

User guide Please read the Important Notice at the end of this document 002-42330 Rev. **

www.infineon.com 2025-12-10

ModusToolbox™ Motor Suite Motor Control

Library tuning guide

About this document

Scope and purpose

ModusToolbox™ Motor Suite Motor Control Library (motor-ctrl-lib) software to drive 3-phase permanent
magnet synchronous motors (PMSM) or brush-less DC (BLDC) motors. This document describes how to

measure/identify the motor and load parameter required for the Motor Control Library and how to configure/

tune the control loop parameters.

Intended audience.

This document is intended for the ModusToolbox™ Motor Suite Motor Control Library users who wants to

develop motor control driver applications.

Software version

• ModusToolbox™ software 3.3 or above

• Motor Control Library V3.0.0 or above

• ModusToolbox™ Motor Suite 2.6.1 or above

http://www.infineon.com/

User guide 2 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 5
1.1 Key features ... 5
1.2 Rotor field-oriented control .. 7
1.3 Motor control tuning flow ... 8

2 Motor parameters required for Motor Suite Motor Control Library tuning 9
2.1 Motor/load parameters ... 9
2.2 Parameter configuration hints ... 11

3 Parameter configuration .. 12
3.1 How to configure motor and load parameters .. 12
3.2 How to configure voltage and current measurement parameter ... 13
3.3 How to configure key system parameters .. 15
3.3.1 Control mode ... 15
3.3.2 Control loop frequency .. 19
3.3.3 State transition threshold .. 21
3.3.3.1 Start-up threshold parameters .. 21
3.3.3.2 Observer threshold parameters (speed control): .. 21
3.3.3.3 Current control threshold parameters: .. 22
3.3.4 Rate limiter ... 24

4 Verification of ADC measurement .. 26
4.1 DC bus voltage measurement ... 26
4.2 Motor phase current measurement .. 26

5 Motor parameter identification .. 28
5.1 Parameter identification using Motor Suite motor profiler ... 28
5.1.1 Motor Suite motor profiler execution steps .. 28
5.1.2 Profiler parameters .. 29
5.1.3 Parameter tuning in profiler mode .. 32
5.1.3.1 Rotor lock state ... 32
5.1.3.1 Resistance estimation ... 32
5.1.3.2 Inductance estimation .. 33
5.1.3.3 Mechanical parameter and flux linkage estimation .. 34
5.1.4 How to run a motor profiler using Motor Suite GUI .. 35
5.2 How to measure motor parameter manually .. 37
5.2.1 Stator resistance (Rs) ... 37
5.2.1.1 Measurement procedure .. 37
5.2.1.2 Measurement example ... 37
5.2.2 Stator inductance (Lq, Ld) ... 38
5.2.2.1 Measurement procedure .. 39
5.2.2.2 Measurement example ... 39
5.2.3 Motor poles number (p) ... 39
5.2.3.1 Measurement procedure .. 40

6 Startup method tuning .. 41
6.1 Open-loop V/F control ... 41
6.1.1 V/F parameters ... 41

User guide 3 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Table of contents

6.1.2 Troubleshooting ... 43
6.1.3 How to configure parameters .. 43
6.2 Open-loop I/F control .. 44
6.2.1 I/F parameters .. 44
6.2.2 Troubleshooting ... 45
6.2.3 How to configure parameters .. 46

7 Control loop tuning ... 47
7.1 Current controller .. 47
7.1.1 Current control parameters ... 48
7.1.1.1 Troubleshooting.. 49
7.1.2 Current controller parameter calculation – Example ... 50
7.1.3 How to configure parameters .. 51
7.1.4 Update the current control parameter directly .. 52
7.2 Speed controller .. 52
7.2.1 Speed control parameters ... 55
7.2.1.1 Troubleshooting.. 55
7.2.2 Speed controller parameter calculation – Example ... 56
7.2.3 Speed open-loop to closed-loop transition .. 57
7.2.4 How to configure parameters .. 58
7.2.5 Update the speed control parameter directly .. 58
7.3 PID Tuner ... 59

8 How to configure a new board and motor .. 60
8.1 Configuration for new motor .. 60
8.2 Configuration for new power board ... 60
8.2.1 Voltage and current measurement ... 60
8.2.2 Temperature measurement .. 62
8.3 Configuration for new control board .. 62
8.3.1 Change in ADC pins .. 63

9 GUI to code parameter mapping ... 64

10 Fault handling .. 65
10.1 Fault response actions .. 65
10.2 Fault/protection summary .. 66
10.3 Fault clear mechanism .. 67

11 MADK power board configuration ... 68
11.1 Hardware used .. 68
11.2 Software configuration ... 69
11.2.1 Device configuration .. 69
11.2.2 Parameter configuration ... 70

12 Appendix .. 71
12.1 Parameter handling .. 71
12.2 State machine handling .. 71
12.3 Initialization and interrupt handling in motor control .. 72
12.4 ModusToolbox™ file structure .. 72
12.5 How to override library function with a user-defined function ... 73

13 Abbreviations and definitions ... 74

References .. 75

Revision history... 76

User guide 4 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Table of contents

Disclaimer... 77

User guide 5 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Introduction

1 Introduction

Motor control software library provides an advanced sensorless or sensor-based field-oriented control (FOC)

algorithm to drive 3-phase permanent magnet synchronous motor (PMSM) loads including constant air-gap
surface mounted permanent magnet (SM) motor and interior permanent magnet (IPM) motor. Also, this library
supports a hall sensor-based block/trapezoidal commutation algorithm to drive Brush-less DC motor (BLDC).
This library supports the following control methods:

• Rotor frame-oriented field-oriented control (RFO): Sensor-less and sensor (hall and encoder) based rotor
position estimation.

• Stator frame-oriented field-oriented control (SFO): Sensor-less rotor-based rotor position estimation

• Trapezoidal /block commutation (TBC): Hall sensor (3-digital hall) based rotor position estimation.

This document describes how to measure/identify the motor parameters that are required for the Motor
Control Library and how to configure/ tune the control loop parameters. Motor control engineers need to adapt
the default library configuration to match their specific motor, inverter hardware, and application

requirements.

1.1 Key features

A list of key features supported in the Motor Control Library are given here:

• Adaptive sensorless observer that provides minimal phase distortion. It can observe rotor angle, speed,
stator angle, stator flux magnitude, and load angle.

• Hall sensor (3-Digital Hall) or incremental encoder-based field-oriented control.

• Supports leg shunt and single shunt-based motor phase current measurement.

• 3-Phaseand 2-Phase PWM modulation schemes. 2ph SVPWM that allows reduction of the switching losses

compared with three-phase SVPWM (symmetrical placement of zero vectors).

• Supports flux weakening, over modulation and maximum torque per amp for IPM motors.

• Start-up methods for sensor-less field-oriented control

• Pre alignment rotor into knows position.

• Constant V/F control

• I/F control

• Inductance based initial rotor angle estimation.

• Dyno mode to catch the free running motor.

• High Frequency Injection for rotor angle estimation (only for IPM)

• Motor Control Library provides the following protection/Fault handling.

• Under/Over voltage protection

• Overcurrent protection

• Over speed and overtemperature protection

• Motor I2T protection

• Control mode supported

• Speed control for RFO, SFO, and TBC control methods.

• Current control for RFO and TBC control methods

• Torque control for SFO control method.

User guide 6 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Introduction

• Voltage control

• Profiler to automatically identify motor and load parameters that are used in speed, current controller, and
rotor angle estimation.

• Algorithm is implemented in Floating Point Base (compliant with the ANSI/IEEE Std 754-2008) - No extra bit-
shift or overflow & underflow checks.

The Motor Control Library supports many permutations of control type, controlled entity, feedback type, and

startup method as listed in the following table.

Table 1 Motor Control Library support control type

Control type Controlled entity Position feedback Startup method

 Open loop Voltage -NA- -NA-

 FOC in RFO Current Sensorless Rotor Pre-Alignment

 FOC in RFO Current Sensorless Six Pulse Injection

 FOC in RFO Current Sensorless High Frequency Injection

 FOC in RFO Current Sensorless Dyno Mode

 FOC in RFO Current Encoder Rotor Pre-Alignment

 FOC in RFO Current Hall Sensor -NA-

 BC in TBC Current Hall Sensor -NA-

 TC in TBC Current Hall Sensor -NA-

 FOC in SFO Torque Sensorless Rotor Pre-Alignment

 FOC in SFO Torque Sensorless Six Pulse Injection

 FOC in SFO Torque Sensorless High Frequency Injection

 FOC in SFO Torque Sensorless Dyno Mode

 FOC in RFO or SFO Speed Sensorless Rotor Pre-Alignment

 FOC in RFO or SFO Speed Sensorless Six Pulse Injection

 FOC in RFO or SFO Speed Sensorless High Frequency Injection

 FOC in RFO or SFO Speed Sensorless Open-loop voltage

 FOC in RFO Speed Sensorless Open-loop current

 FOC in RFO Speed Encoder Rotor Pre-Alignment

 FOC in RFO Speed Hall Sensor -NA-

 FOC in RFO Position Encoder Rotor Pre-Alignment

 BC in TBC Speed Hall Sensor -NA-

 TC in TBC Speed Hall Sensor -NA-

Control mode is configured using params[x].ctrl.mode parameter.

User guide 7 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Introduction

1.2 Rotor field-oriented control

RFO is a variant of FOC where the motor’s three-phase sinusoidal currents are decomposed into q-axis and d-
axis DC currents using Clark and Park transformations. These transformations reduce the complexity of the

control system for AC machines. Figure 1 illustrates the overall block diagram of the RFO control method which

is composed of modules such as a speed control loop, q- and d-axis current control loops, and position
feedback.

Figure 1 RFO block diagram

Position and speed information can be obtained using position sensors (such as encoders or hall sensors) or
through sensorless approaches. The speed controller utilizes this speed information to generate current

references via a PI controller.

The Maximum Torque Per Ampere (MTPA) block generates optimal d-axis and q-axis currents to maximize
torque output. This block is specifically used for Interior Permanent Magnet motors to effectively utilize

reluctance torque. For operations above base speed, the Maximum Torque Per Volt (MTPV) algorithm can be

employed to achieve higher operating speeds.

Both MTPA and MTPV algorithms create reference values for q-axis and d-axis current control. The current
controllers process these references to produce voltage commands, which are then applied to the inverter

through selectable modulation schemes.

 MTPV

Derotate

Space

Vector

PWM

or

Neutral

Point

PWM

u3 Phase

Inverter

v

w

Current

Reconst.

Adaptive

Position

Observer

Feed Forwards

+

+

+

+

_
+

_

+

MTPA

3 Phase

Motor

+
+

+

+

+

+
+

Resonant Filter

PI

PI

ωm
*

{

(λm + Ldid
r)

(-Lq iq
r)

sgn(.)

ωm,error

Anti
Resonant

Filter

_

PI

Hall Signal

Processing

Hall

Sensor

Speed

Control

Current

Control

Rotate ω r ,obs

θ r ,obs

ω r ,hall

θ r ,hall

Three

Shunts

or

Single

Shunt

Tf
'

B'

d
dt

J'

is,ff
*

is,fb
*

is,int
*

is,ext
*

id,cmd
r

2

P

iqd
r , vqd

r * vdc,

iqd
r

iαβ

iq
r * = iq ,cmd

r

r *
id

id
r

id, error
r

iq, error
r

riq

vq
r *

vd
r *

vα
*

vβ
*

dw

dv

du

iαβ

vαβ
*

vdc

θ r

θ r

ω r ω r ω m

ω r

ω r

{ , , } hu hv hw

User guide 8 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Introduction

1.3 Motor control tuning flow

Motor control tuning involves the following steps.

• Step #1: Parameter Identification and Configuration (Refer: Parameter configuration)

• Configure basic motor parameters from nameplate/datasheet.

• Set up hardware-specific parameters (power board, controller)

• Configure system (such as PWM) and control-related parameters (such as Bandwidth)

• Step #2: Verification of Voltage / Current Measurement (Refer: Verification of ADC measurement)

• Verify that system configuration matches hardware setup.

• Validate protection thresholds (overcurrent, overvoltage)

• Step #3: Motor and Load Parameter Identification (Optional) (Refer: Motor parameter identification)

• Configured I/F and Speed loop parameters.

• Run profiler to identification motor parameters.

• Update configuration with identified values.

• Step #4: Startup Parameter Adjustment (Refer: Startup method tuning)

• Configure V/F or I/F startup parameters.

• Adjust voltage offset and slope ratios for V/F startup.

• Set appropriate startup current command for I/F startup.

• Optimize acceleration ramps for smooth startup.

• Step #5: Control Loop Tuning - Current Control Loop (Refer: Current)

• Set current loop bandwidth and calculate initial gains.

• Step #6: Control Loop Tuning - Speed Control Loop (Refer: Speed)

• Configure speed controller gains and bandwidth.

• Optimize for application-specific performance requirements.

Parameter Identification and
Configuration

Verification of voltage and current
measurement

Startup parameter Tuning

Current Loop Tuning

Speed Loop Tuning

Motor and Load profiler identification
(Optional)

Figure 2 Motor control tuning flow

User guide 9 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameters required for Motor Suite Motor Control Library

tuning

2 Motor parameters required for Motor Suite Motor Control

Library tuning

This chapter describes the required motor and load parameters for the Motor Control Library.

2.1 Motor/load parameters

Table 2 shows the motor parameters required for Motor Control Library.

Table 2 Motor/load parameters required for Motor Control Library

Name Unit Parameter Name Descriptions Where it is used

Motor poles # params[x].motor.P Number of magnetic

poles, not pole pairs.

▪ Convert electrical speed

& angle to mechanical

speed & angle or
conversely.

▪ Speed control Kp, Ki and

Feed forward parameter
calculation.

▪ Hall and Incremental
Encoder interface

Motor Lq H params[x].motor.lq Stator q-axis (Torque

current) inductance of

each phase winding.

▪ Current control Kp and
Feed forward calculation

▪ Rotor angle estimation-

Sensorless FOC

▪ MTPA for IPM motor

▪ Torque Calculation

Motor Ld H params[x].motor.ld Stator d-axis (Flux current)
inductance of each phase

winding.

