(infineon

ModusToolbox™ Motor Suite Motor Control
Library tuning guide

About this document

Scope and purpose

ModusToolbox™ Motor Suite Motor Control Library (motor-ctrl-lib) software to drive 3-phase permanent
magnet synchronous motors (PMSM) or brush-less DC (BLDC) motors. This document describes how to
measure/identify the motor and load parameter required for the Motor Control Library and how to configure/
tune the control loop parameters.

Intended audience.

This document is intended for the ModusToolbox™ Motor Suite Motor Control Library users who wants to
develop motor control driver applications.

Software version

e ModusToolbox™ software 3.3 or above

e Motor Control Library V3.0.0 or above

e ModusToolbox™ Motor Suite 2.6.1 or above

User guide Please read the Important Notice at the end of this document 002-42330 Rev. **
www.infineon.com 2025-12-10

http://www.infineon.com/

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Table of contents

Table of contents

About this dOCUMENT......ceuuiiiuiiiniiiniiiiiitiiiiuiiiiiittictaiittitseistastsessseissssssesssssssssssssssssssssssssssssssssssssses 1
Table Of CONtENES....ciuuiiiiiriiiriiiiiiitiiiraiitiitteittaitseieseisracsssessssissassrsssns 2
1 LY 4T [Tl d T T N 5
1.1 KBY fRATUIES ..ttt ettt et s et e st e e s e s bt s st e s se e e et e eseess e seeseassasseessasseentensesseessensesssenns 5
1.2 ROtOr field-0rieNted CONLIOL....c.ciiiiriirieieieteee sttt ettt st s b bbbt sa e e e saees 7
1.3 MOtOr CONErOLEUNING FLOW ...c.evieieieeieeee ettt ettt ettt et et e s e e bessne s e sreennanns 8
2 Motor parameters required for Motor Suite Motor Control Library tuningccccceucernecrnnccrncnnecnnes 9
2.1 MOTOI/l0AA PArAMELEIS......ciiuieiieiieierteetertet ettt ettt ettt ettt b e sttt et sseebesbesbessese e eneenesaees 9
2.2 Parameter coNfiguration NINESecieieiiiininineiece ettt sae s a e be e 11
3 Parameter conNfiguration.....c.cccccieiiniiieiiniiniiieniniiecceeniniceecsesisccsesisstsecsssssscsesssssssssssssssssssssssssassss 12
31 How to configure motor and load Parametersccecveeeerererenienenierteeeeeeee ettt saens 12
3.2 How to configure voltage and current measurement Parametercccocvevereeereneeneneneneeneereeennens 13
3.3 How to configure key SyStem Parameters... ... ereieieininenenesiesienie et eesee st sseseesaesaessesaesassens 15
331 CONTIOLMOME ...ttt ettt sb et ettt et e st st be s b e sbenbe b e e eneenesaeesenee 15
3.3.2 CONLrOL LOOP FrEQUENCY .ttt ettt et be e e be e e et e be e s ebesseenbesbaesaensenseensenns 19
3.33 State transition threShold.........coi ittt sttt 21
3.3.3.1 Start-up threshold PAramMELErs ...t e e se s e ennens 21
3.3.3.2 Observer threshold parameters (Speed CONTrOL):cceeuievieriieeececeeeee et 21
3.3.3.3 Current control threshold ParameEters:.......coeeieceeeeccceeereeee e esnens 22
3.34 RAEE LIMITET 1.ttt ettt et ettt s bt et et et et e sae et e b e saaebesbaestensesasansas 24
4 Verification of ADC Measurement....cc.cccciruireniieniiraireenereierasrsesnsescsssssessssssssssssssssssssssssssssssssss 26
4.1 DC bUS VOILage MEASUIEMENT...c..ciiirieieriietertesterteste et et st eteste et e te st e stes e estessesstessesasensessesssensesssenses 26
4.2 Motor phase CUITeNt MEASUIEMENT......cecuieieeeeeerieeeeeesee e ste s e eee e st esse s e esesresssessesseessessesssensesssenses 26
5 Motor parameter identificationcccccceiieiiuiiniiccenieninnicencantenieceecescassossecsscassssssssscassassssssssscanse 28
5.1 Parameter identification using Motor Suite motor Profiler..........cueveveveieinieienenerenereeeeeeeneene 28
5.1.1 Motor Suite motor profiler eXeCULION STEPSccvvcvecierrieiecieeeetee ettt a e reeae e 28
5.1.2 PrOfi eI PArAMELEIS . .eeeeeeeeeeteeete ettt ettt e et e s e s e e s e s s e et e sseensesessaessesseessesesnsenses 29
5.1.3 Parameter tuning in profiler MOAe.......cccoiviriniirieieceeeeese et eas 32
5.13.1 ROLOF LOCK STALE ..ttt ettt ettt st st sb et et sb et e e s eae 32
5.1.3.1 RESISTANCE ESTIMATION.....tiitiiiiieieetetee ettt ettt et sae et e b st et e st eeesae e e eees 32
5.1.3.2 INAUCEANCE ESTIMATIONcitiiieieeeeeee ettt ettt et st et et st e b e ssaeeesaaesseneas 33
5.1.3.3 Mechanical parameter and flux linkage estimationcocceevevieierinrineneneneneeeeeeeeene 34
5.1.4 How to run a motor profiler using Motor SUIte GUIcccvverenierienieniiieenenesesesieseeee e 35
5.2 How to measure motor parameter ManUALLYc..coecveirirerereneneeteeeee et 37
5.2.1 SEATON FESISTANCE (RS) cuvveiiveiiitieitee ettt ettt et e et e eeat e e e be e esateesabessssteessbesesbeeesasessseessnsesenseeens 37
5.2.1.1 MEASUIEMENT PrOCEAUIEeutiiieieeterteeeteiesteetesteseeaesteetessesseesessesstessesassssasesssessessesssessesnsenses 37
5.2.1.2 MEASUrEMENT EXAMPLE 1evveiiiiriieiieie sttt e seesresstessressre e s e e s s e sssessbeessassseessnesanesssesssasssasnssennes 37
5.2.2 Stator iNAUCTANCE (LG, LA) weeoveeeieieieeeeteeeceerteeeet ettt et steereene e ebesre e s esbesraenbesbeernenseessensenns 38
5.2.2.1 MEASUIEMENT PrOCEAUIE ..vevuieiieieeterteeeteieseetesteseeaesteestessesseesessesssessessssssensesssessessessessesssenses 39
5.2.2.2 MEASUrEMENT EXAMPLE 1eeveiiiiiiieiieie sttt seesresrtesstessbe e s e esraesssessbeessaesseessnesanesssesssesssaesssennns 39
5.2.3 MOLOr POLES NUMDET (D) 1uvieutiierierieiereeieneeterte et este st et este st e s e sre st e sesseessesseensessessnessessesssessesnsenses 39
5.2.3.1 MEASUrEMENT PrOCEAUIE ..eiuviietiecreeierreeseeseeseesresstessteesreessaesssesssesssesssassseessnessesssesssesssaesssennes 40
6 Startup Method tUNING ...c.vvuiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiisetteiiaesiesiacsestestsessestsscsessasssssssssassssssassassss 41
6.1 OPEN-LOOP V/F CONTIOL..ciiiiiiiiiieiieeieerte st st st sste st e saesrae s sessbeeseeesreesanesanesstassbasssassssesssesssessseessaenses 41
6.1.1 Y/ F PAIAMELEIS ...viiieieeteeteieet ettt sttt e st e et et e s e e s be st et e sae et esbas st e sesssessessesnsansesssensensesssensesseenses 41
User guide 2 002-42330 Rev. **

2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Table of contents

6.1.2 TrOUDIESNOOTING.....ctieeeiecteeceeeee ettt ettt et s e e et e sreesaesse s s e sasseessesaessaessesseensans 43
6.1.3 HOW t0 CONFIGUIE PAramEtersS......cveieuiririiriesienieeetete ettt b e st sa et seenas 43
6.2 (070 T= o B (oo Y oI A Sl ofo] 0 { ¢ o | F TSRS 44
6.2.1 F A oY= Y- 1 0 =] =T =TSR 44
6.2.2 TrOUDIESNOOTING....cctiieieieeteeetee ettt ettt et ettt st et be et et e s st et e sae et e besatentens 45
6.2.3 HOW t0 CONFIGUIE PAramEtersS......cuoeeuiriieierieieictetete ettt be st se et nes 46
7 CoNtrolloOP tUNING ce.cvuiieiiniiieiieiineiieiinisesresiaesresrscsestescsessesssscsssressasssssssssssssassasssssssssasssassassss 47
7.1 CUITENT CONEIOLLET ettt ettt et ettt s et e s e e et e sat et e s st et esbesat et esseeneenee 47
7.1.1 CUITENT CONTIOL PArAMETEIS..c..uiiiieetectece ettt st te e ste e be e s e e e e e st e e rte s beesbe e baesseesanesnsesnsaens 48
7.1.11 TrOUDLIESNOOTING. ...ttt ettt et et e s e e s e sbe s e e ssesseessesneensansesnsansans 49
7.1.2 Current controller parameter calculation — EXample.......coceeceecieniinieeieeeceesieeseesee e sre e 50
7.1.3 HOW tO CONFIGUIE PAramEtersS......cueieuirieiirieteietetetet ettt ettt sttt ettt enes 51
7.14 Update the current control parameter direCtlyooeeveeeeeecieeeiereeeeceeee e 52
7.2 Y o T=T=Te I o] 1 4e] | (=T PSSR 52
7.2.1 Y oT=T=Te Mol a1 u o] WoT= T =10 0 =] (=] TR 55
7.2.11 TrOUDIESNOOTING. ..c..eiiiiieieteteeeteet ettt ettt s et sbe st e s b st e besat et esbasanensans 55
7.2.2 Speed controller parameter calculation — EXamplecceveeieeeeceerieeceseeeeesee e 56
7.2.3 Speed open-loop to closed-loop tranSItioNccevieiecieeeicreeeeee e 57
7.2.4 HOW t0 CONFIGUIE PAramEterS......cviuieiirieiirierieriertete ettt sb sttt sb s e e e e e saeenas 58
7.2.5 Update the speed control parameter direCtlycoveeveeeeeecieeeeeeeereee e 58
7.3 PID TUNEE ettt sttt st st be e s e bt e s sae e s bt e smaesenbtesanaeesnseessaeesnseesanaeasns 59
8 How to configure a new board and MOtOrcccciueiieirniineiieniniineciesiacinestesisecsesssscsessessscssssassasss 60
8.1 Configuration fOr NEW MOTOT ...cc.cvuiviiieieieeeeresere ettt ettt sr st sttt s e e e e e e ssnenas 60
8.2 Configuration for NEW POWEr DOAIc.eeieirierinieieece ettt ettt 60
8.2.1 Voltage and CUITENt MEASUIEMENT ...cc.iiciirierierieeieierieetesie sttt st este st eeesae st esbe st esessesnsessesasenses 60
8.2.2 Temperature MEASUIEMENTcciiiiiiereeittee ettt eerteeeserreeesesrteesenreeesesnreeesesnseeesssssesessnssenessssenenas 62
8.3 Configuration for NeW CONtrol DOArd.........ccceeveeueriiriinieieieiercreseeee et 62
8.3.1 Change iN ADC PINS ..eeteiieierieriteteseee et et et e ste st estesse st e tesseestesbesseessessesssesesnsensesssensansasssensessasssense 63
9 GUI to code parameter MapPPING ..cccceeiieieeireiiaecrestacsesrastsessestsscsessosssssssssssssessassssssssssssssssasssssss 64
10 Fault handling ..c.ccccieiiniiniiiieiiniieiiniiienienioessesiacisesresisessessasssesssssssssessassssssssssssssssassassssssasssnss 65
10.1 FaULt r@SPONSE ACHIONS ...uvieiecieeceecte ettt ettt e e e rte e rbe e s be e ste s te s be e beesseesnsesnteessaansaessaesseesnsennsanns 65
10.2 Fault/proteCtion SUMIMAIY.....ccccieciieeeciereeteceeeertes et e e e e e s e essesse s e esses e sssessesssessesseessassesssensesssenses 66
10.3 Fault Clear MECNANISM .c..iiuiiiieeteeteee ettt sttt sttt e st sae st et e st e saessassaesaesnseneas 67
11 MADK power board configurationccccceieiieireiiniiniieniniisenianissienisisessaccsessessscsessasssesssssssssens 68
11.1 HArAWArE USEA ..c.eeeieiieieieeteeetetee ettt st ettt st ettt et st st e st st e st e s aa et e sba s st esbesanensansesnsensesnsenss 68
11.2 SOftWAre CONFIGUIAtION c..euiiiiiieieicteete ettt sttt ettt st s b s bbb b et et e e enesaeenes 69
11.2.1 DEVICE CONFIGUIALION .ttt ettt b e bbbttt enes 69
11.2.2 Parameter CONFIGUIAtIONcc.cvuiiiiiieirieeresec ettt ettt et sa et et eaas 70
12 APPENAIX . cuiieieiaiinniereecencentonsocscassssssssscassassssssssscassssssssssssssssssssssssasssssssssssssassssssssssassssssssssassas 71
12.1 Parameter NANAIINGo.oo ittt et ettt s bttt st e sbe s b et e sae et enees 71
12.2 State MachiNn@ NaNAIINGco.eviiriiriiiee ettt 71
12.3 Initialization and interrupt handling in MoOtor CONTrolcocevieiiiriniieriieeeeeee e 72
12.4 MOAUSTOOIDOX™ file SEIUCTUIE ..ttt ettt s e st e s be s e e sae e e eneas 72
12.5 How to override library function with a user-defined function..........ccccceceereinininincncceeeee 73
13 Abbreviations and defiNitioNS..ccccceeeeeeeieeeerrerereccsesecsss 74
L3 T =] =1 1= 75
REVISION NISTOrY..iuiiiiiiiiiiiiiiiiiiiiniiiiieieiienitiecaiiasiessetsetassessessecsssssssssesssssssesssssessssssssssssssssssssssssssssses 76
User guide 3 002-42330 Rev. **

2025-12-10

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon

guide

Table of contents

[0 1T ol - 111 1 (=] TR

002-42330 Rev. **

User guide 4
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Introduction

1 Introduction

Motor control software library provides an advanced sensorless or sensor-based field-oriented control (FOC)
algorithm to drive 3-phase permanent magnet synchronous motor (PMSM) loads including constant air-gap
surface mounted permanent magnet (SM) motor and interior permanent magnet (IPM) motor. Also, this library
supports a hall sensor-based block/trapezoidal commutation algorithm to drive Brush-less DC motor (BLDC).
This library supports the following control methods:

e Rotor frame-oriented field-oriented control (RFO): Sensor-less and sensor (hall and encoder) based rotor
position estimation.

e Stator frame-oriented field-oriented control (SFO): Sensor-less rotor-based rotor position estimation
e Trapezoidal /block commutation (TBC): Hall sensor (3-digital hall) based rotor position estimation.

This document describes how to measure/identify the motor parameters that are required for the Motor
Control Library and how to configure/ tune the control loop parameters. Motor control engineers need to adapt
the default library configuration to match their specific motor, inverter hardware, and application
requirements.

1.1 Key features
A list of key features supported in the Motor Control Library are given here:

o Adaptive sensorless observer that provides minimal phase distortion. It can observe rotor angle, speed,
stator angle, stator flux magnitude, and load angle.

e Hall sensor (3-Digital Hall) or incremental encoder-based field-oriented control.
e Supports leg shunt and single shunt-based motor phase current measurement.

e 3-Phaseand 2-Phase PWM modulation schemes. 2ph SVPWM that allows reduction of the switching losses
compared with three-phase SVPWM (symmetrical placement of zero vectors).

e Supports flux weakening, over modulation and maximum torque per amp for IPM motors.
e Start-up methods for sensor-less field-oriented control

e Prealignment rotor into knows position.

e Constant V/F control

e |I/F control

e Inductance based initial rotor angle estimation.

e Dyno mode to catch the free running motor.

e High Frequency Injection for rotor angle estimation (only for IPM)

e Motor Control Library provides the following protection/Fault handling.
e Under/Over voltage protection

e Overcurrent protection

e Overspeed and overtemperature protection

e Motor 12T protection

e Control mode supported

e Speed control for RFO, SFO, and TBC control methods.

e Current control for RFO and TBC control methods

e Torque control for SFO control method.

User guide 5 002-42330 Rev. **
2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Introduction

e Voltage control

e Profiler to automatically identify motor and load parameters that are used in speed, current controller, and

rotor angle estimation.

e Algorithm isimplemented in Floating Point Base (compliant with the ANSI/IEEE Std 754-2008) - No extra bit-
shift or overflow & underflow checks.

The Motor Control Library supports many permutations of control type, controlled entity, feedback type, and
startup method as listed in the following table.

Table 1 Motor Control Library support control type

Control type Controlled entity Position feedback Startup method

Open loop Voltage -NA- -NA-

FOCinRFO Current Sensorless Rotor Pre-Alignment
FOCin RFO Current Sensorless Six Pulse Injection
FOCinRFO Current Sensorless High Frequency Injection
FOCinRFO Current Sensorless Dyno Mode

FOCinRFO Current Encoder Rotor Pre-Alignment
FOCinRFO Current Hall Sensor -NA-

BCinTBC Current Hall Sensor -NA-

TCinTBC Current Hall Sensor -NA-

FOCin SFO Torque Sensorless Rotor Pre-Alignment
FOCin SFO Torque Sensorless Six Pulse Injection
FOCin SFO Torque Sensorless High Frequency Injection
FOCin SFO Torque Sensorless Dyno Mode

FOC in RFO or SFO Speed Sensorless Rotor Pre-Alignment
FOC in RFO or SFO Speed Sensorless Six Pulse Injection
FOCin RFO or SFO Speed Sensorless High Frequency Injection
FOCin RFO or SFO Speed Sensorless Open-loop voltage
FOCinRFO Speed Sensorless Open-loop current
FOCin RFO Speed Encoder Rotor Pre-Alignment
FOCinRFO Speed Hall Sensor -NA-

FOCin RFO Position Encoder Rotor Pre-Alignment
BCinTBC Speed Hall Sensor -NA-

TCinTBC Speed Hall Sensor -NA-

Control mode is configured using params(x].ctrl.mode parameter.

