

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

ASSP DC/BLDC Motor controller for 12V-Battery Datasheet

CY96800 series is DC and BLDC* Motor controller corresponding to 12V-Battery. This series incorporates an built-in voltage regulator operable at 12Vcar battery voltages and including 12V and 5V power supplies, a three-phase motor pre-driver, a charge pump, and 16-bit CPU based on Cypress's advanced F2MC-16FX architecture (16-bit with instruction pipeline for RISC-like performance)

The CPU uses the same instruction set as the established F2MC-16LX family thus allowing for easy migration of F2MC-16LX software to the new F2MC-16FX products.

*:Brushless DC electric motor.

Features

Technology

■ LDMOS + 0.18µm CMOS

CPU

- F²MC-16FX CPU
- Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, a variety of pointers)
- 8-byte instruction queue
- Signed multiply (16-bit × 16-bit) and divide (32-bit/16-bit) instructions available

System Clock

- On-chip PLL clock multiplier (×1 to ×10, ×1 when PLL stop)
- 4MHz to 8MHz crystal oscillator (maximum frequency when using ceramic resonator depends on Q-factor)
- Up to 8MHz external clock for devices with fast clock input feature
- 100kHz/2MHz internal RC clock for quick and safe startup, clock stop detection function, watchdog
- Clock source selectable from main clock and internal RC clock, independently for CPU and 2 clock domains of peripherals
- 10 operating modes (different Run, Sleep, Timer, Stop modes)
- Internal CPU clock and internal peripheral clock operate up to 20MHz.

Built-in voltage regulator

Built-in voltage regulator supports inner circuits operating at low voltages, offering low power consumption

Output Voltage of Power Supply for External Parts

- Voltage regulator for the external can supply the output voltage of 5V (max 25mA) to external parts
- Power supply input voltage (BVcc) can be supplied to external parts via built-in switch (max 30mA)

Low Voltage Detection Function

Reset is generated when supply voltage falls below programmable reference voltage

Code Security

Protects Flash Memory content from unintended read-out

DMA

Automatic transfer function independent of CPU, can be assigned freely to resources

Interrupts

- Fast Interrupt processing
- 8 programmable priority levels
- Non-Maskable Interrupt (NMI)

CAN

- Supports CAN protocol version 2.0 part A and B
- ISO16845 certified
- Bit rates up to 1Mbps
- 32 message objects
- Each message object has its own identifier mask
- Programmable FIFO mode (concatenation of message objects)
- Maskable interrupt
- Disabled Automatic Retransmission mode for Time Triggered CAN applications

■ Programmable loop-back mode for self-test operation

USART

- Full duplex USARTs (SCI/LIN)
- Wide range of baud rate settings using a dedicated reload timer
- Special synchronous options for adapting to different synchronous serial protocols
- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

A/D Converter

- SAR-type
- 10-bit resolution
- Signals an interrupt on conversion end, single conversion mode, repeat conversion mode, activation by software, external trigger, reload timers, and multifunctional timers
- Range Comparator Function

Source Clock Timers

Two independent clock timers (23-bit RC clock timer, 23-bit Main clock timer)

Hardware Watchdog Timer

- Hardware watchdog timer is activated after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- 16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- 16-bit wide
- Signals an interrupt on overflow, supports timer clear upon match with Output Compare(0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁻, 1/2⁶ of peripheral clock frequency

Input Capture Units

- 16-bit wide
- Signals an interrupt on external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- 16-bit wide
- Signals an interrupt when a match with Free-Running Timer occurs
- A pair of compare registers can be used to generate an output signal

External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

Non-Maskable Interrupt

- Disable after resetting and enabled by Boot-ROM depending on ROM configuration block
- Once enabled, cannot be disabled other than by reset
- High or Low level sensitive
- Pin shared with external interrupt 0

I/O Ports

- All 5V I/O ports to enable push-pull outputs
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor (5V I/O port)
- Bit-wise programmable pull-down resistor (12V input port)

Built-in On-Chip Debugger (OCD)

- One-wire debug tool interface
- Break function:
 - Hardware break: 6 points (shared with code event)
 - □ Software break: 4096 points
- Event function
 - □ Code event: 6 points (shared with hardware break)
- □ Data event: 6 points
- Event sequencer: 2 levels + reset
- Execution time measurement function
- Trace function: 42 branches
- Security function

Flash Memory

- Dual operation Flash allowing reading of one Flash bank while programming or erasing the other bank
- Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- Supports automatic programming, Embedded Algorithm
- Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the automatic algorithm
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash

Multifunctional Timer

- Supplies PWM driving signals to three-phase motor predriver
- Controls three-phase motor by the following configuration:
 - 5 channel 16-bit free-running timer
 - □ 6 channel 16-bit output compare
- □ 4 channel 16-bit input capture
- □ 3 channel 16-bit PPG
- □ 6 channel waveform generator

Three-Phase Motor Pre-Driver

- Drives power NMOS-FETs to drive motors
- Supports H-Bridge

Charge Pump

■ Built in charge pump driver for booster power supply

 Supplies high voltages to drive the High-side Power NMOS FET.

Motor Monitor

- Motor voltages detection function
- Can divide the voltage of the power step (High/Low side switch, bridge circuit) by 6, and put it into the A/D converter

Over-Temperature Detector

■ Executes a reset when the junction temperature (Tj) of the device reaches a set temperature.

Temperature Sensor

- Can measure the junction temperature of the device (Tj).
- By using Range comparator function of A/D C, can generate an interrupt when the junction temperature (Tj) exceeds the set temperature for user to detect.

VB Monitor (VBMON)

- Battery voltage monitor functional
- Can be connected to the battery (voltage: VB) via an external series resistance.
- Can divide the input voltage by 6 with a built-in resistor, and put it into the A/D converter.

LIN Transceiver

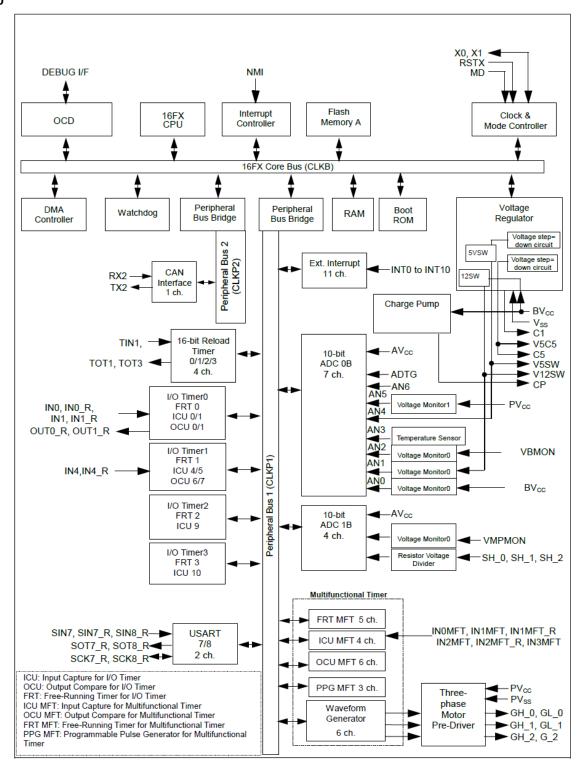
- Built-in LIN Transceiver(only CY96F8E5K)
- Supports LIN physical layer2.1.

Contents

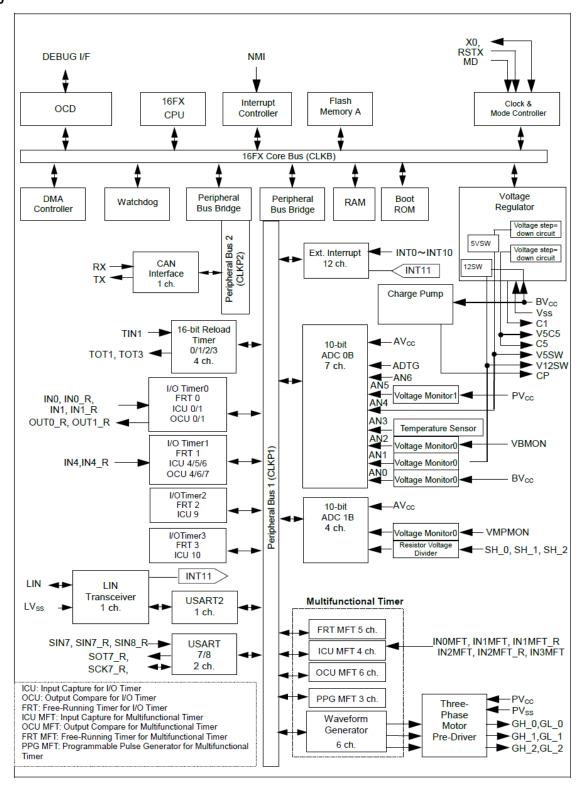
1. Pro	duct Lineup5	5 14.7 Voltage Monitor 1	63
2. Blo	ck Diagram7	7 14.8 Resistor Voltage Divider	65
3. Pin	Assignment9	9 14.9 VB Monitor (VBMON)	66
4. Pin	Description11	14.10 Charge Pump	67
5. Pin	Circuit Type12	2 14.11 Three-phase Motor Pre-Driver	69
6. I/O	Circuit Type16	14.12 12V Power Supply Output	73
7. Mei	mory Map22	2 14.13 5V Power Supply Output	73
8. RAI	MSTART Addresses23	14.14 Connection Pins for Smoothing Capacitor	74
9. Use	er ROM Memory Map for Flash Devices24	14.15 Over-Temperature Detector	75
10. Ser	ial Programming Communication Interface25	5 14.16 Temperature Sensor	77
11. Inte	errupt Vector Table26	14.17 Low Voltage Detection Function Characteristics	78
12. Har	ndling Precautions32	2 14.18 LIN Transceiver	80
13. Har	ndling Devices35	5 14.19 Flash Memory Write/Erase Characteristics	84
14. Ele	ctrical Characteristics38	3 15. Example Characteristics	85
14.1	Absolute Maximum Ratings38	3 16. Ordering Information	93
14.2	Recommended Operating Conditions41	17. Package Dimension	94
14.3	DC Characteristics42	2 18. Package Thermal Resistance	95
14.4	AC Characteristics48	3 19. Major Changes	96
14.5	10-bit A/D Converter56	Document History	97
14.6	Voltage monitor 061	Worldwide Sales and Design Support	98

1. Product Lineup

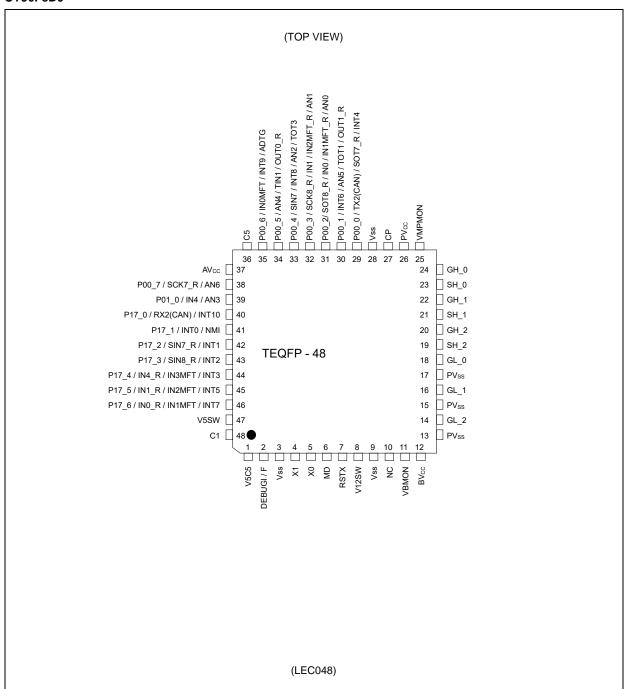
Features		CY96F8D0	CY96F8E0	Remarks
Product Type		Flash Memory Product	Flash Memory Product	-
Sub clock		No	No	-
Dual Operation Flash Memory	RAM	-	-	-
128.5KB + 8KB	8KB	CY96F8D5K3	CY96F8E5K3	-
128.5KB + 32KB	8KB	CY96F8D5KU	CY96F8E5KU	-
Darkers	•	TEQFP-48	TEQFP-48	
Package		LEC048	LEC048	-
DMA		2ch.	2ch.	-
			3ch.	LIN-USART 2/7/8
USART		2ch.	(LIN-USART 2 only for LIN transceiver)	LIN-USART 2 built in only CY96F8E0
with automatic LIN-Heade transmission/reception	r	No	Yes(1ch.)	LIN-USART 2
with 16 byte RX- and TX-I	FIFO	No	No	-
LIN transceiver		No	Yes	-
10-bit A/D Converter 0B		7ch. (shared by internal 6ch.)	7ch. (shared by internal 6ch.)	AN 0 to 6
with Range Comparator	with Range Comparator		Yes	-
		4ch.	4ch.	
10-bit A/D Converter 1B		(dedicated for Multifunctional timer)	(dedicated for Multifunctional timer)	AN 8 to 11
with Range Comparator		Yes	Yes	
<u>.</u>		4ch.	4ch.	
16-bit Reload Timer (RLT)		(2 channels for Multifunctional timer)	(2 channels for Multifunctional timer)	RLT 0 to 3
				FRT 0 to 3
16-bit Free-Running Timer (FRT)		4ch.	4ch.	FRT 0 to 3 does not have external clock input pin
16-bit Input Capture Unit (ICU)				ICU 0/1/4/5/6/9/10
		6ch.	7ch.	ICU 6/9/10 for LIN-USART
		(2 channels for LIN-USART)	(3 channels for LIN-USART)	ICU6 built in only CY96F8E0
				OCU 0/1/4/6/7
16-bit Output Compare Unit (OCU)		4ch.	5ch.	OUC4 built in only CY96F8E0

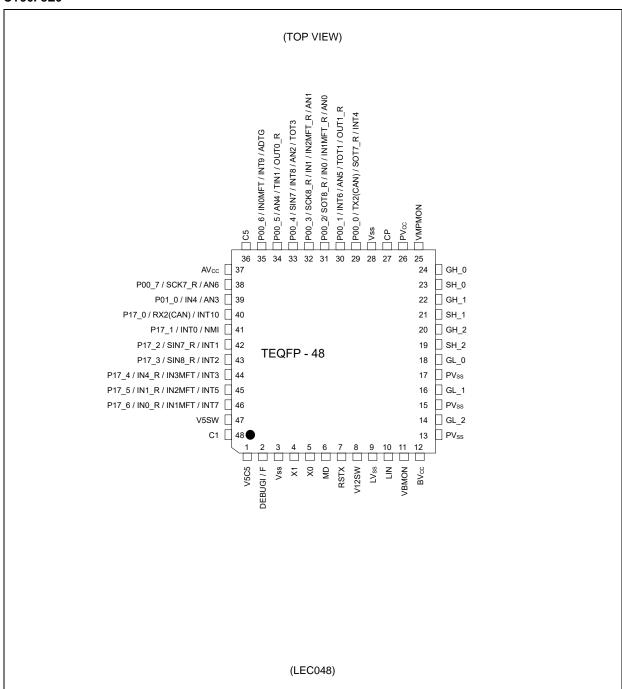

Features	CY96F8D0	CY96F8E0 Remarks	
Multifunctional Timer			
16-bit Free-Running Timer	5ch.	5ch.	FRT 0MFT-4MFT No external clock input pin
16-bit Input Capture Unit	4ch.	4ch.	ICU 0MFT-3MFT
16-bit Output Compare Unit	6ch.	6ch.	OCU 0MFT-5MFT
16-bit Programmable Pulse Generator (PPG)	3ch.	3ch.	PPG 0MFT/2MFT/4MFT
Waveform Generator (WFG)	6ch.	6ch.	-
Three-Phase Motor Pre-Driver			
High Side FET Driver	3ch.	3ch.	-
Low Side FET Driver	3ch.	3ch.	-
Charge Pump	Yes	Yes	-
CAN Interface	1ch.	1ch.	CAN 2
CAN Interface	TCH.	TCII.	32 Message Buffers
Motor Monitor	3ch.	3ch.	-
Over-Temperature Detector	Yes	Yes	-
Temperature Sensor	1ch.	1ch.	-
External Interrupts (INT)	11ch.	12ch. (INT 11 connects to LIN inside)	INT 0 to 11 INT 11 built in only CY96F8E0
Non-Maskable Interrupt (NMI)	1ch.	1ch.	-
Real Time Clock (RTC)	No	No	-
I/O Ports	16	16	-
5/12V Inputs	7	7	-
5V Input/Output	9	9	-
Clock Calibration Unit (CAL)	1ch.	1ch.	-
Low Voltage Detection Function	Yes	Yes	Low voltage detection function can be disabled by software
Hardware Watchdog Timer	Yes	Yes	-
Built-in RC-oscillator	Yes	Yes	-
On-chip Debugger	Yes	Yes	-
Parallel Flash programing mode	No	No	-

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.