▪ Current control Kp and

Feed forward calculation

▪ Rotor angle estimation-
Sensorless FOC

▪ MTPA for IPM motor

▪ Torque Calculation

Motor λm wb params[x].motor.lam Rotor flux linkage, this can
be calculated from Bemf

Constant (Ke [Vpeak(Line to Line) /

kRPM])

λm =
𝐾𝑒

√3
∗

2 ∗ 60

1000 ∗ 𝑃 ∗ 2𝜋

Where P – Number of Motor Poles

▪ MTPA for IPM motor

▪ Torque Calculation

Motor

Resistance

Ω params[x].motor.r Motor phase resistance

▪ Current control Ki
calculation

▪ Rotor angle estimation-
Sensorless FOC

User guide 10 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameters required for Motor Suite Motor Control Library

tuning

Name Unit Parameter Name Descriptions Where it is used

Motor
Maximum

Torque

Nm params[x].motor.T_max Maximum torque of the

motor

▪ Torque Control [SFO]

Motor Peak

Current
A params[x].motor.i_peak Maximum allowed motor

current. Set this value to

2.5 to 3x of motor
continuous current, if not

specified in the motor
datasheet.

▪ I2T protection

▪ Speed control PI output

limit

Motor
Continuous

Current

A params[x].motor.i_cont Continuous motor current

in rms value
▪ I2T protection

Motor d-

axis current

maximum

A params[x].motor.id_max Allowed maximum d-axis

current rating of the motor

that does not result in
demagnetization of the

permanent magnet. Set

this value to 25% of motor
continuous current, if not

specified in the motor

datasheet.

▪ Field weakening

Motor

Voltage

V params[x].motor.v_nom This parameter specifies
the maximum terminal

voltage.

▪ Not used

Nominal

Speed

RPM params[x].motor.w_nom.

elec

Nominal speed of the

motor.
▪ Hall sensor for zero

speed detection

Maximum

Speed

RPM params[x].motor.w_max.

elec

Maximum speed of the

motor.
▪ Limit for sensorless rotor

angle estimator

▪ Over speed threshold

Inertia kg.m2 params[x].motor.mech.in

ertia

Inertia of the motor and

load system
▪ Speed control Kp and

Feed forward parameter

calculation

viscous kg.m2

/sec2

params[x].motor.mech.vi

scous

Viscous damping of the

motor and load system
▪ Speed control Ki and

Feed forward parameter

calculation

friction kg.m2

/sec2

params[x].motor.mech.fri

ction

Friction of the motor and

load system
▪ Speed control Feed

forward parameter

calculation

Note: Each parameter or variable contains [x] notation in this document, where the x value represents motor

instances. To access Motor 0 parameters, the x value should be 0, and for Motor 1, the value should be 1.

User guide 11 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameters required for Motor Suite Motor Control Library

tuning

2.2 Parameter configuration hints

• System Parameters

− params[x].sys.cmd.w_max.mech is the maximum speed the user wants to command via potentiometer.
This can be different from maximum speed of the motor.

− params[x].sys.vdc_nom is the DC bus voltage., this value is the same as params[x].motor.v_nom.

However, if the user may want to apply 24 V to a 48 V motor. So, vdc_nom needs to be set as 24 V rather
than 48 V in this case.

• Control Parameters

− Set the value of params[x].ctrl.curr.bw at least 10 times lower than switching frequency. In addition, it

must be set higher than params[x].ctrl.speed.bw

User guide 12 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

3 Parameter configuration

Motor Suite Motor Control Library parameters are centrally defined and configured in the ParamConfig.h file.
This header file serves as the primary configuration interface for all parameters required by the Motor Control

Library. The ParamConfig.h file is in the project directory structure at: \configuration\motor-ctrl-lib-
config\ParamConfig.h.

Values configured using macros in ParamConfig.h are assigned into actual parameters in the ParamConfig.c file
through the PARAMS_InitManual() function, which is called during state machine initialization to transfer all
macro-defined configuration values from the header file into the runtime parameter structure. Refer 12.1

Parameter and 12.3 Initialization and interrupt handling in motor control for parameter handling and

initialization sequence.

Alternatively, ModusToolbox™ Motor Suite GUI provides a comprehensive Graphical User Interface (GUI) for

configuring Motor Control Library parameters without manually editing code files.

3.1 How to configure motor and load parameters

Configuration of motor and load parameters in the motor control code example.

Figure 3 Motor and load parameter configuration in ModusToolbox™ code example

Attention: When updating the motor and load parameter make sure the following macro in this file is set

true “#define PARAMS_ALWAYS_OVERWRITE (true)”

User guide 13 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Configuration of motor and load parameter from ModusToolbox™ Motor Suite GUI.

Figure 4 Motor and load parameter configuration in ModusToolbox™ Motor Suite GUI

After updating the parameter in the motor suite GUI, write the parameter into the target board from Motor

Suite GUI .

3.2 How to configure voltage and current measurement parameter

Configure the following power board parameters using ModusToolbox™ Motor Control code example in
ParamConfig.h file, \configuration\motor-ctrl-lib-config\ParamConfig.h.

• Current shunt and external amplifier gain for current measurement

• Voltage measurement resistive network circuit used to convert DC bus voltage range into controller

measurable range

S
ig

n
a
l
fr

o
m

 P
o
w

e
r

C
ir

c
u
it
ry

C
o
n

tr
o
ll
e
r

A
D

C
 I
n

p
u

t

Current Measurement

Voltage Measurement

Voltage Level Shifter

Figure 5 Current and voltage measurement circuit

User guide 14 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Figure 6 Power board-related configuration in ModusToolbox™ IDE

The "ADC_VREF_GAIN" macro defined in ParamConfig.h holds the configuration for the voltage level shifter
network in the controller board. For example, in "KIT_PSC3M5_CC2", a resistor network (by default) is used to
convert the 5V signal from the power board to 3.3V; in this case, “ADC_VREF_GAIN” = 5.0/3.3. If no voltage level

shifter network is used to or is manually removed from the controller board, this macro value should be 1.

The “ADC_CS_OPAMP_GAIN” macro defined in ParamConfig.h holds the gain in the current input path for shunt

or active current sensor based current measurement. This includes external gain(amplifier gain and any
attenuation in the external circuit) and configured internal ADC sampler gain(default sampler gain value is 1).

ADC_CS_OPAMP_GAIN = External Gain * Internal Gain = 12*1 = 12 (default configured value)

The "ADC_CS_SHUNT_RES" macro holds the current measurement shunt resistance value in ohms for shunt-
based current measurement systems, while the "ADC_CS_CURRENT_SENSITIVITY" macro is used for active

current sensor-based current measurement and holds the current sensitivity of the active sensor defined in V/A
units - for example, a 1mΩ shunt resistor would use ADC_CS_SHUNT_RES = 0.001f, whereas an active sensor

with 100mV/A output would use ADC_CS_CURRENT_SENSITIVITY = 0.1f, and the appropriate macro should be
configured based on whether the hardware design uses shunt resistors or active current sensors for motor
current feedback measurement.

UL

UH

VL

VH

WL

WH

ADC_ISR0/1

PWM Timer

CC

ADC Trigger

UL

UH

VL

VH

WL

WH

ADC_ISR0/1

PWM Timer

CCA

ADC Trigger

ADC Trigger for Single Shunt Measurement

CCB

ADC Trigger for Leg Shunt Measurement

ADC Trigger

Iu,Iv and Iw Measurement

Negative

Current

measurement

-Iw

Positive

Current

measurement

Iu

CCA = CC_W*ADC_CS_SETTLE_RATIO+CC_V*(1-ADC_CS_SETTLE_RATIO)

CCB = CC_V*ADC_CS_SETTLE_RATIO+CC_U*(1-ADC_CS_SETTLE_RATIO)CC = PWM_Period/2

Figure 7 Current trigger – PWM for sector 0

Also, some of the current measurement-related parameters can be configured using the ModusToolbox™ Motor
Suite GUI.

User guide 15 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Current Sense
Input Configuration

Figure 8 Current measurement configuration in Motor Suite GUI

In case of multiple motors, configure for other motors as well.

3.3 How to configure key system parameters

This chapter describes the key system parameters of the Motor Control Library and how to configure those
parameters.

3.3.1 Control mode

The Motor Control Library supports many permutations of control type, controlled entity, feedback type, and

startup methods that are all listed in Table 1. The control mode selection is managed through the
params[x].ctrl.mode parameter, which serves as the primary configuration interface for determining the

operational behavior of the motor control system. This parameter can be configured through the
ModusToolbox™ IDE or Motor Suite GUI.

Configure from Modus Toolbox IDE , File name : ParamConfig.h

Configure from Modus Toolbox Motor Suite GUI

Figure 9 Control mode configuration

User guide 16 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Table 3 Supported control mode

Control mode Build Description

RFO SFO TBC

Volt_Mode_Open_Loop 0 0 0 Open-loop V/Hz control

Current_Mode_Open_Loop 1 Open-loop I-F control

Curr_Mode_FOC_Sensorless_Align_Startup 2 Closed-loop sensorless-FOC

current control with pre-alignment

at startup

Curr_Mode_FOC_Sensorless_SixPulse_Startup 3 Closed-loop sensorless- FOC

current control with six pulse

injection at startup

Curr_Mode_FOC_Sensorless_HighFreq_Startup 4 Closed-loop sensorless- FOC
current control with high

frequency injection at startup

Curr_Mode_FOC_Sensorless_Dyno 5 Closed-loop sensorless- FOC
current control in dyno mode

(waiting for observer lock to start

up)

Curr_Mode_FOC_Encoder_Align_Startup 6 Closed-loop sensored- FOC current

control with encoder feedback and

pre-alignment at startup

Curr_Mode_FOC_Hall 7 Closed-loop sensored- FOC current

control with hall sensor feedback

Curr_Mode_Block_Comm_Hall 1 Closed-loop block-commutation
current control with hall sensor

feedback

Trq_Mode_FOC_Sensorless_Align_Startup 1 Closed-loop sensorless- FOC
torque control with pre-alignment

at startup

Trq_Mode_FOC_Sensorless_SixPulse_Startup 2 Closed-loop sensorless- FOC
torque control with six pulse

injections at startup

Trq_Mode_FOC_Sensorless_HighFreq_Startup 3 Closed-loop sensorless- FOC
torque control with high frequency

injection at startup

Trq_Mode_FOC_Sensorless_Dyno 4 Closed-loop sensorless- FOC
torque control in dyno mode

(waiting for observer lock to start

up)

Speed_Mode_FOC_Sensorless_Align_Startup 8 5 Closed-loop sensorless- FOC speed
control with pre-alignment at

startup

User guide 17 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Control mode Build Description

RFO SFO TBC

Speed_Mode_FOC_Sensorless_SixPulse_Startup 9 6 Closed-loop sensorless- FOC speed
control with six pulse injection at

startup

Speed_Mode_FOC_Sensorless_HighFreq_Startup 10 7 Closed-loop sensorless- FOC speed
control high frequency injection at

startup

Speed_Mode_FOC_Sensorless_Volt_Startup 11 8 Closed-loop sensorless- FOC speed

control with open-loop V/Hz at

startup

Speed_Mode_FOC_Sensorless_Current_Startup 12 Closed-loop sensorless- FOC speed
control with open-loop current at

startup

Speed_Mode_FOC_Encoder_Align_Startup 13 Closed-loop sensored- FOC speed

control with encoder feedback and

pre-alignment at startup

Speed_Mode_FOC_Hall 14 Closed-loop sensored- FOC speed

control with hall sensor feedback

Speed_Mode_Block_Comm_Hall 2 Closed-loop block-commutation
speed control with hall sensor

feedback

Profiler_Mode 15 9 Profiler mode

Each configured control mode operates through a structured state machine architecture, where the system

progresses through a series of well-defined operational states. The current system state is stored in the
sm[x].current variable. The list of states is shown in Figure 10.

User guide 18 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Figure 10 List of state in Motor Control

Figure 11 Control mode types and associated state machines – Example

• Control mode is configured using “params[x].ctrl.mode” parameter and configuration macro is defined in
paramconfig.h file

• “sm[x].current” variable holds the current state machine state

User guide 19 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

3.3.2 Control loop frequency

The motor control system implements two primary control loops with interdependent frequencies:

• Fast Control Loop: Executes current control algorithms and operates at the highest frequency

• Slow Control Loop: Handles speed control and system management functions

The PWM frequency is determined by the fast control loop frequency multiplied by the configured ratio

between PWM frequency and fast loop frequency.

The slow control loop frequency is derived from the fast control loop frequency using the configured ratio

between slow loop frequency and fast loop frequency.

Control loop frequency-related parameters can be configured through the ModusToolbox™ IDE or Motor Suite

GUI.

Configure from Modus Toolbox Motor Suite GUI

Configure from Modus Toolbox IDE , File name : ParamConfig.h

Figure 12 Control loop frequency configuration

User guide 20 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Table 4 Control loop frequency - Default configured values

Input (Macro

defines in

ParamConfig.h)

MOTOR_CTRL_FASTLOOP_FREQ

15000.0f [Hz], fast-loop frequency

Param name: params[x]. sys.samp.fs0 =

MOTOR_CTRL_FASTLOOP_FREQ

params[x]. sys.samp.ts0[sec]= 1/

MOTOR_CTRL_FASTLOOP_FREQ

= 66.6E-6f

MOTOR_CTRL_FS0_FS1_RATIO 5 [], Fast-loop to slow-loop frequency ratio

Param name: params[x].

sys.samp.fs0_fs1_ratio =

MOTOR_CTRL_FS0_FS1_RATIO

params[x].sys.samp.ts1[sec] =
params[x].sys.samp.fs0_fs1_ratio/

params[x].sys.samp.fs0 = 333.33E-6f

MOTOR_CTRL_FS0_FS1_RATIO 1 [#], PWM to Fast-loop frequency ratio

Param name:
Params[x].sys.samp.fs0_fs1_ratio =

MOTOR_CTRL_FS0_FS1_RATIO

Calculated

Parameters

(calculated in

ParamConfig.c)

Params[x].sys.samp.ts0 66.66E-6 [sec], fast-loop period

=1/ params[x]. sys.samp.fs0 = 66.66E-6

Params[x].sys.samp.fpwm 15000.0f [Hz], PWM frequency

=params[x].sys.samp.fs0 * params

[x].sys.samp.fpwm_fs0_ratio

= 15000.0f*1 = 15000.0f

Params[x].sys.samp.tpwm 66.66E-6 [sec], PWM period

=1/ params[x]. sys.samp. fpwm = 66.66E-6

Params[x].sys.samp.fs1 3000.0f [Hz], PWM frequency

=params[x].sys.samp.fs0 / params[

x].sys.samp.fs0_fs1_ratio

= 15000.0f/5 = 3000.0f

Params[x].sys.samp.ts1 333.33E-

6
[sec], slow-loop period

=1/ params[x]. sys.samp.fs1 = 1/3000.0f =

333.33E-6

User guide 21 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

3.3.3 State transition threshold

State transition thresholds determine when the system moves from one state to another and can be configured
based on motor speed/ specific events/motor current/ time. When the state machine transitions back to a

previous state, a hysteresis value is applied using the formula (Threshold - Hysteresis) to prevent oscillation

between states.