User guide

002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Introduction

1.2 Rotor field-oriented control

RFO is a variant of FOC where the motor’s three-phase sinusoidal currents are decomposed into g-axis and d-
axis DC currents using Clark and Park transformations. These transformations reduce the complexity of the
control system for AC machines. Figure 1 illustrates the overall block diagram of the RFO control method which
is composed of modules such as a speed control loop, g- and d-axis current control loops, and position

feedback.
ir * —ir ia, error
Current q q,cmd 3 Phase
Control + Space d Motor
" _ Py
i v Vector u v
sext ia S opwMm >
* d
W error Is,fo ~e» MTPA Feed Forwards Derotate | # or Y| 3Phase |U
Z @ 0 - vg Inverter
_ + o T ~ v R(—H,.) d
LT 1 Igint - > | Neutral w
®m - it r S| Point [w
> i d,cmd
s, ff Speed r PWM —
d Control Ly MTPV
E Hall
) T [5) T Sensor
Resonant Filter i r* r v
lqd» Vgd Vdc o R . de
0 \Y
l r,0bs Adaptive B

i Rotate *«—‘ Wr,obs ggsmon Current
lgd R(é) ~ he server i Reconst. Three
T 6, ap le— Shunts

| or
: . Single
Anti Hall Signal {hu’ hy, hw} Shunt
Resonant Processing
Filter

Figurel RFO block diagram

Position and speed information can be obtained using position sensors (such as encoders or hall sensors) or
through sensorless approaches. The speed controller utilizes this speed information to generate current
references via a Pl controller.

The Maximum Torque Per Ampere (MTPA) block generates optimal d-axis and g-axis currents to maximize
torque output. This block is specifically used for Interior Permanent Magnet motors to effectively utilize
reluctance torque. For operations above base speed, the Maximum Torque Per Volt (MTPV) algorithm can be
employed to achieve higher operating speeds.

Both MTPA and MTPV algorithms create reference values for g-axis and d-axis current control. The current
controllers process these references to produce voltage commands, which are then applied to the inverter
through selectable modulation schemes.

User guide 7 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Introduction

1.3 Motor control tuning flow

Motor control tuning involves the following steps.

Step #1: Parameter Identification and Configuration (Refer: Parameter configuration)
Configure basic motor parameters from nameplate/datasheet.

Set up hardware-specific parameters (power board, controller)

Configure system (such as PWM) and control-related parameters (such as Bandwidth)
Step #2: Verification of Voltage / Current Measurement (Refer: Verification of ADC measurement)
Verify that system configuration matches hardware setup.

Validate protection thresholds (overcurrent, overvoltage)

Step #3: Motor and Load Parameter Identification (Optional) (Refer: Motor parameter identification)
Configured I/F and Speed loop parameters.

Run profiler to identification motor parameters.

Update configuration with identified values.

Step #4: Startup Parameter Adjustment (Refer: Startup method tuning)

Configure V/F or I/F startup parameters.

Adjust voltage offset and slope ratios for V/F startup.

Set appropriate startup current command for I/F startup.

Optimize acceleration ramps for smooth startup.

Step #5: Control Loop Tuning - Current Control Loop (Refer: Current)

Set current loop bandwidth and calculate initial gains.

Step #6: Control Loop Tuning - Speed Control Loop (Refer: Speed)

Configure speed controller gains and bandwidth.

Optimize for application-specific performance requirements.

Parameter Identification and
Configuration

Y

Verification of voltage and current
measurement

Y

Motor and Load profiler identification
(Optional)

v

Startup parameter Tuning

U

Current Loop Tuning

%

Speed Loop Tuning

Figure2 Motor control tuning flow

User guide 8 002-42330 Rev. **

2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Motor parameters required for Motor Suite Motor Control Library

tuning

2

Motor parameters required for Motor Suite Motor Control
Library tuning

This chapter describes the required motor and load parameters for the Motor Control Library.

2.1

Motor/load parameters

Table 2 shows the motor parameters required for Motor Control Library.

Table 2 Motor/load parameters required for Motor Control Library
Name Unit Parameter Name Descriptions Where it is used
Motor poles | # params[x].motor.P Number of magnetic = Convert electrical speed
poles, not pole pairs. & angle to mechanical
speed & angle or
conversely.
= Speed control K,, Kiand
Feed forward parameter
calculation.
= Halland Incremental
Encoder interface
Motor L, H params[x].motor.lq Stator g-axis (Torque = Current control K,and
current) inductance of Feed forward calculation
each phase winding. = Rotor angle estimation-
Sensorless FOC
= MTPA for IPM motor
= Torque Calculation
Motor Lq H params([x].motor.ld Stator d-axis (Flux current) (= Current control K, and
inductance of each phase Feed forward calculation
winding, * Rotor angle estimation-
Sensorless FOC
= MTPA for IPM motor
= Torque Calculation
Motor Anm wb params[x].motor.lam Rotor flux linkage, thiscan |= MTPA for IPM motor
be calculated from Bems = Torque Calculation
Constant (Ke [Vpeak(tine to Line) /
kRPM])
K, 2 %60
Am = 73 * 1000+ P+ 27
Where P - Number of Motor Poles
Motor Q params([x].motor.r Motor phase resistance = Current control K;
Resistance calculation
= Rotor angle estimation-
Sensorless FOC
User guide 002-42330 Rev. **

2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

Infineon

guide
Motor parameters required for Motor Suite Motor Control Library
tuning
Name Unit Parameter Name Descriptions Where it is used
Motor Nm params[x].motor.T_max Maximum torque of the * Torque Control [SFO]
Maximum motor
Torque
Motor Peak | A params([x].motor.i_peak Maximum allowed motor |= 12T protection
Current current. Set this value to = Speed control Pl output
2.5 to 3x of motor limit
continuous current, if not
specified in the motor
datasheet.
Motor A params[x].motor.i_cont Continuous motor current = |2T protection
Continuous in rms value
Current
Motor d- A params[x].motor.id_max | Allowed maximum d-axis |= Field weakening
axis current current rating of the motor
maximum that does not result in
demagnetization of the
permanent magnet. Set
this value to 25% of motor
continuous current, if not
specified in the motor
datasheet.
Motor v params[x].motor.v_nom | This parameter specifies = Not used
Voltage the maximum terminal
voltage.
Nominal RPM params[x].motor.w_nom. | Nominal speed of the = Hall sensor for zero
Speed elec motor. speed detection
Maximum RPM params[x].motor.w_max. | Maximum speed of the = Limit for sensorless rotor
Speed elec motor. angle estimator
= Qver speed threshold
Inertia kg.m? | params[x].motor.mech.in | Inertia of the motor and * Speed control K,and
ertia load system Feed forward parameter
calculation
viscous kg.m? | params[x].motor.mech.vi | Viscous damping of the * Speed control K; and
/sec? | scous motor and load system Feed forward parameter
calculation
friction kg.m? | params[x].motor.mech.fri | Friction of the motorand |= Speed control Feed
/sec? | ction load system forward parameter
calculation
Note: Each parameter or variable contains [x] notation in this document, where the x value represents motor
instances. To access Motor 0 parameters, the x value should be 0, and for Motor 1, the value should be 1.
User guide 10 002-42330 Rev. **

2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Motor parameters required for Motor Suite Motor Control Library
tuning

2.2 Parameter configuration hints

e System Parameters

- params[x].sys.cmd.w_max.mech is the maximum speed the user wants to command via potentiometer.
This can be different from maximum speed of the motor.

- params[x].sys.vdc_nom is the DC bus voltage., this value is the same as params[x].motor.v_nom.
However, if the user may want to apply 24 V to a 48 V motor. So, vdc_nom needs to be set as 24 V rather
than 48 Vin this case.

e Control Parameters

- Set the value of params|x].ctrl.curr.bw at least 10 times lower than switching frequency. In addition, it

must be set higher than params|[x].ctrl.speed.bw

User guide 11 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Parameter configuration

3 Parameter configuration

Motor Suite Motor Control Library parameters are centrally defined and configured in the ParamConfig.h file.
This header file serves as the primary configuration interface for all parameters required by the Motor Control
Library. The ParamConfig.h file is in the project directory structure at: \configuration\motor-ctrl-lib-
config\ParamConfig.h.

Values configured using macros in ParamConfig.h are assigned into actual parameters in the ParamConfig.c file
through the PARAMS_InitManual() function, which is called during state machine initialization to transfer all
macro-defined configuration values from the header file into the runtime parameter structure. Refer 12.1
Parameter and 12.3 Initialization and interrupt handling in motor control for parameter handling and
initialization sequence.

Alternatively, ModusToolbox™ Motor Suite GUI provides a comprehensive Graphical User Interface (GUI) for
configuring Motor Control Library parameters without manually editing code files.

3.1 How to configure motor and load parameters

Configuration of motor and load parameters in the motor control code example.

Motor

Load

Figure3 Motor and load parameter configuration in ModusToolbox™ code example

Attention: When updating the motor and load parameter make sure the following macro in this file is set
true “#define PARAMS_ALWAYS_OVERWRITE (true)”

User guide 12 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Parameter configuration

Configuration of motor and load parameter from ModusToolbox™ Motor Suite GUI.

> Mcu .

> DC Supply

> Motor

> Mechanical Load

~ Mechanical Load

Figure4 Motor and load parameter configuration in ModusToolbox™ Motor Suite GUI

After updating the parameter in the motor suite GUI, write the parameter into the target board from Motor
suite GuI B,

3.2 How to configure voltage and current measurement parameter

Configure the following power board parameters using ModusToolbox™ Motor Control code example in
ParamConfig.h file, \configuration\motor-ctrl-lib-config\ParamConfig.h.

e Current shunt and external amplifier gain for current measurement

e Voltage measurement resistive network circuit used to convert DC bus voltage range into controller
measurable range

=)

el

—
>

ELR
[I?,!u
_x

Ferot

I I o
. TET H

€

X
.
Signal from Power Circuitry
FF
Controller ADC Input

Current Measurement

Voltage Measurement

Voltage Level Shifter

“H——=—

(] A: T

:

Figure5 Current and voltage measurement circuit

User guide 13 002-42330 Rev. **
2025-12-10

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Parameter configuration

Three_Shunt

Figure6 Power board-related configuration in ModusToolbox™ IDE

The "ADC_VREF_GAIN" macro defined in ParamConfig.h holds the configuration for the voltage level shifter
network in the controller board. For example, in "KIT_PSC3M5_CC2", a resistor network (by default) is used to
convert the 5V signal from the power board to 3.3V; in this case, “ADC_VREF_GAIN” =5.0/3.3. If no voltage level
shifter network is used to or is manually removed from the controller board, this macro value should be 1.

The “ADC_CS_OPAMP_GAIN” macro defined in ParamConfig.h holds the gain in the current input path for shunt
or active current sensor based current measurement. This includes external gain(amplifier gain and any
attenuation in the external circuit) and configured internal ADC sampler gain(default sampler gain value is 1).

ADC_CS_OPAMP_GAIN = External Gain * Internal Gain = 12*1 = 12 (default configured value)

The "ADC_CS_SHUNT_RES" macro holds the current measurement shunt resistance value in ohms for shunt-
based current measurement systems, while the "ADC_CS_CURRENT_SENSITIVITY" macro is used for active
current sensor-based current measurement and holds the current sensitivity of the active sensor defined in V/A
units - for example, a 1mQ shunt resistor would use ADC_CS_SHUNT_RES = 0.001f, whereas an active sensor
with 100mV/A output would use ADC_CS_CURRENT_SENSITIVITY = 0.1f, and the appropriate macro should be
configured based on whether the hardware design uses shunt resistors or active current sensors for motor
current feedback measurement.

ADC Trigger for Single Shunt Measurement
ADC Trigger for Leg Shunt Measurement
. <+-PWM Period -
) <+--PWM Period ---- PWM Timer
PWM Timer \
U 1 1 1
U 1 1 1 Uy (| (| (|
Un L] L] L] v — 1 1
M Vi L T L [S—
Vi L T L T N S—| W,
W, — S [- We 1 | 1 —
WeT 1 1 1 |
ADC Trigger ADC_ISR0/1
ADC_ISR0/1
CCB
cC ‘ ‘ ‘ CCA
ADC Trigger
ADC Trigger Negative Positive
Current Current
measurement measurement
Tu,Iv and ITw Measurement -Iw Tu
CCA = CC_W*ADC_CS_SETTLE_RATIO+CC_V*(1-ADC_CS_SETTLE_RATIO)
CC = PWM_Period/2 CCB = CC_V*ADC_CS_SETTLE_RATIO+CC_U*(1-ADC_CS_SETTLE_RATIO)

Figure7 Current trigger - PWM for sector 0

Also, some of the current measurement-related parameters can be configured using the ModusToolbox™ Motor
Suite GUI.

User guide 14 002-42330 Rev. **
2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning
guide

Infineon

Parameter configuration

~ System
+ Sampling

Analog Sensors

« (et - Current Sense
Input Configuration

Figure8 Current measurement configuration in Motor Suite GUI

In case of multiple motors, configure for other motors as well.

3.3 How to configure key system parameters

This chapter describes the key system parameters of the Motor Control Library and how to configure those
parameters.

3.3.1 Control mode

The Motor Control Library supports many permutations of control type, controlled entity, feedback type, and
startup methods that are all listed in Table 1. The control mode selection is managed through the
params[x].ctrl.mode parameter, which serves as the primary configuration interface for determining the
operational behavior of the motor control system. This parameter can be configured through the

ModusToolbox™ IDE or Motor Suite GUI.

~l

T defined(CTRL_METHOD_RFO defined(CTRL_METHOD SFO

H H
0. -

£ defined(CTRL_METHOD TBC)
define MOTOR_CTRL_CTRL_MODE Speed_Mode_Block_Comm_Hall
#endif

F
Ld Ll d Ra Ra R

M= & W0 C

MOTOR_CTRL_CTRL_MODE Speed_Mode_FOC_Sensorless_Volt Startup

Configure from Modus Toolbox IDE, File name : ParamConfig.h

~ Control

Control mode Speed_Mode_FOC_Sensorless_Volt_Startup -

Configure from Modus Toolbox Motor Suite GUI

Figure9 Control mode configuration

User guide 15

002-42330 Rev. **
2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Parameter configuration

Table 3

Supported control mode

Control mode

Build

Description

RFO

SFO

TBC

Volt_Mode_Open_Loop

Open-loop V/Hz control

Current_Mode_Open_Loop

Open-loop I-F control

Curr_Mode_FOC_Sensorless_Align_Startup

Closed-loop sensorless-FOC
current control with pre-alignment
at startup

Curr_Mode_FOC_Sensorless_SixPulse_Startup

Closed-loop sensorless- FOC
current control with six pulse
injection at startup

Curr_Mode_FOC_Sensorless_HighFreq_Startup

Closed-loop sensorless- FOC
current control with high
frequency injection at startup

Curr_Mode_FOC_Sensorless_Dyno

Closed-loop sensorless- FOC
current control in dyno mode
(waiting for observer lock to start

up)

Curr_Mode_FOC_Encoder_Align_Startup

Closed-loop sensored- FOC current
control with encoder feedback and
pre-alignment at startup

Curr_Mode_FOC_Hall

Closed-loop sensored- FOC current
control with hall sensor feedback

Curr_Mode_Block_Comm_Hall

Closed-loop block-commutation
current control with hall sensor
feedback

Trq_Mode_FOC_Sensorless_Align_Startup

Closed-loop sensorless- FOC
torque control with pre-alignment
at startup

Trg_Mode_FOC_Sensorless_SixPulse_Startup

Closed-loop sensorless- FOC
torque control with six pulse
injections at startup

Trg_Mode_FOC_Sensorless_HighFreq_Startup

Closed-loop sensorless- FOC
torque control with high frequency
injection at startup

Trg_Mode_FOC_Sensorless_Dyno

Closed-loop sensorless- FOC
torque controlin dyno mode
(waiting for observer lock to start

up)

Speed_Mode_FOC_Sensorless_Align_Startup

Closed-loop sensorless- FOC speed
control with pre-alignment at
startup

User guide

16

002-42330 Rev. **
2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Parameter configuration

Control mode

Build

Description

RFO

SFO

TBC

Speed_Mode_FOC_Sensorless_SixPulse_Startup

Closed-loop sensorless- FOC speed
control with six pulse injection at
startup

Speed_Mode_FOC_Sensorless_HighFreq_Startup

10

Closed-loop sensorless- FOC speed
control high frequency injection at
startup

Speed_Mode_FOC_Sensorless_Volt_Startup

11

Closed-loop sensorless- FOC speed
control with open-loop V/Hz at
startup

Speed_Mode_FOC_Sensorless_Current_Startup

12

Closed-loop sensorless- FOC speed
control with open-loop current at
startup

Speed_Mode_FOC_Encoder_Align_Startup

13

Closed-loop sensored- FOC speed
control with encoder feedback and
pre-alignment at startup

Speed_Mode_FOC_Hall

14

Closed-loop sensored- FOC speed
control with hall sensor feedback

Speed_Mode_Block_Comm_Hall

Closed-loop block-commutation
speed control with hall sensor
feedback

Profiler_Mode

15

9

Profiler mode

Each configured control mode operates through a structured state machine architecture, where the system
progresses through a series of well-defined operational states. The current system state is stored in the
sm(x].current variable. The list of states is shown in Figure 10.