2. Block Diagram

CY96F8D0


CY96F8E0


3. Pin Assignment

CY96F8D0

CY96F8E0

4. Pin Description

Pin Name	Feature	Description
ADTG	ADC	A/D converter trigger input pin
ANn	ADC	A/D converter channel n input pin
AV _{CC}	Supply	Analog circuits power supply pin
BV _{cc}	Supply	Power supply pin
C1	Voltage regulator	Core logic power supply stabilization capacitor pin
C5	Voltage regulator	Internal 5V regulated power supply stabilization capacitor pin
СР	Charge Pump for booster power supply	Output pin of Charge Pump for booster power supply
DEBUG I/F	OCD	On-Chip Debugger input/output pin
GH_n	Motor Pre-Driver	High side Nch driver n output pin
GL_n	Motor Pre-Driver	Low side Nch driver n output pin
INn	ICU	Input Capture Unit n input pin
INn_R	ICU	Relocated Input Capture Unit n input pin
INnMFT	ICU	Input pin for Input Capture Unit n for Multifunctional Timer
INnMFT_R	ICU	Relocated Input pin for Input Capture Unit n for Multifunctional Timer
INTn	External Interrupt	External Interrupt n input pin
LIN	LIN	LIN Transceiver input/output pin *2
LV _{SS}	Supply	Power supply pin for LIN Transceiver *2
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
VMPMON	Voltage Monitor	Motor power supply monitor input pin
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin
Pnn_m	GPIO	General-purpose I/O pin
PV _{cc}	Supply	Power supply pin for three-phase motor pre-driver
PV _{SS}	Supply	Power supply pin for three-phase motor pre-driver
RSTX	Core	Reset input pin
RXn *1	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCKn_R	USART	Relocated USART n serial clock input/output pin
SH_n	Resistor voltage divider	Motor Monitor n input pin
SINn	USART	USART n serial data input pin
SINn_R *1	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TXn	CAN	CAN interface n TX output pin
VECE	Voltago regulator	Internal 5V regulated power supply stabilization capacitor pin.
V5C5	Voltage regulator	And output pin for supplying 5V to the external
V5SW	Voltage regulator	Output pin for supplying 5V to the external with ON/OFF control
V12SW	Voltage regulator	Output pin for supplying 12V to the external with ON/OFF control

Pin Name	Feature	Description	
VBMON	VB Monitor	Battery voltage monitor input pin	
V _{SS}	Supply	Power supply pin	
X0	Clock	Oscillator input pin	
X1	Clock	Oscillator output pin	

^{*1:} SINn_R pin functions only with CMOS hysteresis input (5V) in I/O circuit type: HB. Setting for normal input (12V) is prohibited.

5. Pin Circuit Type

CY96F8D0

Pin No.	I/O Circuit Type*1	Pin Name
1	Z	V5C5
2	0	DEBUG I/F
3	Supply	vss
4	А	X1
5	А	X0
6	С	MD
7	С	RSTX
8	HS	V12SW
9	Supply	vss
10	_	NC
11	НМ	VBMON
12	Supply	BVCC
13	Supply	PVSS
14	HG	GL_2
15	Supply	PVSS
16	HG	GL_1
17	Supply	PVSS
18	HG	GL_0
19	HF	SH_2
20	НН	GH_2
21	HF	SH_1
22	нн	GH_1
23	HF	SH_0
24	нн	GH_0
25	НМ	VMPMON
26	Supply	PVCC
27	HP	CP

^{*2:} Only CY96F8E0

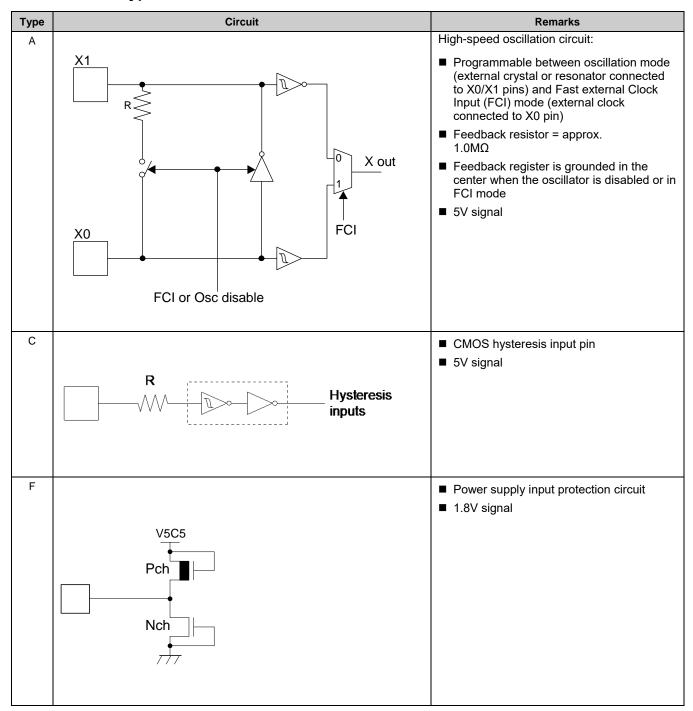
Pin No.	I/O Circuit Type*1	Pin Name
28	Supply	VSS
29	н	P00_0 / TX2(CAN) / SOT7_R*2 / INT4
30	К	P00_1 / INT6 / AN5 / TOT1 / OUT1_R*2
31	К	P00_2/ SOT8_R*2 / IN0 / IN1MFT_R / AN0
32	1	P00_3 / SCK8_R*2 / IN1 / IN2MFT_R / AN1
33	ı	P00_4 / SIN7 / INT8/ AN2 / TOT3
34	К	P00_5 / AN4 / TIN1 / OUT0_R*2
35	Н	P00_6 / IN0MFT / INT9 / ADTG
36	Z	C5
37	Supply	AV _{CC}
38	1	P00_7 / SCK7_R*2 / AN6
39	К	P01_0 / IN4 / AN3
40	НВ	P17_0 / RX2(CAN) / INT10
41	НВ	P17_1 / INT0 / NMI
42	НВ	P17_2 / SIN7_R / INT1
43	НВ	P17_3 / SIN8_R ⁻² / INT2
44	НВ	P17_4 / IN4_R / IN3MFT / INT3
45	НВ	P17_5 / IN1_R / IN2MFT / INT5
46	НВ	P17_6 / IN0_R / IN1MFT / INT7
47	Z	V5SW
48	F	C1

^{*1:} See "I/O Circuit Type" for details on the I/O circuit types.

^{*2:} Only Relocation Pin. Original Peripheral Resource pin does not exist.

CY96F8E0

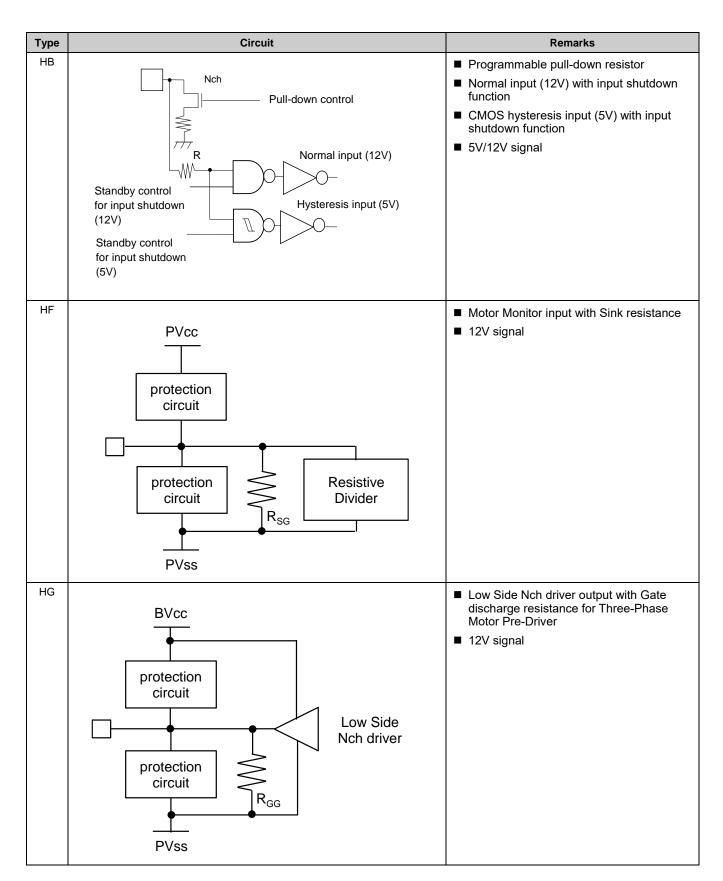
Pin No.	I/O Circuit Type*1	Pin Name
1	Z	V5C5
2	0	DEBUG I/F
3	Supply	Vss
4	A	X1
5	A	X0
6	С	MD
7	С	RSTX
8	HS	V12SW
9	Supply	LV _{SS}
10	HL	LIN
11	НМ	VBMON
12	Supply	BV _{CC}
13	Supply	PV _{SS}
14	HG	GL_2
15	Supply	PV _{ss}
16	HG	GL_1
17	Supply	PV _{ss}
18	HG	GL_0
19	HF	SH_2
20	нн	GH_2
21	HF	SH_1
22	НН	GH_1
23	HF	SH_0
24	НН	GH_0
25	НМ	VMPMON
26	Supply	PV _{CC}
27	HP	СР
28	Supply	V _{ss}
29	Н	P00_0 / TX2(CAN) / SOT7_R*2 / INT4
30	К	P00_1 / INT6 / AN5 / TOT1 / OUT1_R ⁻²
31	К	P00_2/ SOT8_R*2 / IN0 / IN1MFT_R / AN0
32	I	P00_3 / SCK8_R*2 / IN1 / IN2MFT_R / AN1
33	I	P00_4 / SIN7 / INT8/ AN2 / TOT3
34	К	P00_5 / AN4 / TIN1 / OUT0_R*2
35	Н	P00_6 / IN0MFT / INT9 / ADTG


Pin No.	I/O Circuit Type*1	Pin Name
36	Z	C5
37	Supply	AV _{CC}
38	1	P00_7 / SCK7_R ² / AN6
39	К	P01_0 / IN4 / AN3
40	НВ	P17_0 / RX2(CAN) / INT10
41	НВ	P17_1 / INT0 / NMI
42	НВ	P17_2 / SIN7_R / INT1
43	НВ	P17_3 / SIN8_R ⁻² / INT2
44	НВ	P17_4 / IN4_R / IN3MFT / INT3
45	НВ	P17_5 / IN1_R / IN2MFT / INT5
46	НВ	P17_6 / IN0_R / IN1MFT / INT7
47	Z	V5SW
48	F	C1

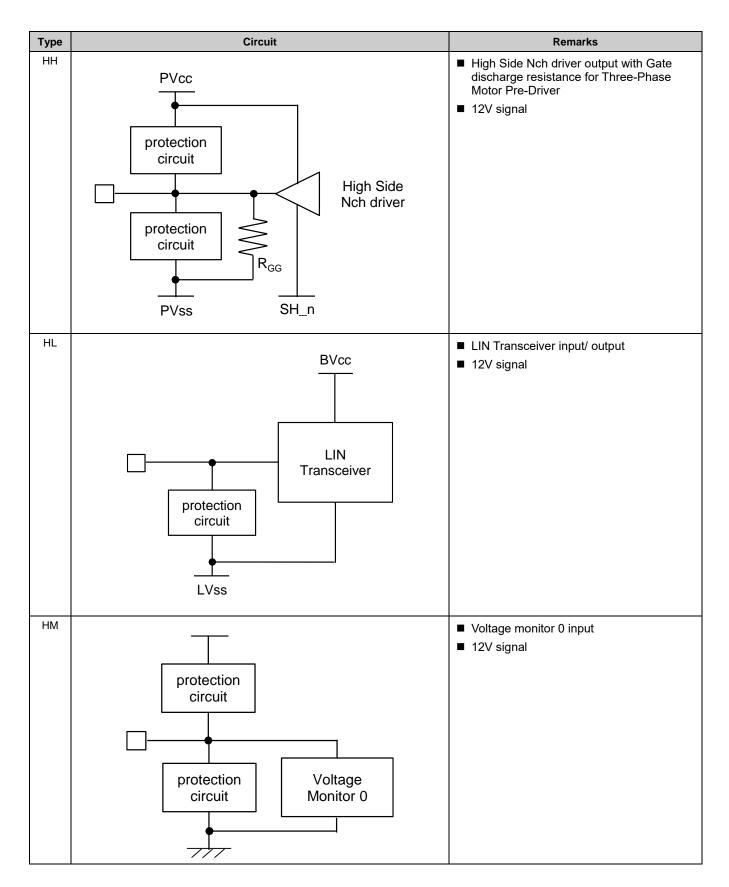
^{*1:} See "I/O CIRCUIT TYPE" for details on the I/O circuit types.

^{*2:} Only Relocation Pin. Original Peripheral Resource pin does not exist.

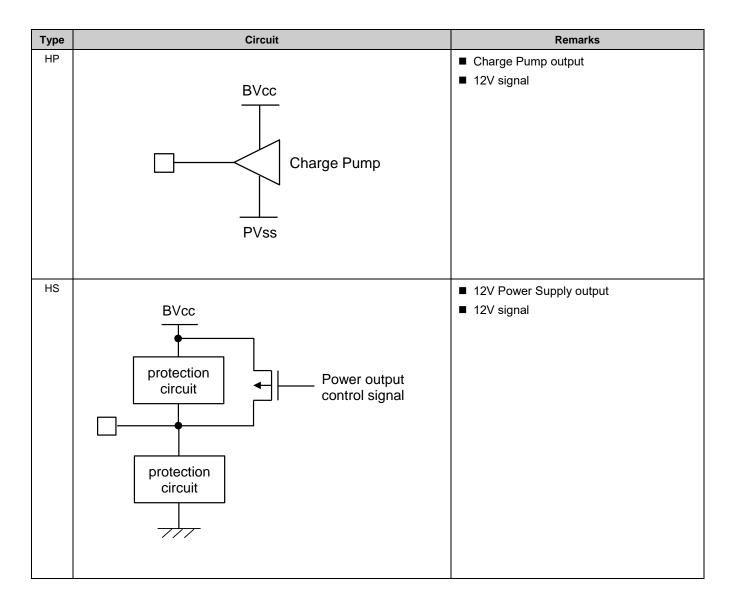
6. I/O Circuit Type



Туре	Circuit	Remarks
Н	V5C5 Pch Pout Nout R Automotive input Standby control for input shutdown	 ■ CMOS level output (IoL = 4mA, IoH = -4mA) ■ Automotive input with input shutdown function ■ Programmable pull-up resistor ■ 5V signal
I	V5C5 Pch Pout Nout Nout Hysteresis input for input shutdown Analog input	 ■ CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) ■ CMOS hysteresis input with input shutdown function ■ Programmable pull-up resistor ■ Analog input ■ 5V signal



Туре	Circuit	Remarks
К	V5C5 Pch Pout Nout R Automotive input for input shutdown Analog input	 ■ CMOS level output (IoL = 4mA, IoH = -4mA) ■ Automotive input with input shutdown function ■ Programmable pull-up resistor ■ Analog input ■ 5V signal
0	Standby control for input shutdown	 ■ Open-drain input/ output ■ Output 25mA, BVcc=6V ■ TTL input ■ 5V signal
Z	Nch	■ Power supply input protection circuit ■ 5V signal



7. Memory Map

	CY96F8D0/CY96F8E0
FF:FFFF _H DE:0000 _H	USER ROM*1
DD:FFFF _H	Reserved
0F:C000 _H	Boot-ROM
0E:9000 _H	Peripheral
01:0000 _Н	Reserved
00:8000 _Н	ROM/RAM MIRROR
RAMSTART0*2	Internal RAM bank0
00:0С00 _Н	Reserved
00:0380 _Н	Peripheral
00:0180 _H	GPR*3
00:0100 _H	DMA
00:00F0 _H	Reserved
00:0000 _H	Peripheral

^{*1:} For details about USER ROM area, see "User ROM Memory Map for Flash Devices" .

GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM areas depend on the device.

 $[\]ensuremath{^{*}2}$: For RAMSTART addresses, see "RAMSTART Addresses" .

^{*3:} Unused GPR banks can be used as RAM area.

8. RAMSTART Addresses

Device	Bank 0 RAM size	RAMSTART0
CY96F8D5K	8KB	00.6200
CY96F8E5K	OND	00:6200 _Н

9. User ROM Memory Map for Flash Devices

	MB96F8D5K3 MB96F8E5K3	MB96F8D5KU MB96F8E5KU	
CPU mode	Flash size	Flash size	
address	128.5KB+8KB	128.5KB+32KB	
FF:FFFF _H	<u> </u>	1	\Box
11.3.111 н	0.400 0.445	0.400 0.445	
	SA39 - 64KB	SA39 - 64KB	
FF:0000 _H			Bank A of Flash A
FE:FFFF _H			
	SA38 - 64KB	SA38 - 64KB	
FE:0000 _H			
FD:FFFF _H			\Box
DF:A000 _H	Reserved	Reserved	
DF:9FFF _H DF:8800 _H	Reserved		
DF:87FF _H		SA4 - 8KB	
DF:8000 _H	SA4 - 2KB		
DF:7FFF _H	Decembed		Ī
DF:6800 _H	Reserved	SA3 - 8KB	
DF:67FF _H	SA3 - 2KB	3A3 - 6KB	
DF:6000 _H	0,10 21.0		<u> </u>
DF:5FFF _H	Reserved		Bank B of Flash A
DF:4800 _H	133501350	SA2 - 8KB	
DF:47FF _H	SA2 - 2KB		
DF:4000 _H			<u> </u>
DF:3FFF _H	Reserved		
DF:2800 _H		SA1 - 8KB	
DF:27FF _H	SA1 - 2KB		
DF:2000 _H			\vdash
DF:1FFF _H	SAS-512B *	SAS-512B *	Bank A of Flash A
DF:0000 _H			\vdash
DE:FFFF _H	Reserved	Reserved	
DE:0000 _H			ı

^{*:} Physical address area of SAS-512B is from DF:0000 $_{\rm H}$ to DF:01FF $_{\rm H}$. Others (from DF:0200 $_{\rm H}$ to DF:1FFF $_{\rm H}$) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000 $_{\rm H}$ -DF:01FF $_{\rm H}$. SAS can not be used for E 2 PROM emulation.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

CY96F8D5K/ CY96F8E5K						
Pin Number	Normal Function					
42		SIN7_R				
29	USART7	SOT7_R				
38		SCK7_R				
43		SIN8_R				
31	USART8	SOT8_R				
32		SCK8_R				

