

### **Extended Datasheet**

Intelligent EEPROM with contactless interface compliant to ISO/IEC 15693 or ISO/IEC 18000-3 Mode 1

## **Devices**

- SRF 55V02P
- SRF 55V02P HC
- SRF 55V10P
- SRF 55V10P HC

## **Key features**

### **Contactless interface**

- Physical interface and anticollision compliant to ISO/IEC 15693
  - Contactless transmission of data and supply energy
  - Data rate up to 26 kbit/s
  - Operation frequency: 13.56 MHz
  - Anticollision logic: Several cards may be operated in the field simultaneously with identification of up to 30 Tags per second
- Read/write distance up to 150 cm (influenced by external circuitry i.e. reader and inlay design)

### **EEPROM**

- Up to 10 kbit EEPROM memory
- ISO mode-block organization of memory, accessible with ISO optional commands
  - Up to 248 blocks of user memory (block size 4 bytes) applicable for plain memory only
- Custom mode-page organization of memory, accessible with ISO custom commands
  - Up to 128 pages of user memory (page size 8 bytes for data storage and 2 bytes for administration purposes)
- Unique identification number (UID)
- EEPROM programming time per page < 4 ms
- EEPROM endurance minimum 100,000 erase/write cycles<sup>1)</sup>
- Data retention minimum 10 years<sup>1)</sup>

## Value counters: Up to 65536 (value range from 0 to 216 - 1)

- Each page in the User Area is configurable as a value counter
- Support of anti-tearing

### **Electrical characteristics**

- ESD protection minimum 2 kV
- Ambient temperature -25°C ... +70°C (for the chip)
- Chip capacitance 23.1 pF ± 5%
- High on-chip capacitance chip available (97 pF ± 5%) allowing small tag antenna designs

## **Development tool**

• Evaluation kit my-d<sup>™</sup> including my-d<sup>™</sup> manager software

Values are temperature dependent

# $\textbf{my-d}^{^{\text{m}}} \, \textbf{vicinity plain}$ **Extended Datasheet**

# nfineon

### **About this document**

# **About this document**

## **Scope and purpose**

This Extended Datasheet describes features, functionality and operational characteristics of my-d<sup>™</sup> vicinity plain.

### **Intended audience**

This document is primarily intended for system and application developers.

# **(infineon**

## **Table of contents**

# **Table of contents**

|                 | Devices                                                           |    |
|-----------------|-------------------------------------------------------------------|----|
|                 | Key features                                                      |    |
|                 | About this document                                               | 2  |
|                 | Table of contents                                                 |    |
|                 | List of tables                                                    | 5  |
|                 | List of figures                                                   | 7  |
| 1               | Ordering and packaging information                                | 8  |
| 2               | my-d <sup>™</sup> product family                                  |    |
| <b>2</b><br>2.1 | Product variants-plain/secure operation, high on-chip capacitance |    |
| 2.1             | General memory structure                                          |    |
| 2.2<br>2.3      | Application segments                                              |    |
|                 | · · ·                                                             |    |
| 3               | my-d <sup>in</sup> vicinity plain-SRF 55VxxP                      |    |
| 3.1             | Circuit description                                               | 13 |
| 3.2             | Memory access                                                     | 14 |
| 3.3             | Memory principle                                                  | 14 |
| 3.4             | System overview                                                   | 15 |
| 3.5             | Product versions                                                  | 15 |
| 3.5.1           | UID coding                                                        | 16 |
| 3.5.2           | Memory sizes                                                      | 16 |
| 4               | Memory, access rights and chip states                             |    |
| 4.1             | Memory organization                                               |    |
| 4.1.1           | Service area                                                      |    |
| 4.1.1.1         | Unique identification number (page 00 <sub>H</sub> )              |    |
| 4.1.1.2         | Manufacturer data and AFI (page 02 <sub>H</sub> )                 |    |
| 4.1.2           | User area                                                         |    |
| 4.1.3           | Administration area                                               |    |
| 4.2             | Memory access                                                     |    |
| 4.2.1           | Selection of a sector                                             |    |
| 4.2.2           | Sector index                                                      |    |
| 4.2.3           | Access conditions                                                 |    |
| 4.3             | Counter format and operations                                     |    |
| 4.3.1           | Counter mechanism                                                 |    |
| 4.3.2           | Anti-tearing                                                      |    |
| 4.3.3           | Value counter pages                                               |    |
| 4.3.3.1         | Value counter format                                              |    |
| 4.3.3.2         | Initialization of a value counter page                            |    |
| 5               | Frames and command set_new                                        |    |
| -               |                                                                   | 20 |



## **Table of contents**

| 5.1     | ISO command frame                                                               | 26 |
|---------|---------------------------------------------------------------------------------|----|
| 5.1.1   | Supported ISO/IEC 15693-3 commands                                              | 26 |
| 5.1.2   | Error codes                                                                     | 27 |
| 5.1.3   | Inventory                                                                       | 28 |
| 5.1.4   | Stay quiet                                                                      | 28 |
| 5.2     | ISO optional commands of my-d <sup>™</sup> vicinity                             | 29 |
| 5.3     | ISO custom commands of my-d <sup>™</sup> vicinity                               | 31 |
| 5.3.1   | my-d $^{^{\mathrm{M}}}$ custom command frame                                    | 33 |
| 5.3.1.1 | my-d <sup>™</sup> custom command 'Read' (10 <sub>H</sub> )                      | 34 |
| 5.3.1.2 | my-d <sup>™</sup> custom command 'Write' (30 <sub>H</sub> )                     | 35 |
| 5.3.1.3 | my-d <sup>™</sup> custom command 'Write Byte' (90 <sub>H</sub> )                | 36 |
| 5.3.1.4 | my-d <sup>™</sup> custom command 'Write and Reread' (B0 <sub>H</sub> )          | 37 |
| 5.3.1.5 | my-d <sup>™</sup> custom command 'Restricted Write' (00 <sub>H</sub> )          | 38 |
| 5.3.1.6 | my- $d^{^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |    |
| 6       | Operational characteristics                                                     | 40 |
| 6.1     | Electrical characteristics                                                      | 40 |
| 6.2     | Absolute maximum ratings                                                        | 41 |
| 6.3     | Timings                                                                         | 41 |
|         | References                                                                      | 42 |
|         | Glossary                                                                        | 43 |
|         | Revision history                                                                | 45 |
|         | Disclaimer                                                                      | 46 |

4

# infineon

## List of tables

# **List of tables**

| Table 1  | Ordering information my-d <sup>™</sup> vicinity                                      | 8  |
|----------|--------------------------------------------------------------------------------------|----|
| Table 2  | Ordering information my-d <sup>™</sup> vicinity high on-chip capacitance             | 8  |
| Table 3  | Pin description and function                                                         | g  |
| Table 4  | my-d <sup>™</sup> products overview                                                  | 12 |
| Table 5  | UID coding                                                                           | 16 |
| Table 6  | Memory size of my-d <sup>™</sup> vicinity (in bytes)                                 | 16 |
| Table 7  | Memory organization SRF 55VxxP                                                       | 17 |
| Table 8  | Memory size of SRF 55VxxP (in bytes)                                                 | 18 |
| Table 9  | Description of the UID coding                                                        | 18 |
| Table 10 | Chip ID byte (byte 5 of UID)                                                         | 19 |
| Table 11 | Chip ID byte: EEPROM size, security bit                                              | 19 |
| Table 12 | Chip ID byte: Chip type                                                              | 19 |
| Table 13 | Definition of page 02 <sub>H</sub>                                                   | 19 |
| Table 14 | Definition of the AFI byte                                                           | 19 |
| Table 15 | Access conditions and rights (byte 9 of each page)                                   | 21 |
| Table 16 | my-d <sup>™</sup> vicinity supported ISO/IEC 15693-3 commands                        | 26 |
| Table 17 | Error codes                                                                          | 27 |
| Table 18 | Inventory request format                                                             | 28 |
| Table 19 | Inventory response format                                                            | 28 |
| Table 20 | Stay quiet request format                                                            | 28 |
| Table 21 | ISO optional commands of my-d <sup>™</sup> vicinity                                  | 29 |
| Table 22 | Addressable memory using ISO optional commands                                       | 30 |
| Table 23 | my-d $^{m}$ custom commands                                                          | 31 |
| Table 24 | Addressable memory using ISO custom commands                                         | 32 |
| Table 25 | ISO command frame with embedded my-d $^{\scriptscriptstyle{T}}$ custom command frame | 33 |
| Table 26 | my-d <sup>™</sup> custom Read command                                                | 34 |
| Table 27 | Data field (my-d <sup>™</sup> custom Read command)                                   | 34 |
| Table 28 | Response, no error (my-d <sup>™</sup> custom Read)                                   | 34 |
| Table 29 | Response, error_flag (my-d <sup>™</sup> custom Read)                                 | 34 |
| Table 30 | my-d <sup>™</sup> custom command 'Write'                                             |    |
| Table 31 | Data field (my-d <sup>™</sup> custom Write command)                                  |    |
| Table 32 | Response, no error (my-d <sup>™</sup> custom Write)                                  |    |
| Table 33 | Response, error_flag set (my-d <sup>™</sup> custom Write)                            |    |
| Table 34 | my-d <sup>™</sup> custom command 'Write Byte'                                        |    |
| Table 35 | Data field (my-d <sup>™</sup> custom command 'Write Byte')                           |    |
| Table 36 | Response, no error (my-d <sup>™</sup> custom Write Byte)                             | 36 |
| Table 37 | Response, error_flag set (my-d <sup>™</sup> custom Write Byte)                       |    |
| Table 38 | my-d <sup>™</sup> custom command 'Write and Reread'                                  |    |
| Table 39 | Data field (my-d <sup>™</sup> custom Write and Reread command)                       |    |
| Table 40 | Response, no error (my-d <sup>™</sup> custom Write and Reread)                       |    |
| Table 41 | Response, error_flag set (my-d <sup>™</sup> custom Write and Reread)                 | 37 |
| Table 42 | my-d <sup>™</sup> custom command 'Restricted Write'                                  |    |
| Table 43 | Data field (my-d <sup>™</sup> custom Restricted Write command)                       | 38 |



## List of tables

| Table 44 | Response, no error (my-d <sup>™</sup> custom Restricted Write)                  | 38 |
|----------|---------------------------------------------------------------------------------|----|
| Table 45 | Response, error_flag set (my-d <sup>™</sup> custom Restricted Write)            | 38 |
| Table 46 | my-d <sup>™</sup> custom command 'Restricted Write and Reread'                  | 39 |
| Table 47 | Data field (my-d <sup>™</sup> custom Restricted Write command)                  | 39 |
| Table 48 | Response, no error (my-d <sup>™</sup> custom Restricted Write and Reread)       | 39 |
| Table 49 | Response, error_flag set (my-d <sup>™</sup> custom Restricted Write and Reread) | 39 |
| Table 50 | Operating range and conditions                                                  | 40 |
| Table 51 | Input characteristics my-d <sup>™</sup> vicinity                                | 40 |
| Table 52 | Input characteristics my-d <sup>™</sup> vicinity HC                             | 40 |
| Table 53 | Absolute maximum ratings                                                        | 41 |