User guide

17

002-42330 Rev. **
2025-12-10

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Parameter configuration

Build L
State Description
RFO SFO TBC
Init 0 0 0 Initialization
Brake Boot 1 1 1 Brake and Bootstrap
Align 2 2 Aligning (pre-positioning)
Six_Pulse 3 3 Six pulse injection
High_Freq 4 4 High-frequency-injection locking
Speed OL TO CL 5 5 Transition from open-loop to closed-loop
Dyno_Lock 3] 6 Waiting for obsever lock to start up in dyno mode
Prof Finished 7 7 Profiler, finished
Prof Rot Lock 8 8 Profiler, rotor locking
Prof R 9 9 Profiler, stator resistance estimation
Prof Ld 10 10 Profiler, d-axis inductance estimation
Prof Lg 11 11 Profiler, g-axis inductance estimation
Current_OL 12 Open-loop current control
Volt HZ OL 13 12 3 Open-loop Volt/Hz control
Speed CL 14 13 4 Closed-loop speed control
Fault 15 14 5 Fault
Torque CL 15 Closed-loop torque control
Current_CL 16 6 Closed-loop Current control

Figure 10 List of state in Motor Control

RFO current mode FOC sensor less with six pulse startup

V//Hz open loop state machine diagram
state machine diagram

* ADC offset nulling done

» Parameters init done * Bootstrap done * ADC offset nulling done
» Ext enable cmd * Speed cmd [ext) = threshlL « Parameters init done « Bootstrap done
» Ext enable cmd » Current emd (ext) = thresh
. " . - .
" ! . . .
- -
\ i) X i
» Speed cmd (int) < thresh L
is <th
= All states, Ext disable cnd o Al states, Ext dizable comd » Current cmd (ext) < thresh
* 5ix pulse done
« Cument cmd [ext) 2 thresh
» Clear faults
» Cumrent cmd (int) < thresh
» All states, Fault detected
& Clear faults » All states, Fault detected

¥ ot I K

Figure11 Control mode types and associated state machines - Example

e Control mode is configured using “params[x].ctrl.mode” parameter and configuration macro is defined in
paramconfig.h file
e “smi[x].current” variable holds the current state machine state

User guide 18 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Parameter configuration

3.3.2 Control loop frequency
The motor control system implements two primary control loops with interdependent frequencies:

e Fast Control Loop: Executes current control algorithms and operates at the highest frequency
e Slow Control Loop: Handles speed control and system management functions

The PWM frequency is determined by the fast control loop frequency multiplied by the configured ratio
between PWM frequency and fast loop frequency.

The slow control loop frequency is derived from the fast control loop frequency using the configured ratio
between slow loop frequency and fast loop frequency.

Control loop frequency-related parameters can be configured through the ModusToolbox™ IDE or Motor Suite
GUL.

Configure from Modus Toolbox IDE, File name : ParamConfig.h

= Sampling
PWM to fast-loop frequency ratio 1

Fast-loop frequency 1.50e+4 Hz

Fast-loop to slow-loop frequency ratio

Configure from Modus Toolbox Motor Suite GUI

Figure12 Control loop frequency configuration

User guide 19 002-42330 Rev. **
2025-12-10

guide

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon

Parameter configuration

Table4 Control loop frequency - Default configured values

Input (Macro
defines in
ParamConfig.h)

MOTOR_CTRL_FASTLOOP_FREQ

15000.0f

[Hz], fast-loop frequency

Param name: params|[x]. sys.samp.fs0 =
MOTOR_CTRL_FASTLOOP_FREQ
params[x]. sys.samp.tsO[sec]=1/
MOTOR_CTRL_FASTLOOP_FREQ
=66.6E-6f

MOTOR_CTRL_FSO_FS1_RATIO

[], Fast-loop to slow-loop frequency ratio

Param name: params[x].
sys.samp.fs0_fs1_ratio =
MOTOR_CTRL_FSO_FS1_RATIO
params[x].sys.samp.ts1[sec] =
params|[x].sys.samp.fsO_fs1_ratio/
params|[x].sys.samp.fs0 = 333.33E-6f

MOTOR_CTRL_FSO_FS1_RATIO

[#], PWM to Fast-loop frequency ratio

Param name:
Params|[x].sys.samp.fs0_fs1_ratio =
MOTOR_CTRL_FSO_FS1_RATIO

Calculated
Parameters

(calculated in
ParamConfig.c)

Params[x].sys.samp.ts0

66.66E-6

[sec], fast-loop period
=1/ params|[x]. sys.samp.fsO = 66.66E-6

Params|[x].sys.samp.fpwm

15000.0f

[Hz], PWM frequency
=params|[x].sys.samp.fs0 * params
[x].sys.samp.fpwm_fsO_ratio
=15000.0f*1 = 15000.0f

Params[x].sys.samp.tpwm

66.66E-6

[sec], PWM period
=1/ params[x]. sys.samp. fpwm = 66.66E-6

Params|[x].sys.samp.fsl

3000.0f

[Hz], PWM frequency

=params|[x].sys.samp.fs0 / params[
x].sys.samp.fsO_fs1_ratio

=15000.0f/5 = 3000.0f

Params[x].sys.samp.ts1l

333.33E-
6

[sec], slow-loop period
=1/ params[x]. sys.samp.fs1 = 1/3000.0f =
333.33E-6

User guide

20

002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Parameter configuration

3.3.3 State transition threshold

State transition thresholds determine when the system moves from one state to another and can be configured
based on motor speed/ specific events/motor current/ time. When the state machine transitions back to a
previous state, a hysteresis value is applied using the formula (Threshold - Hysteresis) to prevent oscillation
between states.

3.3.3.1 Start-up threshold parameters

Params[x].ctrl.volt.w_thresh.elec and Params[x].volt.w_hyst.elec parameters control open-loop threshold
values. The Params[x].ctrl.volt.w_thresh.elec parameter defines the threshold for transitioning the system from
"Brake_Boot" state to startup states (for example, Current_OL, Volt_Hz_OL). The Params[x].volt.w_hyst.elec
parameter defines the threshold for transitioning the system from startup states (for example, Current_OL,
Volt_Hz_OL) back to "Brake_Boot" state.

3.3.3.2 Observer threshold parameters (speed control):

Params[x].obs.w_thresh.elec and Params[x].obs.w_hyst.elec parameters control observer threshold values.
The Params[x].obs.w_thresh.elec parameter defines the threshold for transitioning the system from startup
states (for example, Current_OL, Volt_Hz_OL) to Speed_CL state. The Params[x].obs.w_hyst.elec parameter
defines the threshold for transitioning the system from Speed_CL state back to startup states (for example,
Current_OL, Volt_Hz_OL).

® ADC offset nulling done
* Parameters init done * Bootstrap done
® Ext enable cmd * Speed cmd (ext) 2 thresh L

Y Y
~_

® Speed cmd (ext) < thresh L

e All states, Ext disable cmd

e Align done
e Speed cmd (ext) = thresh L

® Speed cmd (int) < thresh L

e All states, Fault detected

N

e Clear faults

Figure 13 RFO & SFO speed control FOC sensorless with align startup

User guide 21 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I Nn f| neon
guide

Parameter configuration

* ADC offset nulling done
® Parameters init done e Bootstrap done
® Ext enable cmd e Speed cmd (ext) 2 thresh L

PRy YR

® All states, Ext disable cmd ® Speed cmd (ext) < thresh L

o Align done
e Speed cmd (ext) = thresh L

® Speed cmd (int) < thresh L

» All states, Fault detected

N

e Clear faults

Figure 14 RFO speed control FOC encoder with rotor pre-alignment startup

3.3.3.3 Current control threshold parameters:

Params[x]. ctrl.curr.i_cmd_thresh and Params|[x]. ctrl.curr.i_cmd_hyst parameters control observer threshold
values. The Params|[x]. ctrl.curr.i_cmd_thresh parameter defines the threshold for transitioning the system
from "Brake_Boot" state to Current_CL state. The Params|[x]. ctrl.curr.i_cmd_hyst parameter defines the
threshold for transitioning the system from Current _CL state back to "Brake_Boot" state.

o ADC offset nulling done
e Parameters init done
e Ext enable cmd

T

e Bootstrap done
e Current cmd (ext) = thresh

T,
~_

e Current cmd (ext) < thresh

o All states, Ext disable cmd

e Align done
e Current cmd (ext) = thresh
e Current cmd (int) < thresh

o Clear faults

e All states, Fault detected

Figure 15 RFO current mode FOC sensorless with align startup state machine

002-42330 Rev. **

User guide 22
2025-12-10

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Infineon

Parameter configuration

Table 5 Startup transition - Default configured values

MOTOR_CTRL_VOLT_STARTUP_THRESH 200.0f [RPM], startup threshold. Default value is 5% of
motor nominal speed
Param name: params[x].ctrl.volt.w_thresh.elec
[Ra/sec-elec] =
MECH_TO_ELEC(HZ_TO_RADSEC
(RPM_TO_HZ(MOTOR_CTRL_VOLT_STARTUP_T
HRESH)), MOTOR_POLE)
Paramsl[x].ctrl.volt.w_hyst.elec =
params[x].ctrl.volt.w_thresh.elec * 0.5f
MOTOR_CTRL_OBS_SPEED_THRESH 800.0f [RPM], Observer threshold. Default value is 20%
of motor nominal speed
Input (Macro Param name: params[x]. obs.w_thresh.elec
definesin [Ra/sec-elec] =
ParamConfig.h) MECH_TO_ELEC(HZ_TO_RADSEC
(RPM_TO_HZ(MOTOR_CTRL_OBS_STARTUP_T
HRESH), MOTOR_POLE)
Params[x]. obs.w_hyst.elec = params[x].
obs.w_thresh.elec * 0.5f
MOTOR_CTRL_CURRENT_STARTUP_THRESH 0.525f [A], MOTOR_CURRENT_CONT™*0.15f, Default
value is 15% of motor continuous current
Param name: params[x]. ctrl.curr.i_cmd_thresh
[A] =
MOTOR_CTRL_CURRENT_STARTUP_THRESH
Paramsl[x]. ctrl.curr.i_cmd_hyst = params[x].
ctrl.curr.i_cmd_thresh * 0.8f
116 #define MOTOR_CTRL_0BS_SPEED THRESH MOTOR_NORM_SPEED*2. 2 RPM], Observer activation speed threshold
171 #define MOTOR_CTRL VOLT STARTUP_ THRESH MOTOR_NORM_SPEED*@ .05 RPM], startup threshold
147 #define MOTOR_CTRL_CURRENT STARTUP_THRESH MOTOR_CURRENT CONT*@.15+ *[A], Current control startup threshold
Configure from Modus Toolbox IDE, File name : ParamConfig.h
v Observer #\/pltage Controller
Observer activation speed threshold | 8.00e+2 RPM Startup threshold | 2.00e+2 RPM
Current control startup threshold | 5.25e-1 A
Configure from Modus Toolbox Motor Suite GUI

Figure 16 How to configure state threshold parameters

User guide

23

002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Parameter configuration

3.3.4 Rate limiter

Rate limiters provide a controllable soft start by limiting how quickly speed and current commands can change,
preventing abrupt system responses.

Parameters:

e Speed rate limit: params(x].sys.rate_lim.w_cmd.elec [rad/(sec)?]
e Current rate limit: params[x].sys.rate_lim.i_cmd [A/sec]

Examples:

e With a 10 A/sec current rate limit, it takes 1 second for current to ramp from 0A to 10A, ensuring smooth
startup without sudden torque changes.

e With a 100 rad/(sec)? speed rate limit, it takes 1 second for speed to accelerate from 0 to 100 rad/sec,
providing gradual speed transitions.

Wend

vars.w cmd ext— s A — wvars.w cmd int.elec
- - rate limit - -

Time(s)

Speed Rate Limiter — “params.sys.rate lim.w_cmd.elec”

lL‘II'Id A

vars.i cmd ext —— A ——— wvars.i cmd int
rate imit

Time(s)

Current Rate Limiter — “params.sys.rate lim.i cmd”

Figure 17 Ramp limiter

Table 6 Startup transition - Default configured values

MOTOR_CTRL_SPEED_ 1000.0f [RPM/sec], startup threshold. Default value is 5% of motor nominal
CMD_RATE speed
Param name: params[x].sys.rate_lim.w_cmd.elec [Ra/sec-elec] =
Input (Macro MECH_TO_ELEC(HZ_TO_RADSEC(RPM_TO_HZ(MOTOR_CTRL_SPE
defines in ED_CMD_RATE)), MOTOR_POLE)
ParamConfig.h) | MOTOR_CTRL_CURREN | 108.0f [A/sec], 10.0f*MOTOR_CURRENT_PEAK. Default value is 10-time
T_CMD_RATE motor peak current
Param name: params[x].sys.rate_lim.i_cmd [A/sec] =
MOTOR_CTRL_CURRENT_CMD_RATE

User guide 24 002-42330 Rev. **
2025-12-10

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Parameter configuration

;;)TOR_CTRL_SPEED_CMD_RATE 1eea.6T *[RPM/sec], Speed command rate*
8l CTRL_METHOD_RFO defined(CTRL_METHOD_TBC _ i _
32 TOR_CTRL_CURRENT_CMD_RATE 1@.@f*MOTOR_CURRENT PEAK *[A/sec], Current command rate®
Configure from Modus Toolbox IDE, File name : ParamConfig.h
* Rate Limiters
Speed command rate [1.00e+3 RPM/Sec
Current command rate |1.08e+2 AfSec
Configure from Modus Toolbox Motor Suite GUI
Figure 18 Rate limiter parameter configuration
User guide 25 002-42330 Rev. **

2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Verification of ADC measurement

4 Verification of ADC measurement

Verification of DC bus voltage and motor current measurement if these values are not matching with actual
values how to adjust it or fix.

4.1 DC bus voltage measurement

Read the DC bus voltage using ModusToolbox™ Motor Suite GUI Test Bench, the measured voltage should
match with actual DC bus voltage applied to power board with 2% tolerance. If the measured DC bus voltage
does not match with actual DC bus voltage, check the following configurations in code example.

o Voltage resistor divider configuration (“ADC_SCALE_VDC” macro in Paramconfig.h file), voltage
measurement low side and high side resistance value are configured as per power board.

e ADC voltage reference configuration (“ADC_VREF_GAIN” macro in Paramconfig.h file)

It is possible to read the DC bus voltage ADC value directly from “mcu(x].dma_results[2]” variable using Motor
Suite GUI Builder. ADC count value should be 4095*Vi, /Vaocrer, Where Vi, is voltage at MCU voltage measurement
pin and VADCREFiS 3.3V.

4.2 Motor phase current measurement

Current sensing is one of the most critical aspects of motor control systems, serving as the foundation for both
control performance and system protection. In sensorless control methods particularly, current information
becomes the primary feedback source from which rotor position and speed are estimated. Field Oriented
Control (FOC) is entirely dependent on accurate current measurements, as the current control loops require
precise feedback to regulate d-axis and g-axis currents effectively. Therefore, it is critical to verify current
measurement accuracy and quality before running FOC algorithms.

Step 1: Read all three-phase current values without running the motor using Motor Suite GUI Oscilloscope. All
three phase current values should be zero or close to zero.

Optionally read the current ADC count value using Motor suite GUI Builder. In case of leg shunt configuration,
“mcu[x].dma_results[0]”, “mcu[x].dma_results[5]” and “mcu[x].dma_results[1]”variables hold phase U (lu),
phaseV (lv), and phase W (Iw) currents, respectively. ADC count value should match with the current input-
offset value. In case of single shunt configuration, read “mcu[x].dma_results[0]” and “mcu[x].dma_results[5]”

variables value should match with the current input offset.

Figure 19 Phase current waveform- While the motor is not running

User guide 26 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Verification of ADC measurement

Step 2: Run the motor in V/F open loop mode and read motor phase currents using Motor Suite GUI
Oscilloscope. The measured value should match with the actual current drawn by the motor.

If the measured current values are not matching with actual current, check the following parameters
configurations are matched with the power board.

e ADC voltage reference configuration (“ADC_VREF_GAIN” macro in Paramconfig.h file)
e Current measurement shunt value configuration (“ADC_CS_SHUNT_RES” macro in Paramconfig.h file)

e Current measurement external amplifier configuration (“ADC_CS_OPAMP_GAIN” macro in Paramconfig.h
file)

e Configured shunt type (“ADC_CS_SHUNT_TYPE”), polarity(“ADC_CS_CURRENT_SENSE_POLARITY”) and
measurement type (“ADC_CS_CURRENT_MEASUREMENT_TYPE”)

Figure 20 Phase current waveform - V/F open-loop mode

In the case of single shunt current measurement, three parameters directly influence current measurement.
These parameters are defined in configuration/motor-ctrl-lib-config/ParamConfig.h and require proper
configuration for accurate current sensing.

1. “ADC_CS_SS_MIN_SEGMENT_TIME” defines the minimum measurable window for single shunt current
measurement, specified in microseconds [us]. This parameter defines the minimum PWM on-time for
current measurement, so it has the most significant impact on measurement accuracy, with a default value
of 3us. Optimization of this value can improve system performance and accurate current measurement.

2. “ADC_CS_SETTLE_RATIO” represents the settling ratio used for single-shunt current sampling timing. This
parameter allows adjustment of the measurement timing to avoid current sensing during switching
transients or ringing periods. It can be fine-tuned based on board-specific propagation delays and switching
characteristics, with default values typically working well for most standard applications.

3. “MOTOR_CTRL_SS_HMOD_KI” serves as the harmonic modification parameter for single shunt current
measurement. This parameter helps optimize current reconstruction algorithms and typically functions
effectively with default settings without requiring adjustment in most applications.

Begin optimization with the minimum segment time parameter as it provides the most significant
improvement potential. Example, start by reducing ADC_CS_SS_MIN_SEGMENT_TIME from 3us to 1-1.25us and
verify current sensing. If further refinement is needed, adjust ADC_CS_SETTLE_RATIO to account for board-
specific characteristics. Monitor current measurement quality throughout the tuning process to ensure stable
and accurate reading across the complete operating range.

User guide 27 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Motor parameter identification

5 Motor parameter identification

Motor electrical and mechanical parameters are critical for precise motor operation. This chapter explains how
to identify these parameters.

5.1 Parameter identification using Motor Suite motor profiler

The Profiler feature automates extraction of motor parameters so users can tune the system when using a new
motor and/or mechanical load. The profiler extracts the following parameter by aligning the motor into a
known position and running the motor in speed control mode.

e Motor parameters

Stator resistance, r (“params[x].motor.r¢)

Stator g-axis inductance, L, (“params[x].motor.lq)

Stator d-axis inductance, L, (“params[x].motor.ld“)

Rotor permanent-magnet flux linkage, 4,, (“params[x].motor.lam)
e Mechanical Parameters (used in speed controller)

- Inertia, J (“params[x].mech.inertia”)

- Viscous, B (“params[x].mech.viscous”)

- Friction, Tf (“params[x].mech.viscous”)

The profiler is not a substitute for engineering judgment or expertise in tuning motor control systems; itis a
tool to facilitate that process. It assumes a simplified first-order mechanical model (inertia and friction),
whereas some loads exhibit resonances, for example, when there is a significant inertia mismatch between the
motor and the load. Therefore, the user should fine-tune the parameters based on the application’s
characteristics. There are temperature variations, aging effects, and other environmental factors, so these
values are estimated and can vary with operating conditions and time.

