_rx()
	l_ifc_tx()
	l_ifc_aux()
	l_ifc_read_status()

	User-Provided Callouts
	l_sys_irq_disable()

	Node Configuration Functions
	ld_read_configuration()
	ld_set_configuration()
	ld_read_by_id_callout()

	Transport Layer Functions
	Initialization Subgroup
	ld_init()

	Raw Transport Layer API Functions Subgroup
	ld_put_raw()
	ld_get_raw()
	ld_raw_tx_status()
	ld_raw_rx_status()

	Cooked Transport Layer API Functions Subgroup
	ld_send_message()
	ld_receive_message()
	ld_tx_status()
	ld_rx_status()

	Non-LIN-Specified API
	LIN_Start()
	LIN_Stop()

	Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	PSoC 3 Reentrancy Support
	API Memory Usage

	Functional Description
	PSoC and LIN Bus Hardware Interface

	Resources
	DC and AC Electrical Characteristics
	DC Characteristics
	Fixed UART DC Specifications
	UDB based UART DC Specifications

	Performance Characteristics
	Component Errata
	Component Changes