# **List of figures**

# List of figures

| Figure 1  | Pin configuration module contactless card-MCC8 (top/bottom view) | 8  |
|-----------|------------------------------------------------------------------|----|
| Figure 2  | Pad configuration die my-d <sup>™</sup> vicinity plain           | 9  |
| Figure 3  | General memory structure of my-d <sup>™</sup> products           | 11 |
| Figure 4  | Block diagram of the my-d <sup>™</sup> vicinity plain            |    |
| Figure 5  | my-d <sup>™</sup> vicinity plain memory organization             |    |
| Figure 6  | my-d <sup>™</sup> vicinity plain RFID system                     | 15 |
| Figure 7  | Counter mechanism                                                |    |
| Figure 8  | Intermediate counter states                                      | 23 |
| Figure 9  | Counter update sequence                                          |    |
| Figure 10 | Incorrect counter state                                          | 23 |
| Figure 11 | Data structure of a value counter page                           | 24 |
| Figure 12 | General request format                                           | 26 |
| Figure 13 | Memory map for ISO optional commands                             |    |
| Figure 14 | Memory map for ISO custom commands                               |    |
| Figure 15 | my-d <sup>™</sup> vicinity custom command frame                  |    |

7

# infineon

### 1 Ordering and packaging information

# 1 Ordering and packaging information

## Table 1 Ordering information my-d<sup>™</sup> vicinity

| Туре            | Package           | Total <sup>1)</sup> /user<br>memory<br>[bytes] | Total/user<br>pages <sup>2)</sup> | User blocks <sup>3)</sup> | Ordering code |
|-----------------|-------------------|------------------------------------------------|-----------------------------------|---------------------------|---------------|
| SRF 55V02P C    | Wafer unsawn/sawn |                                                |                                   |                           | On request    |
| SRF 55V02P NB   | NiAu Bumped       | 320/232                                        | 32/29                             | 56                        | On request    |
| SRF 55V02P MCC8 | P-MCC8-2-6        |                                                |                                   |                           | On request    |
| SRF 55V10P C    | Wafer unsawn/sawn |                                                |                                   |                           | On request    |
| SRF 55V10P NB   | NiAu Bumped       | 1280/1000                                      | 128/125                           | 248                       | On request    |
| SRF 55V10P MCC8 | P-MCC8-2-6        |                                                |                                   |                           | On request    |

<sup>1)</sup> Total memory size and page count includes the Service Area and the 2 administrative bytes per page whereas user memory size and page count is freely programmable for user data

## Table 2 Ordering information my-d<sup>™</sup> vicinity high on-chip capacitance

| Туре             | Package               | Total <sup>1)</sup> /user<br>memory<br>[bytes] | Total/user<br>pages <sup>2)</sup> | User blocks <sup>3)</sup> | Ordering code |
|------------------|-----------------------|------------------------------------------------|-----------------------------------|---------------------------|---------------|
| SRF 55V02P HC C  | Wafer unsawn/<br>sawn | 320/232                                        | 32/29                             | 56                        | On request    |
| SRF 55V02P HC NB | NiAu Bumped           |                                                |                                   |                           | On request    |
| SRF 55V10P HC C  | Wafer unsawn/<br>sawn | 1280/1000                                      | 128/125                           | 248                       | On request    |
| SRF 55V10P HC NB | NiAu Bumped           |                                                | ,                                 |                           | On request    |

<sup>1)</sup> Total memory size and page count includes the Service Area and the 2 administrative bytes per page whereas user memory size and page count is freely programmable for user data

Note: For more ordering information (wafer thickness and height of NiAu-Bump) please contact your local Infineon sales office.

### Pin description



Figure 1 Pin configuration module contactless card-MCC8 (top/bottom view)

<sup>2)</sup> Page size 8 bytes, accessible via ISO custom commands

<sup>3)</sup> Page size 4 bytes, accessible via ISO optional commands

<sup>2)</sup> Page size 8 bytes, accessible via ISO custom commands

<sup>3)</sup> Page size 4 bytes, accessible via ISO optional commands



# 1 Ordering and packaging information

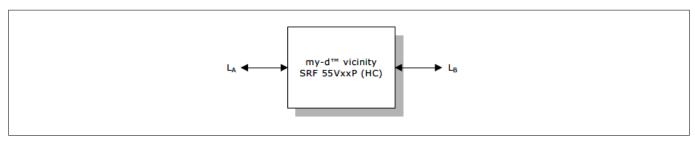



Figure 2 Pad configuration die my-d<sup>™</sup> vicinity plain

Table 3 Pin description and function

| Symbol         | Function           |
|----------------|--------------------|
| L <sub>A</sub> | Antenna connection |
| $L_B$          | Antenna connection |

## 2 my-d<sup>™</sup> product family



### my-d<sup>™</sup> product family 2

The my-d<sup>™</sup> products are designed to meet increased demands for basic security and design flexibility. The my-d<sup>™</sup> family of contactless memories supplies the user with different memory sizes and incorporates security features to enable considerable flexibility in the application design.

### 2.1 Product variants-plain/secure operation, high on-chip capacitance

The my-d<sup>™</sup> products are available in the following configurations:

- Plain mode with open memory access
- Secure mode with both memory access controlled by authentication procedures (up to 14 sectors) and plain mode operation (plain sector)
- Additional small tag antenna designs are possible with the HC variant providing a high on-chip capacitance chip for small communication distances

Applications may start with the my-d<sup>™</sup> ICs in plain mode operation and individual page locking; for more complex applications various settings in secure mode can be used for multi-user or multi-application configurations.

In secure mode a cryptographic algorithm based on a 64-bit key is available. Mutual authentication, message authentication code (MAC) and customized access conditions protect the memory against unauthorized access. Configurable value counters, featuring anti-tearing functionality, are suitable for value token applications such as limited use applications.

Architectural interoperability of all my-d<sup>™</sup> products enables easy migration from simple to more demanding applications.

### 2.2 **General memory structure**

The fundamental structure of my-d<sup>™</sup> vicinity products consists of the following memory structure:

- **User Area** → For storing user data
- **Service Area** → Storing the unique identifier (UID) number and manufacturer data
- **Administration Area** → For storing
  - Sector index (SI), defining either plain or secure memory access
  - Access condition (AC) holding information on access rights (example: Read/write, read-only)

# infineon

## 2 my-d<sup>™</sup> product family

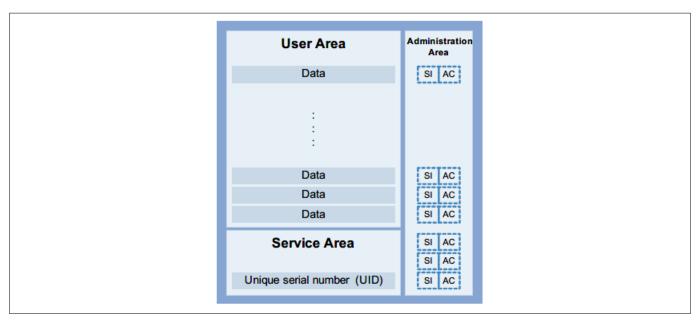



Figure 3 General memory structure of my-d<sup>™</sup> products

### Communication

The physical contactless interface and communication protocols are defined for vicinity by ISO/IEC 15693 [4]. The my-d<sup>™</sup> products support a set of standardized commands. Additionally, custom commands are also implemented example: 8-byte page memory access and optionally authentication (secure variant).

### **Security**

The memory can be accessed without security precautions (i.e: Authentication) in plain mode.

The secure variants additionally require the mutual authentication procedure before memory access is granted.

# infineon

# 2 my-d<sup>™</sup> product family

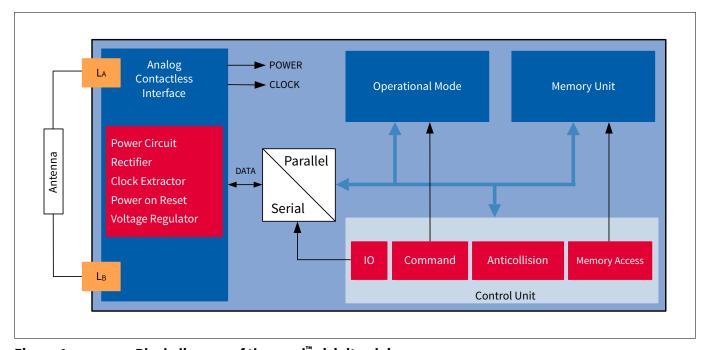
# 2.3 Application segments

The my-d<sup>™</sup> products are optimized for personal and object identification. Please find the following table for some dedicated examples:

Table 4 my-d<sup>™</sup> products overview

| Product                                                              | Features                                                                                                                                                               | Application                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| my-d <sup>™</sup> vicinity plain:  SRF 55V02P  SRF 55V10P            | <ul> <li>ISO/IEC 15693 or</li> <li>ISO/IEC 18000-3 Mode 1</li> <li>Up to 1000-byte free user memory</li> <li>Plain access</li> </ul>                                   | Factory automation, health care, ticketing, access control   |
| my-d <sup>™</sup> vicinity plain HC: • SRF 55V02P HC • SRF 55V10P HC | <ul> <li>ISO/IEC 15693 or</li> <li>ISO/IEC 18000-3 Mode 1</li> <li>High on-chip capacitance</li> <li>Up to 1000-byte free user memory</li> <li>Plain access</li> </ul> | Ticketing, brand protection, loyalty schemes, ski passes     |
| my-d <sup>™</sup> vicinity secure: • SRF 55V02S • SRF 55V10S         | <ul> <li>ISO/IEC 15693 or</li> <li>ISO/IEC 18000-3 Mode 1</li> <li>Up to 992-byte free user memory</li> <li>Secure access</li> </ul>                                   | Ticketing, brand protection, loyalty schemes, access control |
| my-d <sup>™</sup> vicinity secure HC:  SRF 55V02S HC  SRF 55V10S HC  | <ul> <li>ISO/IEC 15693 or</li> <li>ISO/IEC 18000-3 Mode 1</li> <li>High on-chip capacitance</li> <li>Up to 992-byte free user memory</li> <li>Secure access</li> </ul> | Ticketing, brand protection, loyalty schemes, access control |

### 3 my-d<sup>™</sup> vicinity plain-SRF 55VxxP


### my-d<sup>™</sup> vicinity plain-SRF 55VxxP 3

The my-d<sup>™</sup> vicinity products are based on ISO/IEC 15693 [4] or ISO/IEC 18000-3 Mode 1 [6] standards for contactless vicinity cards.