Note: In Profiler mode, it is required to run the motor in both current open loop and speed closed loop modes to
identify the load parameters. This identification process can only be executed successfully when both
underlying control modes are already functioning properly - therefore, when the motor is not operating
correctly in current open loop mode, the Current Open Loop section (6.2 Open-loop I/F) can be referenced
for adjusting the appropriate open loop parameters, and when the motor is not working properly in speed
closed loop mode, the Speed Loop section (7.2 Speed) can be referenced for tuning the speed controller
parameters.

5.1.1 Motor Suite motor profiler execution steps
The profiler executes the following steps to estimate parameters:

1. Lockthe rotor (electrical identification)

e Align and lock the rotor at known electrical degrees by commanding la = params|x].profiler.i_cmd_dc and
IB =0 for “params[x].profiler.time_rot_lock”.

e While locked, estimate phase resistance Rs from the DC injection.

e Still at lock, estimate inductances Ld and Lq by injecting a high-frequency current (1 kHz) with amplitude
“params|[x].profiler.i_cmd_ac“and measuring the response.

e Usetheidentified Rs, Ld, and Lq to initialize the sensorless rotor estimator for the next step.

User guide 28 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Motor parameter identification

2. Run the motor (mechanical and flux identification)

e Run the motor with speed command from 0 to “params[x].profiler.w_cmd_elec.max“. The ramp rate is set
by “params[x].sys.rate_lim.w_cmd.elec”.

e Start the motor in open-loop current control with current command “params|[x].ctrl.curr.i_cmd_ol” and
switch to closed-loop speed control at motor speed reaches “params[x].obs.w_thresh.elec.”

e Begin mechanical/flux estimation once the speed reaches params|x].profiler.w_cmd_elec.min.”

e Perform estimation over multiple speed steps. At each step, hold speed for
“params(x].profiler.time_spd”and estimate:

- B:viscous friction coefficient
- Tf: Coulomb (dry) friction torque
- A, : Rotor flux linkage
e Finalize B, Tf, and 4,, when the motor speed reaches “params[x].profiler.w_cmd_elec.max.”
3. Ramp down (inertia identification)
e Ramp the commanded speed down to “params|[x].profiler.w_cmd_elec.min.”
e Estimate inertia J from the speed response during ramp-down (using measured acceleration/torque)

—Rotor locked into know position I:I

—Identify r, Lq, Ld

Motor Parameter Iil
Identification

J T

N\ Y
—Run the motor in open loop , Speed close loop I
and ramp down the motor
Mechanical —ldentify J, B, Tf, 4, and V/F parameters :
Parameter &

Identification) I:I

Figure 21 Profiler execution steps

Note: Refer to the motor control firmware reference manual for estimation details.

As the Profiler runs the motor in speed-control mode to estimate parameters, it is essential to preconfigure the
following motor and mechanical parameters using the motor’s nameplate, datasheet, or best-known values.

5.1.2 Profiler parameters

The Motor Control Library includes configurable input parameters for profiler setup that list of parameters is
described in Table 7.

User guide 29 002-42330 Rev. **
2025-12-10

guide

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon

Motor parameter identification

Table7 Profile input parameters

Parameter Name

Description

params|[x].profiler.overwrite

Enable: After the profiler estimates values, it replaces the configured
motor and load parameters with its results.

Disable: Keep existing parameters; do not apply profiler estimates.
Config macro: MOTOR_CTRL_PROFILER_PARAM_OVERWRITE

params|[x].profiler.cmd_thresh

[%], Activation command threshold for profiler. The profiler starts
only if the speed command value exceeds this threshold value.

Config macro: MOTOR_CTRL_PROFILER_CMD_THRESH

params|[x].profiler.cmd_hyst

[%], Activation command hysteresis for profiler
Config macro: MOTOR_CTRL_PROFILER_CMD_HYST

params|x].profiler.i_cmd_dc

[A], Target DC current applied to lock the rotor and resistance
estimation

Config macro: MOTOR_CTRL_PROFILER_I_CMD_DC

params|[x].profiler.i_cmd_ac

[A], Target AC current applied to inductance estimation
Config macro: MOTOR_CTRL_PROFILER_I_CMD_AC

params|[x].profiler.w_cmd_elec.min

[Ra/sec-elec], Start threshold to start the mechanical parameter
estimation

Config macro: MOTOR_CTRL_PROFILER_SPEED_CMD_MIN

params|[x].profiler.w_cmd_elec.max

[Ra/sec-elec], Maximum motor speed in profiler mode
Config macro: MOTOR_CTRL_PROFILER_SPEED_CMD_MAX

params|[x].profiler.time_rot_lock

[sec], Rotor locking time
Config macro: MOTOR_CTRL_PROFILER_ROTOR_LOCK_TIME

params|[x].profiler.time_spd

[sec], Duration to maintain constant motor speed in each step for
mechanical parameter estimation

Config macro: MOTOR_CTRL_PROFILER_FLUX_EST_TIME

Advanced profiler parameters are derived from profile input parameters.

Figure 22 Profiler input parameter config macros in ParamConfig.h

User guide

30 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning In f| neon ,
guide

Motor parameter identification

params|[x].profiler.w_cmd_elec.max

LN
params|[x].profiler.time_spd

params|[x].profiler.w_cmd_elec.min ——

Motor Param Identificati Mechanical Param Identification

1666.7 ms 3333, s 6666.7 ms 83333ms 10000.0 ms 11666.7 ms s 15000.0 ms

Trigger Position

params[x].profiler.i_cmd_dc

il

12000ms s Y 2800.0 ms 3200.0 ms

Figure 24 Motor profiler: Motor parameter identification stage

User guide 31 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Motor parameter identification

5.1.3 Parameter tuning in profiler mode

This section explains the parameters that influence each stage of the profile.

5.1.3.1 Rotor lock state

To extract motor parameters, first lock the rotor at a known electrical angle by applying sufficient DC current
and allowing time for it to rotate and settle.

By default, the current command (“params[x].profiler.i_cmd_dc”) is set to 40% of the motor’s continuous
current, that is typically adequate for most cases; Increase this value as needed based on the motor load
condition.

The default rotor lock time (“params[x].profiler.time_rot_lock”) is 1 sec. If required, adjust the lock time based
on the load condition.

Below diagram depicts the rotor locking stage for a typical IPM with an initial rotor angle of 8 = /4, by
regulating and applying a constant dc current along the a-axis, the rotor flux linkage will align itself with the a-
axis and after settling, the rotor angle would be 6 =/2.

state Pl |
ProT Rol_Lock

Rotor Lock

Brake_Boal
B o ECR 115] B TR 134

Figure 25 Rotor locking stage, starting from 8 = 1t /4 as the initial rotor angle and locking at 8 = /2

5.1.3.1 Resistance estimation

When the rotor is locked and the dc-currents reach their steady-state value, the resistance of the motor is
estimated using the applied DC voltage, V,, and the commanded DC current, I, as follows:

r = =

Va
1

3|8

During motor resistance estimation, the system measures the total resistance path including motor windings,
connecting cables, and power switching device on-resistance. This comprehensive measurement may show
slightly higher resistance values than an LCR meter reading of just the motor windings, especially for very low-
resistance motors (<10 mQ). This is normal behavior and will not impact motor control performance.

The following diagram illustrates the resistance-estimation stage, filtered V, used in estimated of resistance.

User guide 32 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Motor parameter identification

06
_ Vo Vo filt
.'/_--/ :
054
04
state -
Resistance
03 : .
Rotor Lock Estimation
02
0.1
7 "
08 07 08 0.0 10 11 12 13 14 15 15 17 18 18

Figure 26 Stator resistance estimation stage

5.1.3.2 Inductance estimation

In motor inductance value estimation, high-frequency components are also injected in the af3-axes in addition
to the dc component applied to a-axis lock the rotor. First, inject the high-frequency voltage to the a-axis and
measure its corresponding current. This value is used to estimate motor inductance Ld. Then inject the high-
frequency current to the B-axis and measure its corresponding current. This value is used to estimate motor
inductance Lq.

To improve estimation accuracy, profiler uses multiple injection frequencies around 1 kHz (900-1100 Hz) when
estimating inductance. When validating estimated values against LCR meter readings, ensure frequency
consistency. As inductance estimation uses 1 kHz injection, configure the LCR meter to 1kHz for meaningful
comparison

e High Frequency Component

High-frequency current components are defined in “params[x]profiler.i_cmd_ac” parameter, high-frequency
component value should be less than DC component “params(x].profiler.i_cmd_dc,” to avoid torque
generation from the high- frequency component. Default high frequency component value is 25% of motor
continuous current, this is half the value of dc component. Also injected dc and ac currents must be lower than
the peak current rating of the motor otherwise the measurements would not be accurate due to saturation of
the inductances along both axes (L, and Ly). It is recommended that the injected currents do not go above 25%
of the peak current rating of the motor.

e Zero Inductance Estimation issue:

This occurs when the motor's electrical time constant (L/R) approaches or falls below the sampling period
(1/PWM_frequency). For low-inductance motors, the system cannot resolve the L/R dynamics within the
sampling window. Increase the PWM frequency to provide sufficient time resolution for accurate inductance
estimation.

User guide 33 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Motor parameter identification

Below diagram depicts the iterative current control and inductance estimation. L, and L, estimations will
converge to their corresponding real values while the current magnitudes converge to the commanded current

(I21%).

Timeline =|
) ['Data| Power Code ClearOnResume -|5s/Div. </ © ®
0.00018 5/ 0F
pata | Time +17.638 403 s
- H M profilerout_estlq| Cursor +0.934343 s
1lp |0.00016 B profilerout_estid|@
” — Sampl. Freq|1kHz -
0.00014 Draw Points |(]
25 L q | Names at Cursor (]

0.00012

0.0001

.9628702e-05
. 8e-05 8.79941363e-05
Lq
s 6e-05
28 4e-05
01 2e-05
o 2 T T T T T T T T x T
-20s -15s -10s Ss
15 18 21 z4 27 20 a3 s ER 42 45 43 5.1 54 ¢ | - >

Figure 27 Iterative current control and inductance estimation in the inductance-measurement stage

5.1.3.3 Mechanical parameter and flux linkage estimation

After resistance and inductance value estimation, these estimated values are used for sensorless rotor angle
estimation instead of configured value.

It is necessary to run the motor to estimate mechanical parameters and flux linkage values. Start the motor in
the current open loop with current command value “params(x].ctrl.curr.i_cmd_ol.” Once the speed command
reaches the observer threshold (“params(x].obs.w_thresh.elec”), state moves from current open loop to speed
close loop. In speed close loop operation, observer estimation rotor angle is used. Speed Ramp up to the
configured maximum speed, “params[x].profiler.w_cmd_elec.max.” Begin mechanical/flux estimation once
the speed reaches “params[x].profiler.w_cmd_elec.min.”

e Motoris not runningin current open loop mode or over-current:

Make sure “params[x].ctrl.curr.i_cmd_ol” is configured correctly as per the system. Default value of
“params(x].ctrl.curr.i_cmd_ol” is 40% of motor continuous current. Increase the current command if motor
is not running and reduce in case of overcurrent.

It is essential to configure speed ramp rate is configured as per the system.
e Motoris not runningin speed loop running:

Make sure profiler min and max speed parameter configuration as per motor specification. It is required to
set min value more than observer speed threshold and max value less than motor nominal speed(around
50%).

Adjust the speed and current loop bandwidth to run the motor in speed close loop.

Adjust the speed ramp rate based on system configuration

V/F constant and V/F offset values are also estimated in the profiler.

During mechanical parameter identification the motor should run in open loop and close loop, otherwise the
estimated parameter will not be correct.

User guide 34 002-42330 Rev. **
2025-12-10

o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I Nn f| neon
guide

Motor parameter identification

5.1.4 How to run a motor profiler using Motor Suite GUI

e Open ModusToolbox™ Motor Suite and create project based on hardware setup used
e Make sure Motor Suite GUl is connected to the target device
e Use program button [El, Program the default binary file.

e Configure motor and mechanical parameters in Configurator view ™ usingthe motor’s nameplate,
datasheet, or best-known values using Motor Suite GUI configurator.