3.3.3.1 Start-up threshold parameters

Params[x].ctrl.volt.w_thresh.elec and Params[x].volt.w_hyst.elec parameters control open-loop threshold
values. The Params[x].ctrl.volt.w_thresh.elec parameter defines the threshold for transitioning the system from

"Brake_Boot" state to startup states (for example, Current_OL, Volt_Hz_OL). The Params[x].volt.w_hyst.elec
parameter defines the threshold for transitioning the system from startup states (for example, Current_OL,
Volt_Hz_OL) back to "Brake_Boot" state.

3.3.3.2 Observer threshold parameters (speed control):

Params[x].obs.w_thresh.elec and Params[x].obs.w_hyst.elec parameters control observer threshold values.

The Params[x].obs.w_thresh.elec parameter defines the threshold for transitioning the system from startup
states (for example, Current_OL, Volt_Hz_OL) to Speed_CL state. The Params[x].obs.w_hyst.elec parameter

defines the threshold for transitioning the system from Speed_CL state back to startup states (for example,
Current_OL, Volt_Hz_OL).

Figure 13 RFO & SFO speed control FOC sensorless with align startup

User guide 22 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Figure 14 RFO speed control FOC encoder with rotor pre-alignment startup

3.3.3.3 Current control threshold parameters:

Params[x]. ctrl.curr.i_cmd_thresh and Params[x]. ctrl.curr.i_cmd_hyst parameters control observer threshold
values. The Params[x]. ctrl.curr.i_cmd_thresh parameter defines the threshold for transitioning the system

from "Brake_Boot" state to Current_CL state. The Params[x]. ctrl.curr.i_cmd_hyst parameter defines the
threshold for transitioning the system from Current _CL state back to "Brake_Boot" state.

Figure 15 RFO current mode FOC sensorless with align startup state machine

Init
Brake &

Bootstrap
Align

Fault

• Current cmd (ext) < thresh

• Bootstrap done
• Current cmd (ext) thresh

• Current cmd (int) < thresh

Current
CL

• Align done
• Current cmd (ext) thresh

• ADC offset nulling done
• Parameters init done
• Ext enable cmd

• Clear faults

• All states, Fault detected

• All states, Ext disable cmd

User guide 23 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Table 5 Startup transition - Default configured values

Input (Macro

defines in

ParamConfig.h)

MOTOR_CTRL_VOLT_STARTUP_THRESH 200.0f [RPM], startup threshold. Default value is 5% of

motor nominal speed

Param name: params[x].ctrl.volt.w_thresh.elec

[Ra/sec-elec] =

MECH_TO_ELEC(HZ_TO_RADSEC

(RPM_TO_HZ(MOTOR_CTRL_VOLT_STARTUP_T

HRESH)), MOTOR_POLE)

Params[x].ctrl.volt.w_hyst.elec =

params[x].ctrl.volt.w_thresh.elec * 0.5f

MOTOR_CTRL_OBS_SPEED_THRESH 800.0f [RPM], Observer threshold. Default value is 20%

of motor nominal speed

Param name: params[x]. obs.w_thresh.elec

[Ra/sec-elec] =

MECH_TO_ELEC(HZ_TO_RADSEC

(RPM_TO_HZ(MOTOR_CTRL_OBS_STARTUP_T

HRESH), MOTOR_POLE)

Params[x]. obs.w_hyst.elec = params[x].

obs.w_thresh.elec * 0.5f

MOTOR_CTRL_CURRENT_STARTUP_THRESH 0.525f [A], MOTOR_CURRENT_CONT*0.15f, Default

value is 15% of motor continuous current

Param name: params[x]. ctrl.curr.i_cmd_thresh

[A] =

MOTOR_CTRL_CURRENT_STARTUP_THRESH

Params[x]. ctrl.curr.i_cmd_hyst = params[x].

ctrl.curr.i_cmd_thresh * 0.8f

Configure from Modus Toolbox IDE , File name : ParamConfig.h

Configure from Modus Toolbox Motor Suite GUI

Figure 16 How to configure state threshold parameters

User guide 24 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

3.3.4 Rate limiter

Rate limiters provide a controllable soft start by limiting how quickly speed and current commands can change,
preventing abrupt system responses.

Parameters:

• Speed rate limit: params[x].sys.rate_lim.w_cmd.elec [rad/(sec)²]

• Current rate limit: params[x].sys.rate_lim.i_cmd [A/sec]

Examples:

• With a 10 A/sec current rate limit, it takes 1 second for current to ramp from 0A to 10A, ensuring smooth
startup without sudden torque changes.

• With a 100 rad/(sec)² speed rate limit, it takes 1 second for speed to accelerate from 0 to 100 rad/sec,
providing gradual speed transitions.

Figure 17 Ramp limiter

Table 6 Startup transition - Default configured values

Input (Macro

defines in

ParamConfig.h)

MOTOR_CTRL_SPEED_

CMD_RATE

1000.0f [RPM/sec], startup threshold. Default value is 5% of motor nominal

speed

Param name: params[x].sys.rate_lim.w_cmd.elec [Ra/sec-elec] =

MECH_TO_ELEC(HZ_TO_RADSEC(RPM_TO_HZ(MOTOR_CTRL_SPE

ED_CMD_RATE)), MOTOR_POLE)

MOTOR_CTRL_CURREN

T_CMD_RATE

108.0f [A/sec], 10.0f*MOTOR_CURRENT_PEAK. Default value is 10-time

motor peak current

Param name: params[x].sys.rate_lim.i_cmd [A/sec] =

MOTOR_CTRL_CURRENT_CMD_RATE

User guide 25 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Parameter configuration

Configure from Modus Toolbox IDE , File name : ParamConfig.h

Configure from Modus Toolbox Motor Suite GUI

Figure 18 Rate limiter parameter configuration

User guide 26 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Verification of ADC measurement

4 Verification of ADC measurement

Verification of DC bus voltage and motor current measurement if these values are not matching with actual
values how to adjust it or fix.

4.1 DC bus voltage measurement

Read the DC bus voltage using ModusToolbox™ Motor Suite GUI Test Bench, the measured voltage should
match with actual DC bus voltage applied to power board with ±2% tolerance. If the measured DC bus voltage

does not match with actual DC bus voltage, check the following configurations in code example.

• Voltage resistor divider configuration (“ADC_SCALE_VDC” macro in Paramconfig.h file), voltage
measurement low side and high side resistance value are configured as per power board.

• ADC voltage reference configuration (“ADC_VREF_GAIN” macro in Paramconfig.h file)

It is possible to read the DC bus voltage ADC value directly from “mcu[x].dma_results[2]” variable using Motor
Suite GUI Builder. ADC count value should be 4095*Vin /VADCREF, Where Vin is voltage at MCU voltage measurement
pin and VADCREF is 3.3 V.

4.2 Motor phase current measurement

Current sensing is one of the most critical aspects of motor control systems, serving as the foundation for both
control performance and system protection. In sensorless control methods particularly, current information

becomes the primary feedback source from which rotor position and speed are estimated. Field Oriented

Control (FOC) is entirely dependent on accurate current measurements, as the current control loops require

precise feedback to regulate d-axis and q-axis currents effectively. Therefore, it is critical to verify current

measurement accuracy and quality before running FOC algorithms.

Step 1: Read all three-phase current values without running the motor using Motor Suite GUI Oscilloscope. All
three phase current values should be zero or close to zero.

Optionally read the current ADC count value using Motor suite GUI Builder. In case of leg shunt configuration,

“mcu[x].dma_results[0]”, “mcu[x].dma_results[5]” and “mcu[x].dma_results[1]”variables hold phase U (Iu),
phase V (Iv), and phase W (Iw) currents, respectively. ADC count value should match with the current input-
offset value. In case of single shunt configuration, read “mcu[x].dma_results[0]” and “mcu[x].dma_results[5]”

variables value should match with the current input offset.

Figure 19 Phase current waveform- While the motor is not running

User guide 27 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Verification of ADC measurement

Step 2: Run the motor in V/F open loop mode and read motor phase currents using Motor Suite GUI
Oscilloscope. The measured value should match with the actual current drawn by the motor.

If the measured current values are not matching with actual current, check the following parameters
configurations are matched with the power board.

• ADC voltage reference configuration (“ADC_VREF_GAIN” macro in Paramconfig.h file)

• Current measurement shunt value configuration (“ADC_CS_SHUNT_RES” macro in Paramconfig.h file)

• Current measurement external amplifier configuration (“ADC_CS_OPAMP_GAIN” macro in Paramconfig.h
file)

• Configured shunt type (“ADC_CS_SHUNT_TYPE”), polarity(“ADC_CS_CURRENT_SENSE_POLARITY”) and
measurement type (“ADC_CS_CURRENT_MEASUREMENT_TYPE”)

Figure 20 Phase current waveform - V/F open-loop mode

In the case of single shunt current measurement, three parameters directly influence current measurement.

These parameters are defined in configuration/motor-ctrl-lib-config/ParamConfig.h and require proper
configuration for accurate current sensing.

1. “ADC_CS_SS_MIN_SEGMENT_TIME” defines the minimum measurable window for single shunt current

measurement, specified in microseconds [μs]. This parameter defines the minimum PWM on-time for

current measurement, so it has the most significant impact on measurement accuracy, with a default value

of 3μs. Optimization of this value can improve system performance and accurate current measurement.

2. “ADC_CS_SETTLE_RATIO” represents the settling ratio used for single-shunt current sampling timing. This
parameter allows adjustment of the measurement timing to avoid current sensing during switching

transients or ringing periods. It can be fine-tuned based on board-specific propagation delays and switching
characteristics, with default values typically working well for most standard applications.

3. “MOTOR_CTRL_SS_HMOD_KI” serves as the harmonic modification parameter for single shunt current

measurement. This parameter helps optimize current reconstruction algorithms and typically functions

effectively with default settings without requiring adjustment in most applications.

Begin optimization with the minimum segment time parameter as it provides the most significant
improvement potential. Example, start by reducing ADC_CS_SS_MIN_SEGMENT_TIME from 3μs to 1-1.25μs and
verify current sensing. If further refinement is needed, adjust ADC_CS_SETTLE_RATIO to account for board-

specific characteristics. Monitor current measurement quality throughout the tuning process to ensure stable

and accurate reading across the complete operating range.

User guide 28 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

5 Motor parameter identification

Motor electrical and mechanical parameters are critical for precise motor operation. This chapter explains how
to identify these parameters.

5.1 Parameter identification using Motor Suite motor profiler

The Profiler feature automates extraction of motor parameters so users can tune the system when using a new
motor and/or mechanical load. The profiler extracts the following parameter by aligning the motor into a

known position and running the motor in speed control mode.

• Motor parameters

− Stator resistance, 𝑟 (“params[x].motor.r“)

− Stator q-axis inductance, 𝐿𝑞 (“params[x].motor.lq“)

− Stator d-axis inductance, 𝐿𝑑 (“params[x].motor.ld“)

− Rotor permanent-magnet flux linkage, 𝜆𝑚 (“params[x].motor.lam “)

• Mechanical Parameters (used in speed controller)

− Inertia, J (“params[x].mech.inertia”)

− Viscous, B (“params[x].mech.viscous”)

− Friction, Tf (“params[x].mech.viscous”)

The profiler is not a substitute for engineering judgment or expertise in tuning motor control systems; it is a

tool to facilitate that process. It assumes a simplified first-order mechanical model (inertia and friction),

whereas some loads exhibit resonances, for example, when there is a significant inertia mismatch between the

motor and the load. Therefore, the user should fine-tune the parameters based on the application’s
characteristics. There are temperature variations, aging effects, and other environmental factors, so these
values are estimated and can vary with operating conditions and time.

Note: In Profiler mode, it is required to run the motor in both current open loop and speed closed loop modes to

identify the load parameters. This identification process can only be executed successfully when both
underlying control modes are already functioning properly - therefore, when the motor is not operating
correctly in current open loop mode, the Current Open Loop section (6.2 Open-loop I/F) can be referenced

for adjusting the appropriate open loop parameters, and when the motor is not working properly in speed

closed loop mode, the Speed Loop section (7.2 Speed) can be referenced for tuning the speed controller

parameters.

5.1.1 Motor Suite motor profiler execution steps

The profiler executes the following steps to estimate parameters:

1. Lock the rotor (electrical identification)

• Align and lock the rotor at known electrical degrees by commanding Iα = params[x].profiler.i_cmd_dc and
Iβ = 0 for “params[x].profiler.time_rot_lock”.

• While locked, estimate phase resistance Rs from the DC injection.

• Still at lock, estimate inductances Ld and Lq by injecting a high-frequency current (1 kHz) with amplitude
“params[x].profiler.i_cmd_ac“and measuring the response.

• Use the identified Rs, Ld, and Lq to initialize the sensorless rotor estimator for the next step.

User guide 29 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

2. Run the motor (mechanical and flux identification)

• Run the motor with speed command from 0 to “params[x].profiler.w_cmd_elec.max“. The ramp rate is set
by “params[x].sys.rate_lim.w_cmd.elec“.

• Start the motor in open-loop current control with current command “params[x].ctrl.curr.i_cmd_ol” and
switch to closed-loop speed control at motor speed reaches “params[x].obs.w_thresh.elec.”

• Begin mechanical/flux estimation once the speed reaches params[x].profiler.w_cmd_elec.min.”

• Perform estimation over multiple speed steps. At each step, hold speed for
“params[x].profiler.time_spd”and estimate:

− B: viscous friction coefficient

− Tf: Coulomb (dry) friction torque

− 𝜆𝑚 : Rotor flux linkage

• Finalize B, Tf, and 𝜆𝑚 when the motor speed reaches “params[x].profiler.w_cmd_elec.max.”

3. Ramp down (inertia identification)

• Ramp the commanded speed down to “params[x].profiler.w_cmd_elec.min.”

• Estimate inertia J from the speed response during ramp-down (using measured acceleration/torque)

Prof_Rot_Lock

Prof_R

Prof_Ld

Prof_Lq

Current_OL

Speed_OL_To_CL

Speed_CL

Prof_Finished

Motor Parameter
Identification

−Rotor locked into know position

−Identify r, Lq, Ld

Mechanical
Parameter

Identification

−Run the motor in open loop , Speed close loop
and ramp down the motor

−Identify J, B, Tf, and V/F parameters

Figure 21 Profiler execution steps

Note: Refer to the motor control firmware reference manual for estimation details.