The my-d<sup>™</sup> vicinity focuses on applications with memory demands of up to 10 kbit EEPROM.

### 3.1 **Circuit description**

The my-d<sup>™</sup> vicinity is made up of an EEPROM memory unit, an analog interface for contactless energy and data transmission and a control unit.



Block diagram of the my-d<sup>™</sup> vicinity plain Figure 4

### **Analog contactless interface**

The analog contactless interface comprises the voltage rectifier, voltage regulator and system clock to supply the IC with appropriate power. Additionally, the data stream is modulated and demodulated

### **Operational mode**

The access to the memory depends on the actual configuration of the my-d<sup>™</sup> vicinity. The memory is accessible after the VICC is selected

### **Memory unit**

The memory unit consists of up to 1280 bytes of memory organized in up to 128 pages each of 8 users and 2 administration bytes

### **Control unit**

The control unit decodes and executes all commands. Additionally, the control unit is responsible for the correct anticollision flow

### 3 my-d<sup>™</sup> vicinity plain-SRF 55VxxP

### 3.2 Memory access

Organization: Using ISO optional commands the memory is accessed in 4-byte blocks, whereas ISO custom commands support 8-byte page accesses and further my-d<sup>™</sup> vicinity commands. Write protection is possible for each page respectively each block.

**Security**: The memory can be accessed (example: Read, write) without security (That is authentication) in plain mode.

**Commands**: The my-d<sup>™</sup> vicinity supports the following commands according to ISO/IEC 15693 [4]:

- Mandatory commands (Inventory, stay quiet)
- Optional commands (example: Read/write 4-byte blocks)
- Custom commands (example: Read/write 8-byte pages)

### 3.3 Memory principle

The memory is organized in 3 areas:

- User Area
- Service Area
- Administration Area

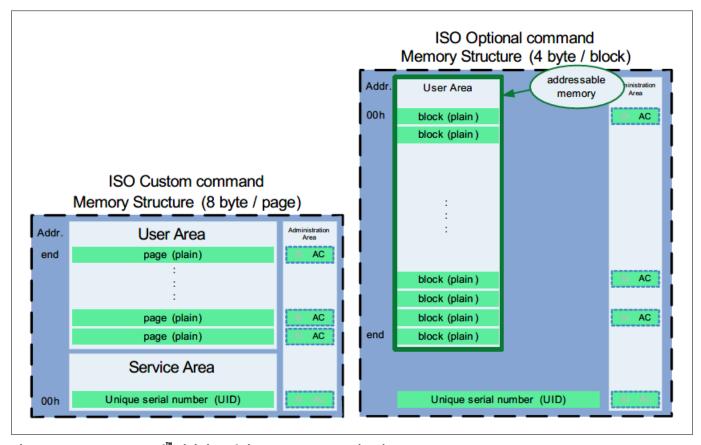



Figure 5 my-d<sup>™</sup> vicinity plain memory organization

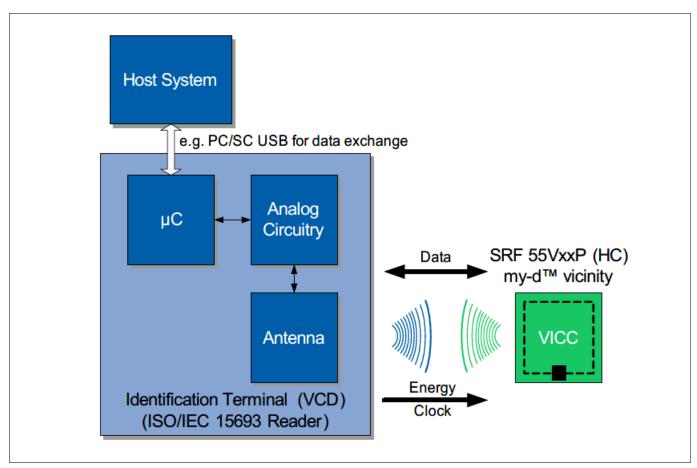
The **User Area** stores user data up to 125 pages. Data in the plain sector are accessible both via ISO optional and ISO custom commands.

The **Service Area** stores the UID, manufacturer data and configuration data. This information is programmed at the manufacture of the chip and cannot be changed. Data are accessible via ISO custom commands only, except the UID being available also via the inventory command.



### 3 my-d<sup>™</sup> vicinity plain-SRF 55VxxP

The **Administration Area** stores 2 bytes of information about page administration (sector index and access condition).


- Sector index (SI) defines plain memory access
- Access condition (AC) holds information on access rights (example: Read/write, read-only)

The sector index and access condition of each page store each bit non-inverted and inverted to ensure data integrity.

Data are accessible via ISO custom commands only.

### 3.4 System overview

The system consists of a host system (that is computer with database), one or more my-d<sup>™</sup> vicinity plain or other ISO/IEC 15693 [4] compliant cards and tags (VICC) and an ISO/IEC 15693 [4] compatible contactless reader (VCD) with an antenna.



my-d<sup>™</sup> vicinity plain RFID system Figure 6

### **Product versions** 3.5

ISO/IEC 15693 [4] or ISO/IEC 18000-3 Mode 1 [6] respectively define procedures to identify VICCs being in the reader field. The unique identification (UID) number is used to perform the anticollision procedure identifying each VICC. Then a reader (VCD) is able to recognize the Infineon chip functionality is based on the UID as described.

# infineon

### 3 my-d<sup>™</sup> vicinity plain-SRF 55VxxP

## 3.5.1 UID coding

To identify the different types of my-d<sup>™</sup> vicinity contactless memories chip type information is coded into the UID according to the format defined in ISO/IEC 15693-3 [5].

The following table briefly describes the values for the different chip versions.

Table 5 UID coding

|                 | Byte 7          | Byte 6          | Byte 5                      | Byte 4 Byte 0                                                                   |  |
|-----------------|-----------------|-----------------|-----------------------------|---------------------------------------------------------------------------------|--|
| Туре            | ISO             | IC Man and a    | IC manufacturer serial numb |                                                                                 |  |
|                 | ISO             | IC Mfg code     | Chip ID byte                | Unique number                                                                   |  |
| SRF 55V02P (HC) | E0 <sub>H</sub> | 05 <sub>H</sub> | 40 <sub>H</sub>             | XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> |  |
| SRF 55V10P (HC) | E0 <sub>H</sub> | 05 <sub>H</sub> | 00 <sub>H</sub>             | XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> |  |
| SRF 55V02S (HC) | E0 <sub>H</sub> | 05 <sub>H</sub> | 50 <sub>H</sub>             | XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> |  |
| SRF 55V10S (HC) | E0 <sub>H</sub> | 05 <sub>H</sub> | 10 <sub>H</sub>             | XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> XX <sub>H</sub> |  |

The 64-bit unique identification (UID) number is stored in the Service Area in page  $00_H$  and programmed by the IC manufacturer. According to ISO/IEC 7816-6 [1] the IC manufacturer code (IC Mfg code) for Infineon is  $05_H$ . The UID is unique for each single IC within the ISO/IEC 15693 world and cannot be changed.

## 3.5.2 Memory sizes

The my-d<sup>™</sup> vicinity contactless memories are available with the following memory sizes:

Table 6 Memory size of my-d<sup>™</sup> vicinity (in bytes)

|                 | Memory |                            |              |                            |  |  |  |  |
|-----------------|--------|----------------------------|--------------|----------------------------|--|--|--|--|
| Туре            | Total  | Service Area <sup>1)</sup> |              | Jser Area<br>sable memory) |  |  |  |  |
|                 |        |                            | ISO optional | ISO custom                 |  |  |  |  |
| SRF 55V02P (HC) | 320    | 24                         | 224          | 232                        |  |  |  |  |
| SRF 55V10P (HC) | 1280   | 24                         | 992          | 1000                       |  |  |  |  |
| SRF 55V02S (HC) | 320    | 24                         | 224          | 232                        |  |  |  |  |
| SRF 55V10S (HC) | 1280   | 24                         | 992          | 1000                       |  |  |  |  |

<sup>1)</sup> Addressable only via ISO custom command

# infineon

### 4 Memory, access rights and chip states

# 4 Memory, access rights and chip states

Memory organization describes the memory structure of the my- $d^{\dagger}$  vicinity plain chip.

Counter values are detailed in Counter format and operations.

Memory access gives an overview of the chip mode and describes access conditions.

## 4.1 Memory organization

The my-d<sup>™</sup> vicinity in plain mode has a total memory size of up to 1280 bytes.

The memory can be accessed in two ways using:

- ISO optional commands: The user memory is structured into blocks of 4 bytes (for a detailed description see ISO optional commands of my-d<sup>™</sup> vicinity)
- ISO custom commands: The memory is structured in pages of 8 bytes used for data storage and 2-byte for administration purposes (for a detailed description see ISO custom commands of my-d<sup>™</sup> vicinity)

The following description of the memory organization refers to the page-oriented structure of the my-d<sup>™</sup> vicinity.

Note:

The plain pages can be accessed with ISO optional commands. Pages from 0 to 3 are accessible with ISO custom commands only.

Table 7 shows detailed memory organization of the SRF 55VxxP on delivery.

Table 7 Memory organization SRF 55VxxP

|                 |                                    |                               | Byte number within a page |                                 |         |          |         |        |   |   | Administration  |                  |
|-----------------|------------------------------------|-------------------------------|---------------------------|---------------------------------|---------|----------|---------|--------|---|---|-----------------|------------------|
| Memory location | Block<br>address                   | Page                          |                           |                                 |         |          | _       |        |   |   |                 | area<br> -       |
| location        |                                    | address                       | 0                         | 1                               | 2       | 3        | 4       | 5      | 6 | 7 | Sector index    | Access condition |
|                 | 00 <sub>H</sub> /01 <sub>H</sub>   | XX <sub>H</sub> <sup>1)</sup> |                           | User data                       |         |          |         |        |   |   | 55 <sub>H</sub> | AA <sub>H</sub>  |
|                 | 02 <sub>H</sub> /03 <sub>H</sub>   |                               |                           |                                 |         |          |         |        |   |   |                 | AA <sub>H</sub>  |
| User            | •••                                |                               |                           |                                 |         |          |         |        |   |   |                 | AA <sub>H</sub>  |
| Area            | •••                                |                               |                           |                                 |         |          |         |        |   |   |                 | AA <sub>H</sub>  |
|                 | yy-1/YY <sub>H</sub> <sup>2)</sup> | 04 <sub>H</sub>               |                           | User data                       |         |          |         |        |   |   |                 | AA <sub>H</sub>  |
|                 |                                    | 03 <sub>H</sub>               |                           | User Data                       |         |          |         |        |   |   |                 | AA <sub>H</sub>  |
| Service<br>Area | Not                                | 02 <sub>H</sub>               | AFI <sup>3)</sup>         | AC <sub>AFI</sub> <sup>4)</sup> | Manu    | facture  | r data  |        |   |   | 55 <sub>H</sub> | A6 <sub>H</sub>  |
|                 | accessible                         | 01 <sub>H</sub>               | -                         | -                               | -       | -        | -       | -      | - | - | 55 <sub>H</sub> | 66 <sub>H</sub>  |
|                 |                                    | 00 <sub>H</sub>               |                           | U                               | nique i | dentific | ation r | numbei | , |   | 55 <sub>H</sub> | 46 <sub>H</sub>  |

<sup>1)</sup> Highest available page address XX<sub>H</sub> depending on the product variant

Each page in memory consists of ten bytes. Eight bytes (bytes 0 to 7) are data bytes and the two most significant bytes are administration bytes that carry information about the access condition (AC) and the sector index (SI, set to 55<sub>H</sub>) valid for that page.