e G) e %E
> MCU .
Selected Motar |M0tur 0 - |
% DCSu pply Poles | 8.00 |
Statorlg |6.70e-4 | =
> Motor i StatorLd | 6.70e-4 | H
|
~~~A Rotor flux linkage | 6.00e-3 | wb
» Mechanical Load Stator resistance | 4.50e-1 | ohm
\ J
‘\ Maximum torque  |3.90e-1 | Hm
A Peak current rating | 10.8 | &
v
\ Continuous current rating | 3.50 | &
\
\‘ Maximum d-axis current rating [ 1.75 | a
‘\ Mominal de-link voltage  |24.0 |
\\ Mominal speed | 4.00e-3 | =Pl
A
\\ Maximum speed | 6.00e-3 | reM
Parameter Info: Final electrical speed
{params.profiler.w_cmd_elec.max) - For flux estimation ~ Mechanizal Load
Advanced Parameter: You can hide this parameter by disabling
"Dizable Advanced Parameters” switcher at parameter preferences Inertia \II.IOe-S | kg.m#2
panel above. - )
Viscous damping \1.20&-5 \ kg.m2...
Friction [6.00e3 | Nm
. . o .
Figure 28 Motor and mechanical parameter configuration
. . . . . a1y
 Configure profiler parameters (refer Table 7) in Motor Suite GUI configurator
I Profiler
Parameter overwrite | Dizable - |
Activation command threshold [5.00 | L]
Activation command hysteresis [2.50 | %
Target OC current [1.75 | A
Target AC current |_8.755*l | A
nitizl electrical speed |:1.ﬁ]_e+3 | RPM
Final electrical spead |:3.<]Oa+3 | RPM
Rotor locking time [1.00 | Sec
Flux estimation time [1.50 | Sec
Figure 29 Profiler parameter configuration
User guide 35 002-42330 Rev. **

2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Motor parameter identification

e Program the parameter into RAM or Flash

e Open profiler window [(ZF from Test Bench view /@ and set speed command (>5%) and start the profiler
by enabling the driver. If motor is not running during mechanical parameter identification Change the
“Dynamic Response” to Slow / Fast / Custom or only adjust the speed loop bandwidth (Ex. reduce speed
loop bandwidth)

e Once profiler completes the estimation, update this value into Motor Suite GUI manually or automatically

Drive S EnABLED Target Set Control Mode Parameter overwrite
L L L L L L L L ]
DISABLED l- ~ T Profiler_Mode hd Disable A
0 10 20 30 40 S0 60 70 30 90 100
Dynamic Response Progress
erate ~ 100%
State Machine's State Prof_Finished
Observer Bandwidth 75.0 Hz
Speed Control Band... 15.0 Hz Motor Parameters Mechanical Parameters
Speed Anti-Resonant Filter R 45Te-1 0 J 6.03e-6  Wmasec?
First Pole 75.0 Hz Ld 6.34e-4 H B 6.99e-5  Wmesec
Second Pole 75.0 Hz Lqg 6.34e-4 H Tf 3.11e3  Hm
First Zero Infinity Hz Am 5.78e-3 Wb Open-Loop V/Hz Parameters
Second Zero Infinity Hz Vo 5.70e-2
Speed Kl Multiple 10.0 Kv 5.72e-3  V/Hz
Current Bandwidth 7.50e+2 Hz
Flux Weakening Ban... 300 Hz 14n07 cymmand
1200-]
Hall Tracking Loop B... 75.0 Hz 1o004
Encoder Tracking Lo... 750 Hz g 800
O s00-]
High Frequency Injec... 60.0 Hz -
400
200
0
Time
Figure 30 Profiler window
User guide 36 002-42330 Rev. **

2025-12-10




o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Motor parameter identification

5.2 How to measure motor parameter manually
In this section, it explains how to measure basic motor parameters as listed here:

e Stator resistance per phase (Rs)
e Stator inductance per phase (lq, ld)
- IPM motor stator lq inductance per phase
- IPM motor stator |d inductance per phase
e Motor poles (p)

5.2.1 Stator resistance (Rs)

The measurement method of the stator inductance with the equivalent circuit of the motor is shown in Figure
31. It measures the line-to-line resistance by LCR meter, but this measurement result is the sum of the two
resistances of both lines. The motor control parameter of a stator resistance parameter (Rs) represents the
winding resistance of the motor per phase, so the measurement result should be divided by 2 (for star-
connected windings).

ey
-

R, Lq
|1 Jc
Vo 4
/LCR
(meter/

Figure31 Measurement method of stator resistance (Rs) and stator inductance (Lq, Ld)

5.2.1.1 Measurement procedure
The measurement procedure of Rsis as follows,

1. Connect two phases to LCR meter, and leave the third phase open
2. Measure the line-to-line resistance value
3. Divide the measured resistance value by 2

5.2.1.2 Measurement example

The following diagram shows the actual measurement example of the line-to-line stator resistance. The
measurement result in this example is 94.28, so, the parameter value of the Rsis 47.14 Q.

User guide 37 002-42330 Rev. **
2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Motor parameter identification

Figure 32 Measure Line to Line stator resistance (2Rs)

5.2.2 Stator inductance (Lq, Ld)

Motor Suite Motor Control Lib advanced sensorless Field Oriented Control (FOC) algorithm supports both
surface mounted permanent magnet (SPM) motors and interior permanent magnet (IPM) motors.

When working with surface permanent magnet (PM) motors the winding inductances Ld and Lq will have the
same value with any rotor angle as shown in Figure 33, left. However, when working with interior permanent
magnet (IPM) motors the winding inductance varies with the rotor angle as shown in Figure 33, right, and the Lq
inductance is greater than the Ld inductance.

Surface Magnet Motor Interior Permanent Magnet Motor
- uniform inductance - inductance varies with angle

I
|
|
I
|
|

Mechanical Angle Mechanical Angle

Figure 33 Motor type (PM motor, IPM motor)

This section explains how to measure the winding inductance values Lq and Ld when using a 4-pole IPM motor.

When using an LCR meter to measure inductance, the result is the sum of two-phase inductances (line-to-line
inductance) because the measurement path goes through two windings in series. To obtain the actual phase
inductance value, you need to divide the measured line-to-line inductance by 2 (for star-connected windings).

And since the inductance value of the IPM motor varies with the rotor angle, it is necessary to adjust the angle
to measure the Lq and Ld value. Figure 34 shows the inductance value of the 4 pole IPM motor with respect to
the electrical angle and the mechanical angle. With respect to the 4-pole motor, one cycle of the electrical angle
is half the cycle of the mechanical angle. And there are 4 peaks (maximum and minimum) in inductance value
in one electrical cycle. So, it means that the inductance value is changed from maximum to bottom between 45
degrees in the mechanical angle. Therefore, to measure the inductance value by changing the motor angle
gradually by hand within 45 degrees in the mechanical angle, and the maximum value is the Lqg, and the
minimum value is the Ld.

User guide 38 002-42330 Rev. **
2025-12-10




o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning ( In f| neon
guide

Motor parameter identification

4 pole motor with saliency

)

[
electrical |
cycle

Winding Inductance (H

T T
270°
Mechanical Angle

1
|
|

T T T i T
8

Figure 34 Stator inductance (Lq, Ld)

5.2.2.1 Measurement procedure

The measurement procedure of Lqand Lais as follows,
1. Connect 2 phases to LCR meter (set injection frequencies 1 kHz ) and leave third phase open
2. Measure the line-to-line inductance value

3. Rotate the rotor gradually by hand and record the highest inductance value as Lq, and the lowest inductance
value as Ld

4. Divide these measured inductance values by 2

5.2.2.2 Measurement example

Figure 35 shows the actual measurement example of the line-to-line stator inductance. The measurement
result of Lq is shown on the right, and Ld on the left. The measurement result of the Lq is 550.0 mH, so, the
stator inductance per phase is 275.0 mH. The measurement result of the Ld is the 469.0 mH, so, the stator
inductance per phase is 234.5 mH.

Figure 35 Measure Line to Line stator inductance (2Ld, 2Lq)

5.2.3 Motor poles number (p)

This parameter represents the number of magnetic poles in a full mechanical cycle. There is one electrical cycle
for every pair of magnetic poles.

This parameter can be identified by counting the positive and negative peaks in the motor back EMF waveform
over a full mechanical revolution.

The following figure shows the line-to-line voltage waveform generated by the back EMF of the 4 pole IPM
motor. There are 2 peaks and 2 valleys (2 sinusoidal shaped cycles) in one mechanical cycle.

User guide 39 002-42330 Rev. **
2025-12-10



ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Motor parameter identification

4 pole motor

N p: number
iy of poles

),

@

dectricd = )mechamcal

cycle

Figure36 Measurement method of motor poles number

5.2.3.1 Measurement procedure

The measurement procedure of motor poles number is as follows,

1. Connect 2 phases to oscilloscope voltage probe, and leave third phase open

2. Move the motor by hand at a constant speed and make one mechanical revolution, and record the

waveform by oscilloscope
3. Count the peaks of the sinusoid

User guide

40

002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Startup method tuning

6 Startup method tuning

Different start-up methods are used in sensorless FOC. In this chapter, tuning of start-up method parameters
are described.

6.1 Open-loop V/F control

Open-loop V/F control, also referred to as scalar control or constant Volt/Hz control, is one of the methods used
for driving PMSMs. The control method behind this approach is preserving a constant voltage-to-frequency
ratio corresponding to the target synchronous speed. Rotor angle generated and voltage calculation are done
from speed command. There is no speed or current feedback involved.

This control method serves as a startup technique for closed-loop sensorless control systems. During initial
startup, back EMF signals are unavailable for determining rotor position, so the motor operates in open-loop
Volt-Hz mode. Once the motor reaches adequate speed and the observer can detect EMF, the system
transitions to closed-loop control.

6.1.1 V/F parameters

Two parameters define the V/F voltage command Vmin(“params|[x].ctrl.volt.v_min”) and
K(“params|x].ctrl.volt.v_to_f_ratio”) as shown in Figure 37.

v

Ythresh (1)*

Figure37 Commanded voltage vs command speed in V/f control

Wy, R L R K(v.sec + q > Vi
2 | rad 3 Derotate
Vmin @ V* R('e*) _’Vé
d
[ 1/6]-8 i

Figure 38 Open-loop V/F control block diagram

User guide 41 002-42330 Rev. **
2025-12-10



ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Startup method tuning

The list of parameters for the Open-loop V/F startup method are mentioned in Table 8

Table 8 Open-loop V/F control related parameters

Parameter Name Unit Description

paramsl[x].ctrl.volt.v_min \Y Voltage offset - minimum voltage needed to overcome
motor resistance and generate sufficient torque for
startup

params[x].ctrl.volt.v_to_f_ratio V/(Ra/sec-elec) | Ratio between voltage to frequency value

Params[x].ctrl.volt.w_thresh.elec | Ra/sec-elec Speed threshold value to start the V/F control when
system in bootstrap state

Params[x].ctrl.volt.w_hyst.elec Ra/sec-elec Speed threshold value to move from open loop V/F
control to bootstrap state

Open-loop constant V/F control parameters are calculated using the following equations.

(params. motor. r * params. motor. i_cont)
k

params. ctrl. volt. v_min =
k:3~10

params. motor.v_nom

params. ctrl. volt. v_to_f_ratio =
params. motor. w_nom. elec
The V_min value should be added at low stator frequency to overcome the stator resistance drop and is
calculated based on motor resistance and continuous current value (typically V_min = I_cont x R_stator x
safety_factor). The v_to_f_ratio is calculated from motor nominal voltage and nominal frequency/Speed. These
are combined in the relationship V_output =V_min + (V_to_f_ratio x Speed) to provide adequate starting
torque and maintain proper flux control across the entire operating speed range. When V_min and V_to_f_ratio
values are configured optimally, it should not result in too much variation in current for different speed range in
the open loop V/F mode.

If the motor current is too high during startup, the V_min value is too high and should be reduced, and if the
motor current increases gradually when increasing the motor speed, the V_to_f_ratio value should be reduced
to maintain constant current operation throughout the speed range.

# ADC offset nulling done
® Parameters int done = Bootstrap done
« Ext enable cmd Speed amd |ett|zT||'e=h L

' —  Control mode selection
N - “params.cirl.mode=speed_Made_FOC_: fess_Volt_Startup”
cspeed emd (int) < (Threzh_L- Hy t_L _ VIE Parameters

- Minimum veltage- “params.ctrl.volt.v_min"
» speed cmd {int] < [Theesh_H-Hyst_L) o speed cmd fint) 2 Thresh_ - VIF Constant - “params.ctr.volt.v_to_f_ratio”
~ —  State Transition Parameters
- Brake = VW/Hz

hd
- Tresh_L : “params._cirlvolt. w_thresh.elec”
* AN ztates, Fault detected peed — —
# Clear faults - cmd {int) < {Thresh_H-Hyst_K] . - Hyst_L : “params.ctd.volt.w_hyst elec”

- ViHz = CL
- Thresh_H : “params.obs.w_thresh.elec”
- Hyst_H - "params.obs.w_hyst elec”

« Transition done - OL to CL Transition : “params.ctri.speed.ol_cl_tr_coeff"

= All states, Ext disabbe cmd

Figure 39 State machine for Speed_Mode_FOC_Sensorless_Volt_Startup

User guide 42 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Startup method tuning

6.1.2 Troubleshooting

e Motoris not running in open loop V/F mode:

V/F control is sensitive to the control parameters v_min and v_to_f_ratio. If v_min and/or v_to_f_ratio are
set too low, the motor will not start spinning and will shake instead. In this case, increase v_min and/or
v_to_f_ratio if the motor is not starting or stops after reaching a certain speed.

The v_min and/orv_to_f ratio parameters should be increased if the load is increased and decreased if
the load is reduced.

Speed ramp rate may be high for the styme, so reduce the ramp rate.

Typically, motor phase current will be constant across the complete speed range in V/F control mode.
e Overcurrent triggered while running the motor in V/F mode:

- If v_min and/or v_to_f_ratio are set too high, the motor will start but there will be an overcurrent fault.
Reduce the V/F parameters or check the over the current threshold value.

6.1.3 How to configure parameters

V/F parameters can be configured using the ModusToolbox™ motor control code example or the
ModusToolbox™ Motor Suite GUI.

Configuration of V/F parameter using ModusToolbox™ motor control code example in ParamConfig.h file,
\configuration\motor-ctrl-lib-config\ParamConfig.h

MOTOR_CTRL VOLT STARTUP THRESH (MOTOR_NORM_SPEED*0_05F)
MOTOR_CTRL_VOLT_VF_OFFSET (@.15F)
173 #define MOTOR_CTRL_VOLT_VF_RATIO 3f

Figure 40 V/F parameter configuration using ModusToolbox™ code example

Attention: When updating the motor and load parameter make sure the following macro in this file is set
true “#define PARAMS_ALWAYS_OVERWRITE (true)”

Configuration of current control parameter using ModusToolbox™ Motor Suite GUI

~ Control
Control mode Speed_Mode FOC_Sensorless... -
+Speed Controller
+ Current Controller
= Voltage Controller
Startup threshoeld 2.00e+2 RPM
V/framp voltage offset | 1.50e-1 v
V/framp slope | 7.50e-3 V/(Rad/Sec)
Modulation scheme Neutral_Point_Modulation -

Figure 41 V/F parameter configuration in ModusToolbox™ Motor Suite GUI

User guide 43 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Startup method tuning

6.2 Open-loop I/F control

In open-loop I/F control, the current magnitude is regulated using a closed-loop controller with current
feedback, while the angle is determined in open-loop fashion based on the commanded speed. The current
command value ig* (“params[x].ctrl.curr.i_cmd_ol”) sets the magnitude of currentinjected into the motor for
open-loop I/F control. Since this control mode uses motor phase current for current regulation, accurate phase
current measurement and proper current loop bandwidth configuration are critical.

During the startup when the back-EMF information is not available for rotor position estimation, the motor can
run in open loop I/F mode. Once the motor speed goes up and back-EMF can be estimated by the observer, the
closed loop kicks in and the motor exits I/F control.

i
lq, error
3 Phase

Motor

) Space
V& Vector
| PWM

Feed Forwards Disabled | Derotate | = or 3 Phase |U
R ( 9*) Vﬁ Inverter

v} | Neutral | dw

Point ” W

PWM

Vdc

A
oo
Y
—_
~
[75]

Y
Rotate

. Current
qd R(6)) iqp | Reconst.

.
¥

Figure 42 Open-loop I/F control block diagram

6.2.1 I/F parameters

The list of parameters for the open-loop I/F startup method are mentioned in Table 9.

Table 9 Open-Loop I/F control related parameters

Parameter name Unit Description

params[x].ctrl.curr.i_cmd_ol A Current command value in I/F control

Params(x].ctrl.volt.w_thresh.elec | Ra/sec-elec | Speed threshold value to start the V/F control when
system in bootstrap state

Params(x].ctrl.volt.w_hyst.elec Ra/sec-elec | Speed threshold value to move from open loop V/F control
to bootstrap state

User guide 44 002-42330 Rev. **
2025-12-10



@ [ ]
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Startup method tuning

* ADC offset nulling done
® Parameters init done ® Bootstrap done
© Ext enable cmd . Speed cmd (ext) 2 Thresh_L

‘ ‘ © Speed cmd (int) < (Thresh_L -Hyst_L) ‘

. AII states, Ext disable cmd Control mode selection

® Speed cmd (int) 2 Thresh_H - “params.ctrl.mode=sped mds_soc_sansorlass_curr_starrup”
— |-F Parameters

~ CurrentCmd- “params.ctrl.curr.i_cmd_ol”

— State Transition Parameters
—  Brake < V/Hz
_L:"p m c
V/Hz 2> CL

— Thresh_H:“params i
— Hyst_H:“params.obs.w | t.e
o Transition done OL to CL Transition: “params.ctrl.speed.ol_cl_tr_

® Speed cmd (int) < (Thresh_H-Hyst_L)

o All states, Fault detected

N

o Clear faults ® Speed cmd (int) < (Thresh_H-Hyst_H)

Figure 43 State machine for Speed_Mode_FOC_Sensorless_Curr_Startup

6.2.2 Troubleshooting

e Motoris not runningin open loop I/F mode

- The angle between the rotor flux and the stator current vector is determined by the load. It is important
to seti_cmd_ol correctly because it determines the maximum torque the motor can deliver (when the
angle between rotor flux and stator current is 90° in SPMs). The actual torque is dictated by the load if it is
below the maximum torque achievable by “i_cmd_ol.” If the actual torque tries to go above the
maximum achievable torque, the motor will lose synchronization and will stall.

- If “i_cmd_ol” is set too low for that target speed or loading condition, the motor will not start spinning
and will shake instead. In this case, increase “i_cmd_ol.”

- If the motor is not running even after adjusting the current command, the speed ramp rate may be too
high for the system, so reduce the ramp rate. Also adjust the current loop bandwidth.

e Overcurrent triggered while running the motor in V/F mode
- In case of overcurrent fault, reduce the “i_cmd_ol” command and/ or reduce the speed ramp rate or
adjust the current loop bandwidth.

Tuning approach:

e Start with lower current, slower ramp rate

e Gradually increase until smooth operation is achieved
e Monitor for overcurrent faults or stalling

e Fine-tune based on actual performance requirements

User guide 45 002-42330 Rev. **