As the Profiler runs the motor in speed-control mode to estimate parameters, it is essential to preconfigure the
following motor and mechanical parameters using the motor’s nameplate, datasheet, or best-known values.

5.1.2 Profiler parameters

The Motor Control Library includes configurable input parameters for profiler setup that list of parameters is
described in Table 7.

User guide 30 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Table 7 Profile input parameters

Parameter Name Description

params[x].profiler.overwrite Enable: After the profiler estimates values, it replaces the configured

motor and load parameters with its results.

Disable: Keep existing parameters; do not apply profiler estimates.

Config macro: MOTOR_CTRL_PROFILER_PARAM_OVERWRITE

params[x].profiler.cmd_thresh [%], Activation command threshold for profiler. The profiler starts

only if the speed command value exceeds this threshold value.

Config macro: MOTOR_CTRL_PROFILER_CMD_THRESH

params[x].profiler.cmd_hyst [%], Activation command hysteresis for profiler

Config macro: MOTOR_CTRL_PROFILER_CMD_HYST

params[x].profiler.i_cmd_dc [A], Target DC current applied to lock the rotor and resistance

estimation

Config macro: MOTOR_CTRL_PROFILER_I_CMD_DC

params[x].profiler.i_cmd_ac [A], Target AC current applied to inductance estimation

Config macro: MOTOR_CTRL_PROFILER_I_CMD_AC

params[x].profiler.w_cmd_elec.min [Ra/sec-elec], Start threshold to start the mechanical parameter

estimation

Config macro: MOTOR_CTRL_PROFILER_SPEED_CMD_MIN

params[x].profiler.w_cmd_elec.max [Ra/sec-elec], Maximum motor speed in profiler mode

Config macro: MOTOR_CTRL_PROFILER_SPEED_CMD_MAX

params[x].profiler.time_rot_lock [sec], Rotor locking time

Config macro: MOTOR_CTRL_PROFILER_ROTOR_LOCK_TIME

params[x].profiler.time_spd [sec], Duration to maintain constant motor speed in each step for

mechanical parameter estimation

Config macro: MOTOR_CTRL_PROFILER_FLUX_EST_TIME

Advanced profiler parameters are derived from profile input parameters.

Figure 22 Profiler input parameter config macros in ParamConfig.h

User guide 31 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

params[x].profiler.w_cmd_elec.min

params[x].profiler.w_cmd_elec.max

params[x].profiler.time_spd

Motor Param Identification Mechanical Param Identification

Figure 23 Motor profiler: State and motor speed

params[x].profiler.i_cmd_dc

params[x].profiler.i_cmd_ac

params[x].profiler.time_rot_lock

Figure 24 Motor profiler: Motor parameter identification stage

User guide 32 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

5.1.3 Parameter tuning in profiler mode

This section explains the parameters that influence each stage of the profile.

5.1.3.1 Rotor lock state

To extract motor parameters, first lock the rotor at a known electrical angle by applying sufficient DC current

and allowing time for it to rotate and settle.

By default, the current command (“params[x].profiler.i_cmd_dc”) is set to 40% of the motor’s continuous
current, that is typically adequate for most cases; Increase this value as needed based on the motor load

condition.

The default rotor lock time (“params[x].profiler.time_rot_lock”) is 1 sec. If required, adjust the lock time based
on the load condition.

Below diagram depicts the rotor locking stage for a typical IPM with an initial rotor angle of 𝜃 = 𝜋/4, by

regulating and applying a constant dc current along the α-axis, the rotor flux linkage will align itself with the α-

axis and after settling, the rotor angle would be 𝜃 =/2.

Figure 25 Rotor locking stage, starting from 𝜽 = 𝝅/𝟒 as the initial rotor angle and locking at 𝜽 = 𝝅/𝟐

5.1.3.1 Resistance estimation

When the rotor is locked and the dc-currents reach their steady-state value, the resistance of the motor is
estimated using the applied DC voltage, 𝑉𝛼, and the commanded DC current, 𝐼𝛼

∗ , as follows:

𝑟 =
𝑉𝛼
𝐼𝛼

=
𝑉𝛼
𝐼𝛼
∗

During motor resistance estimation, the system measures the total resistance path including motor windings,
connecting cables, and power switching device on-resistance. This comprehensive measurement may show
slightly higher resistance values than an LCR meter reading of just the motor windings, especially for very low-
resistance motors (<10 mΩ). This is normal behavior and will not impact motor control performance.

The following diagram illustrates the resistance-estimation stage, filtered 𝑉𝛼 used in estimated of resistance.

User guide 33 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Figure 26 Stator resistance estimation stage

5.1.3.2 Inductance estimation

In motor inductance value estimation, high-frequency components are also injected in the 𝛼𝛽-axes in addition

to the dc component applied to 𝛼-axis lock the rotor. First, inject the high-frequency voltage to the 𝛼-axis and
measure its corresponding current. This value is used to estimate motor inductance Ld. Then inject the high-

frequency current to the 𝛽-axis and measure its corresponding current. This value is used to estimate motor
inductance Lq.

To improve estimation accuracy, profiler uses multiple injection frequencies around 1 kHz (900–1100 Hz) when
estimating inductance. When validating estimated values against LCR meter readings, ensure frequency

consistency. As inductance estimation uses 1 kHz injection, configure the LCR meter to 1kHz for meaningful
comparison

• High Frequency Component

High-frequency current components are defined in “params[x]profiler.i_cmd_ac” parameter, high-frequency

component value should be less than DC component “params[x].profiler.i_cmd_dc,” to avoid torque
generation from the high- frequency component. Default high frequency component value is 25% of motor

continuous current, this is half the value of dc component. Also injected dc and ac currents must be lower than

the peak current rating of the motor otherwise the measurements would not be accurate due to saturation of
the inductances along both axes (𝐿𝑞 and 𝐿𝑑). It is recommended that the injected currents do not go above 25%

of the peak current rating of the motor.

• Zero Inductance Estimation issue:

This occurs when the motor's electrical time constant (L/R) approaches or falls below the sampling period
(1/PWM_frequency). For low-inductance motors, the system cannot resolve the L/R dynamics within the

sampling window. Increase the PWM frequency to provide sufficient time resolution for accurate inductance
estimation.

User guide 34 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Below diagram depicts the iterative current control and inductance estimation. 𝐿𝑞 and 𝐿𝑑 estimations will

converge to their corresponding real values while the current magnitudes converge to the commanded current

(|𝑖|̂∗).

Figure 27 Iterative current control and inductance estimation in the inductance-measurement stage

5.1.3.3 Mechanical parameter and flux linkage estimation

After resistance and inductance value estimation, these estimated values are used for sensorless rotor angle

estimation instead of configured value.

It is necessary to run the motor to estimate mechanical parameters and flux linkage values. Start the motor in

the current open loop with current command value “params[x].ctrl.curr.i_cmd_ol.” Once the speed command
reaches the observer threshold (“params[x].obs.w_thresh.elec”), state moves from current open loop to speed

close loop. In speed close loop operation, observer estimation rotor angle is used. Speed Ramp up to the
configured maximum speed, “params[x].profiler.w_cmd_elec.max.” Begin mechanical/flux estimation once

the speed reaches “params[x].profiler.w_cmd_elec.min.”

• Motor is not running in current open loop mode or over-current:

Make sure “params[x].ctrl.curr.i_cmd_ol” is configured correctly as per the system. Default value of
“params[x].ctrl.curr.i_cmd_ol” is 40% of motor continuous current. Increase the current command if motor
is not running and reduce in case of overcurrent.

It is essential to configure speed ramp rate is configured as per the system.

• Motor is not running in speed loop running:

Make sure profiler min and max speed parameter configuration as per motor specification. It is required to
set min value more than observer speed threshold and max value less than motor nominal speed(around
50%).

Adjust the speed and current loop bandwidth to run the motor in speed close loop.

Adjust the speed ramp rate based on system configuration

V/F constant and V/F offset values are also estimated in the profiler.

During mechanical parameter identification the motor should run in open loop and close loop, otherwise the
estimated parameter will not be correct.

User guide 35 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

5.1.4 How to run a motor profiler using Motor Suite GUI

• Open ModusToolbox™ Motor Suite and create project based on hardware setup used

• Make sure Motor Suite GUI is connected to the target device

• Use program button , Program the default binary file.

• Configure motor and mechanical parameters in Configurator view using the motor’s nameplate,
datasheet, or best-known values using Motor Suite GUI configurator.

Figure 28 Motor and mechanical parameter configuration

• Configure profiler parameters (refer Table 7) in Motor Suite GUI configurator

Figure 29 Profiler parameter configuration

User guide 36 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

• Program the parameter into RAM or Flash

• Open profiler window from Test Bench view and set speed command (>5%) and start the profiler

by enabling the driver. If motor is not running during mechanical parameter identification Change the
“Dynamic Response” to Slow / Fast / Custom or only adjust the speed loop bandwidth (Ex. reduce speed
loop bandwidth)

• Once profiler completes the estimation, update this value into Motor Suite GUI manually or automatically

Figure 30 Profiler window

User guide 37 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

5.2 How to measure motor parameter manually

In this section, it explains how to measure basic motor parameters as listed here:

• Stator resistance per phase (Rs)

• Stator inductance per phase (lq, ld)

− IPM motor stator lq inductance per phase

− IPM motor stator ld inductance per phase

• Motor poles (p)

5.2.1 Stator resistance (Rs)

The measurement method of the stator inductance with the equivalent circuit of the motor is shown in Figure
31. It measures the line-to-line resistance by LCR meter, but this measurement result is the sum of the two

resistances of both lines. The motor control parameter of a stator resistance parameter (Rs) represents the
winding resistance of the motor per phase, so the measurement result should be divided by 2 (for star-
connected windings).

Figure 31 Measurement method of stator resistance (Rs) and stator inductance (Lq, Ld)

5.2.1.1 Measurement procedure

The measurement procedure of Rs is as follows,

1. Connect two phases to LCR meter, and leave the third phase open

2. Measure the line-to-line resistance value

3. Divide the measured resistance value by 2

5.2.1.2 Measurement example

The following diagram shows the actual measurement example of the line-to-line stator resistance. The

measurement result in this example is 94.28, so, the parameter value of the Rs is 47.14 Ω.

User guide 38 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Figure 32 Measure Line to Line stator resistance (2Rs)

5.2.2 Stator inductance (Lq, Ld)

Motor Suite Motor Control Lib advanced sensorless Field Oriented Control (FOC) algorithm supports both
surface mounted permanent magnet (SPM) motors and interior permanent magnet (IPM) motors.

When working with surface permanent magnet (PM) motors the winding inductances Ld and Lq will have the
same value with any rotor angle as shown in Figure 33, left. However, when working with interior permanent

magnet (IPM) motors the winding inductance varies with the rotor angle as shown in Figure 33, right, and the Lq
inductance is greater than the Ld inductance.

Figure 33 Motor type (PM motor, IPM motor)

This section explains how to measure the winding inductance values Lq and Ld when using a 4-pole IPM motor.

When using an LCR meter to measure inductance, the result is the sum of two-phase inductances (line-to-line
inductance) because the measurement path goes through two windings in series. To obtain the actual phase
inductance value, you need to divide the measured line-to-line inductance by 2 (for star-connected windings).

And since the inductance value of the IPM motor varies with the rotor angle, it is necessary to adjust the angle

to measure the Lq and Ld value. Figure 34 shows the inductance value of the 4 pole IPM motor with respect to

the electrical angle and the mechanical angle. With respect to the 4-pole motor, one cycle of the electrical angle
is half the cycle of the mechanical angle. And there are 4 peaks (maximum and minimum) in inductance value
in one electrical cycle. So, it means that the inductance value is changed from maximum to bottom between 45
degrees in the mechanical angle. Therefore, to measure the inductance value by changing the motor angle
gradually by hand within 45 degrees in the mechanical angle, and the maximum value is the Lq, and the

minimum value is the Ld.

User guide 39 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Figure 34 Stator inductance (Lq, Ld)

5.2.2.1 Measurement procedure

The measurement procedure of Lq and Ld is as follows,

1. Connect 2 phases to LCR meter (set injection frequencies 1 kHz) and leave third phase open

2. Measure the line-to-line inductance value

3. Rotate the rotor gradually by hand and record the highest inductance value as Lq, and the lowest inductance
value as Ld

4. Divide these measured inductance values by 2

5.2.2.2 Measurement example

Figure 35 shows the actual measurement example of the line-to-line stator inductance. The measurement

result of Lq is shown on the right, and Ld on the left. The measurement result of the Lq is 550.0 mH, so, the

stator inductance per phase is 275.0 mH. The measurement result of the Ld is the 469.0 mH, so, the stator
inductance per phase is 234.5 mH.

Figure 35 Measure Line to Line stator inductance (2Ld, 2Lq)

5.2.3 Motor poles number (p)

This parameter represents the number of magnetic poles in a full mechanical cycle. There is one electrical cycle

for every pair of magnetic poles.

This parameter can be identified by counting the positive and negative peaks in the motor back EMF waveform
over a full mechanical revolution.

The following figure shows the line-to-line voltage waveform generated by the back EMF of the 4 pole IPM
motor. There are 2 peaks and 2 valleys (2 sinusoidal shaped cycles) in one mechanical cycle.

User guide 40 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Motor parameter identification

Figure 36 Measurement method of motor poles number

5.2.3.1 Measurement procedure

The measurement procedure of motor poles number is as follows,

1. Connect 2 phases to oscilloscope voltage probe, and leave third phase open

2. Move the motor by hand at a constant speed and make one mechanical revolution, and record the

waveform by oscilloscope

3. Count the peaks of the sinusoid

User guide 41 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

6 Startup method tuning

Different start-up methods are used in sensorless FOC. In this chapter, tuning of start-up method parameters
are described.

6.1 Open-loop V/F control

Open-loop V/F control, also referred to as scalar control or constant Volt/Hz control, is one of the methods used
for driving PMSMs. The control method behind this approach is preserving a constant voltage-to-frequency

ratio corresponding to the target synchronous speed. Rotor angle generated and voltage calculation are done

from speed command. There is no speed or current feedback involved.

This control method serves as a startup technique for closed-loop sensorless control systems. During initial

startup, back EMF signals are unavailable for determining rotor position, so the motor operates in open-loop
Volt-Hz mode. Once the motor reaches adequate speed and the observer can detect EMF, the system

transitions to closed-loop control.

6.1.1 V/F parameters

Two parameters define the V/F voltage command Vmin(“params[x].ctrl.volt.v_min”) and
K(“params[x].ctrl.volt.v_to_f_ratio”) as shown in Figure 37.