Only the 8 data bytes can be read or written with the page-oriented commands, bytes 8 and 9 can only be written using the 'write byte' command (ISO custom command). Using ISO optional commands allows to access the data in blocks of 4-byte each.

<sup>2)</sup> Highest available block address YY<sub>H</sub> depending on the product variant

<sup>3)</sup> AFI byte according to ISO/IEC 15693, only accessible via ISO optional command 'Write AFI'

<sup>4)</sup> Access condition for AFI byte; only accessible via ISO LockAFI command



### 4 Memory, access rights and chip states

The available memory size of SRF 55VxxP is shown in Table 8.

Table 8 Memory size of SRF 55VxxP (in bytes)

| Type            |       |                 | Highest          | Highest       |                |                            |                            |
|-----------------|-------|-----------------|------------------|---------------|----------------|----------------------------|----------------------------|
|                 | Comic |                 | Addressable user |               | Administration | page                       | block                      |
| Туре            | Total | Service<br>Area | ISO<br>optional  | ISO<br>custom | Area           | address<br>XX <sub>H</sub> | address<br>YY <sub>H</sub> |
| SRF 55V02P (HC) | 320   | 24              | 224              | 232           | 64             | 1F <sub>H</sub>            | 37 <sub>H</sub>            |
| SRF 55V10P (HC) | 1280  | 24              | 992              | 1000          | 256            | 7F <sub>H</sub>            | F7 <sub>H</sub>            |

Memory is organized in 3 Areas:

- Service Area stores manufacturer data, configuration data and personalization data which are configured at chip delivery. This area is located from page 00<sub>H</sub> to page 02<sub>H</sub> Data are accessible via ISO custom commands only, except the UID being available also via the inventory command.
- 2. User Area which stores the user data on up to 125 pages, depending on the product variant Data in the plain sector are accessible via both ISO optional and ISO custom commands.
- 3. Administration Area stores access rights. Two bytes per page, byte 8 and byte 9, are reserved for sector index (SI) and access condition (AC)

Data are accessible via ISO custom commands only.

### 4.1.1 Service area

The Service Area consists of 3 pages:

- Page 00<sub>H</sub>: Holds the unique identification (UID) number which is individual for each chip
- Page 01<sub>H</sub>: Holds manufacturing data
- Page 02<sub>H</sub>: Holds the AFI byte and the access condition for the AFI. Also, manufacturing data are located within this page

Data are accessible via ISO custom commands only.

### Unique identification number (page 00<sub>H</sub>) 4.1.1.1

The 64-bit unique identification (UID) number is stored at manufacturing and can not be changed later on. The UID is programmed by the IC manufacturer according to the format defined in ISO/IEC 15693-3 [5]. In the following table please find the detailed definition of the UID as used by Infineon.

Table 9 **Description of the UID coding** 

| Bit (6356)                        | Bit (5548)                                | Bit (4740)                    | Bit (3900)    |  |
|-----------------------------------|-------------------------------------------|-------------------------------|---------------|--|
| 1001) 50                          | IC Mfg and a 2 OF                         | IC manufacturer serial number |               |  |
| ISO <sup>1)</sup> EO <sub>H</sub> | IC Mfg code <sup>2)</sup> 05 <sub>H</sub> | Chip ID byte                  | Unique number |  |

<sup>1)</sup> According to ISO/IEC 15693-3 this byte is assigned to  $E0_{H}$ 

<sup>2)</sup> According to ISO/IEC 7816-6 the IC manufacturer code (IC Mfg code) for Infineon is assigned to  $05_{\rm H}$ 



### 4 Memory, access rights and chip states

### Table 10 Chip ID byte (byte 5 of UID)

| Bit 47 | Bit 46      | Bit 45 | Bit 44       | Bit 43 | Bit 42 | Bit 41 | Bit 40 |
|--------|-------------|--------|--------------|--------|--------|--------|--------|
|        | EEPROM size |        | Security bit |        | Chip   | type   |        |

### Table 11 Chip ID byte: EEPROM size, security bit

| Bit (4745)       | Bit 44         | Meaning                       | Comment                     |
|------------------|----------------|-------------------------------|-----------------------------|
| 000 <sub>B</sub> | -              | 10 kbit                       | SRF 55V10P (and SRF 55V10S) |
| 010 <sub>B</sub> | -              | 2.5 kbit                      | SRF 55V02P (and SRF 55V02S) |
| Other            | -              | RFU                           | Reserved for future use     |
| -                | 0 <sub>B</sub> | Chip supports plain mode only | SRF 55VxxP                  |
| -                | 1 <sub>B</sub> | Chip supports secure mode     | SRF 55VxxS                  |

Table 12 Chip ID byte: Chip type

| Bit (4340)        | Meaning                                     | Comment                 |
|-------------------|---------------------------------------------|-------------------------|
| 0000 <sub>B</sub> | my-d <sup>™</sup> vicinity IC functionality | Default                 |
| Other values      | RFU                                         | Reserved for future use |

A reader or an application shall check the "chip type" bits (UID bits (43...40)) to ensure the operation with a chip out of the my-d<sup>™</sup> vicinity family.

### Manufacturer data and AFI (page 02<sub>H</sub>) 4.1.1.2

The manufacturer page is located on page 02<sub>H</sub>. It contains the AFI byte (byte 00<sub>H</sub>), the access condition for the AFI (byte 01<sub>H</sub>) and data which are programmed and locked at manufacture.

### Table 13 Definition of page 02<sub>H</sub>

| Bit (6316)        | Bit (1508)        | Bit (0700) |
|-------------------|-------------------|------------|
| Manufacturer data | AC <sub>AFI</sub> | AFI byte   |

### Table 14 **Definition of the AFI byte**

| Bit 7 | Bit 6           | Bit 5        | Bit 4 | Bit 3 | Bit 2   | Bit 1 | Bit 0 |
|-------|-----------------|--------------|-------|-------|---------|-------|-------|
|       | As defined in I | SO/IEC 15693 |       | -     | EAS bit | -     | -     |

# infineon

### 4 Memory, access rights and chip states

### 4.1.2 User area

The pages  $03_H$  up to  $1F_H/7F_H$  (SRF 55V02P/SRF 55V10P) are reserved for user data.

The access condition (AC) and the sector index (SI) of a page are defining the access rights for that page.

Note: The data format of one page can be either value counter or plain data.

Note: Invalid sector indexes (other than  $55_{H}$ ) prevent any access to my-d<sup>m</sup> vicinity plain.

Note: Invalid access conditions (other than  $XA_H$ ,  $X5_H$  or  $X6_H$ ) are preventing any access to my- $d^{\dagger\prime\prime}$  vicinity.

Data in the plain sector are accessible both via ISO optional and ISO custom commands.

### 4.1.3 Administration area

Two administration bytes are assigned to each page. They hold the followings:

- Access condition (define information on access to the page)
- Sector index of the page (always preset to 55<sub>H</sub> indicating sector 0 for this chip variant)

These bytes are accessible by the use of the ISO custom command write byte only.

The access condition and sector index bytes are corruption protected. Each bit in each byte is stored non-inverted and inverted. Valid values for each of the two nibbles are 5<sub>H</sub>, 6<sub>H</sub>, or A<sub>H</sub>.

Data are accessible via ISO custom commands only.

For a detailed description of the access conditions please refer to Access conditions.

For a detailed description of the sector index please refer to Sector index.

### 4.2 Memory access

After completing the inventory procedure  $my-d^{\mathsf{T}}$  vicinity is ready for memory operations. Using ISO optional commands the memory is accessed in 4-byte blocks, whereas ISO custom commands support 8-byte page accesses and further  $my-d^{\mathsf{T}}$  vicinity commands.

Furthermore, the access to a page is defined by the access conditions (AC):

- ISO custom commands allow to write the complete access condition byte defining the access condition for the respective page
- ISO optional command 'Lock Block' allows to change the access to a block from read/write to read only by programming the respective nibble of the access condition byte

Additionally, the sector index (SI) defines the allocation of each page to a plain sector.

### 4.2.1 Selection of a sector

ISO/IEC 15693 or ISO/IEC 18000-3 Mode 1 defines the selection procedure of a VICC. After a successful select command, the sector 0 is opened by default (plain mode). In plain mode, memory pages in sector 0 are accessible according to their access conditions.

### 4.2.2 Sector index

For my-d<sup>™</sup> vicinity plain, the sector index is always set to 55<sub>H</sub> (sector 0). Changing SI to any other value than 55<sub>H</sub> will result in inaccessibility of the corresponding page.

### 4 Memory, access rights and chip states

### 4.2.3 **Access conditions**

Access conditions are stored in byte 9 of each page. The access condition (AC) byte stores each bit non-inverted and inverted to ensure data integrity.

The following access rights are defined and can be combined for one page:

- Read-only
- Write and read
- Restricted write

Access conditions and rights (byte 9 of each page) Table 15

| A diti           | Acc                   | Commont               |               |
|------------------|-----------------------|-----------------------|---------------|
| Access condition | Even block            | Comment               |               |
| 55 <sub>H</sub>  | Read/restricted write | Read/restricted write | Value counter |
| 56 <sub>H</sub>  | Read-only             | Read/restricted write | Value counter |
| 5A <sub>H</sub>  | Read/write            | Read/restricted write | Value counter |
| 65 <sub>H</sub>  | Read/restricted write | Read-only             | Value counter |
| 66 <sub>H</sub>  | Read-only             | Read-only             | User data     |
| 6A <sub>H</sub>  | Read/write            | Read-only             | User data     |
| A5 <sub>H</sub>  | Read/restricted write | Read/write            | Value counter |
| A6 <sub>H</sub>  | Read-only             | Read/write            | User data     |
| AA <sub>H</sub>  | Read/write            | Read/write            | User data     |
| Any other value  | None <sup>1)</sup>    | None <sup>1)</sup>    | Invalid AC    |

Pages which have no valid access condition are not accessible anymore

Access conditions and rights (byte 9 of each page) can be changed by using the ISO custom command 'Write Byte'.