2025-12-10




o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Startup method tuning

Figure 44 Phase currentin Speed_Mode_FOC_Sensorless_Curr_Startup

Note:  Open-loop I/F in contrast to open-loop V/F control requires current sensors and more complex controller
implementation.

6.2.3 How to configure parameters

Configure the open loop current command value in ParamConfig.c file, \configuration\motor-ctrl-lib-
config\ParamConfig.h. Parameter name : “params|x].ctrl.curr.i_cmd_ol,” default value is 40% of
“params[x].motor.i_cont”.

User guide 46 002-42330 Rev. **
2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

7 Control loop tuning

7.1 Current controller

The d and g current commands are used as an input for the current controllers, and the output would be the
voltage references. The voltage references v);" and v;* are eventually applied to the motor using the inverter to
control the current.

ir
q,error

r* ¥
i A O— v
vars.i gd r cmd.q - b

vars.i gd r cmd.d » iy » vars.v_qgd r cmd.q

—
=

Feed Forwards

vars.i gd r fb.g vars.v_qd r cmd.d
vars.i gd r fb.d

Figure 45 Current controller

Current controller's K, , Kiand feedforward terms are directly derived from motor electrical parameters. Pole-
zero cancellation technique is used to find the Pl controller integral and proportional gain.

k; v* 1 [
. R+Ls >

Figure 46 Current controller block diagram

In the closed loop system in Figure 46, it is desired to cancel the pole of the system with the zero of the PI
controllers to reduce the order of closed loop system, i.e.

=

p_

L
i R
This will reduce the closed loop transfer function of the system to,

ki ko
Ha(s) = 2= =1

which can be used to calculate the Pl controller coefficients for a given system bandwidth w, as,

ky, = wcL
ki = (IJCR
User guide 47 002-42330 Rev. **

2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

7.1.1 Current control parameters

As mentioned in the previous section, current control K, and K; values are calculated from motor resistance,
inductance, and bandwidth values. Current control K, and K; values are calculated in the
"PARAMS_InitAutoCalc()" function, which executes during startup (after input parameter initialization) and
when input parameters are updated from the Motor Suite GUI . The Kp and Ki value calculations are shown
here:

params[x].ctrl.curr.kp.q = params[x].ctrl.curr.bw * params[x].motor.lq
params[x].ctrl.curr.kp.d = params[x].ctrl.curr.bw * params[x].motor.ld
params[x].ctrl.curr.ki.q = params[x].ctrl.curr.ow * params[x].motor.r
params[x].ctrl.curr.ki.d = params[x].ctrl.curr.bw * params[x].motor.r

It is possible to manually enter these values (e.g., in the main.c/paramconf.c file or from the Motor Suite GUI) by
disabling auto calculation and setting the params|x].autocal_disable.current_control variable to 1.

Ko and Ki parameter values are used to calculate the control K, and Ki value that are used in the current control
PI function. Control K, and Ki variable are updated only when the system enters “init” state
(CURRENT_CTRL_Init() function)

Ctrl[x].curr.pi_qg.kp = params[x].ctrl.curr.kp.q

Ctrl[x].curr.pi_q.ki = params[x].ctrl.curr.ki.q* params[x].sys.samp.ts0
Ctrl[x].curr.pi_d.kp = params[x].ctrl.curr.kp.d

Ctrl[x].curr.pi_d.ki = params[x].ctrl.curr.ki.q* params[x].sys.samp.ts0
Ctrl[x].curr.pi_g.output_min=-params[x].ctrl.curr.v_max.q
Ctrl[x].curr.pi_g.output_max= params[x].ctrl.curr.v_max.q
Ctrl[x].curr.pi_d.output_min=-params|[x].ctrl.curr.v_max.d
Ctrl[x].curr.pi_d.output_max= params[x].ctrl.curr.v_max.d

Pl output limit is calculated from dc bus nominal voltage value, “params[x].sys.vdc_nom”/+/3 and defined in
“params[x].ctrl.curr.v_max.q” and “params[x].ctrl.curr.v_max.d”.

The amount of feedforward in the current controller is defined in MOTOR_CTRL_CURRENT_FF_COEFF macro
(“paramsl[0].ctrl.curr.ff_coef”). Setting this value to zero will disable the current controller feedforward term.
The default value is 100%, meaning the complete feedforward term is added.

User guide 48 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

7.1.1.1 Troubleshooting

Motor Suite GUI - PID Tuner directly update “Ctrl[x].curr.pi_q and Ctrl[x].curr.pi_d” variables and when save the
tunned value corresponding parameter values in “params[x].ctrl.curr" are updated

e Motoris not running in Close loop (speed or current) mode: Verification of current control in open loop
mode

- Configure the current control open loop using “params(x].ctrl.mode” parameter, set the appropriate
current command using Parameter name: “params|x].ctrl.curr.i_cmd_ol,” default value is 40% of
“params|[x].motor.i_cont”

- Run to make sure the open loop and check whether the current is controlled correctly
- Start with a low current control bandwidth if it is not running correctly
- Reduce the ramp rate and output limit

Check the system response and adjust the current control bandwidth.

User guide 49 002-42330 Rev. **
2025-12-10



ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Infineon

Control loop tuning

7.1.2

Current controller parameter calculation - Example

The following table depicts the input for the current controller and how the derived parameters are calculated.

Input (These MOTOR_CTRL_FASTLOOP_FREQ 15000.0f [Hz], fast-loop frequency
macros are used Param name: params[x]. sys.samp.fs0 =
toinitialize MOTOR_CTRL_FASTLOOP_FREQ
parameters in params(x]. sys.samp.ts0[sec]= 1/
Paramconfig.c MOTOR_CTRL_FASTLOOP_FREQ
file) = 66.6E-6f
MOTOR_LQ 670.0E-6f [H], Stator g-axis inductance,
Param name: params[x].motor.lqg =MOTOR_LQ
MOTOR_LD 670.0E-6f [H], Stator d-axis inductance,
Param name: params([x].motor.ld = MOTOR_LD
MOTOR_R 450.0E-3f [Q], Stator resistance,
Param name: params[x].motor.r = MOTOR_R
MOTOR_CTRL_CURRENT_BW 750.0f [Hz], Current loop bandwidth
Param name: params(x].ctrl.curr.bw [Ra/sec]=
HZ_TO_RADSEC(MOTOR_CTRL_CURRENT_BW)
=TWO_PI*750.0f = 4712.4f
MOTOR_CTRL_VDC_NOM_VOLT 24.0f [V], Nominal DC bus voltage
Param name: params[x]sys.vdc_nom =
MOTOR_CTRL_VDC_NOM_VOLT
Calculated params(x].ctrl.curr.kp.q 3.16f [V/A], params[x].ctrl.curr.bw * params[x].motor.lq
Parameters 4712.4f * 670.0E-6f = 3.16f
(calculated in params[x].ctrl.curr.kp.d 3.16f [V/A], params[x].ctrl.curr.ow * params[x].motor.ld
::;ag:::’e"ﬂﬁ':ﬂ.c) 4712.4f * 570.0E-6f = 2.69f
params|[x].ctrl.curr.ki.q 2120.6f [V/A.(Ra/sec)], params[x].ctrl.curr.bw *
params[x].motor.r
4712.4f * 450.0E-3f = 2120.6f
params[x].ctrl.curr.ki.d 2120.6f [V/A.(Ra/sec)], params[x].ctrl.curr.bw *
params[x].motor.r
4712.4f * 450.0E-3f = 2120.6f
params([x].ctrl.curr.v_max.q 13.856f [V], params[x]sys.vdc_nom /+/3 = 13.856f
params([x].ctrl.curr.v_max.d 13.856f [V], params[x]sys.vdc_nom /+/3= 13.856f
Ctrl[x].curr.pi_q.kp 3.16f [V/A], params|x].ctrl.curr.kp.q
Ctrl[x].curr.pi_d.kp 3.16f [V/A], params|x].ctrl.curr.kp.d
Ctrl[x].curr.pi_q.ki 141.4E-3f [V/A.(Ra/sec).sec], params[x].ctrl.curr.ki.q*
paramsl[x]. sys.samp.ts0
2120.6f *66.6E-6f = 141.4E-3f
Ctrl[x].curr.pi_d.ki 141.4E-3f [V/A.(Ra/sec).sec],params|[x].ctrl.curr.ki.d*
params[x]. sys.samp.ts0
2120.6f *66.6E-6f = 141.4E-3f
Ctrl[x].curr.pi_q.output_min -13.856f [V], -1* params[x].ctrl.curr.v_max.q
Ctrl[x].curr.pi_g.output_max 13.856f [V],params[x].ctrl.curr.v_max.q
Ctrl[x].curr.pi_d.output_min -13.856f [V],-1* params[x].ctrl.curr.v_max.d
Ctrl[x].curr.pi_d.output_max 13.856f [V], params[x].ctrl.curr.v_max.d

User guide

50

002-42330 Rev. **
2025-12-10



Infineon

ModusToolbox™ Motor Suite Motor Control Library tuning
guide

Control loop tuning

Inputs Calculated Values
Fast-loop frequency | 1.50e+4 Hz
StatorLg | 6.70e-4 H
StatorLd | 6.70e-4 H
Stator resistance |4.50e-1 Ohm
Current loop bandwidth |7.50e+2 Hz
Hominal dc voltage |24.0

Calculated Values — Captured from PID tuner =

KP |3.1573007 () Ctrl[0].curr.pi_q

Current Q Pl Control

Current D Pl Control KP |3.1573007 (0 Ctrl[0].curr.pi_d

Calculated Values — Captured using GUI Builder

params[0].ctrl.currv_max.q ctrl[0].curr.pi_g.output_min ctri[0].curr.pi_d.output_min

13.85840821 -13.8564062 -13.8564062

params[0].ctrl.currv_max.d ctrl[0].curr.pi_g.output_max ctrl[0].curr.pi_d.output_max

13.85640621 13.85640621 13.85640621

Figure 47 Current controller parameter default values captured from Motor Suite GUI

7.1.3 How to configure parameters

Current control parameters can be configured using the ModusToolbox™ motor control code example or the
ModusToolbox™ Motor Suite GUI.

Configuration of current control parameter using ModusToolbox™ motor control code example in
ParamConfig.h file, \configuration\motor-ctrl-lib-config\ParamConfig.h

144

145 #define MOTOR_CTRL_CURRENT_BMW 2f) *[Hz], Current

146 MOTOR_CTRL_CURRENT_FF_COEFF 100.8 ¥[%], Current nt®
147 #d e MOTOR_CTRL_CURRENT_STARTUP_THRESH MOTOR_CURRENT_CONT*@.15f *[A], Curren

148

Figure 48 Current control parameter configuration using ModusToolbox™ code example

Attention: When updating the current control parameter make sure the following macro in this file is set true
“#define PARAMS_ALWAYS_OVERWRITE (true)”

Configuration of current control parameter using ModusToolbox™ Motor suite

e v Control
eControlmode | Speed_Mode_FOC_Sensorless.. v
+Speed Controller
x Current Controller
Current loop bandwidth [ 7.50e+2 Hz
Current loop feed-forward coefficient | 1.00e+2
Current control startup threshold  |5.25e-1 A
Q-axis current loop Kp V/A
D-axis current loop Kp V/A
Q-axis current loop Ki V/A.(Ra/sec)
D-axis current loop Ki V/A.(Ra/sec)

Figure 49 Current control parameter configuration in ModusToolbox™ Motor Suite GUI

User guide 51

002-42330 Rev. **
2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Control loop tuning

7.1.4 Update the current control parameter directly

Current control k, and k; parameters can be directly modified in the ParamConfig.c file by editing the
PARAMS_InitAutoCalc() function.

726

727 if(!params_ptr-rautecal disable.current_centrol)

728 {

729 params_ptr->ctrl.curr.kp.q = params_ptr-»ctrl.curr.bw * params_ptr-»motor.lq;
738 params_ptr-»ctrl.curr.kp.d = params_ptr-»ctrl.curr.bw * params_ptr->motor.ld;
731 params_ptr-»ctrl.curr.ki.q = params_ptr-»ctrl.curr.bw * params_ptr->motor.r;
732 params_ptr-r»ctrl.curr.ki.d = params_ptr-:»ctrl.curr.bw * params_ptr-:motor.r;
733 // if !current control

726

727 if(!params_ptr-rautocal disable.current_control)

728 {

729 params_ptr->ctrl.curr.kp.q = 3.16F;

738 params_ptr-*ctrl.curr.kp.d =3.16F;

731 params_ptr->ctrl.curr.ki.q = 2128.6T;

732 params_ptr-»ctrl.curr.ki.d = 2128.6;

733 "/ if lcurrent control

Figure 50 Speed control parameter direct updated

Also, current control k,, and k; values can be directly configuration using the Motor Suite GUI - PID Tuner that
is described in 7.3 PID Tuner

7.2 Speed controller

The speed command is used as an input for the speed controller, and the output would be the current
references.

Vars.w cmd int.elec(wm)
(Target value)
Vars.w final filt.elec(wy)
(Actual Speed value)

» vars.i_cmd spd (Igint)

Sensed or estimated
speed feedback

Ouput Limit = + params. motor.i_peak

Figure 51 Speed controller

The parameters of the speed controller are significantly impacted by the mechanical load. The mathematical
model of the mechanical load driven by the motor and electrical drive system is illustrated in Figure 52 . This
model includes Ty, representing coulombic friction, B as the coefficient of viscous friction, and J denoting the
inertia. When utilizing the software to operate any motor, it is crucial to accurately measure or estimate these
three parameters. The speed controller's kp, k;, and feedforward terms are directly derived from these
parameters.

User guide 52 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

du u »
Command dy Wy
——>{Controller VSIFY | Motor>T = ]T + Bwy, + Trsgn(wy,)
dw A\
T Mechanical System
Feedback

Figure 52 Mechanical load run by a motor-drive system

P Anti Wm
— Resonant [«
2 Filter ' '
H Motor H
N 2 - L E
qQe ]
N < - — — k
zj 2 okt /s S K | A
* + ' '
&, P - Resonant Filter E E
2 : '
2 d [ ] [}
= | — > ' '
P dt . '

% —>| sgn(.)l—» T¢

Figure 53 RFO speed loop block diagram before rescaling the parameters

To derive the value of proportional, integral, and feedforward terms of speed controller, the speed loop block
diagram along with a simple model of motor and mechanical load will be used as shown in Figure 53 where:

= (3)(z)

Pole-zero cancellation technique is used to find the Pl controller integral and proportional gain. By having

ki

k

p

~| o

Control zero will cancel the mechanical load’s pole. The Pl controller coefficients are also proportional to speed
loop bandwidth as shown here:

ki X B(J)BW

kp oc](J’)BW

User guide 53 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

The proportional and integral gains are determined after being rescaled to account for the motor parameters
ki and P shown in Figure 53

Current Control

Anti W, Sensed or estimated

Resonant speed feedback
Filter

A

Figure 54 RFO speed loop block diagram as implemented

The speed contoller parameters after rescaling are as follows:

= ()= () (2 (o
= () oo = ) (5) ()

The feedforward terms can also be updated as depicted in the following manner:
v =) F)r=6) )68
~\k/\P) " T \3/\P2/\2,,
~LE=0F6)
J' = ) \P J= 3)\pz E]
W= En- R
AN R CVAVAVI

The feedforward terms in the speed loop are affected by both mechanical load and motor parameters. These
three feedforward terms play a role in enhancing the dynamic performance of the speed loop. The inertia term
utilizes a second-order resonant filter to estimate the acceleration, aiming to mitigate the potential impact of
noise that could arise if a direct derivation method had been employed.

User guide 54 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Control loop tuning

7.2.1 Speed control parameters

As mentioned in the previous section, speed control Kp, Ki and feedforward coefficient values are calculated
from motor, load parameter, and bandwidth values. Speed control Kp, Ki and feedforward values are
calculated in the "PARAMS_InitAutoCalc()" function, which executes during startup (after input parameter
initialization) and when input parameters are updated from the Motor Suite GUI M. The Kp and Ki value
calculations are shown here:

((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.inertia * params[x].ctrl.speed.bw

params(x].ctrl.speed.kp

((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.viscous * params[x].ctrl.speed.bw *
params(x].ctrl.speed.ki_multiple

params[x].ctrl.speed.ki

((8.0f/ 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.inertia

params[x].ctrl.speed.ff_k_inertia

((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) * params[x].motor.lam)) *
params[x].mech.viscous

params[x].ctrl.speed.ff_k_viscous

((4.0f / 3.0f) / (params[x].motor.P * params[x].motor.lam)) *
params[x].mech.friction

params[x].ctrl.speed.ff_k_friction

It is possible to manually enter Kp and Ki values (for example, in the main.c/paramconf.c file or from the Motor
Suite GUI) by disabling auto calculation and setting the “params[x].autocal_disable.speed_control” variable to
1.

Kp and Ki parameter values are used to calculate the control Kp and Ki value that is used in the current control
PI function. Control Kp and Ki variable are updated only when the system enters “init” state
(SPEED_CTRL_Init() function)

Ctrl[x].speed.pi.kp = params[x].ctrl.speed.kp
Ctrl[x].speed.pi.ki = params[x].ctrl.speed.ki * params[x].sys.samp.ts1
Pl output limit is set from maximum motor current, params[x]. motor.i_peak

Motor Suite GUI - PID Tuner directly update “Ctrl[x].speed.pi” variables and when save the tunned value
corresponding parameter values in “params[x].speed.curr” are updated

7.2.1.1 Troubleshooting

e Motoris not running in Close loop mode properly
- Make sure that current controller is working as per expectation
- Start with low-speed control bandwidth
- Reduce the ramp rate and output limit

- Check the system response

User guide 55 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon

guide

Control loop tuning

7.2.2 Speed controller parameter calculation - Example

The following table depicts the input for the current controller and how the derived parameters are calculated.

Input

(Macros are used to
initialize
parametersin
Paramconfig.c file)

MOTOR_CTRL_FASTLOOP_FREQ

[Hz], fast-loop frequency

Param name: params|[x]. sys.samp.fs0 =
MOTOR_CTRL_FASTLOOP_FREQ

MOTOR_CTRL_FSO_FS1_RATIO

[#], Fast-loop to slow-loop frequency ratio

Param name: params(x]. sys.samp.fs0_fs1_ratio =
MOTOR_CTRL_FSO_FS1_RATIO

params|x].sys.samp.ts1[sec] = params|[x].sys.samp.fs0_fs1_ratio/
params(x].sys.samp.fs0 = 333.33E-6f

MOTOR_POLE

8.0f

[#], Motor poles
Param name: params[x].P= MOTOR_POLE

MOTOR_I_AM

6.0E-3f

[Wb], Rotor flux linkage
Param name: params[x].lam = MOTOR_I_AM

MECH_INERTIA

1.1E-5f

[kg.m"2], Inertia
Param name: params[x].mech.inertia = MECH_INERTIA

MECH_VISCOUS

1.2E-5f

[kg.m"2/sec], Viscous Damping
Param name: params[x].mech.viscous = MECH_VISCOUS

MECH_FRICTION

6.0E-3f

[kg.m"2/sec”2], Friction
Param name: params[x].mech.friction = MECH_FRICTION

MOTOR_CTRL_SPEED_BW

15.0f

[Hz], Speed loop bandwidth

Param name: params|x].ctrl. speed.bw [Ra/sec]=
HZ_TO_RADSEC(MOTOR_CTRL_SPEED_BW)

=TWO_PI*15.0f = 94.29f

MOTOR_CTRL_SPEED_KI_MULTIPLE

10.0f

[#], Ki multiple for speed loop

Param name: params|x].ctrl.speed.ki_multiple =
MOTOR_CTRL_SPEED_KI_MULTIPLE

Calculated
Parameters
(calculated in
ParamConfig.c and
CurrentCtrl.c)

params|x]. ctrl.speed.kp

1.2E-3f

[A/(Ra/sec-elec)], ((8.0f/3.0f) / (POW_TWO(params[x].motor.P) *
params(x].motor.lam)) * params[x].mech.inertia *
params(x].ctrl.speed.bw

=((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f) * 1.1E-5f *94.29f = 7.2E-3f

params|x]. ctrl.speed.ki

7.2E-3f

[A/(Ra/sec-elec).(Ra/sec)], ((8.0f / 3.0f) /
(POW_TWO(params([x].motor.P) * params[x].motor.lam)) *
params|x].mech.viscous * params|x].ctrl.speed.bw *
params|x].ctrl.speed.ki_multiple

=((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f) * 1.2E-5f *94.29f *10.0f = 7.85E-
2f

params|x].ctrl.speed.ff_k_inertia

7.64E-5f

[A/(Ra/sec-elec).sec], ((8.0f / 3.0f) / (POW_TWO(params[x].motor.P) *
params(x].motor.lam)) * params[x].mech.inertia

=((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 1.1E-5f = 7.64E-5f

params|x].ctrl.speed.ff_k_viscous

8.33E-5f

[A/(Ra/sec-elec)], ((8.0f / 3.0f) / (POW_TWO(params(x].motor.P) *
params(x].motor.lam)) * params[x].mech.viscous

=((8.0f/ 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 1.2E-5f = 8.33E-5f

params|x].ctrl.speed.ff_k_friction

4.17€-2f

[A], ((4.0f / 3.0f) / (params[x].motor.P * params[x].motor.lam)) *
params(x].mech.friction

=((8.0f / 3.0f) / (POW_TWO(8) * 6.0E-3f)) * 6.0E-3f =4.17E-2f

Ctrl[x].speed.pi.kp

7.2E-3f

[A/(Ra/sec-elec)], params[x]. ctrl.speed.kp

Ctrl[x].speed.pi.ki

2.617E-3f

[A/(Ra/sec-elec).(Ra/sec)],
params(x].ctrl.speed.ki*params[x].sys.samp.ts1 = 7.85E-2f *333.33E-
6f

=26.17E-6f

Ctrl[x].speed.pi.output_min

-10.80f

[A], -params[x].motor.i_peak