11.Interrupt Vector Table

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3С8н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3С0н	-	-	15	Reserved
16	3ВС _н	LVDI	No	16	Low Voltage Detector
17	3B8 _H	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _H	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3A8 _H	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	EXTINT5	Yes	22	External Interrupt 5
23	3A0 _H	EXTINT6	Yes	23	External Interrupt 6
24	39C _H	EXTINT7	Yes	24	External Interrupt 7
25	398 _H	EXTINT8	Yes	25	External Interrupt 8
26	394 _H	EXTINT9	Yes	26	External Interrupt 9
27	390 _H	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11 *
29	388 _H	-	-	29	Reserved
30	384 _H	-	-	30	Reserved
31	380 _H	-	-	31	Reserved
32	37C _H	-	-	32	Reserved
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _H	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	-	-	38	Reserved
39	360 _H	-	-	39	Reserved
40	35C _H	-	-	40	Reserved
41	358 _H	-	-	41	Reserved
42	354 _H	-	-	42	Reserved
43	350 _H	-	-	43	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
44	34C _H	-	-	44	Reserved
45	348 _H	-	-	45	Reserved
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33Сн	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	-	-	50	Reserved
51	330 _H	-	-	51	Reserved
52	32C _H	-	-	52	Reserved
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _H	-	-	57	Reserved
58	314 _H	RLT0	Yes	58	Reload Timer 0
59	310 _H	RLT1	Yes	59	Reload Timer 1
60	30C _H	RLT2	Yes	60	Reload Timer 2
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	-	-	64	Reserved
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6 *
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _H	ICU10	Yes	75	Input Capture Unit 10
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4 *
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
		I	1		1

Yes		
165	89	Free-Running Timer 0
Yes	90	Free-Running Timer 1
Yes	91	Free-Running Timer 2
Yes	92	Free-Running Timer 3
-	93	Reserved
No	94	Clock Calibration Unit
-	95	Reserved
-	96	Reserved
-	97	Reserved
-	98	Reserved
-	99	Reserved
-	100	Reserved
-	101	Reserved
-	102	Reserved
-	103	Reserved
-	104	Reserved
Yes	105	LIN USART 2 RX *
Yes	106	LIN USART 2 TX *
-	107	Reserved
-	108	Reserved
-	109	Reserved
-	110	Reserved
-		Reserved
Yes	115	LIN USART 7 RX
Yes	116	LIN USART 7 TX
		LIN USART 8 RX
		LIN USART 8 TX
-		Reserved
-		Reserved
_		Reserved
_		Reserved
_		Reserved
-		Reserved
+		Reserved
-		Reserved
		Reserved
-		Reserved
		Flash memory A interrupt
	Yes Yes - No - No	Yes 91 Yes 92 - 93 No 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 Yes 105 Yes 106 - 107 - 108 - 109 - 110 - 110 - 111 - 111 - 112 - 113 - 114 Yes 115 Yes 116 Yes 117 Yes 118 - 120 - 121 - 122 - 123 -

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	-	-	137	Reserved
138	1D4 _H	-	-	138	Reserved
139	1D0 _H	-	-	139	Reserved
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved
144	1BC _H	-	-	144	Reserved
145	1B8 _H	-	-	145	Reserved
146	1B4 _H	-	-	146	Reserved
147	1B0 _H	-	-	147	Reserved
148	1AC _H	PPG0MFT	Yes	148	Programmable Pulse Generator MFT0
149	1A8 _H	-	-	149	Reserved
150	1A4 _H	PPG2MFT	Yes	150	Programmable Pulse Generator MFT2
151	1A0 _H	-	-	151	Reserved
152	19C _H	PPG4MFT	Yes	152	Programmable Pulse Generator MFT4
153	198 _H	-	-	153	Reserved
154	194 _H	ICU0MFT	Yes	154	Input Capture Unit MFT0
155	190 _H	ICU1MFT	Yes	155	Input Capture Unit MFT1
156	18C _H	ICU2MFT	Yes	156	Input Capture Unit MFT2
157	188 _H	ICU3MFT	Yes	157	Input Capture Unit MFT3
158	184 _H	-	-	158	Reserved
159	180 _H	-	-	159	Reserved
160	17C _H	-	-	160	Reserved
161	178 _H	-	-	161	Reserved
162	174 _H	OCU0MFT	Yes	162	Output Compare Unit MFT0
163	170 _H	OCU1MFT	Yes	163	Output Compare Unit MFT1
164	16C _H	OCU2MFT	Yes	164	Output Compare Unit MFT2
165	168 _H	OCU3MFT	Yes	165	Output Compare Unit MFT3
166	164 _H	OCU4MFT	Yes	166	Output Compare Unit MFT4
167	160 _H	OCU5MFT	Yes	167	Output Compare Unit MFT5
168	15C _H	-	-	168	Reserved
169	158 _H	_	-	169	Reserved
103	100H			103	Free-Running Timer MFT0-
170	154 _H	FRTZD0MFT	Yes	170	0 detection
					Free-Running Timer MFT1-
171	150 _H	FRTZD1MFT	Yes	171	0 detection
					Free-Running Timer MFT2-
172	14C _H	FRTZD2MFT	Yes	172	0 detection
					Free-Running Timer MFT3-
173	148 _H	FRTZD3MFT	Yes	173	0 detection
174	144 _H	FRTZD4MFT	Yes	174	Free-Running Timer MFT4-
174	I THE		163	'' 7	1 100-Numming Time IVIF 14-

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
					0 detection
175	140 _H	-	-	175	Reserved
176	13C _H	FRTCC0MFT	Yes	176	Free-Running Timer MFT0- compare clear
177	138 _H	FRTCC1MFT	Yes	177	Free-Running Timer MFT1- compare clear
178	134 _H	FRTCC2MFT	Yes	178	Free-Running Timer MFT2- compare clear
179	130 _H	FRTCC3MFT	Yes	179	Free-Running Timer MFT3- compare clear
180	12C _H	FRTCC4MFT	Yes	180	Free-Running Timer MFT4- compare clear
181	128 _H	-	-	181	Reserved
182	124 _H	WGDTU0	Yes	182	Wave Generator Dead Timer Underflow 0
183	120 _H	WGDTU1	Yes	183	Wave Generator Dead Timer Underflow 1
184	11C _H	WGDTU2	Yes	184	Wave Generator Dead Timer Underflow 2
185	118 _H	-	-	185	Reserved
186	114 _H	WGDTR0	Yes	186	Wave Generator Dead Timer Reload 0
187	110 _H	WGDTR1	Yes	187	Wave Generator Dead Timer Reload 1
188	10C _H	WGDTR2	Yes	188	Wave Generator Dead Timer Reload 2
189	108 _H	-	-	189	Reserved
190	104 _H	DTTI	Yes	190	DTTI Interrupt
191	100 _H	ADC0B_CH0	Yes	191	A/D Converter B0 ch.0 conversion end
192	FC _H	ADC0B_CH1	Yes	192	A/D Converter B0 ch.1 conversion end
193	F8 _H	ADC0B_CH2	Yes	193	A/D Converter B0 ch.2 conversion end
194	F4 _H	ADC0B_CH3	Yes	194	A/D Converter B0 ch.3 conversion end
195	F0 _H	ADC0B_CH4	Yes	195	A/D Converter B0 ch.4 conversion end
196	ЕСн	ADC0B_CH5	Yes	196	A/D Converter B0 ch.5 conversion end
197	E8 _H	ADC0B_CH6	Yes	197	A/D Converter B0 ch.6 conversion end
198	E4 _H	-	-	198	Reserved
199	E0 _H	ADCRC0B_CH0	No	199	A/D Converter 0B Range Comparator 0 ch.0
200	DC _H	ADCRC0B_CH1	No	200	A/D Converter 0B Range Comparator 0 ch.1
201	D8 _H	ADCRC0B_CH2	No	201	A/D Converter 0B Range Comparator 0 ch.2
202	D4 _H	ADCRC0B_CH3	No	202	A/D Converter 0B Range Comparator 0 ch.3
203	D0 _H	ADCRC0B_CH4	No	203	A/D Converter 0B Range Comparator 0 ch.4
204	ССн	ADCRC0B_CH5	No	204	A/D Converter 0B Range Comparator 0 ch.5
205	C8 _H	ADCRC0B_CH6	No	205	A/D Converter 0B Range Comparator 0 ch.6
206	C4 _H	-	-	206	Reserved
207	C0 _H	ADC1B_CH8	Yes	207	A/D Converter 1B ch.8 conversion end
208	ВСн	ADC1B_CH9	Yes	208	A/D Converter 1B ch.9 conversion end

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
209	B8 _H	ADC1B_CH10	Yes	209	A/D Converter 1B ch.10 conversion end
210	B4 _H	ADC1B_CH11	Yes	210	A/D Converter 1B ch.11 conversion end
211	ВОн	ADCRC1B_CH8	No	211	A/D Converter 1B Range Comparator 1 ch.8
212	AC _H	ADCRC1B_CH9	No	212	A/D Converter 1B Range Comparator 1 ch.9
213	A8 _H	ADCRC1B_CH10	No	213	A/D Converter 1B Range Comparator 1 ch.10
214	A4 _H	ADCRC1B_CH11	No	214	A/D Converter 1B Range Comparator 1 ch.11
215	A0 _H	CPON	No	215	Charge Pump Stabilization Wait Timer
216	9Сн	PMD	No	216	Waveform Output Signal Pattern Detection

^{*:} Only CY96F8E0

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■ Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■ Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■ Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■ Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■ Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■ Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■ Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

■ Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (BVcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)
- 5V power supply output (V5C5)
- Built-in 5V regulator stabilization capacitor pin (C5)

For Latch-up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- ☐ A voltage higher than BV_{CC} or lower than V_{SS} is applied to an input or output pin.
- □ A voltage higher than the rated voltage is applied between BV_{CC} pins and V_{SS} pins.
- ☐ The AVcc power supply is applied before the BVcc voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

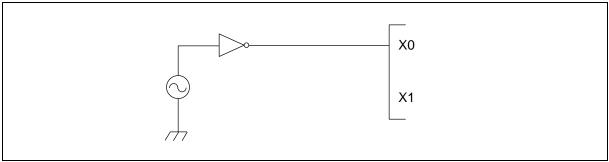
For the same reason, extra care is required not to let the analog power-supply voltage (AV_{CC}) exceed the digital power-supply voltage.

Unused Pins Handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

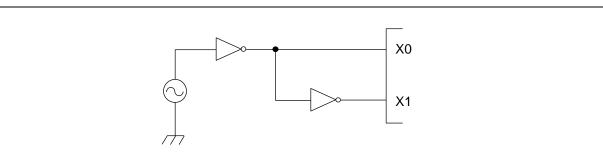
Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.


External Clock Usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:


(1) Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 5V power to the external clock.

(2) Opposite phase external clock

When using an opposite phase external clock, X1 pin must be supplied with a clock signal which has the opposite phase to the X0 pin.

Notes on PLL Clock Mode Operation

If the device is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the device attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

Power Supply Pins (BVcc/Vss)

It is required that all BV_{CC}-level as well as all V_{SS}-level power supply pins are at the same potential. If there is more than one BV_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

BV_{CC} and V_{SS} pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at BV_{CC} pin must use the one of a capacity value that is larger than C_{C1}.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1µF between BV_{CC} and V_{SS} pins as close as possible to BV_{CC} and V_{SS} pins.

Crystal Oscillator and Ceramic Resonator Circuit

Noise at X0, X1 pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It must be highly provided a printed circuit board art work surrounding X0, X1 pins with a ground area for stabilizing the operation.

It must be highly evaluated the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}) and analog inputs (ANn) on after turning power supply (BV_{CC}) on.

It is also required to turn power supply (BVcc) off after turning the A/D converter supply and analog inputs off. Input voltage for ports shared with analog input ports also must not exceed AVcc (turning the analog power (AVcc) and power (BVcc) supplies simultaneously on or off is acceptable).

Pin Handling When Not Using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as AV_{CC} = V5C5.

Notes on Power-on

To prevent malfunction of the built-in voltage regulator, supply voltage profile while turning the power supply on should be slower than 20µs from 0.2V to 6.0V.

Stabilization of Power Supply Voltage

If the power supply voltage varies acutely even within the operation safety range of the BV_{CC} power supply voltage, a malfunction may occur. The BV_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that BV_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard BV_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

Serial Communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

Mode Pin (MD)

Connect the mode pin directly to V5C5 or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to V5C5 or Vss pin and provide a low-impedance connection.

5V Power Supply Output (V5C5)

The V5C5 pin combines 5V power supply output and 5V internal power supply, hence the device will not operate due to voltage drops of the 5V internal power supply if the V5C5 pin outputs the currents exceeding the V5C5 output currents (I_{OV5C5}).

The 5V power supply output(V5C5) begins a normal operation immediately after the power supply (BVcc) is turned on, hence be sure to adjust external circuits connected to the V5C5 pin so as not to exceed the V5C5 output currents (Iov5c5), including that when BVcc is turned on.

Built-in 5V Regulator Stabilization Capacitor pin (C5)

Internal 5V regulated power supply stabilization capacitor pin (C5) connects a smoothing capacitor.

Internal 5V regulated power supply stabilization capacitor pin (C5) cannot supply 5V voltages to external circuits.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Parameter	Symbol	Condition	Ra	ting	Unit	Remarks	
Parameter	Symbol	Condition	Min	Max	Unit	Remarks	
Power supply voltage *1	BV _{CC1}	-	V _{SS} - 0.3	V _{SS} + 40	V	-	
12V analog power supply voltage *1	PV _{CC1}	-	V _{SS} - 0.3	V _{SS} + 40	V	-	
5V analog power supply voltage*1	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	V5C5 = AV _{CC} *2	
12V Input voltage *1	V12 _{I1}	-	V _{SS} - 0.3	V _{SS} + 40	V	V12 _{I1} ≤ BV _{CC} + 0.3V	
5V Input voltage*1	V5 _I	-	V _{SS} - 0.3	V _{SS} + 6.0	V	V5 ₁ ≤ V5C5 + 0.3V*3	
5V Output voltage*1	V5 ₀	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V5_0 \le V5C5 + 0.3V^{*3}$	
LIN Input voltage*1	LIN _I	-	-40	+40	V	Based on LV_{SS} and BV_{CC}	
L" level maximum output current for general-purpose I/O	I _{OL}	-	-	15	mA	-	
L" level average output current for general-purpose I/O	I _{OLAV}	-	-	4	mA	-	
L" level maximum overall output current for general-purpose I/O	ΣI _{OL}	-	-	16	mA	-	
L" level average overall output current for general-purpose I/O	ΣI _{OLAV}	-	-	12	mA	-	
H" level maximum output current for general-purpose I/O	Іон	-	-	-15	mA	-	
H" level average output current for general-purpose I/O	I _{OHAV}	-	-	-4	mA	-	
H" level maximum overall output current for general-purpose I/O	ΣI _{OH}	-	-	-16	mA	-	
H" level average overall output current for general-purpose I/O	ΣI _{OHAV}	-	-	-12	mA	-	
5Vsupply average overall output		+100°C < T _A ≤ +105°C	-	40		ΣI _{OV5} =	
current	ΣI _{OV5}	-40°C ≤ T _A ≤ +100°C	-	50	- mA	I _{OV5SW} +I _{OV5C5}	
Permitted power dissipation *5 *8	P _D	T _A = +105°C	-	2050*4	mW	-	
lunction Temperature	Tj *6	-	-	+150	°C	-	
Operating ambient temperature *8	T _A	-	-40	+105*5*7	°C	-	
Storage temperature	T _{STG}	-	-55	+150	°C	-	
Fransient input voltage	V _{VBMON1}	-	-	V _{SS} + 40	V	VBMON pin	

^{*1:} This parameter is based on Vss = PVss = LVss = 0V.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$P_D = P_{IO} + P_{EXP} + P_{INT}$$

Document Number: 002-07479 Rev. *B

^{*2:} AV_{CC} and V5C5 must be set to the same voltage. It is required that AV_{CC} does not exceed V5C5 and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

^{*3:} V5_I and V5_O should not exceed V5C5 + 0.3V. V5_I should also not exceed the specified ratings. Input/Output tages of general I/O ports depend on V5C5.

^{*4:} The maximum permitted power dissipation depends on the ambient temperature, the airflow velocity and the thermal conductance of the package on the PCB.


```
P_{IO} = \Sigma ((V_{OL} \times I_{OL}) + ((BV_{CC} - V_{OH}) \times I_{OH}) + (V_{SH} \times V_{SH} / R_{PDDIV} \times DUTY))
```

(I/O load power dissipation)

 $P_{\text{EXP}} = ((BV_{\text{CC}} - V_{\text{O5VSW}}) \times I_{\text{OV5SW}}) + ((BV_{\text{CC}} - V_{\text{OV5C5}}) \times (I_{\text{OV5C5}} + I_{\text{A}} + \Sigma I_{\text{VM0}} + I_{\text{VM1}})) + ((BV_{\text{CC}} - V_{\text{O12VSW}}) \times I_{\text{O12}})$

(Internal power dissipation in power supply output on the condition that AV_{CC} is supplied from V5C5)

 $P_{INT} = (BV_{CC} \times (I_{CC} + I_{TMP} + I_{LINTR} + ICP + I_{HLGD})) + (PV_{CC} \times I_{HLGD}) + (AV_{CC} \times (I_A + \Sigma I_{VM0} + I_{VM1}))$

(Internal power dissipation)

Icc is the total core current consumption into BVcc as described in the "DC Characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

V_{SH} is the High input voltage to the SH_n pin. DUTY is the High width ratio at the SH_n pin.

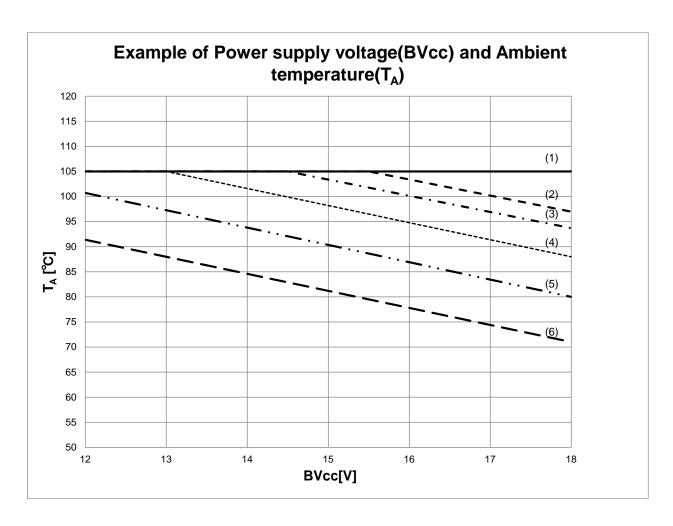
(I_A + ΣI_{VM0} + I_{VM1}) is the analog current consumption into AV_{CC}. I_{HLGD} is the analog current consumption into PV_{CC}.