Using the ISO optional command 'Lock Block' sets the access condition for a single block. The higher nibble of the access condition byte locks blocks with an odd address, whereas the blocks with even addresses are set to read-only with the lower nibble.

### 4.3 **Counter format and operations**

Each page of the data area may be defined as a counter page. A counter page is a single 8-byte page which is initialized with two 4-byte counters and the access conditions set accordingly.

Counter data are accessible via ISO custom commands only.



### 4 Memory, access rights and chip states

### 4.3.1 **Counter mechanism**

The concept incorporates that a counter page is divided into two counters with one counter being valid where the other is normally 00<sub>H</sub>, 00<sub>H</sub>, 00<sub>H</sub>, 00<sub>H</sub>. This principle allows supporting an anti-tearing mechanism.

|   | Counter 0     |             |                                                  | Counter 1                                          |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|---------------|-------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 1             | 2           | 3                                                | 4                                                  | 5                                                    | 6                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |               |             |                                                  |                                                    |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | valid Counter |             | 00 00 00 00                                      |                                                    |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 00 00 00 00   |             |                                                  |                                                    | valid C                                              | Counter                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | valid Counter |             | 00 00 00 00                                      |                                                    |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |               |             |                                                  |                                                    |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 00 00 00 00   |             | valid Counter                                    |                                                    |                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0             | 0 1 valid C | 0 1 2  valid Counter  00 00 00 00  valid Counter | 0 1 2 3  valid Counter  00 00 00 00  valid Counter | 0 1 2 3 4  valid Counter  00 00 00 00  valid Counter | 0 1 2 3 4 5  valid Counter 00 00  valid Counter 00 00 | 0         1         2         3         4         5         6           valid Counter         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 |

Figure 7 **Counter mechanism** 

So a normal decreased counter page always contains 4-byte with a valid counter value and the other 4-byte set to '00<sub>H</sub>, 00<sub>H</sub>, 00<sub>H</sub>, 00<sub>H</sub>. Cases with 4-byte containing a valid counter and the other 4-byte with any value indicate an aborted counting operation, for further information please refer to Anti-tearing.

Counting is done by transmitting counter data fulfilling the condition "lower than previous value".

- Debit the value counter
  - Using the 'Restricted Write' or 'Restricted Write and Reread' command. With each successful command SRF 55VxxP switches from counter 0 to counter 1 and vice versa
  - Lower byte/LSB is transmitted first

The counter data must fulfill a dedicated counter format to ensure data redundancy.

### 4.3.2 **Anti-tearing**

SRF 55VxxP supports the detection of an interrupted counting operation due to the concept of using two counters on a page defined as a counter page.

A malfunction of the counting may be caused by a power loss during the update of the counter data stored in the EEPROM. Due to physical characteristics, the change of EEPROM data requires an erase/write cycle. So, the chip needs several intermediate states during a counter update. Especially during the erase and write also random data may appear because of the physical process.



### 4 Memory, access rights and chip states

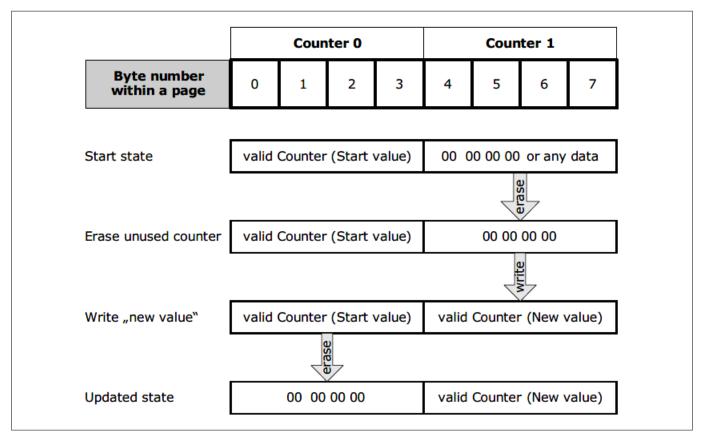



Figure 8 Intermediate counter states

So a normal counting operation looks as follows:

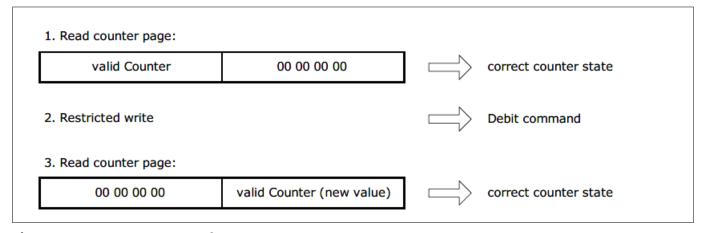



Figure 9 Counter update sequence

If the initial read of a counter page looks like the following operation, this indicates a previously interrupted counting operation:

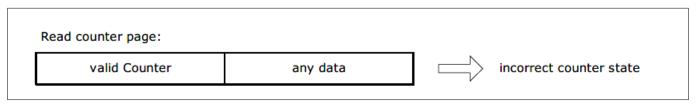



Figure 10 Incorrect counter state

# **(infineon**

### 4 Memory, access rights and chip states

The anti-tearing mechanism is controlled by the VCD software and is based on the two value counters per counter page. It ensures that in case of power loss at least one correct value is stored in the counter.

The following procedure is executed by the **VCD**:

- **1. Determine the actual counter**: Read the value counter page with a 'Read' command and separate counter 0 from counter 1
  - Case a) Valid counter is the actual counter
     Only one counter data is valid (the other holds either all bits set to zero or a corrupted counter format).
  - Case b) Higher value is actual counter
     The card was torn during the last operation: Both counters have a valid counter format.
- **2. Calculate the new counter value**: New counter value **must** be lower than the actual counter value and has to be sent to the chip in the correct counter value format
- 3. The **new counter value is programmed** to the non-actual counter with a 'Restricted Write' or 'Restricted Write and Reread' command to the SRF 55VxxP
- **4.** Finally, the old counter value (actual counter) is cleared by the chip (all bits set to zero) and the new counter value becomes the new actual counter

Programming and clearing the counter value pages are processed in one EEPROM erase/write cycle and one EEPROM erase operation. First, the invalid counter value (or lower value) will be erased and programmed with the new value. Then the old valid value will be erased from all zeroes. If there is any interrupt (example: Power loss etc.) at least one counter will have a valid format and data. With this check and backup procedure, a reader can always determine if the 'Restricted Write' command has been performed correctly or not. Additionally, at least the old counter data is always available until the new counter data is programmed.

## 4.3.3 Value counter pages

Each page in the data area of the memory may be configured and used as a counter value page. A counter value page is a single 8-byte page that is programmed with a dedicated counter format (see Figure 11 and the following explanation). The counter can hold values from 0 to 65535.

### 4.3.3.1 Value counter format

SRF 55VxxP supports a value counter with a range of 2<sup>16</sup> (0 to 65535) units.

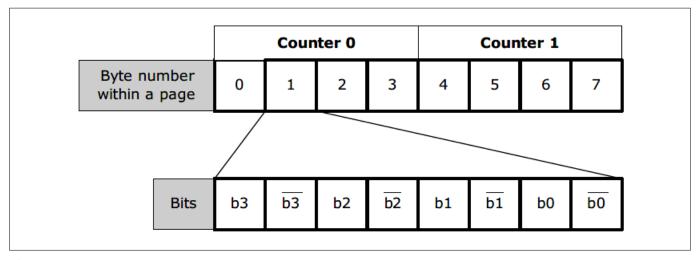



Figure 11 Data structure of a value counter page

The counter page consists of two counters of 4-byte length to support backup/anti-tearing. For data security and integrity reasons, each data bit is stored twice: Non-inverted and inverted (see Figure 11). One 2-byte



### 4 Memory, access rights and chip states

value is therefore extended to a 4-byte value for example the one-byte value 0000 0001<sub>B</sub> (01<sub>H</sub>) is extended to 010101010101010<sub>B</sub> (5556<sub>H</sub>). The two counters stored on a counter page (counter 0 and counter 1) must always have different values. This counter format is mandatory to perform the on-chip redundancy and anti-tearing functionality included in the 'Restricted Write' command for the counter block as well as a data integrity check (see Anti-tearing).

### Initialization of a value counter page 4.3.3.2

The following steps have to be performed to initialize a page as value counter:

- Initialize the counter value page using the 'Write' and 'Write Byte' commands
- The data to be written to the page must have a counter format (see Value counter format)
- The access condition has to be set to read/restricted-write (see Access conditions)

### **Example:**

To set the counter value 1010<sub>H</sub> to one of the plain pages in user memory, an issuer has to:

- Write 8 bytes with the 'Write' command; in this case, the data will be '55 56 55 56 00 00 00 00 00<sub>H</sub>'
- Set the access condition for this page to 55<sub>H</sub> with the 'Write Byte' command

Then, the value counter page is ready to be used and can be performed by any 'Restricted Write' command.

Use the 'Restricted Write' command to decrement the value by 1 by sending 100F<sub>H</sub> in counter value format 'AA 55 56 55<sub>H</sub>', low significant byte first

# infineon

### 5 Frames and command set\_new

# 5 Frames and command set\_new

Communication from VCD to VICC and from VICC to VCD is according to ISO/IEC 15693 or ISO/IEC 18000-3 Mode 1.

The standard defines the following command types:

- Mandatory commands
- Optional commands
- Custom commands
- Proprietary commands

Note:

The memory of my-d<sup>™</sup> vicinity can be accessed both with ISO optional commands (memory structured in blocks of 4 bytes each) and ISO custom commands (memory structured in pages of 8 bytes each).

### 5.1 ISO command frame

The ISO command frame for the communication from VCD to VICC is according to ISO/IEC 15693-3 [5]. The request format consists of the following fields:

- Flags
- Command opcode
- Parameter field
- Data field
- CRC

These fields are embedded into the general request format and are enframed by a start of frame (SOF) and an end of frame (EOF).

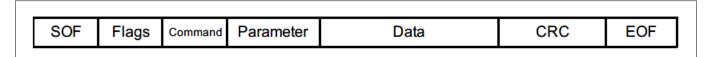



Figure 12 General request format

Flags and parameter settings are defined in ISO/IEC 15693-3 [5].

# 5.1.1 Supported ISO/IEC 15693-3 commands

The following commands are implemented in the my-d<sup>™</sup> vicinity:

Table 16 my-d<sup>™</sup> vicinity supported ISO/IEC 15693-3 commands

| Command code    | Command type | Function             | Available modes <sup>1)</sup> |
|-----------------|--------------|----------------------|-------------------------------|
| 01 <sub>H</sub> | Mandatory    | Inventory            | U                             |
| 02 <sub>H</sub> | Mandatory    | Stay quiet           | А                             |
| 20 <sub>H</sub> | Optional     | Read single block    | A/S/U                         |
| 21 <sub>H</sub> | Optional     | Write single block   | A/S/U                         |
| 22 <sub>H</sub> | Optional     | Lock block           | A/S/U                         |
| 23 <sub>H</sub> | Optional     | Read multiple blocks | A/S/U                         |
| 25 <sub>H</sub> | Optional     | Select               | А                             |

(table continues...)