Figure 37 Commanded voltage vs command speed in V/f control

Figure 38 Open-loop V/F control block diagram

K

minV

ωthresh

v*s

ωe
*

+

+

Derotate

0
min

1/

-

ωm
*

2
P

s

V
vd

*

vq
*

θ

vα*

vβ*R(θ*)

K(r) sv. ec
ad

User guide 42 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

The list of parameters for the Open-loop V/F startup method are mentioned in Table 8

Table 8 Open-loop V/F control related parameters

Parameter Name Unit Description

params[x].ctrl.volt.v_min V Voltage offset - minimum voltage needed to overcome
motor resistance and generate sufficient torque for

startup

params[x].ctrl.volt.v_to_f_ratio V/(Ra/sec-elec) Ratio between voltage to frequency value

Params[x].ctrl.volt.w_thresh.elec Ra/sec-elec Speed threshold value to start the V/F control when

system in bootstrap state

Params[x].ctrl.volt.w_hyst.elec Ra/sec-elec Speed threshold value to move from open loop V/F

control to bootstrap state

Open-loop constant V/F control parameters are calculated using the following equations.

params. ctrl. volt. v_min =
(params.motor. r ∗ params.motor. i_cont)

𝑘

𝑘: 3~10

params. ctrl. volt. v_to_f_ratio =
params.motor. v_nom

params.motor.w_nom. elec

The V_min value should be added at low stator frequency to overcome the stator resistance drop and is

calculated based on motor resistance and continuous current value (typically V_min = I_cont × R_stator ×

safety_factor). The v_to_f_ratio is calculated from motor nominal voltage and nominal frequency/Speed. These

are combined in the relationship V_output = V_min + (V_to_f_ratio × Speed) to provide adequate starting

torque and maintain proper flux control across the entire operating speed range. When V_min and V_to_f_ratio
values are configured optimally, it should not result in too much variation in current for different speed range in

the open loop V/F mode.

If the motor current is too high during startup, the V_min value is too high and should be reduced, and if the
motor current increases gradually when increasing the motor speed, the V_to_f_ratio value should be reduced

to maintain constant current operation throughout the speed range.

Figure 39 State machine for Speed_Mode_FOC_Sensorless_Volt_Startup

User guide 43 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

6.1.2 Troubleshooting

• Motor is not running in open loop V/F mode:

− V/F control is sensitive to the control parameters v_min and v_to_f_ratio. If v_min and/or v_to_f_ratio are
set too low, the motor will not start spinning and will shake instead. In this case, increase v_min and/or
v_to_f_ratio if the motor is not starting or stops after reaching a certain speed.

− The v_min and/or v_to_f_ratio parameters should be increased if the load is increased and decreased if

the load is reduced.

− Speed ramp rate may be high for the styme, so reduce the ramp rate.

− Typically, motor phase current will be constant across the complete speed range in V/F control mode.

• Overcurrent triggered while running the motor in V/F mode:

− If v_min and/or v_to_f_ratio are set too high, the motor will start but there will be an overcurrent fault.
Reduce the V/F parameters or check the over the current threshold value.

6.1.3 How to configure parameters

V/F parameters can be configured using the ModusToolbox™ motor control code example or the

ModusToolbox™ Motor Suite GUI.

Configuration of V/F parameter using ModusToolbox™ motor control code example in ParamConfig.h file,

\configuration\motor-ctrl-lib-config\ParamConfig.h

Figure 40 V/F parameter configuration using ModusToolbox™ code example

Attention: When updating the motor and load parameter make sure the following macro in this file is set
true “#define PARAMS_ALWAYS_OVERWRITE (true)”

Configuration of current control parameter using ModusToolbox™ Motor Suite GUI

Figure 41 V/F parameter configuration in ModusToolbox™ Motor Suite GUI

User guide 44 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

6.2 Open-loop I/F control

In open-loop I/F control, the current magnitude is regulated using a closed-loop controller with current
feedback, while the angle is determined in open-loop fashion based on the commanded speed. The current

command value 𝑖𝑞
𝑟∗ (“params[x].ctrl.curr.i_cmd_ol”) sets the magnitude of current injected into the motor for

open-loop I/F control. Since this control mode uses motor phase current for current regulation, accurate phase
current measurement and proper current loop bandwidth configuration are critical.

During the startup when the back-EMF information is not available for rotor position estimation, the motor can

run in open loop I/F mode. Once the motor speed goes up and back-EMF can be estimated by the observer, the
closed loop kicks in and the motor exits I/F control.

Figure 42 Open-loop I/F control block diagram

6.2.1 I/F parameters

The list of parameters for the open-loop I/F startup method are mentioned in Table 9.

Table 9 Open-Loop I/F control related parameters

Parameter name Unit Description

params[x].ctrl.curr.i_cmd_ol A Current command value in I/F control

Params[x].ctrl.volt.w_thresh.elec Ra/sec-elec Speed threshold value to start the V/F control when

system in bootstrap state

Params[x].ctrl.volt.w_hyst.elec Ra/sec-elec Speed threshold value to move from open loop V/F control

to bootstrap state

User guide 45 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

Figure 43 State machine for Speed_Mode_FOC_Sensorless_Curr_Startup

6.2.2 Troubleshooting

• Motor is not running in open loop I/F mode

− The angle between the rotor flux and the stator current vector is determined by the load. It is important
to set i_cmd_ol correctly because it determines the maximum torque the motor can deliver (when the

angle between rotor flux and stator current is 90° in SPMs). The actual torque is dictated by the load if it is
below the maximum torque achievable by “i_cmd_ol.” If the actual torque tries to go above the

maximum achievable torque, the motor will lose synchronization and will stall.

− If “i_cmd_ol” is set too low for that target speed or loading condition, the motor will not start spinning

and will shake instead. In this case, increase “i_cmd_ol.”

− If the motor is not running even after adjusting the current command, the speed ramp rate may be too

high for the system, so reduce the ramp rate. Also adjust the current loop bandwidth.

• Overcurrent triggered while running the motor in V/F mode

− In case of overcurrent fault, reduce the “i_cmd_ol” command and/ or reduce the speed ramp rate or
adjust the current loop bandwidth.

Tuning approach:

• Start with lower current, slower ramp rate

• Gradually increase until smooth operation is achieved

• Monitor for overcurrent faults or stalling

• Fine-tune based on actual performance requirements

Init
Brake &

Bootstrap

I-F
Open
loop

Fault

• Speed cmd (int) < (Thresh_L -Hyst_L)

• Bootstrap done
• Speed cmd (ext) Thresh_L

• Speed cmd (int) < (Thresh_H-Hyst_H)

Speed CL

• Speed cmd (int) Thresh_H

OL to CL
Transition

• Transition done

• Speed cmd (int) < (Thresh_H-Hyst_L)

• ADC offset nulling done
• Parameters init done
• Ext enable cmd

• All states, Fault detected

• All states, Ext disable cmd

• Clear faults

User guide 46 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Startup method tuning

I-F Startup Close loop

Figure 44 Phase current in Speed_Mode_FOC_Sensorless_Curr_Startup

Note: Open-loop I/F in contrast to open-loop V/F control requires current sensors and more complex controller

implementation.

6.2.3 How to configure parameters

Configure the open loop current command value in ParamConfig.c file, \configuration\motor-ctrl-lib-
config\ParamConfig.h. Parameter name : “params[x].ctrl.curr.i_cmd_ol,” default value is 40% of

“params[x].motor.i_cont”.

User guide 47 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7 Control loop tuning

7.1 Current controller

The d and q current commands are used as an input for the current controllers, and the output would be the

voltage references. The voltage references 𝑣𝑑
𝑟∗

 and 𝑣𝑞
𝑟∗

 are eventually applied to the motor using the inverter to

control the current.

vars.v_qd_r_cmd.q

vars.v_qd_r_cmd.d

vars.i_qd_r_cmd.q

vars.i_qd_r_cmd.d

vars.i_qd_r_fb.q

vars.i_qd_r_fb.d

Feed Forwards

+

+

+

+

_
+

_

+

PI

(λm + Ldid
r)

(-Lqiq
r)

PI

r *
id

id
r

id, error
r

iq,error
r

riq

vq
r *

vd
r *

r *
iq

Figure 45 Current controller

Current controller's Kp , Ki and feedforward terms are directly derived from motor electrical parameters. Pole-

zero cancellation technique is used to find the PI controller integral and proportional gain.

Figure 46 Current controller block diagram

In the closed loop system in Figure 46, it is desired to cancel the pole of the system with the zero of the PI

controllers to reduce the order of closed loop system, i.e.

 𝑘𝑝

𝑘𝑖
=

𝐿

𝑅

This will reduce the closed loop transfer function of the system to,

𝐻𝑐𝑙(𝑠) =

𝑘𝑖

𝑅𝑠
=

𝑘𝑝

𝐿𝑠

which can be used to calculate the PI controller coefficients for a given system bandwidth 𝜔𝑐 as,

 𝑘𝑝 = 𝜔𝑐𝐿

𝑘𝑖 = 𝜔𝑐𝑅

User guide 48 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.1.1 Current control parameters

As mentioned in the previous section, current control Kp and Ki values are calculated from motor resistance,
inductance, and bandwidth values. Current control Kp and Ki values are calculated in the

"PARAMS_InitAutoCalc()" function, which executes during startup (after input parameter initialization) and

when input parameters are updated from the Motor Suite GUI . The Kp and Ki value calculations are shown
here:

params[x].ctrl.curr.kp.q = params[x].ctrl.curr.bw * params[x].motor.lq

params[x].ctrl.curr.kp.d = params[x].ctrl.curr.bw * params[x].motor.ld

params[x].ctrl.curr.ki.q = params[x].ctrl.curr.bw * params[x].motor.r

params[x].ctrl.curr.ki.d = params[x].ctrl.curr.bw * params[x].motor.r

It is possible to manually enter these values (e.g., in the main.c/paramconf.c file or from the Motor Suite GUI) by

disabling auto calculation and setting the params[x].autocal_disable.current_control variable to 1.

Kp and Ki parameter values are used to calculate the control Kp and Ki value that are used in the current control
PI function. Control Kp and Ki variable are updated only when the system enters “init” state

(CURRENT_CTRL_Init() function)

Ctrl[x].curr.pi_q.kp = params[x].ctrl.curr.kp.q

Ctrl[x].curr.pi_q.ki = params[x].ctrl.curr.ki.q* params[x].sys.samp.ts0

Ctrl[x].curr.pi_d.kp = params[x].ctrl.curr.kp.d

Ctrl[x].curr.pi_d.ki = params[x].ctrl.curr.ki.q* params[x].sys.samp.ts0

Ctrl[x].curr.pi_q.output_min= -params[x].ctrl.curr.v_max.q

Ctrl[x].curr.pi_q.output_max= params[x].ctrl.curr.v_max.q

Ctrl[x].curr.pi_d.output_min= -params[x].ctrl.curr.v_max.d

Ctrl[x].curr.pi_d.output_max= params[x].ctrl.curr.v_max.d

PI output limit is calculated from dc bus nominal voltage value, “params[x].sys.vdc_nom”/√3 and defined in
“params[x].ctrl.curr.v_max.q” and “params[x].ctrl.curr.v_max.d”.

The amount of feedforward in the current controller is defined in MOTOR_CTRL_CURRENT_FF_COEFF macro

(“params[0].ctrl.curr.ff_coef”). Setting this value to zero will disable the current controller feedforward term.

The default value is 100%, meaning the complete feedforward term is added.

User guide 49 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.1.1.1 Troubleshooting

Motor Suite GUI – PID Tuner directly update “Ctrl[x].curr.pi_q and Ctrl[x].curr.pi_d” variables and when save the
tunned value corresponding parameter values in “params[x].ctrl.curr" are updated

• Motor is not running in Close loop (speed or current) mode: Verification of current control in open loop

mode

− Configure the current control open loop using “params[x].ctrl.mode” parameter, set the appropriate
current command using Parameter name: “params[x].ctrl.curr.i_cmd_ol,” default value is 40% of

“params[x].motor.i_cont”

− Run to make sure the open loop and check whether the current is controlled correctly

− Start with a low current control bandwidth if it is not running correctly

− Reduce the ramp rate and output limit

Check the system response and adjust the current control bandwidth.

User guide 50 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.1.2 Current controller parameter calculation – Example

The following table depicts the input for the current controller and how the derived parameters are calculated.

Input (These

macros are used

to initialize

parameters in

Paramconfig.c

file)

MOTOR_CTRL_FASTLOOP_FREQ

15000.0f [Hz], fast-loop frequency

Param name: params[x]. sys.samp.fs0 =

MOTOR_CTRL_FASTLOOP_FREQ

params[x]. sys.samp.ts0[sec]= 1/

MOTOR_CTRL_FASTLOOP_FREQ

= 66.6E-6f

MOTOR_LQ

670.0E-6f [H], Stator q-axis inductance,

 Param name: params[x].motor.lq = MOTOR_LQ

MOTOR_LD

670.0E-6f [H], Stator d-axis inductance,

Param name: params[x].motor.ld = MOTOR_LD

MOTOR_R

450.0E-3f [Ω], Stator resistance,

Param name: params[x].motor.r = MOTOR_R

MOTOR_CTRL_CURRENT_BW 750.0f [Hz], Current loop bandwidth

Param name: params[x].ctrl.curr.bw [Ra/sec]=

HZ_TO_RADSEC(MOTOR_CTRL_CURRENT_BW)

= TWO_PI*750.0f = 4712.4f

MOTOR_CTRL_VDC_NOM_VOLT 24.0f [V], Nominal DC bus voltage

Param name: params[x]sys.vdc_nom =

MOTOR_CTRL_VDC_NOM_VOLT

Calculated

Parameters

(calculated in

ParamConfig.c

and CurrentCtrl.c)

params[x].ctrl.curr.kp.q 3.16f [V/A], params[x].ctrl.curr.bw * params[x].motor.lq

4712.4f * 670.0E-6f = 3.16f

params[x].ctrl.curr.kp.d 3.16f [V/A], params[x].ctrl.curr.bw * params[x].motor.ld

4712.4f * 570.0E-6f = 2.69f

params[x].ctrl.curr.ki.q 2120.6f [V/A.(Ra/sec)], params[x].ctrl.curr.bw *

params[x].motor.r

4712.4f * 450.0E-3f = 2120.6f

params[x].ctrl.curr.ki.d 2120.6f [V/A.(Ra/sec)], params[x].ctrl.curr.bw *

params[x].motor.r

4712.4f * 450.0E-3f = 2120.6f

params[x].ctrl.curr.v_max.q 13.856f [V], params[x]sys.vdc_nom /√3 = 13.856f

params[x].ctrl.curr.v_max.d 13.856f [V], params[x]sys.vdc_nom /√3= 13.856f

Ctrl[x].curr.pi_q.kp 3.16f [V/A], params[x].ctrl.curr.kp.q

Ctrl[x].curr.pi_d.kp 3.16f [V/A], params[x].ctrl.curr.kp.d

Ctrl[x].curr.pi_q.ki 141.4E-3f [V/A.(Ra/sec).sec], params[x].ctrl.curr.ki.q*

params[x]. sys.samp.ts0

2120.6f *66.6E-6f = 141.4E-3f

Ctrl[x].curr.pi_d.ki 141.4E-3f [V/A.(Ra/sec).sec],params[x].ctrl.curr.ki.d*

params[x]. sys.samp.ts0

2120.6f *66.6E-6f = 141.4E-3f

Ctrl[x].curr.pi_q.output_min -13.856f [V], -1* params[x].ctrl.curr.v_max.q

Ctrl[x].curr.pi_q.output_max 13.856f [V],params[x].ctrl.curr.v_max.q

Ctrl[x].curr.pi_d.output_min -13.856f [V],-1* params[x].ctrl.curr.v_max.d

Ctrl[x].curr.pi_d.output_max 13.856f [V], params[x].ctrl.curr.v_max.d

User guide 51 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

Inputs Calculated Values

Calculated Values – Captured from PID tuner

Calculated Values – Captured using GUI Builder

Ctrl[0].curr.pi_q

Ctrl[0].curr.pi_d

Figure 47 Current controller parameter default values captured from Motor Suite GUI

7.1.3 How to configure parameters

Current control parameters can be configured using the ModusToolbox™ motor control code example or the

ModusToolbox™ Motor Suite GUI.