Ctrl[x].speed.pi.output_max

10.80f

[A], params[x].motor.i_peak

User guide

56

002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Control loop tuning

Inputs Calculated Values

Speed loop Kp Af(Rafse...
Fast-loop frequency | 1.50e+4 Hz
Speed loop Ki AfiRafze. .

Fast-loop to slow-loop f... |5

Poles |8.00

Calculated Values -
Captured using GUI Builder

params[0].ctrl.speed.ff_k_inertia ctrl[0].speed.pi.output_min

Rotor flux linkage |6.00e-3 Wh
Inertia 1.10e-5 kg.m"2

Viscous damping 1.20e-5 kg.m"Zisec

p— 0.000076388 -10.8000001
Friction 6.00e-3 Nm

~ . params[0].ctrl.speed.ff_k_viscous ctri[0].speed.pi.output_max
Speed loop bandwidth |15.0 Hz
. . 0.000083333 10.80000012
Ki multiple for speed loop |10.0
params0].ctrl.speed.ff_k_friction

0.166666671

Calculated Values — Captured from PID tuner

Speed Pl Control KP | 0.007193483 ® KI | 0.000026180 @® ctri[0].speed.pi

Figure 55 Speed controller parameter default values captured from Motor Suite GUI

7.2.3 Speed open-loop to closed-loop transition

The transition from open loop to closed loop speed control is a critical phase that ensures smooth motor
operation without torque disturbances or speed oscillations.

The transition from open loop to closed loop speed control occurs when the motor reaches the observer
threshold speed, at which point the system enters the Speed_OL_To_CL state where the motor continues
running in open loop mode while the position observer simultaneously starts estimating the rotor angle and
speed.

The system remains in this transition state for a predetermined lock time (params[x].obs.lock_time, typically
100-1000 ms) to allow the observer to stabilize and accurately converge on the actual rotor position.

Just before switching to closed loop control, the speed PI controller is pre-initialized using the current open
loop current value multiplied by a transition coefficient (MOTOR_CTRL_SPEED_OL_CL_TR_COEFF macro or
parameter - params[x].ctrl.speed.ki_multiple, default 100%) to prevent current spikes or speed disturbances
during the handover. Once the lock time expires and the speed controller is properly initialized with a realistic
output value that matches the current motor operating conditions, the system seamlessly switches from open
loop voltage/frequency control to closed loop speed control using observer feedback, ensuring smooth
operation without torque bumps, speed oscillations, or performance degradation during this critical transition
phase.

e Current Overshoot Issue

During the transition from open loop to closed loop, if there is current overshoot, it indicates that the speed
controller is being initialized with too high a value, causing excessive torque demand. In this case reduce
MOTOR_CTRL_SPEED_OL_CL_TR_COEFF value 50-80% based on the amount of overshoot.

User guide 57 002-42330 Rev. **
2025-12-10



ModusToolbox™ Motor Suite Motor Control Library tuning

guide

Control loop tuning

7.2.4 How to configure parameters

Infineon

Speed control parameters can be configured using the ModusToolbox™ motor control code example or the

ModusToolbox™ Motor Suite GUI.

Configuration of speed control parameter using ModusToolbox™ motor control code example in ParamConfig.h

file, \configuration\motor-ctrl-lib-config\ParamConfig.h.

ne MOTOR_CTRL_SPEED_BW
MOTOR_CTRL_SPEED_OL_CL_TR_COEFF
#define MOTOR_CTRL_SPEED_KI_MULTIPLE

Figure 56 Speed control parameter configuration using ModusToolbox™ code example

Configuration of speed control parameter using ModusToolbox™ Motor Suite GUI

Ki multiple for speed loop

* v Control
eControl mode Speed_Mode_FOC_Sensorless... -
= Speed Controller
Speed loop bandwidth 15.0 Hz
Open-loop to closed-loop transition coefficient for currentr... 1.00e+2 %
Speed loop Kp A/(Ra/sec-...
Speed loop Ki A/(Rafsec-...

10.0

Figure 57 Speed control parameter configuration in ModusToolbox™ Motor Suite GUI

7.2.5 Update the speed control parameter directly

As mentioned in the previous section, speed controller's k, kj, and feedforward terms are directly derived
from includes coulombic friction (T%), viscous friction (B), and inertia (). This section describes the
configuration of speed control parameters and how to configure these parameters directly.

Itis possible to directly update the speed control kp, k;, and feedforward terms in the ParamConfig.c file in
PARAMS_InitAutoCalc() function.

VRV

Figure 58 Speed control parameter direct updated

002-42330 Rev. **
2025-12-10

User guide 58



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Control loop tuning

Also speed control k;, and k; values can be directly configuration using the Motor Suite GUI - PID Tuner that is
described in 7.3 PID Tuner

7.3 PID Tuner

Motor Suite GUI supports a PID tuner to adjust speed control and/or current control Kp and Ki values directly
during runtime to optimize system performance. These values will override the auto-calculated Kp and Ki
values that are calculated based on bandwidth, motor, and load parameters. Tuned values from the PID tuner
can be saved into the main Motor Suite GUI Configurator. Once these values are available in the Configurator,
they can be written to the target or exported as parameter files in .h or .csv format for integration in code
example or reporting.

The PID Tuner can be launched from Motor Suite GUI Test Bench using the toolbar = or from the menu bar
(Tools > PID Tuner).

@ el
W
Current Q Pl Cao... KP [3.157300711 o Kl|0.141371667 (6] Current D Pl Co... KP | 3.157300711 0] KI | 0.141371667
Drive
R 15+ -
vars[0lv_gd remdg Y N EMABLED
- B °_| DISABLED
Reset KP & Kl to default values (7]
2
- T )]
z - = = 5 =
E =] E =]
: =l . -G
<= == = =
> = ) ! How to use PID Tuner
2 = =z g L P
=) = =) = 1. In configuration page, after configuring
= g w g
E 2 5 -5 g the parameters, write the parameters by
- -2- -5 - ~ clicking the "Write Parameters" button.
2. Switch to Test Bench page, click "Launch
PID Tuner" button to open PID tuner
—4- " window.
h ~154 3. Tune the parameters.

o Ontop of the chart, change the

Speed Pl Contral KP | 0.007199483 (0] KI | 0.000026180 (0] valuein input box, press Enter to
confirm writing the value to device
] 3000 RAM,
! o Watch the changes of the signals in
the chart.

o Try different values until the
optimum behavior is monitored.
4. Click save button to save the new values
to the configuration parameters in main
window.

cmd_intelec

5. Go to main main window, select
"Project" and "Save" on the menubar to

wars[].i_cmd_spd

save the changes as a project file.

wars[0]w

6. In configurator page, use "Write
Parameters" button to write the

parameters to the flash memory.

Version 2.7.1

Figure 59 PID Tuner

Ctrl[x] Kp and Ctrl[x] Ki variables can be directly adjusted from the PID tuner based on system response (raise
time, overshoot, steady state error etc.). When pressing the save button in the PID tuner, Ctrl[x] variables are
converted to params[x] format and the params(x] variables are updated in Motor Suite GUI Configurator. Ctrl[x]
and params[x] mapping is mentioned in Current control (7.1.1) and Speed control (7.2.1).

User guide 59 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

How to configure a new board and motor

8 How to configure a new board and motor

In the Motor Control Library, default parameter values are configured for the "DB42M03" motor +
KIT_PSC3M5_CC2_V2 + EVAL_24V_250W. This chapter describes how to configure Motor Control Library
parameters for a new motor or when changing the power board (no change in ADC and PWM pins) or different
control boards.

8.1 Configuration for new motor

It is necessary to configure all new motor/load-related parameters in the ModusToolbox™ code example or in
the ModusToolbox™ Motor Suite GUI. Refer: Section 3.1 How to configure motor and load

Motor profiler can be used to find the motor and load parameters. Before starting the profiler, configure motor
and mechanical parameters using the new motor's nameplate, datasheet, or best-known values in the Motor
Suite GUI configurator. Refer: Section 5.1.4 How to run a motor profiler using Motor Suite GUI

Parameter Macro DB42MOD3 DB42503 Unit Description
Motor Poles MOTOR_POLE 8 8- Muoter poles
Q-axis Inductance MOTOR_LO 0.00067 0.001196|H Stator g-axis inductance
D-ais Inductance MOTOR_LD 0.00067 0.001196(H Stator d-axis inductance
Rotor Flux Linkage MOTOR_I_AM 0.006 0.005|Whb Retor flux linkage
Stator Resistance MOTOR_R 0.45 0.843(0hm Stator resistance
Maximum Torque MOTOR_TORQUE_MAX 0.39 0.19(Mm Maximum torque
Peak Current MOTOR_CURRENT_PEAK 108 5 4|A Peak current rating
Continuous Current MOTOR_CURRENT_CONT 35 1.79|A Continuous current rating
Max D-axis Current MOTOR_ID_MAK 1.75 0.75(A Maximum d-axis current
Motor Voltage MOTOR_VOLTAGE 24 24V Motor voltage
Nominal Speed MOTOR_MORM_SPEED 4000 4000 |RPM Mominal speed
Maximum Speed MOTOR_MAX_SPEED G000 BO00(RPM Maximum ne load speed
Inertia MECH_INERTIA 0.000011 0.0000027 |kg-m® Inertia
Viscous Damping MECH_VISCOUS 0.000012 0.0000037 kg-mz_r'sec Viscous Damping
Friction MECH_FRICTION 0.006 0.0015 |kg-m?/sec® Friction
V/F Voltage Offset MOTOR_CTRL_VOLT_VF_OFFSET 0.15 015V V/F ramp voltage offset
V/F Voltage Ratio MOTOR_CTRL_VOLT_VF_RATIO 0.0075 0.0075(V/(rad/sec) V/F ramp slope

Figure 60 Example- Motor parameter configuration for “DB42S03” motor

8.2 Configuration for new power board

In case of using any different power board from the default, it is required to configure voltage, current, and
temperature measurement configurations.

8.2.1 Voltage and current measurement

Voltage and current measurement-related configuration, Refer Section 3.2 How to configure voltage and
current measurement parameter. Configure the ADC-related macros based on the new power board. Example
required ADC macro configuration for REF_80VDC_3.5KW board.

When configuring ADC-related macros for the REF_80VDC_3.5KW power board, several keyboard-specific
parameters must be updated to match the hardware.

The ADC_VREF_GAIN macro should be set to 1 because this board uses a direct 3.3V reference without any
voltage level shifter circuitry.

The ADC_CS_SHUNT_RES macro must be configured to 0.001f to reflect the 1mQ shunt resistor used for current
measurement on this board.

User guide 60 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

How to configure a new board and motor

The ADC_SCALE_VUVW and ADC_SCALE_VDC macros require updates because this board supports up to 80V
operation, that means the voltage divider networks in the measurement circuits are different from default
values - these scaling factors must be calculated based on the actual high-side and low-side resistor values in
the voltage divider network using the formula R_low /(R_high + R_low) to ensure accurate voltage
measurements, and the specific resistor values should be obtained from the board schematic to determine the
precise scaling coefficients needed for proper ADC voltage conversion.

KIT_PSC3M5_CC2_V2+EVAL_24V_250W REF_80VDC_3.5KW
#define ADC_VREF_GAIN ((5.0f)/(3.3f)) ((3.37)/(3.3f))

#define ADC_CS_OPAMP_GAIN (12.0f) (12.0f)

#define ADC_CS_SHUNT_RES (10.0E-3f) (1.0E-3f)

#define ADC_SCALE_VUVW ((5.6)/(56.0f+5.6f)) ((4.87f)/(154.0f+4.87f)

#define ADC_SCALE_VDC ((5.6f)/(56.0f+5.6f)) ((4.87f)/(154.0+4.87f)) l

Figure 61 Example- Power board configuration for REF_80VDC_3.5KW board

Some power boards do not use external amplifiers (for example, MADK power boards) and instead use internal
gain for current measurement. In this case, the internal gain for current input can be configured using Device
Configurator. Itis also required to configure the "ADC_CS_OPAM_GAIN" macro using the following relation:

ADC_CS_OPAM_GAIN = Configured_Internal_gain x External_gain_attenuation

PSCIMSFOS2ARQI Sampler & - Parameters s x
Soltions  Periphersls  Pins  Analog  System  Peripheral-Clocks  DMA o rems

rem & @
Resource Namels) Personaity Geners
] Trigger 7 ) Sampler Gain 3
Out
i agers

Sampler 8 - Parameters  Code Preview

Figure 62 Current measurement -Internal gain configuration using Device Configurator

Note:  The current input-offset value is calculated automatically by Motor Control Library when the system is in
“init” state, so no need configured current input-offset value.

User guide 61 002-42330 Rev. **
2025-12-10




o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

How to configure a new board and motor

8.2.2 Temperature measurement

When using a different passive temperature input, it is required to configure the mapping between voltage
output and corresponding temperature in the “MotorCtrIHWConfig.c” file.

% Project Explorer X “ | |4¢ TEMP_SENS_LUT t Temp Sens_LUT =
47 {
5 MOTOR_DEMO 48 .step = 1.0f / (TEMP_SENS_LUT_WIDTH + 1.0f),
>_D:$F’IZ a9 .step _inv = (TEMP SENS LUT WIDTH + 1.0f), AL age
> & bui 50 .val = {109.5f, 85.4f, 71.7f, 62.0f, 54.3f, 47.7f, 41.9f, 36.5f, 31.4f, 26.3f, 21.2f, 16.0f, 10.2f, 3.7f, -4.3f, -16.1f} // [degrse C]

T
u

v = configuration

v @ hw-Config
> i .C
> ] Hardwarelface.n
> 8] MCU.c M
> fR] MCUh
> il MotorCtriHWConfig.h

» &= motor-ctrl-lib-config —
> @ deps

> (= images
> @ libs P L
5 [ templates

> 'l main.c
lub LICENSE

& Makefile
[¥] README.md
> [ mtb_shared

Figure 63 Passive temperature configuration

The temperature sense lookup table size is 16. The mapping of voltage to temperature is defined in this table,
where each step corresponds to “Vadcref/17”. The temperature mapping for the default board
(EVAL_24V_250W+KIT_PSC3M5_CC2) is mentioned in Figure 64.

0 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15
STEP 0.0588 0.1176 0.1765 0.2353 0.2941 0.3529 0.4118 0.4706 0.5294 0.5882 0.6471 0.7059 0.7647 0.8235 0.8824 0.5412
Voltage [V] 0.1941 0.3882 0.5824 0.7765 0.9706 1.1647 1.3588 1.5529 1.7471 1.9412 2.1353 2.3294 2.5235 2.7176 2.9118 3.1059

Temperature [°C] 109.521 | 85.373 71.748 62.038 | 54.315 47.750 | 41.902 36.501 31.357 26.317 21.235 15.946 10.228 3.717 -4.329 -16.064

Figure 64 Temperature mapping for the default board (EVAL_24V_250W+KIT_PSC3M5_CC2)

8.3 Configuration for new control board

When using a controller board with different pinouts (PWM, ADC, Gatekill, direction, fault LED) from the default
board, use Device Configurator to change the default pins for the different controller board.

O] UM araeaters

PSCIMSFDS2AFQN (E-LOFP-00)

Figure 65 Device Configurator for changing pinout

User guide 62 002-42330 Rev. **
2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

How to configure a new board and motor

Steps to Modify Pinout Configuration:

Open Device Configurator from ModusToolbox™ IDE
Modify the existing pinout according to your hardware requirements
Save the changes in Device Configurator

Configuration files are automatically updated into ModusToolbox™ IDE, code example under the bsps
folder

Hw

8.3.1 Change in ADC pins

In PSOC™ Control C3, Group 0 and Group 1 are used to convert motor control analog input signals. If any
changes are made to the Group 0 or Group 1 samplers or any channel pins, it is required to update the Code
Example configuration files in “MotorCtrlHWConfig.c”.

= & HWConfigPsocC3c X =iz

i Project Explorer

St static void* const ADC Result_Regs MUXA[ADC SEQ MAX] [ADC_SAMP PER SEQ
{{ADC_RESULT_ADDR(0), ADC RESULT ADDR(2), ADC RESULT ADDR(
{ADC_RESULT_ADDR (1), ADC_RESULT ADDR(4), ADC_RESULT ADDR(

ADC_RESULT ADDR (10), ADC RESULT ADDR(1})},
ADC_RESULT_ADDR(11), ADC_RESULT ADDR(2f)}}:

= <§|> 1
v x5 MOTOR_DEMO
5 (= bsps
= build
w (= configuration

~ = hw-Config tatic void* const ADC R =gs_MUXBADC 5 TADC_SAMP P MAX] = \
, 8 Hardwarelface.c q c ADC_RESULT ADDR(11), ADC RESULT ADDR(}2)},
n| Hardwarelface.h
> e MCU.c
) MCU.h
L ol MotorCtriHWConfig.c |
) MotorCtrlHWConfig.h
» = motor-ctrl-lib-config
= deps
> = images
= libs
s = templates
||g main.c
|m} LICEMSE
Makefile
[¥] README.md
T_,_v_% mtb_shared

ADC_RESULT ADDR(11), ADC_RESULT ADDR (§0)}}:

Figure 66 Code change for change in ADC pins

The motor control code uses two software multiplexers for current measurement: MUXA for leg shunt current
measurement and MUXB for single shunt current measurement. When remapping ADC channels from their
default pin assignments, the corresponding result register numbers must be updated in the
"ADC_Result_Regs_MuxA/B" arrays. The system uses "DMA_Result_Indices_MUXA/B" to maintain the mapping
between channel functionality and pin indices. To properly update the configuration, locate the specific
channel function in the DMA indices mapping and update the corresponding register number in the ADC result
registers array. For example, if the Vbus voltage measurement pin is remapped from Channel 4 to Channel 7,
both “ADC_Result_Regs_MUXA[1][1]” and “ADC_Result_Regs_MUXB[0][1]” must be updated to
ADC_RESULT_ADDR(7) to reflect this change. This ensures that the ADC results are correctly mapped to their
respective measurement functions in the motor control algorithm.

If the sequencer Group0 and/or Groupl channel sequence is modified, it is required to change the sampler
mask in the "MCU_RoutingConfigMUXA/B()" function. The sampler masks that need to be updated are
“ADC_SEQO0/1_Config.dirSampMsk” and “ADC_SEQO0/1_Config.MuxSampMsk” to ensure proper synchronization
between the modified channel sequence and the corresponding sampling configuration.

User guide 63 002-42330 Rev. **
2025-12-10




o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

GUI to code parameter mapping

9 GUI to code parameter mapping

This chapter describes how to copy the tunned or configured parameters from the Motor Suite GUI into a motor
control code example. After tuning or configuring the parameters using the motor control GUI, export .h file
using export as .h file option in the GUI. This chapter explains how to transfer tuned or configured parameters
from the Motor Suite GUI into the motor control code example. After completing parameter tuning or
configuration using the Motor Suite GUI, the optimized parameters must be exported and integrated into the
code example for implementation.

e Step 1: Complete Parameter Tuning
- Finish tuning/configuration of Motor Control Library parameters using Motor Suite GUI

- Verifying all parameters is optimized for your motor and load
e Step 2: Export Parameters

In the Motor Suite GUI, navigate to the export function

Select "Export as .h file" option from the GUI menu

Choose the destination folder and filename for the exported header file

The GUI will generate a .h file containing all configured parameters
e Step 3: Integration into Code Example

- Copy the parameter definitions from the exported file

- Replace the corresponding parameter values in your motor control code example, ParamConfig.h
e Step 4: Verification

Compile the updated code example

Download to target hardware
Launch Motor Suite GUI
Verify that the motor operates with the new tuned parameters

Confirm performance matches the GUI tuning results

This process ensures seamless transfer of optimized parameters from the GUI environment to the Motor
Control Library.