## 5 Frames and command set\_new

Table 16 (continued) my-d<sup>™</sup> vicinity supported ISO/IEC 15693-3 commands

| Command code    | Command type | Function                                        | Available modes <sup>1)</sup> |
|-----------------|--------------|-------------------------------------------------|-------------------------------|
| 26 <sub>H</sub> | Optional     | Reset to ready                                  | A/S/U                         |
| 27 <sub>H</sub> | Optional     | Write AFI                                       | A/S/U                         |
| 28 <sub>H</sub> | Optional     | Lock AFI                                        | A/S/U                         |
| 2C <sub>H</sub> | Optional     | Get multiple block security status              | A/S/U                         |
| A0 <sub>H</sub> | Custom       | my-d <sup>™</sup> vicinity specific command set | A/S/U                         |

U → non-addressed, A → addressed, S → selected according to ISO/IEC 15693-3

## **5.1.2** Error codes

The ISO/IEC 15693-3 [5] standard defines error codes.

Table 17 Error codes

| Error code      | Meaning                                                                   | Command mode    |
|-----------------|---------------------------------------------------------------------------|-----------------|
| 01 <sub>H</sub> | Command not supported, that is the request code is not recognized         | Optional        |
| 0F <sub>H</sub> | Error with no information given or a specific error code is not supported | Optional/custom |
| 10 <sub>H</sub> | The specified block is not available (does not exist)                     | Optional        |
| 11 <sub>H</sub> | The specified block is already locked and so cannot be locked again       | Optional        |
| 12 <sub>H</sub> | The specified block is locked and its content cannot be changed           | Optional        |
| A0 <sub>H</sub> | Error during authentication or wrong MAC                                  | Custom          |
| A1 <sub>H</sub> | Access denied: Page is locked and its content cannot be changed           | Custom          |

# **Extended Datasheet**



### 5 Frames and command set\_new

### 5.1.3 **Inventory**

The transponder performs an anticollision sequence after receiving a valid inventory request.

**Inventory request format** Table 18

| SOF | Flags | Inventory command opcode | Optional<br>AFI | Mask<br>length | Mask value    | CRC16  | EOF |
|-----|-------|--------------------------|-----------------|----------------|---------------|--------|-----|
| -   | 8-bit | 8-bit                    | 8-bit           | 8-bit          | (0 to 64) bit | 16-bit | -   |

The transponder response contains the data storage format identifier (DSFID) and unique identifier (UID) number.

**Inventory response format** Table 19

| SOF | Flags | DSFID | UID    | CRC16  | EOF |
|-----|-------|-------|--------|--------|-----|
| -   | 8-bit | 8-bit | 64-bit | 16-bit | -   |

Please refer to the ISO/IEC 15693-3 [5] standard for more details on the request and response formats.

### Stay quiet 5.1.4

After receiving a valid stay quiet request the transponder enters the quiet state. There is no response to a stay quiet command.

Table 20 Stay quiet request format

| SOF | Flags | Stay quiet command opcode | UID    | CRC16  | EOF |
|-----|-------|---------------------------|--------|--------|-----|
| -   | 8-bit | 8-bit                     | 64-bit | 16-bit | _   |

Please refer to the ISO/IEC 15693-3 [5] standard for more details on the request and appropriate state transitions.

# infineon

### 5 Frames and command set\_new

# 5.2 ISO optional commands of my-d<sup>™</sup> vicinity

For the ISO optional commands the following memory organization is applicable.

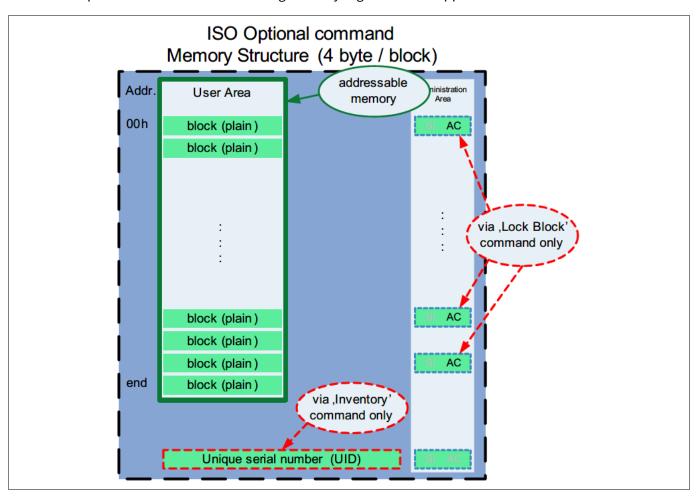



Figure 13 Memory map for ISO optional commands

Table 21 ISO optional commands of my-d<sup>™</sup> vicinity

| Command code    | Function                           | Available modes <sup>1)</sup> | Reply time in µs <sup>2)</sup> |
|-----------------|------------------------------------|-------------------------------|--------------------------------|
| 20 <sub>H</sub> | Read single block                  | A/S/U                         | 320 ± 2.36 (t1)                |
| 21 <sub>H</sub> | Write single block                 | A/S/U                         | 3942.54 3947.26                |
| 22 <sub>H</sub> | Lock block                         | A/S/U                         | 3942.54 3947.26                |
| 23 <sub>H</sub> | Read multiple blocks               | A/S/U                         | 320 ± 2.36 (t1)                |
| 25 <sub>H</sub> | Select                             | -                             | 320 ± 2.36 (t1)                |
| 26 <sub>H</sub> | Reset to ready                     | A/S/U                         | 320 ± 2.36 (t1)                |
| 27 <sub>H</sub> | Write AFI                          | A/S/U                         | 3942.54 3947.26                |
| 28 <sub>H</sub> | Lock AFI                           | A/S/U                         | 3942.54 3947.26                |
| 2C <sub>H</sub> | Get multiple block security status | A/S/U                         | 320 ± 2.36 (t1)                |

<sup>1)</sup> U  $\rightarrow$  non-addressed, A  $\rightarrow$  addressed, S  $\rightarrow$  selected according to ISO/IEC 15693-3

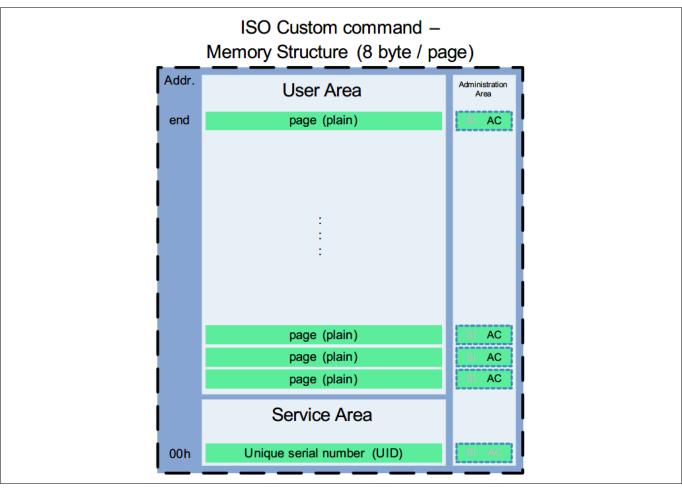
<sup>2)</sup> After receiving a valid command the transponder starts its reply. For more details related to the reply timing please refer to ISO/IEC 15693-3 [5]

### 5 Frames and command set\_new

### **General notes:**

- The unique identification (UID) number is accessible via the ISO command 'inventory'
- Using ISO optional commands the my-d<sup>™</sup> vicinity memory is accessible in blocks of 4 bytes each
- Each block may be changed from read/write access to read-only using the ISO optional command 'Lock Block'. This command writes the access condition of the respective block (for more information please refer to Access conditions)

For more details on ISO optional commands please refer to the ISO/IEC 15693-3 [5] standard.


Addressable memory using ISO optional commands Table 22

| Туре            | Memory in bytes | Number of blocks | Address range                                   |
|-----------------|-----------------|------------------|-------------------------------------------------|
| SRF 55V02P (HC) | 224             | 56               | 00 <sub>H</sub> - 37 <sub>H</sub> <sup>1)</sup> |
| SRF 55V10P (HC) | 992             | 248              | 00 <sub>H</sub> - F7 <sub>H</sub> <sup>2)</sup> |

- 1) Using ISO custom commands the block addresses  $00_H/01_H$  are mirrored to page address  $1F_H$ , block addresses  $02_H/03_H$  are mirrored to page address  $1E_H$  and so on.
- 2) Using ISO custom commands the block addresses  $00_H/01_H$  are mirrored to page address  $7F_H$ , block addresses  $02_H/03_H$  are mirrored to page address  $7E_H$  and so on.

### ISO custom commands of my-d™ vicinity 5.3

For the ISO custom commands the following memory organization is applicable.



Memory map for ISO custom commands Figure 14

Table 23 my-d<sup>™</sup> custom commands

| Command code    | Function                                                                                                                            | Remark                                                     | Reply time in µs <sup>1)</sup> |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|
| 10 <sub>H</sub> | Read                                                                                                                                | Reads one page from the memory and transmits it to the VCD | 320 ± 2.36 (t1)                |
| 30 <sub>H</sub> | Write                                                                                                                               | Writes data to the specified page                          | 3942.54 3947.26                |
| 90 <sub>H</sub> | Write Byte Writes data to the specified byte; writing to byte 9 is used to change the access condition from read/write to read-only |                                                            | 3942.54 3947.26                |
| B0 <sub>H</sub> |                                                                                                                                     |                                                            | 4545.54 4550.26                |
| 00 <sub>H</sub> | Restricted<br>Write                                                                                                                 | Used for setting and overwriting value counters            | 5755.75 5760.47                |

(table continues...)



### 5 Frames and command set\_new

### (continued) my-d<sup>™</sup> custom commands Table 23

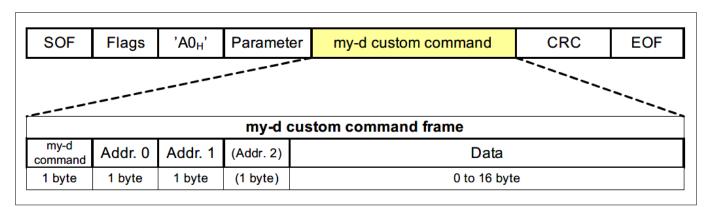
| Command code    | Function                          | Remark                                                                            | Reply time in µs <sup>1)</sup> |
|-----------------|-----------------------------------|-----------------------------------------------------------------------------------|--------------------------------|
| 80 <sub>H</sub> | Restricted<br>Write and<br>Reread | Used for setting and overwriting value counters and reading them back in one turn | 6359.88 6364.60                |

<sup>1)</sup> After receiving a valid command the transponder starts its reply. For more details related to the reply timing please refer to ISO/IEC 15693-3

### **General notes:**

- The my-d<sup>™</sup> custom commands can be applied to pages of 8-byte each only
- Each page can be changed only with the access condition set to either AA<sub>H</sub> (read/write) or 55<sub>H</sub> (restricted write). Otherwise, the chip responds with error code A1<sub>H</sub>
- Each page may be changed from read/write access to read-only using the ISO custom command 'Write Byte' programming 66<sub>H</sub> to byte 9 of the respective page
- Whenever a plain page is to be changed with an ISO optional command, only the access conditions of the accessed block is checked

For detailed information on access conditions please refer to Access conditions.