Configuration of current control parameter using ModusToolbox™ motor control code example in

ParamConfig.h file, \configuration\motor-ctrl-lib-config\ParamConfig.h

Figure 48 Current control parameter configuration using ModusToolbox™ code example

Attention: When updating the current control parameter make sure the following macro in this file is set true
“#define PARAMS_ALWAYS_OVERWRITE (true)”

Configuration of current control parameter using ModusToolbox™ Motor suite

Figure 49 Current control parameter configuration in ModusToolbox™ Motor Suite GUI

User guide 52 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.1.4 Update the current control parameter directly

Current control kp and ki parameters can be directly modified in the ParamConfig.c file by editing the

PARAMS_InitAutoCalc() function.

Figure 50 Speed control parameter direct updated

Also, current control kp 𝑎𝑛𝑑 ki values can be directly configuration using the Motor Suite GUI – PID Tuner that

is described in 7.3 PID Tuner

7.2 Speed controller

The speed command is used as an input for the speed controller, and the output would be the current
references.

Vars.w_cmd_int.elec()

(Target value)

Vars.w_final_filt.elec()

(Actual Speed value)

Vars.i_cmd_spd ()

ω r

+
+

+

+

+

+

+

Resonant Filter

PI

sgn(.)

Anti
Resonant

Filter

_ Current Control

Tf
'

B'

d
dt

J'

is,ff
*

is,fb
*

is,int
*

Sensed or estimated

speed feedback

kp +ki /s
ω r,error

2
Pωm

*

Figure 51 Speed controller

The parameters of the speed controller are significantly impacted by the mechanical load. The mathematical
model of the mechanical load driven by the motor and electrical drive system is illustrated in Figure 52 . This

model includes 𝑇𝑓, representing coulombic friction, 𝐵 as the coefficient of viscous friction, and 𝐽 denoting the

inertia. When utilizing the software to operate any motor, it is crucial to accurately measure or estimate these
three parameters. The speed controller's kp, ki, and feedforward terms are directly derived from these

parameters.

User guide 53 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

Figure 52 Mechanical load run by a motor-drive system

Figure 53 RFO speed loop block diagram before rescaling the parameters

To derive the value of proportional, integral, and feedforward terms of speed controller, the speed loop block

diagram along with a simple model of motor and mechanical load will be used as shown in Figure 53 where:

kt ≈ (

3

2
) (

𝑃

2
) 𝜆𝑚

Pole-zero cancellation technique is used to find the PI controller integral and proportional gain. By having

 ki

kp
=

𝐵

𝐽

Control zero will cancel the mechanical load’s pole. The PI controller coefficients are also proportional to speed
loop bandwidth as shown here:

 k𝑖 ∝ 𝐵𝜔𝐵𝑊

 k𝑝 ∝ 𝐽𝜔𝐵𝑊

+
+

+

+

+

+

+

Resonant Filter

PI

sgn(.)

Anti
Resonant

Filter

_

Motor

Tf

B

d
dt

J

Tff
*

kp +ki /s
1

(sJ+B)

+
-

kt

1 iq
*

kt

Tf

ωm
*

2
P

2
P

2
P

T
*

ωm

P
2

P
2

P
2

sgn(ωm)

User guide 54 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

The proportional and integral gains are determined after being rescaled to account for the motor parameters
kt and 𝑃 shown in Figure 53

Figure 54 RFO speed loop block diagram as implemented

The speed contoller parameters after rescaling are as follows:

ki = (

1

k𝑡
) (

2

𝑃
)BωBW = (

8

3
)(

1

𝑃2
) (

1

𝜆𝑚
)BωBW

kp = (

1

k𝑡
) (

2

𝑃
) JωBW = (

8

3
)(

1

𝑃2
) (

1

𝜆𝑚
) JωBW

The feedforward terms can also be updated as depicted in the following manner:

B′ = (

1

k𝑡
) (

2

𝑃
)B = (

8

3
) (

1

𝑃2
)(

1

𝜆𝑚
)B

J′ = (

1

k𝑡
) (

2

𝑃
) J = (

8

3
) (

1

𝑃2
)(

1

𝜆𝑚
) J

Tf

′ = (
1

k𝑡
)Tf = (

4

3
) (

1

𝑃
) (

1

𝜆𝑚
)Tf

The feedforward terms in the speed loop are affected by both mechanical load and motor parameters. These
three feedforward terms play a role in enhancing the dynamic performance of the speed loop. The inertia term

utilizes a second-order resonant filter to estimate the acceleration, aiming to mitigate the potential impact of

noise that could arise if a direct derivation method had been employed.

ω r

+
+

+

+

+

+

+

Resonant Filter

PI

sgn(.)

Anti
Resonant

Filter

_ Current Control

Tf
'

B'

d
dt

J'

is,ff
*

is,fb
*

is,int
*

Sensed or estimated

speed feedback

kp +ki /s
ω r,error

2
Pωm

*

User guide 55 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.2.1 Speed control parameters

As mentioned in the previous section, speed control Kp , Ki and feedforward coefficient values are calculated
from motor, load parameter, and bandwidth values. Speed control Kp, Ki and feedforward values are

calculated in the "PARAMS_InitAutoCalc()" function, which executes during startup (after input parameter

initialization) and when input parameters are updated from the Motor Suite GUI . The Kp and Ki value
calculations are shown here:

params[x].ctrl.speed.kp = ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.inertia * params[x].ctrl.speed.bw

params[x].ctrl.speed.ki = ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *

params[x].mech.viscous * params[x].ctrl.speed.bw *
params[x].ctrl.speed.ki_multiple

params[x].ctrl.speed.ff_k_inertia = ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.inertia

params[x].ctrl.speed.ff_k_viscous = ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.viscous

params[x].ctrl.speed.ff_k_friction = ((4.0f / 3.0f) / (params[x].motor.P * params[x].motor.lam)) *

params[x].mech.friction

It is possible to manually enter Kp and Ki values (for example, in the main.c/paramconf.c file or from the Motor
Suite GUI) by disabling auto calculation and setting the “params[x].autocal_disable.speed_control” variable to
1.

Kp and Ki parameter values are used to calculate the control Kp and Ki value that is used in the current control
PI function. Control Kp and Ki variable are updated only when the system enters “init” state

(SPEED_CTRL_Init() function)

Ctrl[x].speed.pi.kp = params[x].ctrl.speed.kp

Ctrl[x].speed.pi.ki = params[x].ctrl.speed.ki * params[x].sys.samp.ts1

PI output limit is set from maximum motor current, params[x]. motor.i_peak

Motor Suite GUI – PID Tuner directly update “Ctrl[x].speed.pi” variables and when save the tunned value
corresponding parameter values in “params[x].speed.curr” are updated

7.2.1.1 Troubleshooting

• Motor is not running in Close loop mode properly

− Make sure that current controller is working as per expectation

− Start with low-speed control bandwidth

− Reduce the ramp rate and output limit

− Check the system response

User guide 56 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.2.2 Speed controller parameter calculation – Example

The following table depicts the input for the current controller and how the derived parameters are calculated.

Input

(Macros are used to

initialize

parameters in

Paramconfig.c file)

MOTOR_CTRL_FASTLOOP_FREQ

y [Hz], fast-loop frequency

Param name: params[x]. sys.samp.fs0 =

MOTOR_CTRL_FASTLOOP_FREQ

MOTOR_CTRL_FS0_FS1_RATIO 5 [#], Fast-loop to slow-loop frequency ratio

Param name: params[x]. sys.samp.fs0_fs1_ratio =

MOTOR_CTRL_FS0_FS1_RATIO

params[x].sys.samp.ts1[sec] = params[x].sys.samp.fs0_fs1_ratio/

params[x].sys.samp.fs0 = 333.33E-6f

MOTOR_POLE 8.0f [#], Motor poles

Param name: params[x].P= MOTOR_POLE

MOTOR_I_AM 6.0E-3f [Wb], Rotor flux linkage

Param name: params[x].lam = MOTOR_I_AM

MECH_INERTIA 1.1E-5f [kg.m^2], Inertia

Param name: params[x].mech.inertia = MECH_INERTIA

MECH_VISCOUS 1.2E-5f [kg.m^2/sec], Viscous Damping

Param name: params[x].mech.viscous = MECH_VISCOUS

MECH_FRICTION 6.0E-3f [kg.m^2/sec^2], Friction

Param name: params[x].mech.friction = MECH_FRICTION

MOTOR_CTRL_SPEED_BW 15.0f [Hz], Speed loop bandwidth

Param name: params[x].ctrl. speed.bw [Ra/sec]=

HZ_TO_RADSEC(MOTOR_CTRL_SPEED_BW)

= TWO_PI*15.0f = 94.29f

MOTOR_CTRL_SPEED_KI_MULTIPLE 10.0f [#], Ki multiple for speed loop

Param name: params[x].ctrl.speed.ki_multiple =

MOTOR_CTRL_SPEED_KI_MULTIPLE

Calculated

Parameters

(calculated in

ParamConfig.c and

CurrentCtrl.c)

params[x]. ctrl.speed.kp 1.2E-3f [A/(Ra/sec-elec)], ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) *

params[x].motor.lam)) * params[x].mech.inertia *

params[x].ctrl.speed.bw

= ((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f) * 1.1E-5f *94.29f = 7.2E-3f

params[x]. ctrl.speed.ki 7.2E-3f [A/(Ra/sec-elec).(Ra/sec)], ((8.0f / 3.0f) /

(POW_TWO(params[x].motor.P) * params[x].motor.lam)) *

params[x].mech.viscous * params[x].ctrl.speed.bw *

params[x].ctrl.speed.ki_multiple

= ((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f) * 1.2E-5f *94.29f *10.0f = 7.85E-

2f

params[x].ctrl.speed.ff_k_inertia 7.64E-5f [A/(Ra/sec-elec).sec], ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) *

params[x].motor.lam)) * params[x].mech.inertia

= ((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 1.1E-5f = 7.64E-5f

params[x].ctrl.speed.ff_k_viscous 8.33E-5f [A/(Ra/sec-elec)], ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) *

params[x].motor.lam)) * params[x].mech.viscous

= ((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 1.2E-5f = 8.33E-5f

params[x].ctrl.speed.ff_k_friction 4.17E-2f [A], ((4.0f / 3.0f) / (params[x].motor.P * params[x].motor.lam)) *

params[x].mech.friction

= ((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 6.0E-3f =4.17E-2f

Ctrl[x].speed.pi.kp 7.2E-3f [A/(Ra/sec-elec)], params[x]. ctrl.speed.kp

Ctrl[x].speed.pi.ki 2.617E-3f [A/(Ra/sec-elec).(Ra/sec)],

params[x].ctrl.speed.ki*params[x].sys.samp.ts1 = 7.85E-2f *333.33E-

6f

= 26.17E-6f

Ctrl[x].speed.pi.output_min -10.80f [A], -params[x].motor.i_peak

Ctrl[x].speed.pi.output_max 10.80f [A], params[x].motor.i_peak

User guide 57 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

Calculated Values – Captured from PID tuner

Calculated Values –
Captured using GUI Builder

Inputs Calculated Values

Ctrl[0].speed.pi

Figure 55 Speed controller parameter default values captured from Motor Suite GUI

7.2.3 Speed open-loop to closed-loop transition

The transition from open loop to closed loop speed control is a critical phase that ensures smooth motor

operation without torque disturbances or speed oscillations.

The transition from open loop to closed loop speed control occurs when the motor reaches the observer
threshold speed, at which point the system enters the Speed_OL_To_CL state where the motor continues
running in open loop mode while the position observer simultaneously starts estimating the rotor angle and

speed.

The system remains in this transition state for a predetermined lock time (params[x].obs.lock_time, typically
100-1000 ms) to allow the observer to stabilize and accurately converge on the actual rotor position.

Just before switching to closed loop control, the speed PI controller is pre-initialized using the current open
loop current value multiplied by a transition coefficient (MOTOR_CTRL_SPEED_OL_CL_TR_COEFF macro or
parameter - params[x].ctrl.speed.ki_multiple, default 100%) to prevent current spikes or speed disturbances

during the handover. Once the lock time expires and the speed controller is properly initialized with a realistic

output value that matches the current motor operating conditions, the system seamlessly switches from open

loop voltage/frequency control to closed loop speed control using observer feedback, ensuring smooth
operation without torque bumps, speed oscillations, or performance degradation during this critical transition

phase.

• Current Overshoot Issue

During the transition from open loop to closed loop, if there is current overshoot, it indicates that the speed
controller is being initialized with too high a value, causing excessive torque demand. In this case reduce
MOTOR_CTRL_SPEED_OL_CL_TR_COEFF value 50-80% based on the amount of overshoot.

User guide 58 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.2.4 How to configure parameters

Speed control parameters can be configured using the ModusToolbox™ motor control code example or the
ModusToolbox™ Motor Suite GUI.