P_{IO} is the sum of the power dissipation for each pin and can be calculated as follows:

- I/O Ports (for each pin)

 Power dissipation = (Vol4 × IoL) or ((BVcc -VoH4) × IoH)
- Charge Pump (CP pin)
 Power dissipation = Volcp × ICPO + (BVcc Volcp) × ICPO
- Three-phase Motor Pre-Driver (for each phase)
 Power dissipation = V_{SH} × V_{SH} / R_{PDDIV} × DUTY

On the condition that AV_{CC} is supplied from another external power supply instead of V5C5, Internal power dissipation in power supply output can be calculated as follows:


```
P_{EXP} = ((BV_{CC} - V_{O5VSW}) \times I_{OV5SW}) + ((BV_{CC} - V_{OV5C5}) \times I_{OV5C5}) + ((BV_{CC} - V_{O12VSW}) \times I_{O12})
```

(Internal power dissipation in power supply output on the condition that AV_{CC} is supplied from another external power supply)

- *5: Worst-case value for a package mounted on a 4-layer PCB at specified TA without airflow.
- *6: $T_i = T_A$ (Operating ambient temperature) + (P_D (Power dissipation) × θ_{JA} (Package thermal resistance))
- *7: Flash Write/Erase operation for large sector are warranted at $T_A \le +80$ °C.
- *8: It is necessary to lower operating ambient temperature on the condition that the actual power dissipation is beyond permitted power dissipation.

An example of power supply voltage (BVcc) and Ambient temperature(TA) is shown below.

Number	5V Supply Average Overall Output	Three-phase	Flash Memory			
	Current	Motor Pre-Driver	Small Sector	Large Sector		
(1)	40mA	Stop	Write/Read/Erase	Read		
(2)	25mA	Enable	Read	Read		
(3)	40mA	Enable	Read	Read		
(4)	40mA	Enable	Write/Read/Erase	Read		
(5)	40mA	Stop	Don't operate	Write/Read/Erase		
(6)	40mA	Enable	Don't operate	Write/Read/Erase		

WARNING

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.

Do not exceed any of these ratings.

14.2 Recommended Operating Conditions

 $(V_{SS} = PV_{SS} = LV_{SS} = 0V)$

Danamatan	Complete I		Value		l l m i t	Domonto
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Power supply voltage	BV _{CC}	6	-	18	V	Low-Voltage Detection Function works in 4.08V or more *
Smoothing capacitor at C1 pin	C _{C1}	-	4.7	-	μF	$4.7\mu F$ (Allowance within $\pm 40\%$) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at BV _{CC} must use the one of a capacity value that is larger than C _{C1} .
Smoothing capacitor at V5C5 /C5 pin	C _{V5}	-	2.2	-	μF	2.2 μ F (Allowance within ± 40%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at BV _{CC} must use the one of a capacity value that is larger than C _{V5} .
Smoothing capacitor at V5SW pin	C _{V5SW}	-	4.7	-	μF	4.7 μ F (Allowance within ± 40%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at BV _{CC} must use the one of a capacity value that is larger than C _{V5SW} .
Smoothing capacitor at V12SW pin	C _{V12SW}	0.1	-	-	μF	$0.1\mu F$ (Allowance within \pm 40%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at BV _{CC} must use the one of a capacity value that is larger than C_{V12SW} .

^{*:} See ".Low Voltage Detection Function Characteristics" for Detected voltage of Low-Voltage Detection Function.

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition.

Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions, or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

14.3 DC Characteristics

14.3.1 Current Ratings

■ CY96F8D5K

(BVcc = 6V to 18V, V_{SS} = PV_{SS} = 0V, T_A = - 40°C to + 105°C)

		Pin			Value			- 40 C 10 + 103 C
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 20MHz	-	22	-	mA	T _A = +25°C
Power supply	ICCPLL		Flash 0 wait (CLKRC stopped)	-	-	30.9	mA	T _A = +105°C
current in Run modes*1*4*5*6			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.8	-	mA	T _A = +25°C
	I _{CCMAIN}		Flash 0 wait (CLKPLL and CLKRC stopped)	-	-	11	mA	T _A = +105°C
	,		PLL Sleep mode with CLKS1/2 = CLKP1/2 = 20MHz	-	5.9	-	mA	T _A = +25°C
I _{CCSPLL} Power supply	ICCSPLL		(CLKRC stopped)		-	13	mA	T _A = +105°C
current in Sleep modes*1*4*6		I _{CCSMAIN} BV _{CC}	Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz	-	1.1	-	mA	T _A = +25°C
	ICCSMAIN	BVCC	(CLKPLL and CLKRC stopped)	-	-	6.4	mA	T _A = +105°C
			Main Timer mode with CLKMC = 4MHz,	-	430	-	μΑ	T _A = +25°C
	Ісстмаін		SMCR:LPMSS = 0 (CLKPLL and CLKRC stopped)	-	-	2800	μΑ	T _A =+105°C
Power supply current in Timer	I _{CCTRCH}		RC Timer mode with CLKRC = 2MHz,	-	480	-	μΑ	T _A = +25°C
current in Timer modes*2*4*6	CCTRCH		SMCR:LPMSS = 0 (CLKPLL and CLKMC stopped)	-	-	3200	μΑ	T _A =+105°C
	L		RC Timer mode with CLKRC = 100kHz,	-	63	-	μΑ	T _A = +25°C
	I _{CCTRCL}		SMCR:LPMSS = 0 (CLKPLL and CLKMC stopped)	-	-	2000	μΑ	T _A =+105°C

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Donomoton	Countries.	Pin	Canditions		Value		11::4	Domonilos
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply				ı	ı	69	μΑ	$T_A = +25^{\circ}C$ $BV_{CC}=13.5V$
current in Stop mode*3*4*6	Іссн		-	-	-	1500	μΑ	T _A = +105°C
Increase current when Flash Memory is not in Power-down	I _{CCFLASHPD}	BV _{cc}	-	1	36	70	μΑ	-
Power supply current for active Low-Voltage	Janua		Low-voltage detection function	-	65	-	μΑ	T _A = +25°C
detection function*4	I _{CCLVD}		enabled	-	-	130	μΑ	T _A = +105°C
Flash Write/	1		_	•	12.5	-	mA	T _A = +25°C
Erase current*5	Iccflash		-	-	ı	20	mA	T _A = +105°C

- *1: The power supply current is measured with a 4MHz external clock connected to the Main oscillator. The currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O. Power supply current in Run mode does not include Flash Write / Erase current.
- *2: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

 When Flash is not in Power-down / reset mode, IccFLASHPD must be added to the Power supply current.

 The power supply current is measured with a 4MHz external clock connected to the Main oscillator. The currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O.
- *3: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

 When Flash is not in Power-down / reset mode, Iccflashpd must be added to the Power supply current.

 The currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O.
- *4: When low-voltage detection function is enabled, ICCLVD must be added to Power supply current.
- *5: When Flash Write / Erase program is executed, IccFLASH must be added to Power supply current.
- *6: The power supply current under the following condition.

Function	Run Modes	Sleep Modes	Timer Modes	Stop Modes
Watchdog	Off	Off	Off	Off
10-bit A/D Converter B	Off	Off	Off	Off
5V Power Supply Output (V5SW)	Off	Off	Off	Off
12V Power Supply Output (V12SW)	Off	Off	Off	Off
Voltage Monitor 0	Off	Off	Off	Off
Voltage Monitor 1	Off	Off	Off	Off
Three-Phase Motor Pre-Driver	Off	Off	Off	Off
Charge Pump	Off	Off	Off	Off
Low-Voltage Detection Function	Off	Off	Off	Off
Temperature Sensor	Off	Off	Off	Off
Over-Temperature Detector	On	On	On	Off

Off: Disable or Power down mode

On: Enable mode

■ CY96F8E5K

(BV_{CC} = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = - 40°C to + 105°C)

Dozometez	Cumbal	Pin	Conditions		Value		Unit	Remarks	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
			PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 20MHz	-	22	-	mA	T _A = +25°C	
Power supply current in Run	ICCPLL		Flash 0 wait (CLKRC stopped)	-	-	30.9	mA	T _A = +105°C	
modes*1*4*5*6			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.8	-	mA	T _A = +25°C	
	I _{CCMAIN}		Flash 0 wait (CLKPLL and CLKRC stopped)	-	-	11	mA	T _A = +105°C	
	Iccspll		PLL Sleep mode with CLKS1/2 = CLKP1/2 = 20MHz	-	5.9	-	mA	T _A = +25°C	
Power supply current in Sleep	CCSPLL		(CLKRC stopped)	-	-	13	mA	T _A = +105°C	
modes*1*4*6			Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz	-	1.1	-	mA	T _A = +25°C	
	ICCSMAIN	- BV _{cc}	(CLKPLL and CLKRC stopped)	-	-	6.4	mA	T _A = +105°C	
		DV _{CC}	Main Timer mode with CLKMC = 4MHz,	-	430	-	μΑ	T _A = +25°C	
	Ісстмаін		SMCR:LPMSS = 0 (CLKPLL and CLKRC stopped)	ı	-	2800	μΑ	T _A =+105°C	
Power supply current in Timer	Ісствен		RC Timer mode with CLKRC = 2MHz,	-	480	-	μΑ	T _A = +25°C	
modes*2*4*6	ICCTRCH		SMCR:LPMSS = 0 (CLKPLL and CLKMC stopped)	-	-	3200	μΑ	T _A =+105°C	
	1		RC Timer mode with CLKRC = 100kHz,	-	63	-	μΑ	T _A = +25°C	
	ICCTRCL		SMCR:LPMSS = 0 (CLKPLL and CLKMC stopped)	-	-	2000	μΑ	T _A =+105°C	
Power supply current in Stop	la			-	-	80	μΑ	$T_A = +25$ °C BV _{CC} =13.5V	
mode*3*4*6	Іссн			-	-	1600	μΑ	T _A = +105°C	

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Doromotor	Parameter Symbol Pin Conditions		Conditions		Value		Unit	Remarks
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Onit	Remarks
Increase current when Flash Memory is not in Power-down	I _{CCFLASHPD}		-	-	36	70	μΑ	
Power supply current for active Low-Voltage		BV _{cc}	Low-voltage detection function	-	65	ı	μΑ	T _A = +25°C
detection function*4	I _{CCLVD}		enabled	-	-	130	μΑ	T _A = +105°C
Flash Write/	1			-	12.5	-	mA	T _A = +25°C
Erase current*5	ICCFLASH		-	-	-	20	mA	T _A = +105°C

- *1: The power supply current is measured with a 4MHz external clock connected to the Main oscillator. Currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O and LIN transceiver. Power supply current in Run mode does not include Flash Write / Erase current.
- *2: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

 When Flash is not in Power-down / reset mode, I_{CCFLASHPD} must be added to the Power supply current.

 The power supply current is measured with a 4MHz external clock connected to the Main oscillator. The currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O and LIN transceiver.
- *3: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

 When Flash is not in Power-down / reset mode, IccFLASHPD must be added to the Power supply current.

 The currents for the following parts are not included: "On-Chip Debugger" part and output currents of the general-purpose I/O and LIN transceiver.
- *4: When low-voltage detection function is enabled, IcclvD must be added to Power supply current.
- *5: When Flash Write / Erase program is executed, IccFlash must be added to Power supply current.
- *6: The power supply current under the following condition.

Function	Run Modes	Sleep Modes	Timer Modes	Stop Modes
Watchdog	Off	Off	Off	Off
10-bit A/D Converter B	Off	Off	Off	Off
5V Power Supply Output (V5SW)	Off	Off	Off	Off
12V Power Supply Output (V12SW)	Off	Off	Off	Off
Voltage Monitor 0	Off	Off	Off	Off
Voltage Monitor 1	Off	Off	Off	Off
Three-Phase Motor Pre-Driver	Off	Off	Off	Off
Charge Pump	Off	Off	Off	Off
Low-Voltage Detection Function	Off	Off	Off	Off
Temperature Sensor	Off	Off	Off	Off
LIN Transceiver (Driver)	Off	Off	Off	Off
LIN Transceiver (Receiver)	Off	Off	Off	On
Over-Temperature Detector	On	On	On	Off

Off: Disable or Power down mode

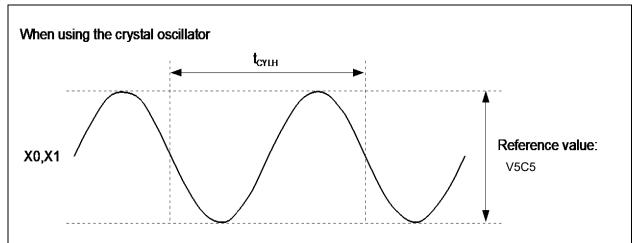
On: Enable mode

14.3.2 Pin Characteristics

(BVcc = 6V to 18V, Vss = PVss = LVss = 0V, T_A = - 40°C to + 105°C)

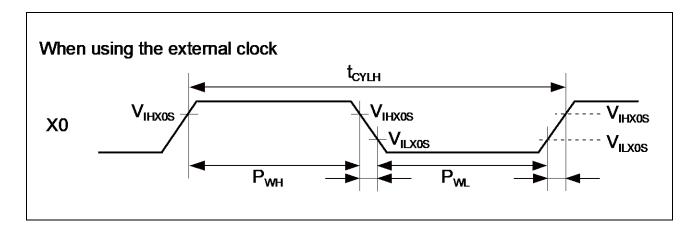
					Value				
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks	
		5V port	-	V5C5 × 0.7	-	V5C5 + 0.3	V	CMOS Hysteresis input	
	V5 _{IH}	inputs Pnn_m	-	V5C5 × 0.8	-	V5C5 + 0.3	V	AUTOMOTIVE Hysteresis input	
		12V port	5.5V <bv<sub>CC</bv<sub>	4.68	-	BV _{CC} + 0.3			
"H" level input	V12 _{IH}	inputs Pnn_m	4.2V <bv<sub>CC≤5.5V</bv<sub>	BV _{cc} × 0.85	-	BV _{CC} + 0.3	V	-	
voltage	V _{IHX0S}	X0	External clock in "Fast Clock Input mode"	V5C5 × 0.8	-	V5C5	V	-	
	V_{IHR}	RSTX	-	V5C5 × 0.8	-	V5C5 + 0.3	V	CMOS Hysteresis input	
	V_{IHM}	MD	-	V5C5 - 0.3	-	V5C5 + 0.3	V	CMOS Hysteresis input	
	V_{IHD}	DEBUG I/F	-	2.0	-	V5C5 + 0.3	٧	TTL Input	
	\ <i>/</i> E	5V port	-	V _{SS} - 0.3	-	V5C5 × 0.3	V	CMOS Hysteresis input	
	V5 _{IL}	inputs Pnn_m	-	V _{SS} - 0.3	-	V5C5 × 0.5	V	AUTOMOTIVE Hysteresis input	
		12V port	5.5V <bv<sub>CC</bv<sub>	V _{SS} - 0.3	-	3.3			
"L" level input	V12 _{IL}	inputs Pnn_m	4.2V <bv<sub>CC≤5.5V</bv<sub>	V _{SS} - 0.3	-	BV _{CC} × 0.60	V	-	
voltage	V _{ILX0S}	X0	External clock in "Fast Clock Input mode"	V _{SS}	-	V5C5 × 0.2	V	-	
	V_{ILR}	RSTX	-	V _{SS} - 0.3	-	V5C5 × 0.2	V	CMOS Hysteresis input	
	V_{ILM}	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input	
	V_{ILD}	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input	
"H" level output voltage	V_{OH4}	4mA type	I _{OH} = -4mA	V5C5 - 0.5	-	V5C5	V	-	
"L" level output	V_{OL4}	4mA type	I _{OL} = +4mA	-	-	0.4	V	-	
voltage	V _{OL25}	DEBUG I/F	I _{OL} = +25mA	0	-	0.25	٧	-	
Input leakage	I12 _{IL}	12V port inputs Pnn_m	V _{SS} < V12 _I < BV _{CC}	- 1	-	+1	μA	-	
current	15 _{IL}	5V port inputs Pnn_m	$V_{SS} < V5_I < V5C5$ $V_{SS} < V5_I < AV_{CC}$	- 3	-	+3	μA	-	
Pull-up resistance value (5V)	R_{PU}	5V port Pnn_m	V5C5 = 5.0V ±10%	25	50	100	kΩ	-	

Parameter	Cumbal	Pin name	Conditions		Value		Unit	Remarks	
Parameter	Symbol	riii iidiile	Conditions	Min	Тур	Max	Oill	Remarks	
Pull-down resistance value (12V)	R _{PD}	12V port inputs Pnn_m	V5C5 = 5.0V ±10%	100	135	170	kΩ	-	
	C5 _{IN}	5V port Pnn_m	-	-	15	30	pF	-	
Input capacitance	C12 _{IN}	12V port inputs Pnn_m	-	-	5	15	pF	-	



14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics


(BV_{CC} = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = - 40°C to + 105°C)

Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Symbol	riii iiaiiie	Min	Тур	Max	Onit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	f _C	X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off
		, , ,	4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
			-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
Input frequency	f _{FCI}	Х0	4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	125	-	-	ns	-
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns	-

The amplitude changes by resistance, capacity which added outside or the difference of the device.