Table 24 Addressable memory using ISO custom commands

| Туре            | Memory in bytes | Number of pages | Address range <sup>1)</sup>                     |
|-----------------|-----------------|-----------------|-------------------------------------------------|
| SRF 55V02P (HC) | 256             | 32              | 00 <sub>H</sub> - 1F <sub>H</sub> <sup>2)</sup> |
| SRF 55V10P (HC) | 1024            | 128             | 00 <sub>H</sub> - 7F <sub>H</sub> <sup>3)</sup> |

- 1) Using ISO optional commands the page addresses  $00_H$  to  $03_H$  are not addressable
- 2) Using ISO optional commands the page address  $04_{\rm H}$  is mirrored to block addresses  $36_{\rm H}/37_{\rm H}$ , page address  $05_{\rm H}$  is mirrored to block addresses  $34_H/35_H$  and so on.
- 3) Using ISO optional commands the page address  $04_H$  is mirrored to block addresses  $F6_H/F7_H$ , page address  $05_H$  is mirrored to block addresses  $F4_H/F5_H$  and so on.

### my-d<sup>™</sup> custom command frame 5.3.1

The my-d<sup>™</sup> custom commands are embedded in the data section of the ISO command frame.



my-d<sup>™</sup> vicinity custom command frame Figure 15

ISO command frame with embedded my-d<sup>™</sup> custom command frame Table 25

| Field                            | Value                            | Description                                                    |
|----------------------------------|----------------------------------|----------------------------------------------------------------|
| SOF                              | Start of frame                   | According to ISO/IEC 15693-3 [5]                               |
| Flags                            | -                                | According to ISO/IEC 15693-3 [5]                               |
| ISO command code                 | A0 <sub>H</sub>                  | Used to indicate my-d <sup>™</sup> custom command              |
| Parameter                        | 05 <sub>H</sub> [UID]            | IC manufacturer code for Infineon + optionally UID of the VICC |
| my-d <sup>™</sup> custom command | As defined for my-d <sup>™</sup> | For more details please see the following                      |
| Address 0                        | Page address                     | Page address of my-d <sup>™</sup> vicinity                     |
| Address 1                        | 00 <sub>H</sub>                  | Reserved for future use                                        |
| Address 2                        | Byte address of a page           | Only for 'Write Byte' command                                  |
| CRC                              | Cyclic redundancy check          | According to ISO/IEC 15693-3 [5]                               |
| EOF                              | End of frame                     | According to ISO/IEC 15693-3 [5]                               |

- Timing: VICC response according to ISO/IEC 15693-3 [5]
- Error handling according to ISO/IEC 15693-3 [5]

### my-d<sup>™</sup> custom command 'Read' (10<sub>H</sub>) 5.3.1.1

This command reads one 8-byte page from the memory.

### my-d<sup>™</sup> custom Read command Table 26

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame<br>data |           | CRC16           | EOF    |   |
|-----|-------|-----------------|-------------------------|------------------------------------------------|-----------|-----------------|--------|---|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | 10 <sub>H</sub>                                | Address 0 | 00 <sub>H</sub> | 16-bit | - |

### Data field (my-d<sup>™</sup> custom Read command) Table 27

| Code            | Description                                      | Comment                                                                                                                          |
|-----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 10 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Read' | -                                                                                                                                |
| Address 0       | Page address                                     | Address range:  • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)  • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC) |
| 00 <sub>H</sub> | RFU                                              | Shall be set to 00 <sub>H</sub>                                                                                                  |

### Response, no error (my-d<sup>™</sup> custom Read) Table 28

| SOF | Flags           | Data                  | CRC16  | EOF |
|-----|-----------------|-----------------------|--------|-----|
| -   | 00 <sub>H</sub> | 64-bit (page content) | 16-bit | -   |

### Response, error\_flag (my-d<sup>™</sup> custom Read) Table 29

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| -   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

### my-d<sup>™</sup> custom command 'Write' (30<sub>H</sub>) 5.3.1.2

The custom command 'Write' performs an erase/write cycle on the specified page. In case of successful programming the VICC replies an acknowledge frame consisting of 3 bytes (see below). In case of an error or if the access condition is set to read only an error code (0F<sub>H</sub>) is transmitted by the VICC (see below).

### my-d<sup>™</sup> custom command 'Write' Table 30

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame data |           |                 |        | CRC16  | EOF |
|-----|-------|-----------------|-------------------------|---------------------------------------------|-----------|-----------------|--------|--------|-----|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | 30 <sub>H</sub>                             | Address 0 | 00 <sub>H</sub> | 64-bit | 16-bit | -   |

### Data field (my-d<sup>™</sup> custom Write command) Table 31

| Code            | Description                                       | Comment                                                                                                                          |
|-----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 30 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Write' | -                                                                                                                                |
| Address 0       | Page address                                      | Address range:  • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)  • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC) |
| 00 <sub>H</sub> | RFU                                               | Shall be set to 00 <sub>H</sub>                                                                                                  |
| 64-bit          | Page data to be written                           | 8-byte user data                                                                                                                 |

### Table 32 Response, no error (my-d<sup>™</sup> custom Write)

| SOF | Flags           | CRC16  | EOF |
|-----|-----------------|--------|-----|
| -   | 00 <sub>H</sub> | 16-bit | -   |

### Table 33 Response, error\_flag set (my-d<sup>™</sup> custom Write)

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| _   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

### my-d<sup>™</sup> custom command 'Write Byte' (90<sub>H</sub>) 5.3.1.3

The 'Write Byte' command writes the data of the specified byte. In case of successful programming, the VICC replies with an acknowledge frame consisting of 3 bytes (see below). In case of an error or if the access condition is set to read-only an error code (0F<sub>H</sub>) is transmitted by the VICC (see below).

### my-d<sup>™</sup> custom command 'Write Byte' Table 34

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame data |           |                 |          | CRC16            | EOF    |   |
|-----|-------|-----------------|-------------------------|---------------------------------------------|-----------|-----------------|----------|------------------|--------|---|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | 90 <sub>H</sub>                             | Address 0 | 00 <sub>H</sub> | Byte no. | Value<br>(8-bit) | 16-bit | - |

### Data field (my-d<sup>™</sup> custom command 'Write Byte') Table 35

| Code            | Description                                            | Comment                                                                                                                          |
|-----------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 90 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Write Byte' | -                                                                                                                                |
| Address 0       | Page address                                           | Address range:  • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)  • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC) |
| 00 <sub>H</sub> | RFU                                                    | Shall be set to 00 <sub>H</sub>                                                                                                  |
| Byte number     | Byte address within the page                           | Address range:  • 00 <sub>H</sub> - 09 <sub>H</sub>                                                                              |
| 8-bit           | Data to be written                                     | One byte of user data                                                                                                            |

### Response, no error (my-d<sup>™</sup> custom Write Byte) Table 36

| SOF | Flags           | CRC16  | EOF |
|-----|-----------------|--------|-----|
| -   | 00 <sub>H</sub> | 16-bit | -   |

### Response, error\_flag set (my-d<sup>™</sup> custom Write Byte) Table 37

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| -   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

# **(infineon**

### 5 Frames and command set\_new

# 5.3.1.4 my-d<sup>™</sup> custom command 'Write and Reread' (B0<sub>H</sub>)

The 'Write and Reread' command writes and verifies data to the specified page. In case of successful programming of the page the VICC replies the programmed data. So the command allows a fast verification after the write operation. In case of an error or if the access condition is set to read only an error code (0F<sub>H</sub>) is transmitted by the VICC.

### Table 38 my-d<sup>™</sup> custom command 'Write and Reread'

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame data |           |                 |        | CRC16  | EOF |
|-----|-------|-----------------|-------------------------|---------------------------------------------|-----------|-----------------|--------|--------|-----|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | B0 <sub>H</sub>                             | Address 0 | 00 <sub>H</sub> | 64-bit | 16-bit | -   |

### Table 39 Data field (my-d<sup>™</sup> custom Write and Reread command)

| Code            | Description                                                  | Comment                                                                                                                          |
|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| B0 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Write and Reread' | -                                                                                                                                |
| Address 0       | Page address                                                 | Address range:  • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)  • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC) |
| 00 <sub>H</sub> | RFU                                                          | Shall be set to 00 <sub>H</sub>                                                                                                  |
| 64-bit          | Page data to be written                                      | 8-byte of user data                                                                                                              |

## Table 40 Response, no error (my-d<sup>™</sup> custom Write and Reread)

| SOF | Flags           | Data                  | CRC16  | EOF |
|-----|-----------------|-----------------------|--------|-----|
| -   | 00 <sub>H</sub> | 64-bit (page content) | 16-bit | -   |

## Table 41 Response, error\_flag set (my-d<sup>™</sup> custom Write and Reread)

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| -   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

# **(infineon**

### 5 Frames and command set\_new

# 5.3.1.5 my-d<sup>™</sup> custom command 'Restricted Write' (00<sub>H</sub>)

The 'Restricted Write' command is used for setting and overwriting value counters. To set a new and lower value of a counter, a 'Read' command on the counter page has to be executed in advance. After the determination of the actual counter value, the new value can be set. Only the new counter value (32 bits) in the counter value format has to be transmitted.

In case of successful programming, the VICC replies with an acknowledge frame consisting of 3 bytes (see response formats). In case of an error or if the access condition is set to read-only an error code  $(0F_{\rm H})$  is transmitted by the VICC (see below).