Configuration of speed control parameter using ModusToolbox™ motor control code example in ParamConfig.h

file, \configuration\motor-ctrl-lib-config\ParamConfig.h.

Figure 56 Speed control parameter configuration using ModusToolbox™ code example

Configuration of speed control parameter using ModusToolbox™ Motor Suite GUI

Figure 57 Speed control parameter configuration in ModusToolbox™ Motor Suite GUI

7.2.5 Update the speed control parameter directly

As mentioned in the previous section, speed controller's kp, ki, and feedforward terms are directly derived

from includes coulombic friction (𝑇𝑓), viscous friction (𝐵), and inertia (𝐽). This section describes the

configuration of speed control parameters and how to configure these parameters directly.

It is possible to directly update the speed control kp, ki, and feedforward terms in the ParamConfig.c file in

PARAMS_InitAutoCalc() function.

Figure 58 Speed control parameter direct updated

User guide 59 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

Also speed control kp 𝑎𝑛𝑑 ki values can be directly configuration using the Motor Suite GUI – PID Tuner that is

described in 7.3 PID Tuner

7.3 PID Tuner

Motor Suite GUI supports a PID tuner to adjust speed control and/or current control Kp and Ki values directly
during runtime to optimize system performance. These values will override the auto-calculated Kp and Ki

values that are calculated based on bandwidth, motor, and load parameters. Tuned values from the PID tuner
can be saved into the main Motor Suite GUI Configurator. Once these values are available in the Configurator,
they can be written to the target or exported as parameter files in .h or .csv format for integration in code

example or reporting.

The PID Tuner can be launched from Motor Suite GUI Test Bench using the toolbar or from the menu bar
(Tools → PID Tuner).

Figure 59 PID Tuner

Ctrl[x] Kp and Ctrl[x] Ki variables can be directly adjusted from the PID tuner based on system response (raise

time, overshoot, steady state error etc.). When pressing the save button in the PID tuner, Ctrl[x] variables are
converted to params[x] format and the params[x] variables are updated in Motor Suite GUI Configurator. Ctrl[x]
and params[x] mapping is mentioned in Current control (7.1.1) and Speed control (7.2.1).

User guide 60 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

How to configure a new board and motor

8 How to configure a new board and motor

In the Motor Control Library, default parameter values are configured for the "DB42M03" motor +
KIT_PSC3M5_CC2_V2 + EVAL_24V_250W. This chapter describes how to configure Motor Control Library

parameters for a new motor or when changing the power board (no change in ADC and PWM pins) or different
control boards.

8.1 Configuration for new motor

It is necessary to configure all new motor/load-related parameters in the ModusToolbox™ code example or in

the ModusToolbox™ Motor Suite GUI. Refer: Section 3.1 How to configure motor and load

Motor profiler can be used to find the motor and load parameters. Before starting the profiler, configure motor

and mechanical parameters using the new motor's nameplate, datasheet, or best-known values in the Motor
Suite GUI configurator. Refer: Section 5.1.4 How to run a motor profiler using Motor Suite GUI

Figure 60 Example- Motor parameter configuration for “DB42S03” motor

8.2 Configuration for new power board

In case of using any different power board from the default, it is required to configure voltage, current, and
temperature measurement configurations.

8.2.1 Voltage and current measurement

Voltage and current measurement-related configuration, Refer Section 3.2 How to configure voltage and

current measurement parameter. Configure the ADC-related macros based on the new power board. Example
required ADC macro configuration for REF_80VDC_3.5KW board.

When configuring ADC-related macros for the REF_80VDC_3.5KW power board, several keyboard-specific
parameters must be updated to match the hardware.

The ADC_VREF_GAIN macro should be set to 1 because this board uses a direct 3.3V reference without any

voltage level shifter circuitry.

The ADC_CS_SHUNT_RES macro must be configured to 0.001f to reflect the 1mΩ shunt resistor used for current

measurement on this board.

User guide 61 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

How to configure a new board and motor

The ADC_SCALE_VUVW and ADC_SCALE_VDC macros require updates because this board supports up to 80V
operation, that means the voltage divider networks in the measurement circuits are different from default
values - these scaling factors must be calculated based on the actual high-side and low-side resistor values in

the voltage divider network using the formula R_low /(R_high + R_low) to ensure accurate voltage
measurements, and the specific resistor values should be obtained from the board schematic to determine the
precise scaling coefficients needed for proper ADC voltage conversion.

REF_80VDC_3.5KWKIT_PSC3M5_CC2_V2+EVAL_24V_250W

((3.3f)/(3.3f))((5.0f)/(3.3f))#define ADC_VREF_GAIN

(12.0f)(12.0f)#define ADC_CS_OPAMP_GAIN

(1.0E-3f)(10.0E-3f)#define ADC_CS_SHUNT_RES

((4.87f)/(154.0f+4.87f))((5.6f)/(56.0f+5.6f))#define ADC_SCALE_VUVW

((4.87f)/(154.0f+4.87f))((5.6f)/(56.0f+5.6f))#define ADC_SCALE_VDC

Figure 61 Example- Power board configuration for REF_80VDC_3.5KW board

Some power boards do not use external amplifiers (for example, MADK power boards) and instead use internal

gain for current measurement. In this case, the internal gain for current input can be configured using Device
Configurator. It is also required to configure the "ADC_CS_OPAM_GAIN" macro using the following relation:

ADC_CS_OPAM_GAIN = Configured_Internal_gain × External_gain_attenuation

Figure 62 Current measurement -Internal gain configuration using Device Configurator

Note: The current input-offset value is calculated automatically by Motor Control Library when the system is in
“init” state, so no need configured current input-offset value.

User guide 62 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

How to configure a new board and motor

8.2.2 Temperature measurement

When using a different passive temperature input, it is required to configure the mapping between voltage
output and corresponding temperature in the “MotorCtrlHWConfig.c” file.

Figure 63 Passive temperature configuration

The temperature sense lookup table size is 16. The mapping of voltage to temperature is defined in this table,
where each step corresponds to “Vadcref/17”. The temperature mapping for the default board
(EVAL_24V_250W+KIT_PSC3M5_CC2) is mentioned in Figure 64.

Figure 64 Temperature mapping for the default board (EVAL_24V_250W+KIT_PSC3M5_CC2)

8.3 Configuration for new control board

When using a controller board with different pinouts (PWM, ADC, Gatekill, direction, fault LED) from the default
board, use Device Configurator to change the default pins for the different controller board.

Figure 65 Device Configurator for changing pinout

User guide 63 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

How to configure a new board and motor

Steps to Modify Pinout Configuration:

1. Open Device Configurator from ModusToolbox™ IDE

2. Modify the existing pinout according to your hardware requirements

3. Save the changes in Device Configurator

4. Configuration files are automatically updated into ModusToolbox™ IDE, code example under the bsps

folder

8.3.1 Change in ADC pins

In PSOC™ Control C3, Group 0 and Group 1 are used to convert motor control analog input signals. If any
changes are made to the Group 0 or Group 1 samplers or any channel pins, it is required to update the Code

Example configuration files in “MotorCtrlHWConfig.c”.

Figure 66 Code change for change in ADC pins

The motor control code uses two software multiplexers for current measurement: MUXA for leg shunt current

measurement and MUXB for single shunt current measurement. When remapping ADC channels from their
default pin assignments, the corresponding result register numbers must be updated in the

"ADC_Result_Regs_MuxA/B" arrays. The system uses "DMA_Result_Indices_MUXA/B" to maintain the mapping
between channel functionality and pin indices. To properly update the configuration, locate the specific

channel function in the DMA indices mapping and update the corresponding register number in the ADC result

registers array. For example, if the Vbus voltage measurement pin is remapped from Channel 4 to Channel 7,
both “ADC_Result_Regs_MUXA[1][1]” and “ADC_Result_Regs_MUXB[0][1]” must be updated to
ADC_RESULT_ADDR(7) to reflect this change. This ensures that the ADC results are correctly mapped to their
respective measurement functions in the motor control algorithm.

If the sequencer Group0 and/or Group1 channel sequence is modified, it is required to change the sampler

mask in the "MCU_RoutingConfigMUXA/B()" function. The sampler masks that need to be updated are
“ADC_SEQ0/1_Config.dirSampMsk” and “ADC_SEQ0/1_Config.MuxSampMsk” to ensure proper synchronization
between the modified channel sequence and the corresponding sampling configuration.

User guide 64 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

GUI to code parameter mapping

9 GUI to code parameter mapping

This chapter describes how to copy the tunned or configured parameters from the Motor Suite GUI into a motor
control code example. After tuning or configuring the parameters using the motor control GUI, export .h file

using export as .h file option in the GUI. This chapter explains how to transfer tuned or configured parameters
from the Motor Suite GUI into the motor control code example. After completing parameter tuning or

configuration using the Motor Suite GUI, the optimized parameters must be exported and integrated into the
code example for implementation.

• Step 1: Complete Parameter Tuning

− Finish tuning/configuration of Motor Control Library parameters using Motor Suite GUI

− Verifying all parameters is optimized for your motor and load

• Step 2: Export Parameters

− In the Motor Suite GUI, navigate to the export function

− Select "Export as .h file" option from the GUI menu

− Choose the destination folder and filename for the exported header file

− The GUI will generate a .h file containing all configured parameters

• Step 3: Integration into Code Example

− Copy the parameter definitions from the exported file

− Replace the corresponding parameter values in your motor control code example, ParamConfig.h

• Step 4: Verification

− Compile the updated code example

− Download to target hardware

− Launch Motor Suite GUI

− Verify that the motor operates with the new tuned parameters

− Confirm performance matches the GUI tuning results

This process ensures seamless transfer of optimized parameters from the GUI environment to the Motor

Control Library.

Figure 67 GUI to code parameter mapping

User guide 65 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Fault handling

10 Fault handling

The Motor Control Library supports comprehensive set of protections including:

• Under/Over voltage Protection,

• Overcurrent Protection,

• Over Speed Protection,

• Overtemperature Protection, and

• Motor I²T Protection.

When any fault condition is detected, the corresponding bitfield in the "faults[x].flags.all" variable is set to '1'.
All fault flags are latched into "faults[x].flags_latched.all" for persistent fault tracking. If any fault is reported in

the "faults[x].flags_latched.all" variable, the state machine moves to the fault state. Once the fault is cleared,
the state machine moves to the Init state for system restart.

10.1 Fault response actions

During fault conditions, all switches are turned OFF or a zero vector is applied based on the

"faults[x].react_mask" variable configuration. The software supports multiple zero vector methods, with one
applied based on the configuration in “params[x].sys.faults.short_method.” The available zero vector options

are:

• Low_Side_Short

• High_Side_Short

• Alternate_Short (In one PWM cycle, high-side switches are ON for 50% of the time and low-side switches are
ON for the remaining 50% of the time)

This allows flexible fault response strategies depending on the application requirements and hardware

protection needs.

Shunt

Resistors

Motor

High side short

Shunt

Resistors

Motor

Low side short

Shunt

Resistors

Motor

High side short

Shunt

Resistors

Motor

Vdc

Low side short

Alternating

Vdc

Vdc Vdc

Shunt

Resistors

Motor

High side short

Shunt

Resistors

Motor

Low side short

Shunt

Resistors

Motor

High side short

Shunt

Resistors

Motor

Vdc

Low side short

Alternating

Vdc

Vdc Vdc

Figure 68 Inverter fault reaction - Zero vector

User guide 66 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Fault handling

10.2 Fault/protection summary

Over/Under Voltage Protection
Under/over voltage faults are triggered when the actual DC bus voltage falls below the under-voltage threshold

("params[x].sys.faults.vdc_thresh.min") or exceeds the over voltage threshold

("params[x].sys.faults.vdc_thresh.max") for a defined period ("params.sys.faults.vdc_time"). When an under-
voltage condition is detected, the bitfield "faults[x].flags.sw.uv_vdc"[3] is set. When an over voltage condition is
detected, the bitfield "faults[x].flags.sw.ov_vdc"[2] is set.

DC Link Voltage (Raw)

Over Voltage

Threshold

Under Voltage

Threshold

Nominal DC

Link Voltage

Minimum

Debounce Time

DC Link Voltage (Filtered)

Minimum

Debounce Time

No Fault
Fault

Trigger

Time

Voltage

Figure 69 Fault/protection: Voltage protection

Hardware overcurrent protection:

When an overcurrent condition is detected via hardware (Trap), the bitfield "faults[x].flags.hw.cs_ocp" is set for

immediate protection response.

Software overcurrent protection:

Overcurrent faults are triggered when motor current exceeds the configured threshold value

"faults[x].vars.oc_thresh". When this condition is detected, the bitfield "faults[x].flags.sw.oc"[0] is set.

I²T protection:

When motor current reaches peak value, the current limit in the current controller is automatically reduced to
the continuous current value to prevent thermal damage.

Figure 70 Fault/protection - I²T protection

is
2

 iα
2 +iβ

2

 peak

 cont

 on off

1

(sτ+1)

is
2

Ipeak

0 Koff Kon 1 Kfault

F
au

lt

is

I cont

ilimit

iα

iβ

OC Fault

ilimit

τ = motor thermal time constant

= motor peak current rating

fault

= motor continuous current rating

is
Icont

User guide 67 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Fault handling

Over speed protection:

Over speed faults are triggered when motor speed exceeds the configured threshold value
"params[x].sys.faults.w_thresh.elec". When detected, the bitfield "faults[x].flags.sw.os"[4] is set.

Overtemperature protection:

Overtemperature faults are triggered when temperature input values exceed the configured threshold value
"params[x].sys.faults.temp_ps_thresh". When detected, the bitfield "faults[x].flags.sw.ot_ps"[1] is set.

Refer to the Firmware reference manual for more detailed information.

10.3 Fault clear mechanism

The motor control system provides a software mechanism to clear latched fault conditions through the

“sm[x].vars.fault.clr_request” variable. This variable serves as a command interface to reset the fault state
machine and clear all latched fault flags. To clear faults from the system, set the “sm[x].vars.fault.clr_request”
variable to 1. This action initiates the fault clearing sequence, which resets all latched fault flags stored in
“faults.flags_latched.all” and allows the state machine to transition from the fault state back to the init state.

Note: The fault clear request will only be effective if the actual fault condition has been physically resolved. If
the underlying fault condition still exists (such as overcurrent, overvoltage, or overtemperature), the fault

will be immediately re-triggered after the clear request is processed.

User guide 68 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

MADK power board configuration

11 MADK power board configuration

This section covers the essential configuration steps required to set up the MADK power board along with
PSOC™ C3 CC2 board for motor control applications.