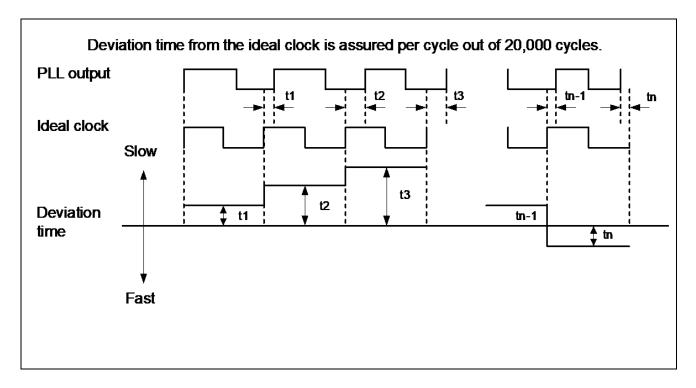
14.4.2 Built-in RC Oscillation Characteristics

$$(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$$

Parameter	Symbol	Value			Unit	Remarks	
raiailletei	Syllibol	Min	Тур	Max	Oilit	Remarks	
Clock frequency	f _{RC}	50	100	200	kHz	When using slow frequency of RC oscillator	
		1	2	4	MHz	When using fast frequency of RC oscillator	
	t _{rcstab}	80	160	320	μs	When using slow frequency of RC oscillator	
RC clock stabilization time					-	(16 RC clock cycles)	
RC Clock Stabilization time		64	128	256	μs	When using fast frequency of RC oscillator	
						(256 RC clock cycles)	

14.4.3 Internal Clock Timing

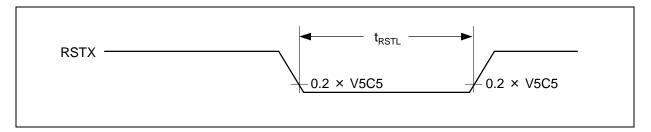
(BV_{CC} = 6V to 18V,
$$V_{SS}$$
 = PV_{SS} = LV_{SS} = 0V, T_A = -40°C to + 105°C)


Parameter	Symbol	Va	Unit		
Farameter	Symbol	Min	Max	Offic	
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	40	MHz	
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{CLKB} , f _{CLKP1}	-	20	MHz	
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	=	20	MHz	

14.4.4 Operating Conditions of PLL

(BVcc = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = - 40°C to + 105°C)

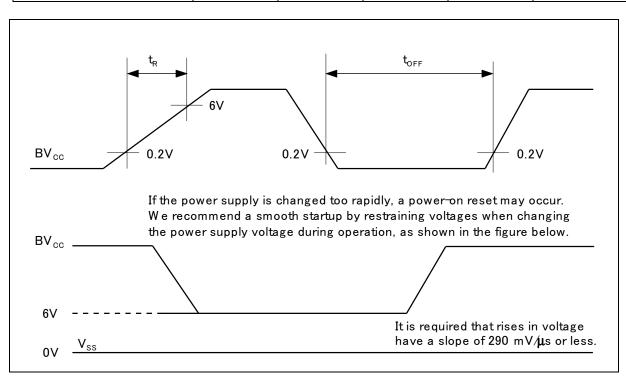
Parameter	Symbol		Value		Unit	Remarks	
raidilletei	Syllibol	Min	Тур	Max	Onit		
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz	-	
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	



14.4.5 Reset Input

(BVcc = 6V to 18V, Vss = PVss = LVss = 0V, T_A = -40°C to + 105°C)

Parameter	Symbol	Pin name	Va	Unit		
i arameter	Зушьог	riii iiaiiie	Min	Max	Oilit	
Reset input time		Detv	10	-	μs	
Rejection of reset input time	t _{RSTL}	RSTX	1	-	μs	



14.4.6 Power-on Reset Timing

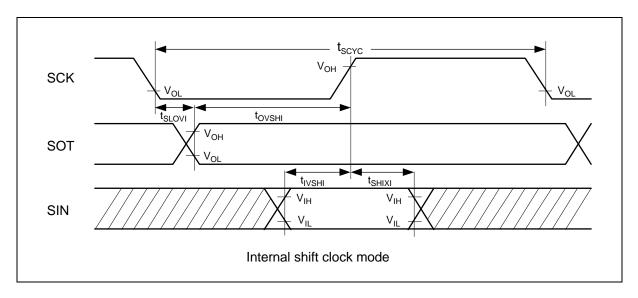
(BVcc = 6V to 18V, $V_{SS} = PV_{SS} = LV_{SS} = 0V$, $T_A = -40$ °C to + 105°C)

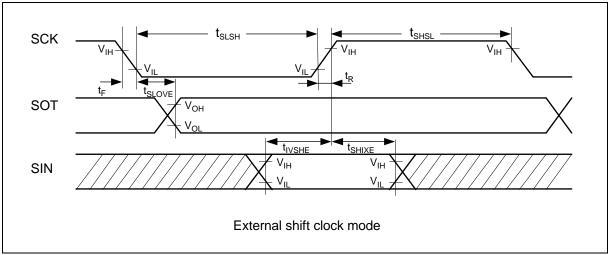
Parameter	Symbol		Value	Unit		
Parameter	Symbol	Min	Тур	Max	Unit	
Power-on rise time	t _R	0.02	-	5800	ms	
Power-off time	t _{OFF}	10	-	-	ms	

14.4.7 USART Timing

(BVcc = 6V to 18V, $V_{SS} = PV_{SS} = LV_{SS} = 0V$, $T_A = -40$ °C to + 105°C, C_L =50pF)

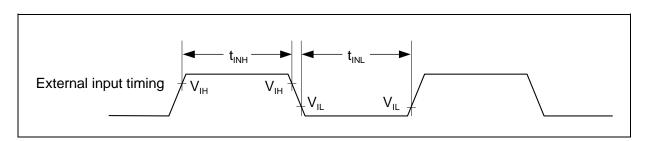
Davamatav	Cumbal	Din Name	Conditions	Va	lue	Unit
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	ns
SCK L . SOT delay time		SCKn,		- 20	+ 20	no
SCK ↓ → SOT delay time	t _{SLOVI}	SOTn		- 20	+ 20	ns
SOT → SCK↑ delay time		SCKn,	Internal shift	N×t _{CLKP1}		20
301 → 3CK delay time	t _{ovshi}	SOTn	clock mode	- 20 ^{*2}	-	ns
SIN → SCK↑ setup time		SCKn,	CIOCK ITIOGE	t _{CLKP1}		20
SiN → SCK Setup time	t _{IVSHI}	SINn	_	+45 ^{*1}	-	ns
CCI/ A CINI hold time	+	SCKn,		0*1		ns
SCK ↑ → SIN hold time	t _{SHIXI}	SINn		U	-	115
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	ns
SCK SOT delevitime		SCKn,			2t _{CLKP1}	
SCK ↓ → SOT delay time	t _{SLOVE}	SOTn	External shift	-	+ 45	ns
SIN → SCK ↑ setup time		SCKn,	clock mode	t _{CLKP1} /2		20
SiN → SCK setup time	t _{IVSHE}	SINn		+ 10 ^{*1}	-	ns
SCK + SIN hold time		SCKn,		t _{CLKP1}		nc
$SCK \uparrow \rightarrow SIN$ hold time	t _{SHIXE}	SINn		+ 10*1	-	ns
SCK fall time	t _F	SCKn		-	20	ns
SCK rise time	t _R	SCKn		-	20	ns


Notes:


- AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "CY96800 series HARDWARE MANUAL".
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns.
- *1: Values for the I/O circuit type, HB, at CMOS hysteresis input voltage (5V). These values are not guaranteed for the normal input (12V).
- *2: Parameter N depends on tscyc and can be calculated as follows:
- If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2
- If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

Examples:

tscyc	N
4 × t _{CLKP1}	2
$5 \times t_{CLKP1}$, $6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}$, $8 \times t_{CLKP1}$	4



14.4.8 External Input Timing

(BVcc = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = - 40°C to + 105°C)

Parameter	Symbol	Pin Name	Value		Unit	Remarks
i diametei	Symbol	i iii ivaine	Min	Max	Oilit	Remarks
		Pnn_m		-		General-Purpose I/O (except I/O circuit type: HB)
		ADTG	2t _{CLKP1} +200 (t _{CLKP1} = 1/f _{CLKP1})*		ns	A/D Converter trigger input
		TINn				Reload Timer
	t _{INH} , t _{INL}	INn				Input Capture (except I/O circuit type: HB)
Input pulse width		Pnn_m	2t _{CLKP1} +400			General-Purpose I/O (I/O circuit type: HB)
		INn	(t _{CLKP1} = 1/f _{CLKP1})*	-	ns	Input Capture (I/O circuit type: HB)
		INTn	200	-	ns	External Interrupt (except I/O circuit type: HB)
		IINTII	400	-	ns	External Interrupt (I/O circuit type: HB)
		NMI	400	-	ns	Non-Maskable Interrupt

^{*:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5 10-bit A/D Converter

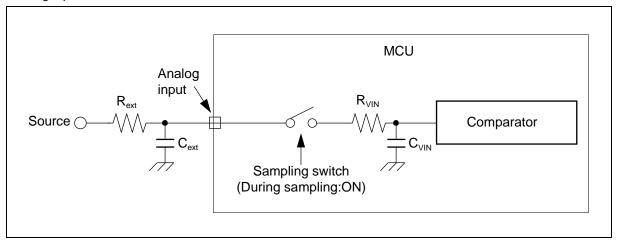
14.5.1 Electrical Characteristics of the A/D Converter

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

		5: N		Value			
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	-
Total error	_		- 3.0	-	+ 3.0	LSB	Except for SH_n pin*2
Total elloi	-	-	- 12.0	-	+ 12.0	LSB	SH_n *3
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	-
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	-
Zero transition voltage	V _{OT}	ANn	Тур - 20	V _{SS} + 0.5LSB	Typ + 20	mV	-
Full-scale transition voltage	V_{FST}	ANn	Тур - 20	AV _{CC} - 1.5LSB	Typ + 20	mV	-
Compare time *1	-	-	0.6	-	5.0	μs	4.5V ≤ AV _{CC} ≤ 5.5V
Sampling time *1	-	-	0.5 *2	-	-	μs	4.5V ≤ AV _{CC} ≤ 5.5V
Power supply current	I _A	AV _{cc}	-	2.5	3.5	mA	A/D Converter in operation (per unit)
	I _{AH}		-	-	4.3	μA	A/D Converter not in operation
Analog input capacity	C_{VIN}	ANn	-	-	20	pF	-
Analog impedance	R_{VIN}	ANn	-	-	1550	Ω	4.5V ≤ AV _{CC} ≤ 5.5V
Analog port input current (during conversion)	I _{AIN}	ANn	- 0.3	-	+ 0.3	μΑ	V _{SS} < V _{AIN} < AV _{CC}
Analog input voltage	V_{AIN}	ANn	V _{SS}	-	AV _{CC}	V	-
Variation between channels	-	ANn	-	-	4	LSB	-

^{*1:} Time for each channel.

^{*2:} The value is not the one at the minimum sampling time because a Resistor voltage divider more than $10k\Omega$ is connected to the motor-monitor input terminal (SH_n).


^{*3:}The value of Motor Monitor input terminal (SH_n) at the minimum sampling time

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance Rext, the board capacitance of the A/D converter input pin Cext and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

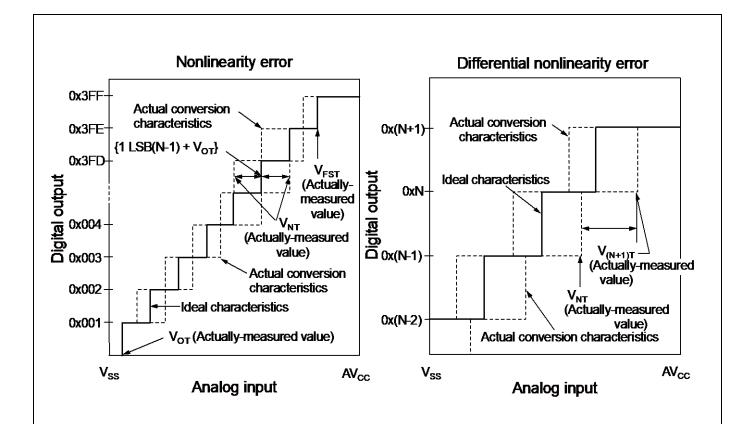
Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and A/D converter are contained)

R_{VIN}: Analog input impedance (I/O, analog switch and A/D converter are contained)

The following approximation formula for the replacement model above can be used:

Tsamp = $7.62 \times (Rext \times Cext + (Rext + RVIN) \times CVIN)$


- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AVcc ≤ 5.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current I_{IL} (static current before the sampling switch) or the analog input leakage current I_{AIN} (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current I_{IL} cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVcc Vss| becomes smaller.

14.5.3 Definition of A/D Converter Terms

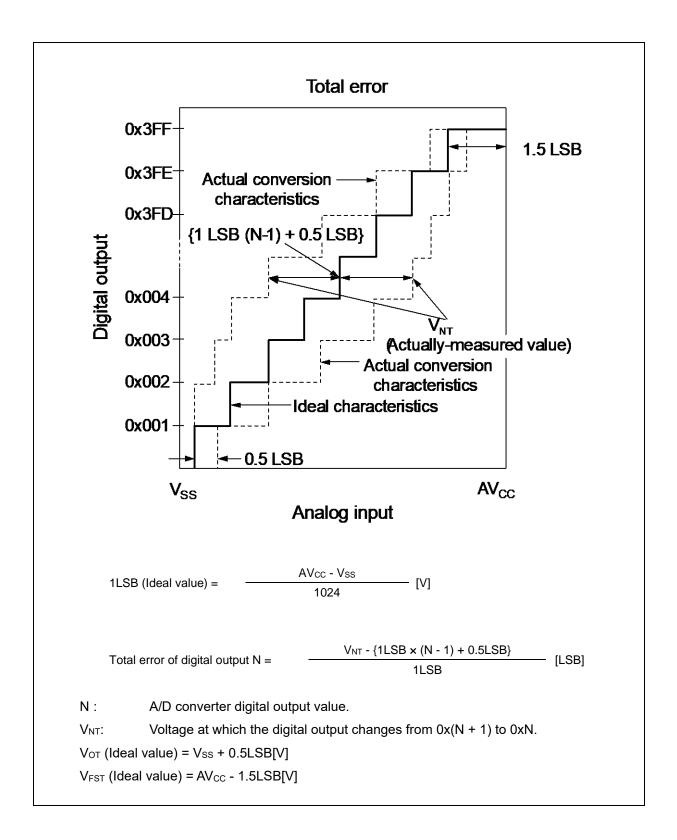
- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error: Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b0000000001) to the full-scale transition point (0b11111111110 ←→ 0b1111111111).
- Differential nonlinearity error: Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error
- includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full-scale transition voltage: Input voltage which results in the maximum conversion value.

Nonlinearity error of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB}$$
 [LSB]

Differential nonlinearity error of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB} - 1 [LSB]$$

$$1LSB = \frac{V_{FST} - V_{OT}}{1022} \quad [V]$$

N: A/D converter digital output value.


V_{OT}: Voltage at which the digital output changes from 0x000 to 0x001.

V_{FST}: Voltage at which the digital output changes from 0x3FE to 0x3FF.

Voltage at which the digital output changes from 0x/N = 1) to 0xNI

 V_{NT} : Voltage at which the digital output changes from 0x(N-1) to 0xN.

14.6 Voltage monitor 0

Electrical Characteristics of Voltage Monitor 0

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Donomoton	Comple ed	Din Name	Conditions		Value		l luit	Domonto
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Input voltage *2	V_{INO}	VBMON, VMPMON V12SW BV _{CC}	-	3.0	-	BV _{cc} +0.3	V	-
	R_{PD0}	VBMON,	-	100	240	530	kΩ	R _{PD0} =R01+R02
Input resistance *3	R03	VMPMON V12SW	-	180	400	880	kΩ	-
	R04	BV _{cc}	-	900	2000	4400	kΩ	-
Zener voltage	V _{Z01}	-	-	5.2	5.8	6.4	V	Zener diode voltage of D _{Z01}
Offset error *1*2	V _{OFF0}	VBMON, VMPMON V12SW BVcc	-	-90	-	+90	mV	-
Resistor voltage division ratio *2	R _{DIV0}	-	-	-	1/6	-	-	R _{DIVO} =R02/(R01+R02) Error = ±1.4%
Power supply current	I _{VM0}	AV _{CC}	-	-	1	2.0	mA	Voltage monitor 0 in operation

^{*1:} The offset error occurs with an built-in amplifier. The value is voltage on pins. The input voltage into A/D C is divided by resistance.

Measurement error =

± (V_{IN0} × (Resistor voltage division ratio error + Voltage error of AV_{CC}) + V_{OFF0} + ((total error of A/D C)/ R_{DIVO}))

For example: the measurement error of input voltage at $AV_{CC} = V5C5$

Measurement error = \pm (V_{IN0} × (0.014 +0.03) + 0.09 + (5/1024) × 3 × 6)

- *3: When the input voltage is high, the voltage of R04 is fixed to Zener voltage and combined resistance changes as follows
 - $V_{IN0} > V_{Z01} \times (R03 + R04) / R04$: combined resistance = 1 / ((R01+R02+R03)/((R01+R02) \times R03) - $V_{Z01} / (V_{IN0} \times R03)$)
 - $V_{IN0} \le V_{Z01} \times (R03 + R04) / R04$: combined resistance = $((R01 + R02) \times (R03 + R04)) / (R01 + R02 + R03 + R04)$ For example: In the case that the value of Input resistance is Typical.
 - combined resistance = 179 kΩ (V_{IN0} = 13.5V)
 - combined resistance = 218 kΩ (V_{IN0} ≤ 6.96V)

^{*2:} When the input voltage is monitored, the measurement error including the error for A/D C can be calculated by the following approximate expression.