Table 42 my-d<sup>™</sup> custom command 'Restricted Write'

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame data |           |                 | CRC16  | EOF    |   |
|-----|-------|-----------------|-------------------------|---------------------------------------------|-----------|-----------------|--------|--------|---|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | 00 <sub>H</sub>                             | Address 0 | 00 <sub>H</sub> | 32-bit | 16-bit | - |

## Table 43 Data field (my-d<sup>™</sup> custom Restricted Write command)

| Code            | Description                                                  | Comment                                                                                                                          |
|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 00 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Restricted Write' | -                                                                                                                                |
| Address 0       | Page address                                                 | Address range:  • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)  • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC) |
| 00 <sub>H</sub> | RFU                                                          | Shall be set to 00 <sub>H</sub>                                                                                                  |
| 32-bit          | New counter value                                            | New 32-bit counter value (counter value in special counter value data format)                                                    |

### Table 44 Response, no error (my-d<sup>™</sup> custom Restricted Write)

| SOF | Flags           | CRC16  | EOF |
|-----|-----------------|--------|-----|
| -   | 00 <sub>H</sub> | 16-bit | -   |

### **Table 45** Response, error\_flag set (my-d<sup>™</sup> custom Restricted Write)

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| -   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

# infineon

### 5 Frames and command set\_new

# 5.3.1.6 my-d<sup>™</sup> custom command 'Restricted Write and Reread' (80<sub>H</sub>)

The 'Restricted Write and Reread' command is used for setting and overwriting value counters and reading them back at once. To set the new or to lower the value of a counter, a 'Read' command on the counter page has to be executed previously. After the determination of the actual counter value, the new value can be set. Only the new counter value (32 bits) in counter value format has to be transmitted.

In case of successful programming, the VICC returns with the new value of the counter. In case of an error or if the access condition is set to read only an error code (0F<sub>H</sub>) is transmitted by the VICC (see below).

| Table 46 my-d <sup>™</sup> custom command 'Restricted Write and R |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

| SOF | Flags | Command opcode  | Parameter               | my-d <sup>™</sup> custom command frame data |           |                 | CRC16  | EOF    |   |
|-----|-------|-----------------|-------------------------|---------------------------------------------|-----------|-----------------|--------|--------|---|
| -   | 8-bit | A0 <sub>H</sub> | 05 <sub>H</sub> , [UID] | 00 <sub>H</sub>                             | Address 0 | 00 <sub>H</sub> | 32-bit | 16-bit | _ |

## **Table 47** Data field (my-d<sup>™</sup> custom Restricted Write command)

| Code            | Description                                                             | Comment                                                                       |
|-----------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 00 <sub>H</sub> | Command code for 'my-d <sup>™</sup> custom Restricted Write and Reread' | -                                                                             |
| Address 0       | Page address                                                            | Address range:                                                                |
|                 |                                                                         | • 00 <sub>H</sub> - 1F <sub>H</sub> for SRF 55V02P (HC)                       |
|                 |                                                                         | • 00 <sub>H</sub> - 7F <sub>H</sub> for SRF 55V10P (HC)                       |
| 00 <sub>H</sub> | RFU                                                                     | Shall be set to 00 <sub>H</sub>                                               |
| 32-bit          | New counter value                                                       | New 32-bit counter value (counter value in special counter value data format) |

### Table 48 Response, no error (my-d<sup>™</sup> custom Restricted Write and Reread)

| SOF | OF Flags Data   |                       | CRC16  | EOF |  |
|-----|-----------------|-----------------------|--------|-----|--|
| -   | 00 <sub>H</sub> | 64-bit (page content) | 16-bit | -   |  |

### Table 49 Response, error\_flag set (my-d<sup>™</sup> custom Restricted Write and Reread)

| SOF | Flags           | Data                                                               | CRC16  | EOF |
|-----|-----------------|--------------------------------------------------------------------|--------|-----|
| -   | 01 <sub>H</sub> | Error code (according to ISO/IEC 15693-3 [5]) or refer to Table 17 | 16-bit | -   |

# infineon

### **6 Operational characteristics**

# 6 Operational characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at  $T_A = 25^{\circ}$ C and the given supply voltage.

### **6.1** Electrical characteristics

 $f_C$  = 13.56 MHz sinusoidal waveform, voltages refer to  $V_{SS}$ .

Table 50 Operating range and conditions

| Davamatav                                    | Complete          | Values          |      |      |       | N - 4 4 4 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                               |  |
|----------------------------------------------|-------------------|-----------------|------|------|-------|---------------------------------------------------------------------------------------------|--|
| Parameter                                    | Symbol            | Min.            | Тур. | Max. | Unit  | Note or test condition                                                                      |  |
| Operating field                              | Hoperating        | 0.15            | -    | 5    | A/m   | ISO/IEC 15693-2 [4] and                                                                     |  |
|                                              |                   |                 |      |      |       | ISO/IEC 18000-3 Mode 1<br>[6]                                                               |  |
| Operating temperature                        | T <sub>A</sub>    | -25             | -    | +70  | °C    | For the chip                                                                                |  |
| Endurance (write/erase cycles) <sup>1)</sup> | -                 | 10 <sup>5</sup> | -    | -    | -     | -                                                                                           |  |
| Data retention <sup>1)</sup>                 | -                 | 10              | -    | -    | Years | -                                                                                           |  |
| EEPROM erase and write time                  | t <sub>prog</sub> | -               | -    | 3.96 | ms    | Combined erase and write; excluding time for command/response transfer between VCD and VICC |  |

<sup>1)</sup> Values are temperature-dependent. Please contact your local Infineon Technologies office or representative for more information.

# Table 51 Input characteristics my-d<sup>™</sup> vicinity

| D                                                      | S b. a l          | Values |      |      |      | Note or test                                         |
|--------------------------------------------------------|-------------------|--------|------|------|------|------------------------------------------------------|
| Parameter                                              | Symbol            | Min.   | Тур. | Max. | Unit | condition                                            |
| Chip input capacitance L <sub>A</sub> - L <sub>B</sub> | C <sub>chip</sub> | 24.9   | 23.1 | 24.3 | pF   | V <sub>AB RMS</sub> = 1.6 V<br>T <sub>A</sub> = 25°C |
| Chip input resistance L <sub>A</sub> - L <sub>B</sub>  | R <sub>IC</sub>   | -      | 15   | -    | kΩ   | $V_{AB RMS} = 1.6 V$<br>$T_A = 25$ °C                |

## Table 52 Input characteristics my-d<sup>™</sup> vicinity HC

| Parameter                                              | Symbol          |      | Values |       | Note or test |                                       |
|--------------------------------------------------------|-----------------|------|--------|-------|--------------|---------------------------------------|
|                                                        |                 | Min. | Тур.   | Max.  | Unit         | condition                             |
| Chip input capacitance L <sub>A</sub> - L <sub>B</sub> | C <sub>AB</sub> | 92.1 | 97     | 101.9 | pF           | $V_{AB RMS} = 1.6 V$<br>$T_A = 25$ °C |
| Chip input resistance L <sub>A</sub> - L <sub>B</sub>  | R <sub>AB</sub> | -    | 4.2    | -     | kΩ           | $V_{AB RMS} = 1.6 V$<br>$T_A = 25$ °C |

# **Extended Datasheet**



### **6 Operational characteristics**

### **Absolute maximum ratings** 6.2

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this Extended Datasheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability, including EEPROM data retention and write/erase endurance.

Table 53 **Absolute maximum ratings** 

| Parameter                                             | Symbol               | Values |      |      | 11   | Nata autost as adition                  |  |
|-------------------------------------------------------|----------------------|--------|------|------|------|-----------------------------------------|--|
|                                                       |                      | Min.   | Тур. | Max. | Unit | Note or test condition                  |  |
| Input peak voltage L <sub>A</sub> - L <sub>B</sub>    | V <sub>IN peak</sub> | -      | -    | 4.2  | V    | On-chip limitation by voltage regulator |  |
| Input current L <sub>A</sub> - L <sub>B</sub>         | I <sub>IN</sub>      | -      | -    | 100  | mA   | Maximum current                         |  |
| ESD protection (L <sub>A</sub> , L <sub>B pins)</sub> | V <sub>ESD</sub>     | 2      | -    |      | kV   | JEDEC STD EIA/JESD22 A114-B             |  |
| Storage temperature                                   | T <sub>S</sub>       | -40    | -    | +125 | °C   | For the chip                            |  |

### 6.3 **Timings**

All timings are according to ISO/IEC 15693 [5] or ISO/IEC 18000-3 Mode 1 [6] standard.

## **Extended Datasheet**



# References

References

- ISO/IEC 7816-6:2016: Identification cards Integrated circuit cards Part 6: Interindustry data elements for interchange (Third edition); 2016-06
- [2] ISO/IEC 10373-7:2019: Cards and security devices for personal identification — Test methods — Part 7: Contactless vicinity objects (Third edition); 2019-10
- [3] ISO/IEC 15693-1:2010 Identification cards — Contactless integrated circuit cards — vicinity cards — Part 1: Physical characteristics (Second edition); 2010-10
- [4] ISO/IEC 15693-2:2019: Cards and security devices for personal identification — Contactless vicinity objects — Part 2: Air interface and initialization (Third edition); 2019-04
- ISO/IEC 15693-3:2019: Cards and security devices for personal identification Contactless vicinity objects [5] — Part 3: Anticollision and transmission protocol (Third edition); 2019-04
- ${\sf ISO/IEC~18000-3:2010:}$  Information technology Radio frequency identification for item management [6] Part 3: Parameters for air interface communications at 13.56 MHz (Third edition); 2010-11

## **Extended Datasheet**



### Glossary

# **Glossary**

### AC

access condition (AC)

### **AFI**

application family identifier (AFI)

### **CRC**

cyclic redundancy check (CRC)

A procedure that uses a checksum to check the validity of a data transfer.

### **DSFID**

data storage format identifier (DSFID)

### **EAS**

electronic article surveillance (EAS)

### **EEPROM**

electrically erasable programmable read-only memory (EEPROM)

### **EOF**

end of frame (EOF)

### **ESD**

electrostatic discharge (ESD)

The sudden draining of electrostatic charge. Even with small charges, it poses a considerable risk to small semiconductor structures, in particular MOS structures. It is therefore essential to take precautions when dealing with unprotected semiconductors.

### IC

integrated circuit (IC)

International Electrotechnical Commission (IEC)

The international committee responsible for drawing up electrotechnical standards.

International Organization for Standardization (ISO)

### **LSB**

least significant byte (LSB)

### MAC

message authentication code (MAC) Used to prove message integrity.

### MCC

module contactless card (MCC)

### **RFID**

radio frequency identification (RFID)



## Glossary

### RFU

reserved for future use (RFU)

### SI

sector index (SI)

### **SOF**

start of frame (SOF)

### UID

unique identifier (UID)

## VCD

vicinity coupling device (VCD)

### VICC

vicinity integrated circuit card (VICC)



**Revision history** 

# **Revision history**

| Reference     | Description                                                                          |
|---------------|--------------------------------------------------------------------------------------|
| Revision 3.0, | 2022-09-23                                                                           |
| All           | Migrated to latest template and updated editorial changes                            |
| Revision 2.0, | 2009-03-31                                                                           |
| All           | Removed EAS feature                                                                  |
|               | • ISO write multiple blocks command removed from list of supported optional commands |
|               | • Updated editorial changes, document split into plain and secure variant            |
| Revision 1.0, | 2004-02-29                                                                           |
| All           | Initial release                                                                      |

### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-09-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email:

CSSCustomerService@infineon.com

Document reference IFX-ifl1600259290949

### Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

### Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.