11.1 Hardware used

• KIT_PSC3M5_CC2, PSOC™ Control C3M5 Motor Drive Control Card

• EVAL-M1-CTE620N3, iMOTION™ MADK Evaluation board High voltage

• Dual motor interface card, interface between

Table 10 Board specification input required for Motor Control (MADK+ Dual motor interface card)

Current Shunt Type Three Shunt

Current Shunt Resistor 30 mΩ

Current Amplifier Gain Current Gain in MADK board , Apower = 1 (No external amplifier in this board)

Current Gain in Dual motor interface board Ainter = 10kΩ/(10kΩ+2kΩ) = 0.833, In

the interface board 10kΩ and 2kΩ resistor used to provide offset for current

input

To MCU

Total External Current gain =Apower * Ainter =* 0.833 = 0.833

The resistor network provides 0.55V offset (3.3* 2/12), so it is possible to use

ADC MCU internal gain up to 3.

Another Ex. -If board has external amplifier(8) and no offset network in dual

motor interface (removed R11 and R14 = 0Ω), Total external gain = 8*1 = 8

DC Bus Voltage Resistor

Divider

High Side Resistor: 2000kΩ (in MADK board)

Low Side Resistor: 15KΩ (in Dual motor interface board)

Maximum measurable voltage =3.3*(2000+15)/15 = 443.3V

MADK Board

Interface Board

To MCU

Note: The current input-offset value is calculated automatically by Motor Control Library when the system is in
“init” state, so no need configured current input-offset value.

https://www.infineon.com/evaluation-board/KIT-PSC3M5-CC2
https://www.infineon.com/assets/row/public/documents/60/44/infineon-eval-m1-cte620n3-um-en.pdf?fileId=5546d462696dbf1201699a9463eb78cf

User guide 69 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

MADK power board configuration

11.2 Software configuration

11.2.1 Device configuration

Pinout Configuration:

• MADK and Dual motor interface hardware setup pinout for PWM, ADC, and other peripherals matches

default software pinout configuration

• No specific pinout changes required

Internal ADC Gain Configuration:

• Use Device Configurator to enable internal gain, set internal gain = 3 for all current input channels

Dual Motor Interface Board Setup:

• Connect appropriate jumpers on Dual Motor Interface Board, ensure proper signal mapping for current

inputs, voltage inputs, and temperature inputs to corresponding MCU ADC channels

Verification:

• Verify all signal mappings before system power-up

Figure 71 Current measurement -Internal gain configuration using Device Configurator

User guide 70 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

MADK power board configuration

11.2.2 Parameter configuration

Power board Parameter configuration:

• All the power board-related parameters are defined in configuration/motor-ctrl-lib-config/ParamConfig.h

Table 11 Power board specific parameter

ADC_CS_CURRENT_MEASUREMENT_TYPE Shunt_Res

ADC_CS_CURRENT_SENSE_POLARITY LS_Current_Sense

ADC_CS_SHUNT_TYPE Three_Shunt

ADC_CS_SHUNT_RES 30E-3f [Ω]

ADC_CS_OPAMP_GAIN Internal Gain * External Gain(or Attenuation) = 3*0.833

ADC_SCALE_VDC ((15.0f)/(2000.0f+15.0f))

ADC_VREF_GAIN ((5.0f)/(3.3f)) if no change made in the controller board

((3.3f)/(3.3f)) if voltage level shifters are removed in the controller

board

Refer: How to configure voltage and current measurement

parameter 3.2

MOTOR_CTRL_VDC_NOM_VOLT 170V

Figure 72 Power board-specific parameter using ModusToolbox™ IDE

Make require change in motor parameter and control parameter. Tuning of V/F or I/F startup method or
speed/current control loop refer respectively chapter.

User guide 71 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Appendix

12 Appendix

12.1 Parameter handling

• Parameter initialization is done in “Init” state entry function if parameters are not initialized.

− If no valid data EEPROM or “PARAMS_ALWAYS_OVERWRITE” macro is set to true, the following functions

are called

− “PARAMS_InitManual()” → All the input parameter variables assignment

− “PARAMS_InitAutoCalc()” → Calculate all the derived parameters from input parameters

− All parameter values are stored into EEPROM

− If EEPROM has valid parameters and the “PARAMS_ALWAYS_OVERWRITE” macro set to false (default

value), parameters variables are updated from EEPROM

• Parameter values can be updated from external interface (Ex. GUI) using FcnExeHandler.c functions

− Derived parameter calculations can be triggered by setting “fcn_exe_handler.req.Auto_Calc_Params”
bitfield

− Store all parameters value from RAM to EEPROM by setting “fcn_exe_handler.req.Flash_Params” bitfield

− Reset all the module and reinitialize the peripheral by setting “fcn_exe_handler.req.Reset_Modules”

bitfield

− During execution of the above request, the FcnExe handler stops all the peripherals and restarts after

handling the request

− FcnExe Handler function only execute the request when SM is in “init” or “fault” state, the request is

ignored if SM is not in “init” state

12.2 State machine handling

Each state in the motor control system has four functions: entry, exit, RunISR0, and RunISR1. The state entry
function is called when the state machine enters a state, while the state exit function is called when the state

machine exits from a state. The state ISR0 function is called every fast loop, and the state ISR1 function is called
every slow loop. State transitions are handled in the slow loop ISR. If a state change is requested, the exit
function of the current state is executed, followed by the entry function of the requested state, and finally the

current state is set as the requested state.

“sm[x]. current” variable holds the current state machine state.

User guide 72 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Appendix

12.3 Initialization and interrupt handling in motor control

Initialization sets up the motor control system through state machine setup, parameter initialization, and
configuring hardware peripherals (PWM, ADC, GPIO, DMA, ISR).

Interrupt handling provides real-time control execution using two ISRs in motor control: Fast loop ISR

(triggered after all ADC conversions) executed every PWM period or every multiple PWM period based on
configuration, and Slow loop ISR (timer-based ISR) executed every fast loop period or every multiple fast loop
period based on configuration.

Figure 73 Initialization and interrupt handling in Motor control

12.4 ModusToolbox™ file structure

Motor Control Code Example /

Application Code

Motor Control library

Motor control Peripheral functions

▪ PWM, ADC, DMA, EEPROM

▪ Fast and Slow loop ISR

ADC Configuration

Motor Lib Structure Definition

All Parameter Configuration All the motor control related functions

▪ Motor and control Parameters config

▪ State Machine

▪ Motor Control functions

▪ Parameter Handler

▪ Static Library files for GCC and IAR

Motor Control Driver Interface (MCDI)

Third Party Library functions

▪ Motor control suite oscilloscope

interface

Figure 74 ModusToolbox™ file structure (Motor Control Library V3.0.0)

User guide 73 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Appendix

12.5 How to override library function with a user-defined function

This chapter provides instructions for replacing existing Motor Control Library functions with user-defined
functions without modifying the core motor library. This approach allows for customization while maintaining

library integrity.

• Key benefits

− Preserve original library functionality

− Enable system-specific customizations

− Maintain upgrade compatibility

− Isolate custom code in application layer

• General process

Step 1: Exclude Library Function from Build

− Use the make file to exclude the original library function from the build process by adding it to the ignore

list.

Step 2: Implement User-Defined Function

− Create a custom implementation in your application code that maintains the same interface as the

original function.

Step 3: Ensure Proper Integration

− Verify that all output variables and function signatures match the expected library interface.

• Example to replace the Speed control function with user-defined function

− Modify the make file in ModusToolbox™ to exclude the Speed control file form build

− CY_IGNORE+=$(wildcard../mtb_shared/motor-ctrl-lib/…/SpeedCtrl.c)

− Define user-defined functions

o Copy the “SpeedCtrl.c” file from the library and place into the Application code

o Modify the copied “SpeedCtrl.c” file based on system requirements

o Make sure that Speed Control output variable is updated correctly.

Note: Complete functions can be redefined in a new file without copy ”SpeedCtrl.c” file, should not modify the

function name, definition (Content) of the function can be modified.

• Functions executed in each state can be modified in “StateMachine.c” file. Follow the same step given above

to modify the “StateMachine.c” file

User guide 74 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Abbreviations and definitions

13 Abbreviations and definitions

Table 12 Abbreviations and definitions

BC Block Commutation

BLDC Brushless DC

FOC Field Oriented Control

FPU Floating Point Unit

IPM Interior Permanent Magnet

ISR Interrupt Service Routine

MCU Microcontroller Unit

MTPA Maximum Torque per Amp

MTPV Maximum Torque Per Volt

PMSM Permanent Magnet Synchronous Motor

PWM Pulse Width Modulation

RFO Rotor frame-oriented Field Oriented control

RRF Rotating Reference Frame

SFO Stator frame-oriented Field Oriented control

SRF Stationary Reference Frame

SM Surface Mounted

SVM Space Vector Modulation

TBC Trapezoidal or block commutation

TC Trapezoidal Commutation

User guide 75 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

References

References

[1] Infineon Technologies AG: PSOC™ Control C3 Documentation; Available online

[2] Infineon Technologies AG: AN238329 - Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software; Available online

[3] Infineon Technologies AG: KIT_PSC3M5_MC1 - PSOC™ Control C3 motor drive card; Available online

[4] Infineon Technologies AG: Motor Control Ecosystem Introduction-Motor Suite; Available online

https://documentation.infineon.com/psoccontrolc3/docs/kfc1732622054982
https://www.infineon.com/assets/row/public/documents/30/42/infineon-an238329-getting-started-psoc-control-c3-modustoolbox-applicationnotes-en.pdf?fileId=8ac78c8c92bcf0b0019393f072d813b5
https://www.infineon.com/evaluation-board/KIT-PSC3M5-MC1
https://www.infineon.com/assets/row/public/documents/30/45/infineon-motor-control-ecosystem-introduction-motor-suite-productbrief-en.pdf

User guide 76 002-42330 Rev. **

 2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2025-12-10 Initial release.

 Important Notice

Edition 2025-12-10

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2025 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference number

002-42330 Rev. **

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.
For the avoidance of doubt, Infineon disclaims all warranties of
non-infringement of third-party rights and implied warranties
such as warranties of fitness for a specific use/purpose or
merchantability.
Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.
The data contained in this document is exclusively intended for
technically qualified and skilled customer representatives. It is
the responsibility of the customer to evaluate the suitability of
the Product for the intended application and the customer’s
specific use and to verify all relevant technical data contained
in this document in the intended application and the
customer’s specific use. The customer is responsible for
properly designing, programming, and testing the functionality
and safety of the intended application, as well as complying
with any legal requirements related to its use.
Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall responsibility
for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:
Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security
Breaches.
If this document includes or references software:
The software is owned by Infineon under the intellectual
property laws and treaties of the United States, Germany, and
other countries worldwide. All rights reserved. Therefore, you
may use the software only as provided in the software license
agreement accompanying the software.
If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in
the software (a) for software provided in source code form, to
modify and reproduce the software solely for use with Infineon
hardware products, only internally within your organization, and
(b) to distribute the software in binary code form externally to
end users, solely for use on Infineon hardware products. Any
other use, reproduction, modification, translation, or
compilation of the software is prohibited. For further information
on the Product, technology, delivery terms and conditions, and
prices, please contact your nearest Infineon office or visit
https://www.infineon.com

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.

Disclaim er

mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Key features
	1.2 Rotor field-oriented control
	1.3 Motor control tuning flow

	2 Motor parameters required for Motor Suite Motor Control Library tuning
	2.1 Motor/load parameters
	2.2 Parameter configuration hints

	3 Parameter configuration
	3.1 How to configure motor and load parameters
	3.2 How to configure voltage and current measurement parameter
	3.3 How to configure key system parameters
	3.3.1 Control mode
	3.3.2 Control loop frequency
	3.3.3 State transition threshold
	3.3.3.1 Start-up threshold parameters
	3.3.3.2 Observer threshold parameters (speed control):
	3.3.3.3 Current control threshold parameters:

	3.3.4 Rate limiter

	4 Verification of ADC measurement
	4.1 DC bus voltage measurement
	4.2 Motor phase current measurement

	5 Motor parameter identification
	5.1 Parameter identification using Motor Suite motor profiler
	5.1.1 Motor Suite motor profiler execution steps
	5.1.2 Profiler parameters
	5.1.3 Parameter tuning in profiler mode
	5.1.3.1 Rotor lock state
	5.1.3.1 Resistance estimation
	5.1.3.2 Inductance estimation
	5.1.3.3 Mechanical parameter and flux linkage estimation

	5.1.4 How to run a motor profiler using Motor Suite GUI

	5.2 How to measure motor parameter manually
	5.2.1 Stator resistance (Rs)
	5.2.1.1 Measurement procedure
	5.2.1.2 Measurement example

	5.2.2 Stator inductance (Lq, Ld)
	5.2.2.1 Measurement procedure
	5.2.2.2 Measurement example

	5.2.3 Motor poles number (p)
	5.2.3.1 Measurement procedure

	6 Startup method tuning
	6.1 Open-loop V/F control
	6.1.1 V/F parameters
	6.1.2 Troubleshooting
	6.1.3 How to configure parameters

	6.2 Open-loop I/F control
	6.2.1 I/F parameters
	6.2.2 Troubleshooting
	6.2.3 How to configure parameters

	7 Control loop tuning
	7.1 Current controller
	7.1.1 Current control parameters
	7.1.1.1 Troubleshooting

	7.1.2 Current controller parameter calculation – Example
	7.1.3 How to configure parameters
	7.1.4 Update the current control parameter directly

	7.2 Speed controller
	7.2.1 Speed control parameters
	7.2.1.1 Troubleshooting

	7.2.2 Speed controller parameter calculation – Example
	7.2.3 Speed open-loop to closed-loop transition
	7.2.4 How to configure parameters
	7.2.5 Update the speed control parameter directly

	7.3 PID Tuner

	8 How to configure a new board and motor
	8.1 Configuration for new motor
	8.2 Configuration for new power board
	8.2.1 Voltage and current measurement
	8.2.2 Temperature measurement

	8.3 Configuration for new control board
	8.3.1 Change in ADC pins

	9 GUI to code parameter mapping
	10 Fault handling
	10.1 Fault response actions
	10.2 Fault/protection summary
	10.3 Fault clear mechanism

	11 MADK power board configuration
	11.1 Hardware used
	11.2 Software configuration
	11.2.1 Device configuration
	11.2.2 Parameter configuration

	12 Appendix
	12.1 Parameter handling
	12.2 State machine handling
	12.3 Initialization and interrupt handling in motor control
	12.4 ModusToolbox™ file structure
	12.5 How to override library function with a user-defined function

	13 Abbreviations and definitions
	References
	Revision history
	Disclaimer