Block Diagram of Voltage Monitor 0

14.7 Voltage Monitor 1

Electrical Characteristics of the Voltage Monitor 1

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

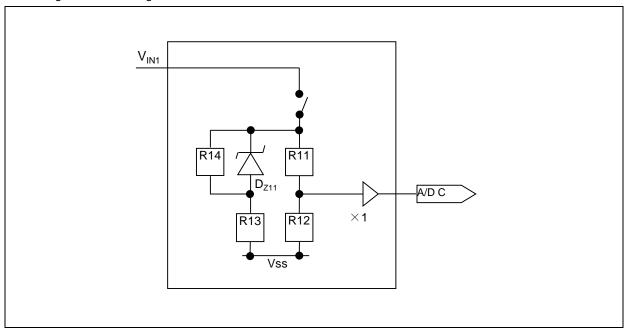
Parameter	Cumbal	Pin Name	Conditions		Value		Unit	Remarks
raiailletei	Symbol	rin Name	Conditions	Min	Тур	Max	Unit	Remarks
Input voltage *2	V _{IN1}	PVcc	-	-	PVcc	-	V	-
	R _{PD1}		-	180	400	880	kΩ	R _{PD1} =R11+R12
Input resistance *3	R13	PV_{CC}	-	180	400	880	kΩ	-
	R14		-	900	2000	4400	kΩ	-
Zener voltage	V _{Z11}	-	-	5.2	5.8	6.4	V	Zener diode voltage of D _{Z11}
Offset error *1*2	V _{OFF1}	PV _{CC}	-	-150	-	+150	mV	-
Resistor voltage division ratio *2	R _{DIV1}	-	-	-	1/10	-	-	R _{DIV0} =R12/(R11+R12) Error = ±1.3%
Power supply current	I _{VM1}	AV _{CC}	-	-	1	2.1	mA	Voltage monitor 1 in operation

^{*1:} The offset error occurs with an built-in amplifier. The value is voltage on pins. The input voltage into A/D C is divided by resistance.

*2: When the input voltage is monitored, the measurement error including the error for A/D C can be calculated by the following approximate expression.

Measurement error =

 \pm (V_{IN1} × (Resistor voltage division ratio error + Voltage error of AV_{CC}) + V_{OFF1} + ((total error of A/D C)/ R_{DIV1}))


For example: the measurement error of input voltage at AV_{CC} = V5C5

Measurement error = \pm (V_{IN1} × (0.013 +0.03) + 0.15 + (5/1024) × 3 × 10)

- *3: When the input voltage is high, the voltage of R14 is fixed to Zener voltage and combined resistance changes as follows
 - $V_{IN1} > V_{Z11} \times (R13 + R14) / R14$: combined resistance = 1 / ((R11 + R12 + R13)/((R11 + R12) \times R13) $V_{Z11}/(V_{IN1} \times R13)$)
 - $V_{IN1} \le V_{Z11} \times (R13+R14) / R14$: combined resistance = $((R11+R12) \times (R13+R14)) / (R11+R12+R13+R14)$ For example: In the case that the value of Input resistance is Typical.
 - combined resistance = 255 kΩ (V_{IN1} = 13.5V)
 - combined resistance = 343 k Ω (V_{IN1} ≤ 6.96V)

Block Diagram of the Voltage Monitor 1

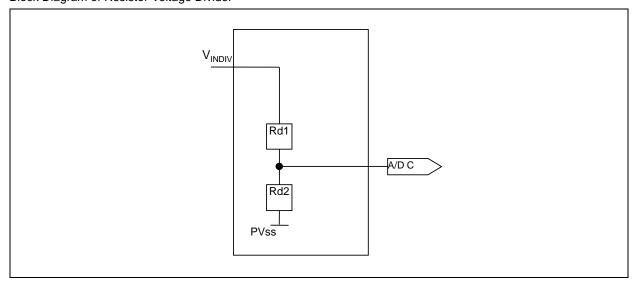
14.8 Resistor Voltage Divider

Electrical Characteristics of Resistor Voltage Divider

$$(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$$

Doromotor	Cumbal	Pin Name	Conditions		Value		Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks	
Input voltage *1	V_{INDIV}	SH_0, SH_1,	-	V _{SS}	-	BV _{cc} +0.3	V	-	
Input resistance *2	R _{PDDIV}	SH_2	-	7.9	13	18	kΩ	R _{PDDIV} =Rd1+Rd2	
Resistor voltage division ratio *1	R _{DIVD}	-	-	-	1/6	-	-	R _{DIVD} =Rd2/(Rd1+Rd2)	
								Error = ±0.9%	

^{*1:} When the input voltage is monitored, the measurement error including the error for A/D C can be calculated by the following approximate expression.


Measurement error =

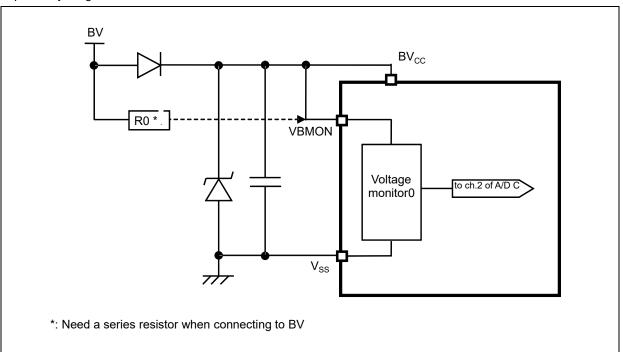
± (V_{INDIV} × (Resistor voltage division ratio error + Voltage error of AV_{CC}) + ((total error of A/D C)/ R_{DIVD}))

For example: the measurement error of input voltage at AV_{CC} = V5C5

Measurement error = \pm (V_{INDIV} × (0.009 +0.03) + (5/1024) × 12 × 6)

Block Diagram of Resistor Voltage Divider

^{*2:} The SH_n pin is pulled down by combined resistance that composed Sink resistance: RSG of Three-Phase Motor Pre-Driver and Input resistance: RPDDIV.


14.9 VB Monitor (VBMON)

Pin Characteristics

$$(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$$

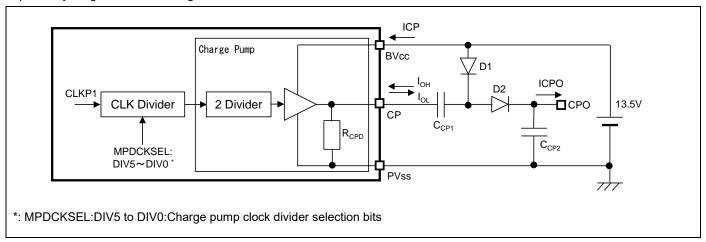
Parameter	Symbol	Pin Name	Conditions	Value			Unit	Remarks	
				Min	Тур	Max	Unit	Remarks	
Input voltage	V _{IN}	VBMON	-	3.0	-	BV _{CC} +0.3	٧	-	
External resistor	R0	VBMON	-14V < BV	1	-	-	kΩ	Needed when connecting BV 1 kΩ (Allowance within ±10%)	

Explanatory Diagram

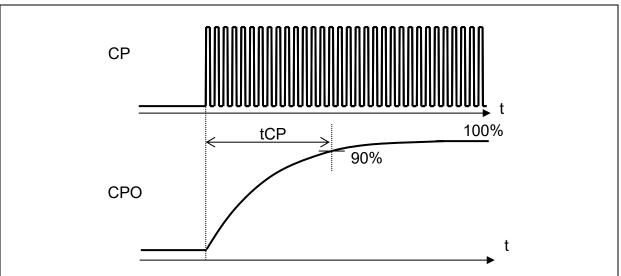
14.10 Charge Pump

Pin Characteristics

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$


B	0	Pin			Value				
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
"H" level output voltage	V _{OHCP}	СР	BV_{CC} =13.5V I_{OH} = -50mA	11	BV _{CC} -0.5	-	V	Schematic Diagram	
"L" level output voltage	V _{OLCP}	СР	$BV_{CC} = 13.5V$ $I_{OL} = +50mA$	-	0.7	1.1	V	Schematic Diagram	
-	C _{CP1}	-	-	-	0.022	-	μF		
External capacitance	C _{CP2}	-	-	-	0.47	-	μF	<u>-</u> 	
Pull-down resistance value	R _{CPD}	СР	-	45	100	220	kΩ	-	
Charge pump voltage*1*2	V _{CPO}	-	ICPO=20mA fCP=500kHz C _{CP1} , C _{CP2} =values shown in this table	9.3	-	-	V	BV _{CC} =6V	
				-	24.5	-	V	BV _{CC} = 13.5V	
				-	-	33.8	V	BV _{CC} =18V	
Output frequency	fCP	СР	BV _{CC} =13.5V	250	500	750	kHz	-	
Charge pump output current	ICPO	-	$BV_{CC} = 13.5V$ $PV_{CC} = BV_{CC} + 8V$	22	-	-	mA	*1	
Charging time	tCP	-	$BV_{CC} = 13.5V$ $fCP = 500kHz$ $C_{CP1}, \ C_{CP2} = values \ shown$ in this table $ICPO = 0mA$	-	0.11	-	ms	Charge time of the external capacitance: C _{CP2} 11	
Power supply current	ICP	BV _{cc}	$BV_{CC} = 13.5V$ $fCP = 500kHz$ $C_{CP1}, \ C_{CP2} = values \ shown$ in this table $ICPO = 0mA$	-	4.6	9.3	mA	-	

^{*1:} Reference values obtained with simulations in the explanatory diagram for measuring booster characteristics. Because the value varies depending on the external elements, the characteristics are not guaranteed.


^{*2:} The forward voltage of the diode D1 and D2 is the following conditions Forward voltage of D1/D2:0.28[V] (Forward current=0.1[A] , T_A = +25°C)

Explanatory Diagram for Measuring booster characteristics

Timing Chart for Charge Pump Operation

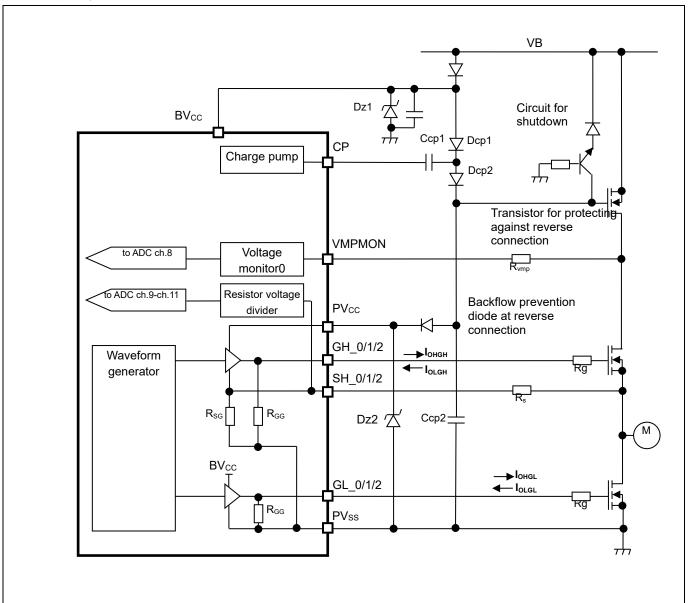
14.11 Three-phase Motor Pre-Driver

Pin characteristics

(BV_{CC} = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40°C to + 105°C)

Parameter	Cumbal	Pin Name	Conditions		Value		Unit	Remarks
	Symbol			Min	Тур	Max		
			PV _{CC} =25V			15	V	-
		GH_0,	VSH=0V *1					
		GH_1,	$I_{OHGH} = -10mA$	8.6	12			
"H" level output		GH_2	MPDC2.HSR=111 _B /					
voltage	V_{OHPD}		SSWSDC.HBST=1111 _B					
		GL_0,	$BV_{CC} = 13.5V$ $I_{OHGL} = -10 \text{mA}$ $MPDC2.LSR = 111_{B}/$			14	V	-
		GL_0, GL_1,		8.4	12			
		GL_1, GL_2		0.4		14		
		GL_2	SSWSDC.LBST=1111 _B					
			PV _{CC} =25V		0.46			-
		GH_0,	VSH=0V *1	-		1.1	V	
		GH_1,	$I_{OLGH} = +10$ mA MPDC2.HSR=111 _B / SSWSDC.HBST=1111 _B					
"L" level output		GH_2						
voltage	V _{OLPD}							
		CL 0	$BV_{CC} = 13.5V$ $I_{OLGL} = +10mA$ $MPDC2.LSR = 111_{B}/$ $SSWSDC.LBST = 1111_{B}$	-		1.3	V	-
		GL_0,			0.53			
		GL_1, GL_2						
		GL_2						
	C_{LPD}	GH_0,	PV _{CC} =25V VSH=0V *1 BV _{CC} =13.5V	-			nF nF	
		GH_1,			-	12		-
Load capacitance		GH_2						
Load capacitance		GL_0,						
		GL_1,						
		GL_2						
Gate discharge resistance	R_{GG}	GH_0,	Output disabled			250	kΩ	-
		GH_1,		40				
		GH_2,			100			
		GL_0,		10				
		GL_1,						
		GL_2						
Sink resistance*3	R _{SG}	SH_0,	-			250	kΩ	-
		SH_1,		40	100			
		SH_2						
Protection resistance	Rs	SH_0,	-		-	-	Ω	-
		SH_1,		150				
		SH_2						
	R_{vmp}	VMPMON	-14V < BV	1	-	-	kΩ	1 kΩ (Allowance within ±10%)

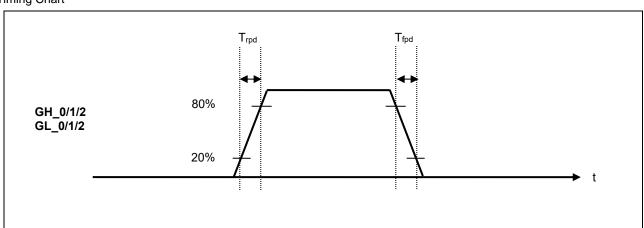
Parameter	Symbol	Pin Name	Conditions	Value			Unit	Remarks
Parameter				Min	Тур	Max	Unit	Remarks
Power supply current	I _{HLGD}	PV _{cc}	$PV_{CC} = 25V$ $VSH = 0V^{*1}$ $C_{LPD} = 12nF$ $F_{SW} = 20kHz$	-	6.3	9.9	mA	*2
			VSH=0V *1 F _{SW} =0kHz I _{OHGH} =0mA I _{OLGH} =0mA	-	3.6	6.3	mA	*2 Fixed output
		BVcc	$BV_{CC} = 13.5V$ $VSH=0V^{*1}$ $C_{LPD}=12nF$ $F_{SW} = 20kHz$	-	6.1	9.8	mA	*2
			VSH=0V *1 F _{SW} =0kHz I _{OHGH} =0mA I _{OLGH} =0mA	-	3.6	6.1	mA	*2 Fixed output


^{*1:} VSH:SH_0, SH_1, SH_2

^{*2:} Current dissipation per driver

^{*3:} The SH_n pin is pulled down by combined resistance that composed Input resistance: RPDDIV of Resistor Voltage Divider and Sink resistance: Rsg.

Explanatory Diagram


Output Characteristics

(BV_{CC} = 6V to 18V,
$$V_{SS}$$
 = PV_{SS} = LV_{SS} = 0V, T_A = -40°C to + 105°C)

Danamatan	Parameter Symbol		Conditions		Value		l lmit	Damada.
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
		GH_0,	PV _{CC} =25V					
		GH_1,	C _{CP2} =0.47µF	-	-	30	kHz	-
Switching	_	GH_2	C _{LPD} =12000pF *1					
frequency	F _{SW}	GL_0,	BV _{CC} =13.5V					
		GL_1,	C _{CP2} =0.47µF	-	-	30	kHz	-
		GL_2	$C_{LPD} = 12000 pF^{*1}$					
			PV _{CC} =25V					
		GH_0,	C _{CP2} =0.47µF					
		GH_1,	$C_{LPD} = 12000pF^{*1}$	-	1	-	μs	*2
		GH_2	MPDC2.HSR=111 _B /					
Rise time	_		SSWSDC.HBST=1111 _B					
Rise time	T_{rpd}		BV _{CC} =13.5V					
		GL_0,	C _{CP2} =0.47µF					
		GL_1,	$C_{LPD} = 12000pF^{*1}$	-	1	-	μs	*2
		GL_2	MPDC2.LSR=111 _B /					
			SSWSDC.LBST=1111 _B					
			PV _{CC} =25V					
		GH_0,	C _{CP2} =0.47µF					
		GH_1,	$C_{LPD} = 12000pF^{*1}$	-	1	-	μs	*2
		GH_2	MPDC2.HSR=111 _B /					
Fall time	т		SSWSDC.HBST=1111 _B					
rall tille	T_fpd		BV _{CC} =13.5V					
		GL_0,	C _{CP2} =0.47µF					
		GL_1,	$C_{LPD} = 12000 pF^{*1}$	-	1	-	μs	*2
		GL_2	MPDC2.LSR=111 _B /					
			SSWSDC.HBST=1111 _B					

^{*1:} CLPD: Load capacitance of each pin: GH_0, GH_1, GH_2, GL_0, GL_1, GL_2

Timing Chart

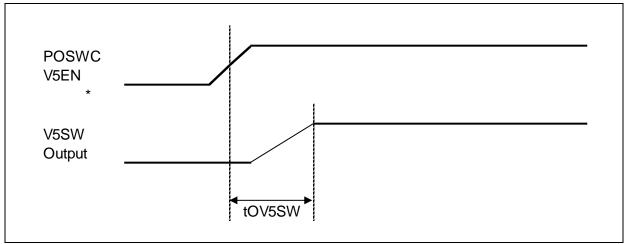
^{*2:} Reference value obtained with simulations. Because the value depends on external environments, the output characteristics are not guaranteed.

14.12 12V Power Supply Output

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Parameter Symbol		Conditions		Value	Unit	Remarks	
1 diameter	Cymbol	Pin Name	Conditions	Min	Тур	Max	Onn	
12V power supply output voltage	V _{O12VSW}	V12SW	I ₀₁₂ =30mA	BV _{cc} -0.5	-	BV _{cc}	V	-
12V power supply output current	I _{O12}	V12SW	-	-	-	30	mA	-

14.13 5V Power Supply Output


(BVcc = 6V to 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = - 40°C to + 105°C)

Parameter	Symbol	Pin Name	Conditions		Value		Unit	Remarks	
r arameter	Symbol	i iii ivailie	Conditions	Min	Тур	Max	Oiiit	Romano	
V5SW power supply output voltage	V _{O5VSW}	V5SW	I _{OV5SW} =25mA	4.85	5	5.15	V	-	
V5SW power supply output current *	I _{OV5SW}	V5SW	-	-	-	25	mA	-	
V5SW power supply output stabilization time	t _{ovssw}	V5SW	I _{OV5SW} =0mA	-	760	1800	μs		
V5C5 output voltage	V _{OV5C5}	V5C5	I _{OV5C5} =25mA	4.85	5	5.15	V	-	
V5C5 output current *	I _{OV5C5}	V5C5	-	-	-	25	mA	Except internal consumption current and current into AV _{CC}	

^{*:} See "Absolute Maximum Ratings for 5Vsupply average overall output current (ΣΙον5=Ιον5SW+Ιον5C5)

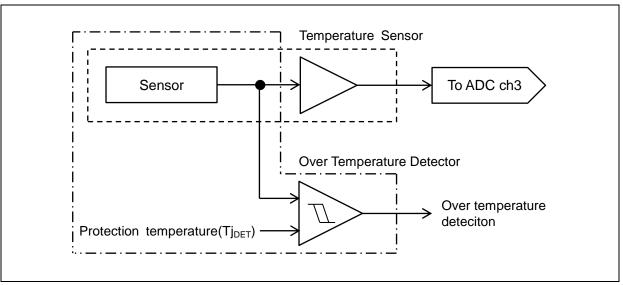
Timing Chart of V5SW Power Supply Output

^{*:} POSWC-V5EN: V5SW output control bit

14.14 Connection Pins for Smoothing Capacitor

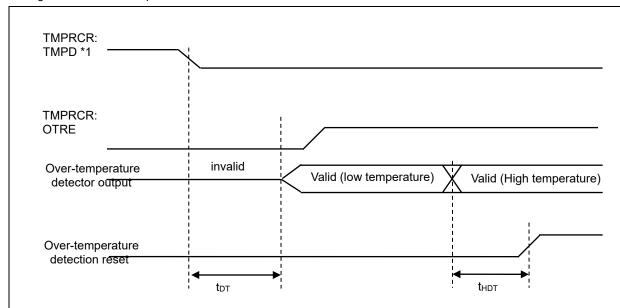
(BV_{CC} = 6V to 18V,
$$V_{SS}$$
 = PV_{SS} = LV_{SS} = 0V, T_A = -40°C to + 105°C)

Parameter	Symbol	Pin Name	Conditions _		Value		Unit	Remarks
1 di dilicici	Cyllibol	i iii itailic		Min	Тур	Max	Oiiii	
5Vpower supply stabilized output pin voltage	V _{C5}	V5C5, C5	I _O =0mA	4.85	5	5.15	V	-
1.8Vpower supply stabilized output pin voltage	V _{C1}	C1	RSTX="L" I _O =0mA	1.65	1.8	1.95	V	-

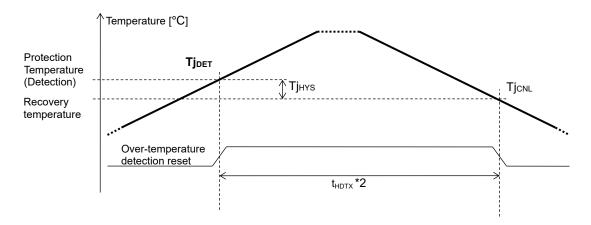


14.15 Over-Temperature Detector

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$


Parameter	Symbol	Conditions		Value		Unit	Remarks
Farameter	Зупівої	Conditions	Min	Тур	Max	Ullit	Remarks
Protection temperature	Tj _{DET}	·	142	146	150	°C	-
Recovery temperature	Tj _{CNL}	-	135	140	145	°C	-
Temperature hysteresis	Tj _{HYS}	·	5	6	7	°C	-
Stabilization time	t _{DT}	-	-	-	200	μs	-
	t _{HDT2}	TMPRCR:TMFT=10 _B	-	1	=	μs	-
Over-temperature detection	t _{HDT1}	TMPRCR:TMFT=01 _B	-	5	=	μs	-
filtering time	t _{HDT0}	TMPRCR:TMFT=00 _B	-	15	=	μs	Initial value
	t _{HDT3}	TMPRCR:TMFT=11 _B	-	30	=	μs	-
Power supply current	I _{OTD}	TMPRCR:TMPD=0	-	0.25	7.1	μA	-

Block Diagram of Temperature Sensor and Over-Temperature Detector

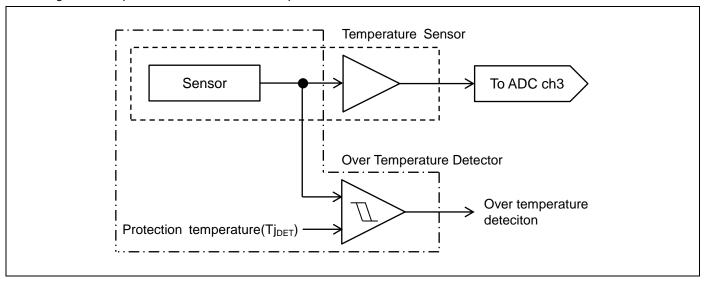


Timing Chart of Over-Temperature Detector

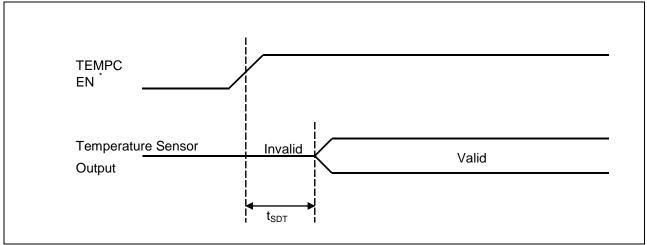
*1: TMPRCR:TMPD: Over-temperature Detector Disable

If Junction temperature ≥ Protection temperature then Over-temperature detection reset = H-level If Junction temperature < Protection temperature then Over-temperature detection reset = L-level

*2: thdtx: Temperature rise (momentary temperature rise) cannot be detected if they occur during the time interval shorter than this filtering time.



14.16 Temperature Sensor


 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Davamatar	Cumbal	Pin Name	Conditions		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Temperature detection range	Tj _{RNG}	-	-	-40	-	+150	°C	-
Temperature detection Error	Tj _{EMA}	-	Tj = +25°C	-14	-	+14	°C	-
Temperature sensor stabilization time	t _{SDT}	-	-	-	-	50	μs	-
Power supply current	I _{TMP}	BV _{cc}	-	-	1	2.4	mA	Temperature sensor in operation

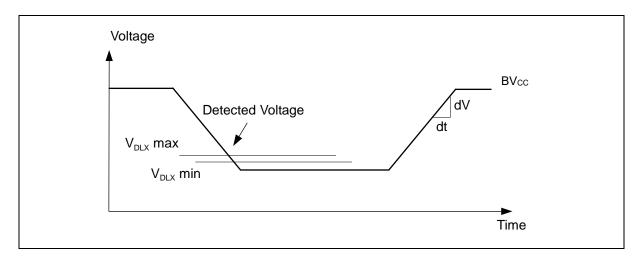
Block Diagram of Temperature Sensor and Over-Temperature Detector

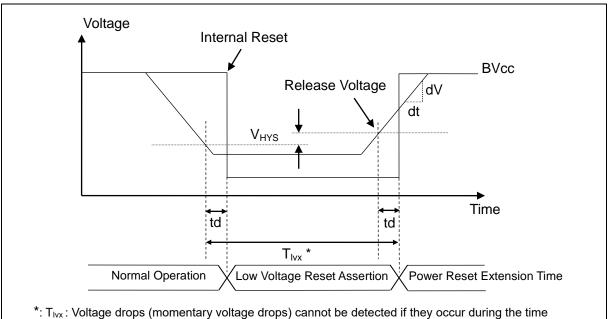
Timing Chart of Temperature Sensor

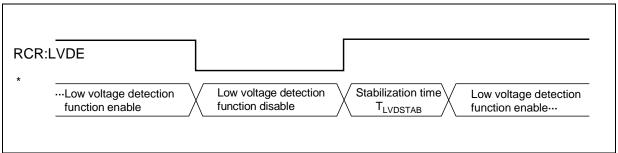
^{*:} TEMPC:EN: Temperature sensor control bit

14.17 Low Voltage Detection Function Characteristics

 $(BV_{CC} = 4.08V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$


Danamatan	Cumala al	Conditions	,	Value(BV _{cc}	:)	Unit	Domonlo
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
	V_{DL3}	CILCR:LVL = 11 _B	4.08	4.20	4.32	V	-
Detected voltage (BV _{CC})*1,*3	V_{DL0}	CILCR:LVL = 00 _B	4.38	4.50	4.62	V	Initial value
(3,00)	V_{DL1}	CILCR:LVL = 01 _B	4.58	4.70	4.82	V	-
Power supply voltage change rate*2	dV/dt	-	- 0.004	-	+ 0.004	V/µs	-
Hysteresis width	V _{HYS}	-	0.29	0.30	0.31	V	-
Stabilization time	T _{LVDSTAB}	-	-	-	140	μs	-
Detection delay time	t _d	dV/dt= -4mV/μs -	-	-	5	μs	Except for filtering time
	T _{Iv2}	CILCR:LVFT=10 _B	-	1	-	μs	-
Low-voltage detection	T _{Iv1}	CILCR:LVFT=01 _B	-	5	-	μs	-
filtering time T _{Iv0}		CILCR:LVFT=00 _B	-	15	-	μs	Initial value
	T _{Iv3}	CILCR:LVFT=11 _B	-	30	-	μs	-


^{*1:} If the power supply voltage fluctuates within the time less than the detection delay time (td), there is a possibility that the low-voltage detection will occur or stop after the power supply voltage passes the detection range.


^{*2:} In order to perform the low-voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

^{*3:} Setting the condition, CILCR:LVL=10_B, is prohibited.

^{*:} RCR:LVDE: Low Voltage Detector Enable Bit

interval shorter than this filtering time.

14.18 LIN Transceiver

 $(BV_{CC} = 7V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

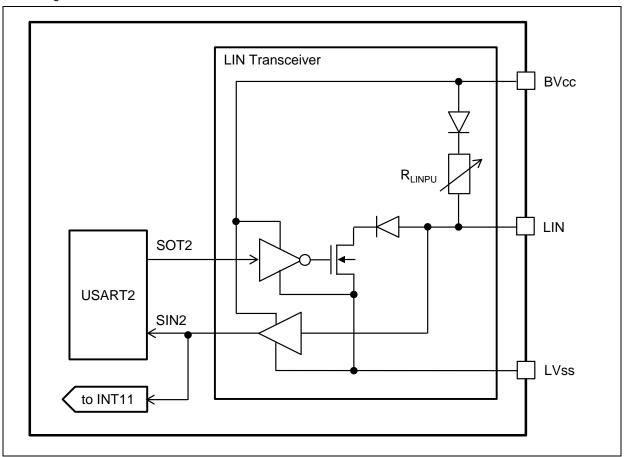
		Pin	(BVCC = 7 V to		alue(BV _{cc}				
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
	I _{LINTR}		LINTRC.XLDPD=1 LINTRC.XLRPD=1 SOT2=0	-	2.5	5.4	mA	BV _{cc} =13.5V Drive dominant state	
Power supply current	l	BV _{cc}	LIN=OPEN LINTRC.XLDPD=0	-	-	11	μΑ	T _A =+25°C BV _{CC} =13.5V	
	I _{LINSLP}		LINTRC.XLRPD=1 LINTRC.PURSEL=1	-	-	100	μΑ	T _A =+105°C	
Pull-up resistance	R _{LINPU}	LIN	LINTRC.PURSEL=1	20	30	60	kΩ	-	
value			LINTRC.PURSEL=0	180	300	520	kΩ	-	
"L" level output current	I _{OLLIN}	LIN	LIN=BV _{CC} =18V	40	-	200	mA	-	
Input leakage current receiver recessive state	I _{LINIL_REC}	LIN	7V≤LIN≤18V BV _{CC} ≤ LIN SOT2=1	-	-	20	μΑ	-	
Input leakage current receiver dominant state	I _{LINIL_DOM}	LIN	LIN=0V BV _{CC} =13.5V SOT2=1	-1	-	-	mA	-	
Input leakage current disconnected from ground	I _{LINIL_GND}	LIN	BV _{CC} =V _{SS} =18V LIN=0V	-1	-	+1	mA	-	
Input leakage current BV _{cc} disconnected	I _{LINIL_BV}	LIN	BV _{CC} =V _{SS} =0V LIN=18V	-	-	100	μΑ	-	
recessive output voltage	V _{OLINR}	LIN	SOT2=1 BV _{CC} =7.0V	BV _{cc} × 0.78	-	BV _{cc}	V	-	
dominant output voltage	V _{OLIND}	LIN	SOT2=0 BV _{CC} =7.0V	V _{SS}	-	1.6	V	-	
recessive input voltage	V _{IREC}	LIN	-	BV _{CC} × 0.6	-	-	V	-	
dominant input voltage	V _{IDOM}	LIN	-	-	-	BV _{CC} × 0.4	V	-	
central voltage of receiver threshold	V _{CNTRX}	LIN	-	BV _{CC} × 0.475	BV _{CC} × 0.500	BV _{CC} × 0.525	V	*1	
Hysteresis voltage of receiver threshold	V _{HYSRX}	LIN	-	-	-	BV _{CC} × 0.175	V	*2	
stabilization time	t _{LDT}	-	-	-	-	70	μs	-	
Pull-up resistance value for master node	R _{LINMSTR}	LIN	-	900	1000	1100	Ω	-	

D	0	Pin	O and this area	V	alue(BVc	:)	Unit	Damada
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
Duty cycle 1 *4	D1 _{LINTX}	LIN	tbit=50µs	0.396	-	1	-	= tbus_rec_min /(2xtbit) VTHRX1_REC =0.744xBV _{cc} VTHRX1_DOM =0.581x BV _{cc}
Duty cycle 2 *4	D2 _{LINTX}	LIN	tbit=50µs BV _{cc} =7.6V to 18V	-	-	0.581	-	= tbus_rec_max /(2xtbit) VTHRX2_REC =0.422xBV _{CC} VTHRX2_DOM =0.284xBV _{CC}
Duty cycle 3 *4 *5	D3 _{LINTX}	LIN	tbit=96µs	0.417	-	-	-	= tbus_rec_min /(2xtbit) VTHRX1_REC =0.778xBV _{CC} VTHRX1_DOM =0.616xBV _{CC}
Duty cycle 4 *4 *5	D4 _{LINTX}	LIN	tbit=96µs BV _{CC} =7.6V to 18V	-	-	0.590	-	= tbus_rec_max /(2×tbit) VTHRX2_REC =0.389×BV _{CC} VTHRX2_DOM =0.251×BV _{CC}
Propagation delay of receiver	t_{rx_pd}	- (SIN2)	-	-	-	6	μs	-
Symmetry of receiver propagation delay	$t_{\sf rx_sym}$	- (SIN2)	-	-2	-	2	μs	$= t_{rx_pd(raising)} - t_{rx_pd(falling)}$
Input capacitance	C _{LININ}	LIN	-	-	-	100	pF	-

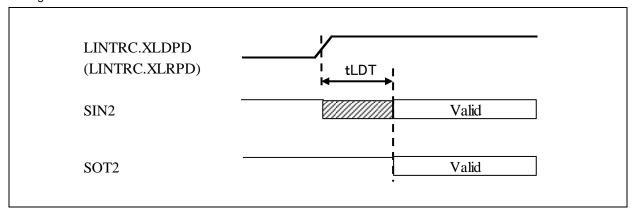
^{*1:}V_{CNTRX} = (Vth_dom + Vth_rec)/2 *3

Vth_rec: receiver threshold of the dominant to recessive LIN bus edge.

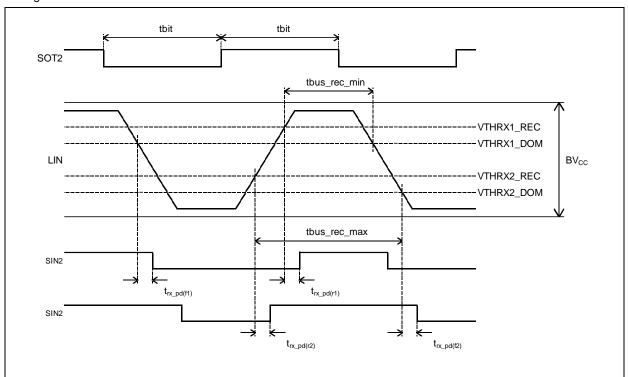
^{*2:}V_{HYSRX} = Vth_rec - Vth_dom *3


^{*3:}Vth_dom: receiver threshold of the recessive to dominant LIN bus edge.

^{*4:} Bus load conditions (CBUS / RBUS): $1nF/1k\Omega$, $6.8nF/660\Omega$, $10nF/500\Omega$.


^{*5:} For reference purpose only

Block Diagram of LIN Transceiver



Timing Chart of Stabilization time

Timing Chart of LIN Transceiver

14.19 Flash Memory Write/Erase Characteristics

 $(BV_{CC} = 6V \text{ to } 18V, V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Porc	Parameter		Value			Conditions	Remarks
Fair	ameter	Min	Тур	Max	Unit	Conditions	Remarks
	Large Sector	-	1.6	7.5	S	T _A ≤ + 80°C	
Sector erase time	Small Sector	-	0.4	.4 2.1 s -		Includes write time prior to internal erase.	
	Security Sector	-	0.31	1.65	S	-	
Word (16-bit)	Large Sector	-	25	400	μs	T _A ≤ + 80°C	Not including system-level overhead
write time	Small Sector	-	25	400	μs	-	time.
Chip erase time		-	5.1	25.05	S	T _A ≤ + 80°C	Includes write time prior to internal erase.

Note:

While the Flash memory is written or erased, shutdown of the external power (BV_{CC}) is prohibited. In the application system where the external power might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

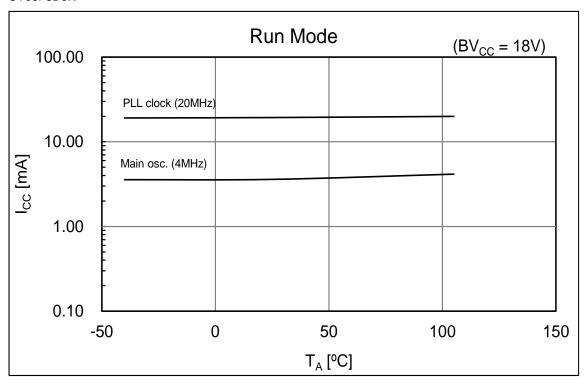
To put it concrete, change the external power in the range of change ration of power supply voltage $(-0.004V/\mu s)$ to $+0.004V/\mu s$) after the external power falls below the detection voltage $(VDLX)^*1$

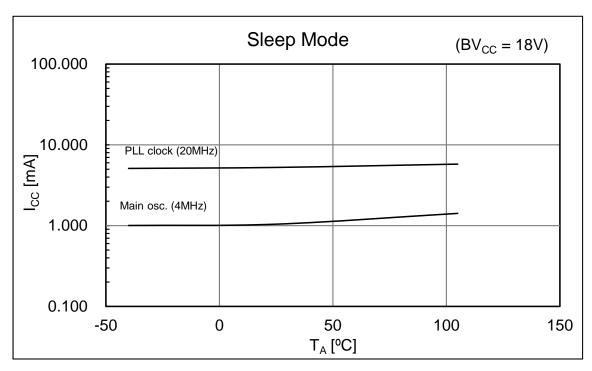
Write/Erase cycles and data hold time

Write/Erase Cycles	Data Hold Time				
(cycle)	(year)				
1,000	20 *2				
10,000	10 ^{*2}				
100,000	5 *²				

^{*1:} See " Low Voltage Detection Function Characteristics".

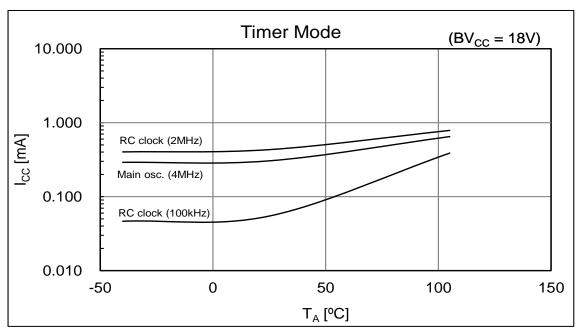
^{*2:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

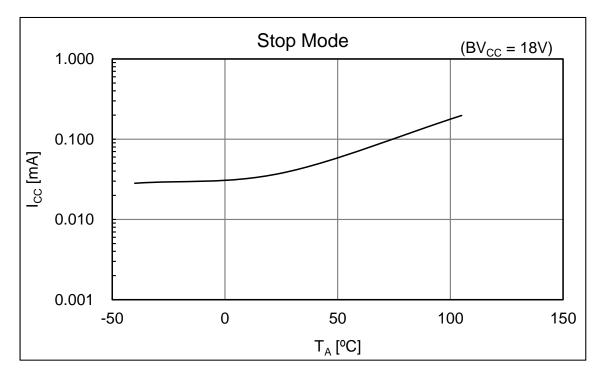


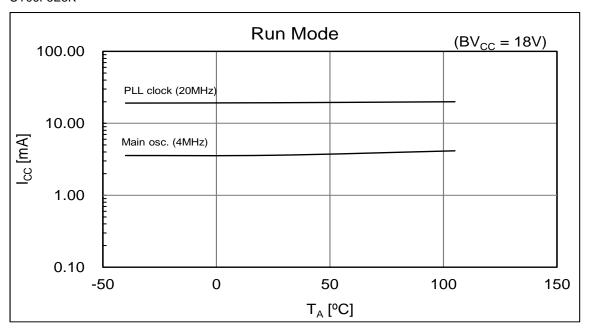

15. Example Characteristics

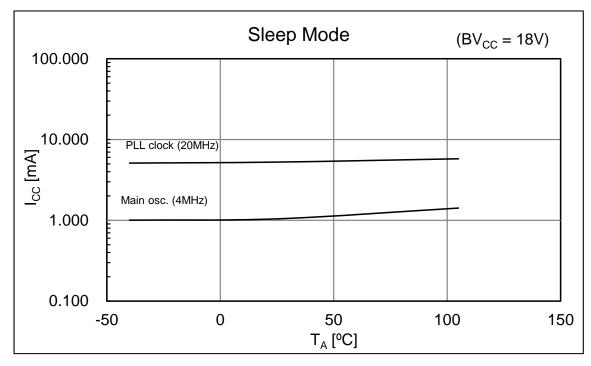
■ Power supply current

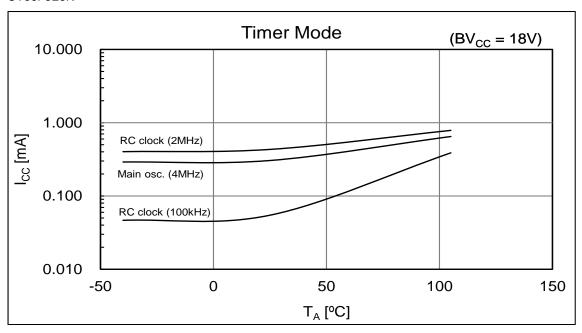
This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

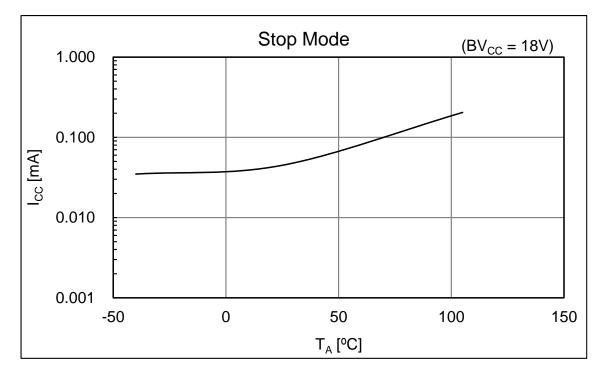

CY96F8D5K




CY96F8D5K

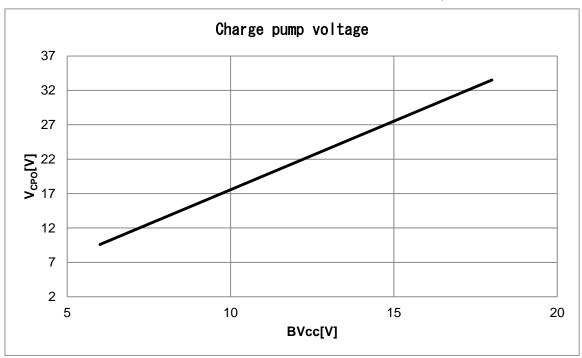



CY96F8E5K



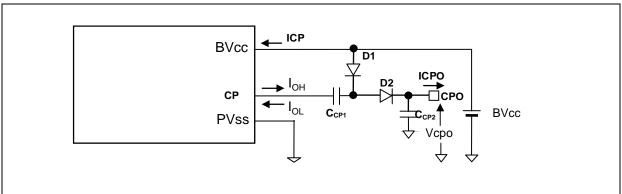
CY96F8E5K

■ Used setting


Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 20MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 20MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
Timer mode	Main osc.	CLKMC = 4MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
		FLASH in Power-down / reset mode
	RC clock fast	CLKRC = 2MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
		FLASH in Power-down / reset mode
	RC clock slow	CLKRC = 100kHz
		(System clocks are stopped in this mode)
		Regulator in Low Power Mode,
		FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode)
		Regulator in Low Power Mode,
		FLASH in Power-down / reset mode

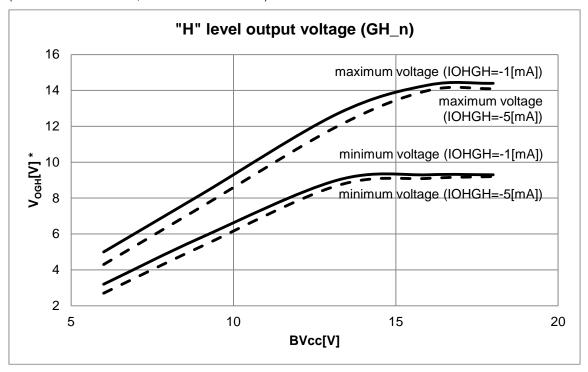
■ Charge pump voltage

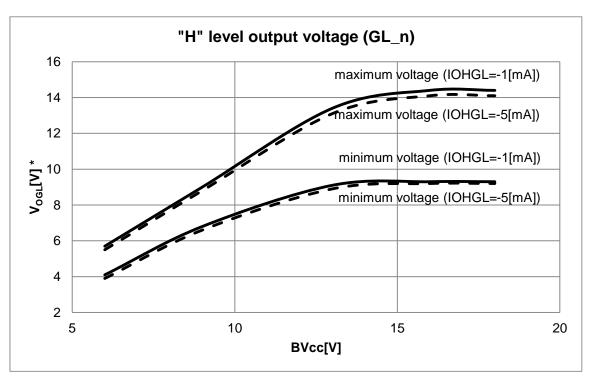
Reference values obtained with simulations. It is not the guaranteed value.


 $(V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

■ Condition of a simulation

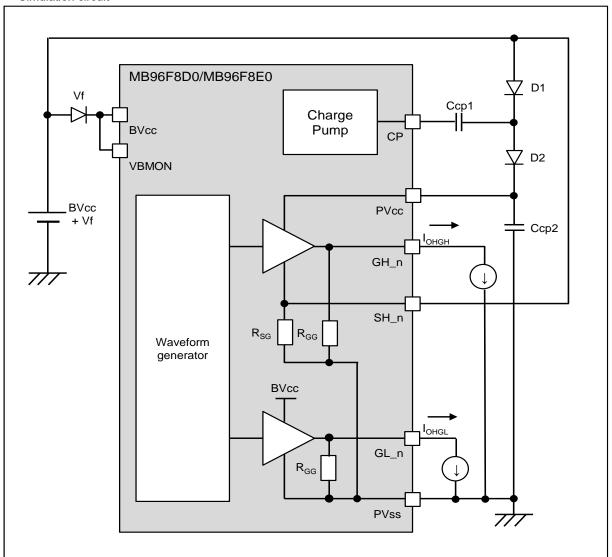
Title	Condition of a Simulation		
Charge pump voltage	Charge pump output current(ICPO):20[mA]		
	Output frequency(fCP):500[kHz]		
	$C_{CP1}=0.022[\mu F]/C_{CP2}=0.47[\mu F]$		
	Forward voltage of D1/D2:0.28[V] (Forward current=0.1[A] , $T_A = +25$ °C)		


Simulation circuit



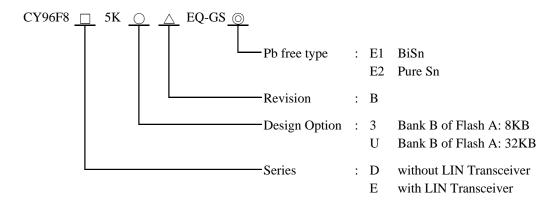
■ "H" level output voltage of Three-phase Motor Pre-Driver Reference values obtained with simulations. It is not the guaranteed value.

 $(V_{SS} = PV_{SS} = LV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

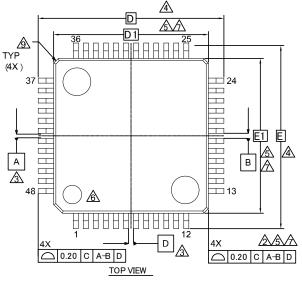

^{*:} VOGH = GH_n - SH_n, VOGL = GL_n

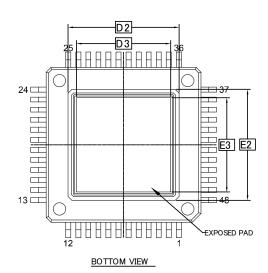
■ Condition of a simulation

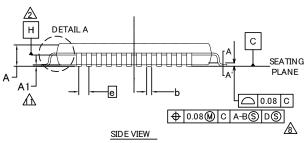
Title	Condition of a Simulation		
	Charge pump output frequency:500[kHz]		
	$C_{CP1}=0.022[\mu F]/C_{CP2}=0.47[\mu F]$		
	Forward voltage of D1/D2:0.28[V] (Forward current=0.1[A], T _A = +25°C)		
"II" lovel output voltage (CLL a)	SSWSDC.LBST3 to LBST0=11111 _B		
"H" level output voltage (GH_n)	SSWSDC.HBST3 to HBST0=11111 _B		
"H" level output voltage (GL_n)	MPDC2.LSR2 to LSR0=111 _B		
	MPDC2.HSR2 to HSR0=111 _B		
	Vf (forward voltage of reverse connection protection diode):		
	Minimum condition:0.9[V]/ maximum condition:0.7[V]		

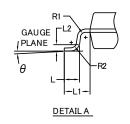

■ Simulation circuit

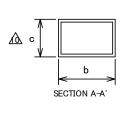
16. Ordering Information


Part Number	Flash Memory	Package [*]
CY96F8D5K3BEQ-GSE1		
CY96F8D5K3BEQ-GSE2	Flash A	
CY96F8E5K3BEQ-GSE1	(136.5KB)	
CY96F8E5K3BEQ-GSE2		48-pin plastic TEQFP
CY96F8D5KUBEQ-GSE1		(LEC048)
CY96F8D5KUBEQ-GSE2	Flash A	
CY96F8E5KUBEQ-GSE1	(160.5KB)	
CY96F8E5KUBEQ-GSE2		




^{*:} For details about package, see "Package Dimension".




17. Package Dimension

	DIMENSION			
SYMBOL	MIN.	NOM.	MAX.	
Α	_	_	1.70	
A1	0.05	_	0.15	
D	12.00 BSC			
D1	10.00 BSC			
D2	7.17 REF			
D3	6.10 REF			
E	12.00 BSC			
E 1	10.00 BSC			
E 2	7.17 REF			
E 3	6.10 REF			
R 1	0.08 — —			
R 2	0.08	_	0.20	
θ	0° 4°		8°	
С	0.09		0.20	
b	0.27	0.32	0.37	
L	0.45 0.60 0.75		0.75	
L ₁	1.00 REF			
L 2	0.25			
е	0.65 BSC			

ALL DIMENSIONS ARE IN MILLIMETERS.

 \triangle DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

ATO BE DETERMINED AT SEATING PLANE C.

ADIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS DI AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE SECTIONS OF THE MOLDER BODY.

⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.

EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

12. JEDEC SPECIFICATION NO. REF: N/A

002-15529 **

PACKAGE OUTLINE, 48 LEAD TEQFP 10.0X10.0X1.7 M M LEC048 6.1X6.1 M M EPAD (SAWN) REV∞

18. Package Thermal Resistance

This characteristic is the reference values measured under the following conditions. It is not the guaranteed value.

PCB(FR4): JEDEC STANDARD

PCB SIZE: 114.3mm x 76.2mm x 1.6mm (4 layer)

L2/L3 Residual copper rate: 90%

OTHER: It connects between PCB PAD with the Exposure PAD with the solder paste.

Place the thermal via hole to the PCB PAD.

Package	Symbol	Measurement Value			Unit	Domonico
<i>гаска</i> уе	Symbol	Min	Тур	Max	Unit	Remarks
150049	θ _{JA} *1	-	18	-	°C /W	-
LEC048	Ψ _{JT} *2	-	9	-	°C /W	-

^{*1:} θ_{JA} = (T_j (Junction Temperature) - T_A (Ambient Temperature)) / P_D (Power Dissipation)

^{*2:} Ψ_{JT} = (T_{j} (Junction Temperature) – Package Surface Temperature) / P_{D} (Power Dissipation)

19. Major Changes

Spansion Publication Number: M96800_DS704-00016

Page	Section	_		
Revision	2.0			
-	-	Initial release		
Revision	3.0			
		Remove "1" from name of the following parameters		
		- Power supply voltage : BV _{CC1}		
		- 12V analog power supply voltage : PV _{CC1}		
		- 12V Input voltage : V12 _{I1}		
		- Transient input voltage : V _{VBMON1}		
		Change the condition of the following parameters		
	ELECTRICAL CHARACTERISTICS	- Power supply voltage : BV _{CC1}		
41, 42	Absolute Maximum Ratings	- 12V analog power supply voltage : PV _{CC1}		
	1. Absolute Waximum Natings	- 12V Input voltage : V12 _{I1}		
		- LIN Input voltage : LIN _I		
		- Transient input voltage : V _{VBMON1}		
		Remove the following parameters		
		- Power supply voltage 2 : BV _{CC2}		
		- 12V Input voltage 2 : V12 _{l2}		
		- Transient input voltage 2 : V _{VBMON2}		
		Change the condition of Input leakage current receiver recessive state: ILINIL_REC		
		LIN=18V, SOT2=1		
82	18. LIN Transceiver	\rightarrow		
		7V≤LIN≤18V, BVCC≤ LIN, SOT2=1		
		Correct the unit of Input leakage current receiver recessive state : ILINIL_REC		
		Add the following parameters		
83		- Duty cycle 1 : D1 _{LINTX}		
		- Duty cycle 2 : D2 _{LINTX}		
		- Duty cycle 3 : D3 _{LINTX}		
		- Duty cycle 4 : D4 _{LINTX}		
		- Propagation delay of receiver : t _{rx_pd}		
		- Symmetry of receiver propagation delay : t _{rx_sym}		
		- Input capacitance : C _{LININ}		
85		Add the Timing Chart of LIN Transceiver		

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: CY96800 Series ASSP DC/BLDC Motor controller for 12V-Battery Datasheet

Document Number: 002-07479

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	HIHA	04/28/2015	Migrated to Cypress and assigned document number 002-07479. No change to document contents or format.
*A	5132858	HIHA	03/14/2016 Updated to Cypress template	
*B	6495611	TORS	Update Cypress Logo. 02/27/2018 Change parts number from MB to CY. Change package dimension.	

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07479 Rev. *B February 27, 2019 Page 98 of 98