B ModusToolbor™ Motor Suite b Yosect Bxplovir &
& MOTOR_DEMO
@n Q O&X & Binaries
bsps
& ‘System Diagram [ Bl © § Pacameter Controls @ Collapse All v @ build
iia . configuration
?H [ emews ] v & Ha-Conlio
C Hardwarelfacec
> m=ﬁ_ = H Harawarelfaceh
C MCuc
| ez = = X 3 | H MCuh
€ MotorCtriHWConfig.c
| CERTTENTETY) CERETETY RN | H MotoeCiriHWConfigh
» - motor-ctri-lib-config
) @D O O 3 € MotorCiritibConfig.c
—— _ oz lcl z'c-tc/(:vlechhQn
aramConfigc
T ParamContigh
> deps
(> images
@ libs
,,,,, = & templates
- C mainc
B B .'E i : W LICENSE
- e WE — Makefile
= -3 ] e C README.md
Lk 581202525 |+ Connecied to PSOC™ Conro| G Dual Wofor Contrl K s et Conrol R70) | v & mtb_shared
N N
Figure 67 GUI to code parameter mapping
User guide 64 002-42330 Rev. **

2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Fault handling

10 Fault handling

The Motor Control Library supports comprehensive set of protections including:

e Under/Over voltage Protection,

e Overcurrent Protection,

e Over Speed Protection,

e Overtemperature Protection, and
e Motor I°T Protection.

When any fault condition is detected, the corresponding bitfield in the "faults[x].flags.all" variable is set to '1".
All fault flags are latched into "faults[x].flags_latched.all" for persistent fault tracking. If any fault is reported in
the "faults[x].flags_latched.all" variable, the state machine moves to the fault state. Once the fault is cleared,
the state machine moves to the Init state for system restart.

10.1 Fault response actions

During fault conditions, all switches are turned OFF or a zero vector is applied based on the
"faults[x].react_mask" variable configuration. The software supports multiple zero vector methods, with one
applied based on the configuration in “params[x].sys.faults.short_method.” The available zero vector options
are:

e Low_Side_Short
e High_Side_Short
e Alternate_Short (In one PWM cycle, high-side switches are ON for 50% of the time and low-side switches are

ON for the remaining 50% of the time)

This allows flexible fault response strategies depending on the application requirements and hardware
protection needs.

Alternating High side short Low side short

High side short /—-} Low side short Yd_c Ve
Ve Ve
— [ s
( and —{ Motor —{ Motor
{ Motor l» { Motor 1 1
[ ) J J

» » » [ [ [
Shunt L L Shunt Shunt > Shunt
Resistors [ T Resistors Resistors

i Resistors

Figure 68 Inverter fault reaction - Zero vector

User guide 65 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Fault handling

10.2 Fault/protection summary

Over/Under Voltage Protection

Under/over voltage faults are triggered when the actual DC bus voltage falls below the under-voltage threshold
("params[x].sys.faults.vdc_thresh.min") or exceeds the over voltage threshold
("params(x].sys.faults.vdc_thresh.max") for a defined period ("params.sys.faults.vdc_time"). When an under-
voltage condition is detected, the bitfield "faults[x].flags.sw.uv_vdc"[3] is set. When an over voltage condition is
detected, the bitfield "faults[x].flags.sw.ov_vdc"[2] is set.

Voltage )

Fault
Trigger

A DC Link Voltage (Raw) No Fault

Over Voltage
Threshold

Nominal DC
Link Voltage

Under Voltage ™ == — i E :
Threshold
Minimum Minimum
Debounce Time Debounce Time

DC Link Voltage (Filtered)

Figure 69 Fault/protection: Voltage protection

Hardware overcurrent protection:

When an overcurrent condition is detected via hardware (Trap), the bitfield "faults[x].flags.hw.cs_ocp" is set for
immediate protection response.

Software overcurrent protection:

Overcurrent faults are triggered when motor current exceeds the configured threshold value
"faults[x].vars.oc_thresh". When this condition is detected, the bitfield "faults[x].flags.sw.oc"[0] is set.

IT protection:

When motor current reaches peak value, the current limit in the current controller is automatically reduced to
the continuous current value to prevent thermal damage.

Limit
1 — ! OC Fault
04 .2 1 . 2 - Ipeak . i >
R CN Y SN e
1 a " 7 = :
_ B (st+1) Leont| - . imit
: oo i />
T = motor thermal time constant : : K » T =
Ipeak = motor peak current rating Kot Kon Kpuie  Leont
[ cont = motor continuous current rating
0< Koff SKonS 1 SKfault
Figure 70 Fault/protection - I*T protection
User guide 66 002-42330 Rev. **

2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Fault handling

Over speed protection:

Over speed faults are triggered when motor speed exceeds the configured threshold value
"params(x].sys.faults.w_thresh.elec". When detected, the bitfield "faults[x].flags.sw.0s"[4] is set.

Overtemperature protection:

Overtemperature faults are triggered when temperature input values exceed the configured threshold value
"params[x].sys.faults.temp_ps_thresh". When detected, the bitfield "faults[x].flags.sw.ot_ps"[1] is set.

Refer to the Firmware reference manual for more detailed information.

10.3 Fault clear mechanism

The motor control system provides a software mechanism to clear latched fault conditions through the
“sm[x].vars.fault.clr_request” variable. This variable serves as a command interface to reset the fault state
machine and clear all latched fault flags. To clear faults from the system, set the “sm[x].vars.fault.clr_request”
variable to 1. This action initiates the fault clearing sequence, which resets all latched fault flags stored in
“faults.flags_latched.all” and allows the state machine to transition from the fault state back to the init state.

Note:  The fault clear request will only be effective if the actual fault condition has been physically resolved. If
the underlying fault condition still exists (such as overcurrent, overvoltage, or overtemperature), the fault
will be immediately re-triggered after the clear request is processed.

User guide 67 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

MADK power board configuration

11 MADK power board configuration

This section covers the essential configuration steps required to set up the MADK power board along with
PSOC™ C3 CC2 board for motor control applications.
11.1 Hardware used

e KIT_PSC3M5_CC2, PSOC™ Control C3M5 Motor Drive Control Card
e EVAL-M1-CTE620N3,iMOTION™ MADK Evaluation board High voltage
e Dual motor interface card, interface between

Table10 Board specification input required for Motor Control (MADK+ Dual motor interface card)

Current Shunt Type Three Shunt
Current Shunt Resistor 30mQ
Current Amplifier Gain Current Gain in MADK board , Ajower = 1 (N0 external amplifier in this board)

Current Gain in Dual motor interface board Ainter = 10kQ/(10kQ+2kQ) = 0.833, In
the interface board 10kQ and 2kQ resistor used to provide offset for current
input

{VDD3.3 |
14

iIE
10
%

To MCU 1 { M3_ANALOG_IU+ |

Total External Current gain =Apower * Ainter=* 0.833 = 0.833

The resistor network provides 0.55V offset (3.3* 2/12), so it is possible to use
ADC MCU internal gain up to 3.

Another Ex. -If board has external amplifier(8) and no offset network in dual
motor interface (removed R11 and R14 = 0Q), Total external gain=8*1=8
DC Bus Voltage Resistor High Side Resistor: 2000kQ (in MADK board)

Divider Low Side Resistor: 15KQ (in Dual motor interface board)

Maximum measurable voltage =3.3*(2000+15)/15 = 443.3V

A =

[l

Note:  The current input-offset value is calculated automatically by Motor Control Library when the system is in
“init” state, so no need configured current input-offset value.

User guide 68 002-42330 Rev. **
2025-12-10


https://www.infineon.com/evaluation-board/KIT-PSC3M5-CC2
https://www.infineon.com/assets/row/public/documents/60/44/infineon-eval-m1-cte620n3-um-en.pdf?fileId=5546d462696dbf1201699a9463eb78cf

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

MADK power board configuration

11.2 Software configuration

11.2.1 Device configuration
Pinout Configuration:

e MADK and Dual motor interface hardware setup pinout for PWM, ADC, and other peripherals matches
default software pinout configuration

e No specific pinout changes required

Internal ADC Gain Configuration:

e Use Device Configurator to enable internal gain, set internal gain = 3 for all current input channels
Dual Motor Interface Board Setup:

e Connect appropriate jumpers on Dual Motor Interface Board, ensure proper signal mapping for current
inputs, voltage inputs, and temperature inputs to corresponding MCU ADC channels

Verification:

o Verify all signal mappings before system power-up

) Sampler Gain 3

Sampler 8 - Parameters  Code Preview

Figure 71 Current measurement -Internal gain configuration using Device Configurator

User guide 69 002-42330 Rev. **
2025-12-10



guide

o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon

MADK power board configuration

11.2.2 Parameter configuration

Power board Parameter configuration:

e Allthe power board-related parameters are defined in configuration/motor-ctrl-lib-config/ParamConfig.h

Table1l Power board specific parameter

ADC_CS_CURRENT_MEASUREMENT_TYPE

Shunt_Res

ADC_CS_CURRENT_SENSE_POLARITY

LS_Current_Sense

ADC_CS_SHUNT_TYPE

Three_Shunt

ADC_CS_SHUNT_RES

30E-3f[Q]

ADC_CS_OPAMP_GAIN

Internal Gain * External Gain(or Attenuation) = 3*0.833

ADC_SCALE_VDC

((15.0f)/(2000.0f+15.0f))

ADC_VREF_GAIN

((5.0f)/(3.3f)) if no change made in the controller board
((3.3f)/(3.3f)) if voltage level shifters are removed in the controller
board

Refer: How to configure voltage and current measurement
parameter 3.2

MOTOR_CTRL_VDC_NOM_VOLT

170V

ADC_CS_CURRENT_MEASUREMENT_TYPE
C_CS_CURRENT_SENSE_POLARITY

C_CS_SHUNT_TYPE

C_CS_SHUNT_RES
C_CS_CURRENT_SENSITIVITY

Shunt_Res
L5_Current_Sense

Three_shunt

Figure 72 Power board-specific parameter using ModusToolbox™ IDE

Make require change in motor parameter and control parameter. Tuning of V/F or I/F startup method or
speed/current control loop refer respectively chapter.

User guide

70 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Appendix
12 Appendix
12.1 Parameter handling

e Parameter initialization is done in “Init” state entry function if parameters are not initialized.

If no valid data EEPROM or “PARAMS_ALWAYS_OVERWRITE” macro is set to true, the following functions
are called

“PARAMS_InitManual()” - All the input parameter variables assignment
“PARAMS_InitAutoCalc()” = Calculate all the derived parameters from input parameters
All parameter values are stored into EEPROM

If EEPROM has valid parameters and the “PARAMS_ALWAYS_OVERWRITE” macro set to false (default
value), parameters variables are updated from EEPROM

e Parameter values can be updated from external interface (Ex. GUI) using FcnExeHandler.c functions

12.2

Derived parameter calculations can be triggered by setting “fcn_exe_handler.req.Auto_Calc_Params”
bitfield

Store all parameters value from RAM to EEPROM by setting “fcn_exe_handler.req.Flash_Params” bitfield

Reset all the module and reinitialize the peripheral by setting “fcn_exe_handler.req.Reset_Modules”
bitfield

During execution of the above request, the FcnExe handler stops all the peripherals and restarts after
handling the request

FcnExe Handler function only execute the request when SMis in “init” or “fault” state, the request is
ignored if SMis not in “init” state

State machine handling

Each state in the motor control system has four functions: entry, exit, RunISR0, and RunISR1. The state entry
function is called when the state machine enters a state, while the state exit function is called when the state
machine exits from a state. The state ISRO function is called every fast loop, and the state ISR1 function is called
every slow loop. State transitions are handled in the slow loop ISR. If a state change is requested, the exit
function of the current state is executed, followed by the entry function of the requested state, and finally the
current state is set as the requested state.

“sm[x]. current” variable holds the current state machine state.

User guide 71 002-42330 Rev. **

2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning I n f| neon
guide

Appendix

12.3 Initialization and interrupt handling in motor control

Initialization sets up the motor control system through state machine setup, parameter initialization, and
configuring hardware peripherals (PWM, ADC, GPIO, DMA, ISR).

Interrupt handling provides real-time control execution using two ISRs in motor control: Fast loop ISR
(triggered after all ADC conversions) executed every PWM period or every multiple PWM period based on
configuration, and Slow loop ISR (timer-based ISR) executed every fast loop period or every multiple fast loop
period based on configuration.

— Init Sequence — Fast Loop ISR (McU_RunIsro () — Slow Loop ISR (Mcu_RunIsri())
Main() ?
Rfcer cybep inis() fumesion eall
? | Read the Sensor inputs (EALL/ | Check HW fault Pin |
Encoder if applicable) ‘
[ Read all the ADC values from DA | Check Dir and brak inputs |
EW IFACE ConnectFcnPointers () I [
Tmitislisation of Feripheral functien peintes

Set fault and direction LEDs |

State Handling
Call State specific ISRl function

| |Call State specific ISRO f.].'u:tiu:x|

STATE MACHINE Init()

- Inizialization of sase funceion poinser

| Modulation compare valus update

Execution time calculation |

- Called State “Init” Entry functiem

Single shunt trigger valus update

—  “Init" State Entry function (InitEntry()) é é
— If Parameters are not Initialized
—  Parameter Inifialization — Fast Control Loop is high priority than Slow Control Loop
— Motor Control Peripheral Initialization i i
_  Reset all the modules — ISRO “ucu_runzsro () and ISR1 »ucu_runzsri ()~ functions are defined in

—  Start the Peripherals
— Reset all the variables

Figure 73 Initialization and interrupt handling in Motor control

12.4 ModusToolbox™ file structure

& Project Explorer 15 Project Explorer %
&5 MOTOR_DEMO Motor Control Code Example / [~ & MOTOR_DEMO
& e Application Code &5 mth_shared
il > [ Archives
v & configuration > (= block-storage

) 'g’i;:,i,ﬂ,ﬂm Motor control Peripheral functions > & cmsis
H Hardwareitsceh «— = PWM, ADC, DMA, EEPROM » & core-lib
ﬁ ::Ejf = Fastand Slow loop ISR * & core-make
L > (= emeeprom

€ MotorCrriHWConfig.c

H MotorCtriHWConfigh ¢ — ADC Configuration ~ (= mator-ctrl-lib

motor-ctrl-lib-config v = release-v3.0.0 .

f ’ - L Motor Control Driver Interface (MCDI

C MotorCuilibConfigc | 4——f Motor Lib Structure Definition > (= device-info ( )

H MotorCrriLibConfigh . & docs

€ ParamConfig.c .

H ParamConfigh All Parameter Configuration & modi All the motor control related functions
deps > [z OperationalCode ¢———— .
mages - = Motor and control Parameters config
b 2 & ThirdPariylib State Machine
libs .

" = EULAxt \
templates . i
€ mainc LICENSE I\P/Iotor Ctontl:l fL;Tctlons
; & N . . arameter Handler
(:‘”ZE:‘:‘:  propssan =  Static Lib files for GCC and IAR
iy README.md atic Library files for an
« & mtb_shared RELEASEmd . ) .
i Archives =) version.xml Third Party Library functions
block-starage > (= mtb-hal-psc3 = Motor control suite oscilloscope

> = mtb-pdl-catl interface
> (= recipe-make-catlb

> & retarget-io

» (= syspm-callbacks-psc3

<«<——  Motor Control library
mtb-hal-psc3
mtb-pdi-catl
recipe-make-catib
retarget-io
syspm-callbacks-psc3

Figure 74 ModusToolbox™ file structure (Motor Control Library V3.0.0)

User guide 72 002-42330 Rev. **
2025-12-10



o _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

Appendix

12.5 How to override library function with a user-defined function

This chapter provides instructions for replacing existing Motor Control Library functions with user-defined
functions without modifying the core motor library. This approach allows for customization while maintaining
library integrity.

Key benefits

- Preserve original library functionality

- Enable system-specific customizations

- Maintain upgrade compatibility

- Isolate custom code in application layer
General process

Step 1: Exclude Library Function from Build

- Use the make file to exclude the original library function from the build process by adding it to the ignore
list.

Step 2: Implement User-Defined Function

- Create a custom implementation in your application code that maintains the same interface as the
original function.

Step 3: Ensure Proper Integration
- Verify that all output variables and function signatures match the expected library interface.
Example to replace the Speed control function with user-defined function
- Modify the make file in ModusToolbox™ to exclude the Speed control file form build
- CY_IGNORE+=$(wildcard../mtb_shared/motor-ctrl-lib/.../SpeedCtrl.c)
- Define user-defined functions
o Copy the “SpeedCtrl.c” file from the library and place into the Application code
o Modify the copied “SpeedCtrl.c” file based on system requirements

o Make sure that Speed Control output variable is updated correctly.

Note:  Complete functions can be redefined in a new file without copy "SpeedCtrl.c” file, should not modify the

function name, definition (Content) of the function can be modified.

Functions executed in each state can be modified in “StateMachine.c” file. Follow the same step given above
to modify the “StateMachine.c” file

User guide 73 002-42330 Rev. **

2025-12-10



ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Abbreviations and definitions

13 Abbreviations and definitions
Table12 Abbreviations and definitions
BC Block Commutation
BLDC Brushless DC
FOC Field Oriented Control
FPU Floating Point Unit
IPM Interior Permanent Magnet
ISR Interrupt Service Routine
MCU Microcontroller Unit
MTPA Maximum Torque per Amp
MTPV Maximum Torque Per Volt
PMSM Permanent Magnet Synchronous Motor
PWM Pulse Width Modulation
RFO Rotor frame-oriented Field Oriented control
RRF Rotating Reference Frame
SFO Stator frame-oriented Field Oriented control
SRF Stationary Reference Frame
SM Surface Mounted
SVM Space Vector Modulation
TBC Trapezoidal or block commutation
TC Trapezoidal Commutation
User guide 74 002-42330 Rev. **

2025-12-10



o~ _.
ModusToolbox™ Motor Suite Motor Control Library tuning < In f| neon
guide

References

References
[1] Infineon Technologies AG: PSOC™ Control C3 Documentation; Available online

[2] Infineon Technologies AG: AN238329 - Getting started with PSOC™ Control C3 MCU on ModusToolbox™
software; Available online

[3] Infineon Technologies AG: KIT_PSC3M5_MC1 - PSOC™ Control C3 motor drive card; Available online

[4] Infineon Technologies AG: Motor Control Ecosystem Introduction-Motor Suite; Available online

User guide 75 002-42330 Rev. **
2025-12-10


https://documentation.infineon.com/psoccontrolc3/docs/kfc1732622054982
https://www.infineon.com/assets/row/public/documents/30/42/infineon-an238329-getting-started-psoc-control-c3-modustoolbox-applicationnotes-en.pdf?fileId=8ac78c8c92bcf0b0019393f072d813b5
https://www.infineon.com/evaluation-board/KIT-PSC3M5-MC1
https://www.infineon.com/assets/row/public/documents/30/45/infineon-motor-control-ecosystem-introduction-motor-suite-productbrief-en.pdf

ModusToolbox™ Motor Suite Motor Control Library tuning

guide

(infineon

Revision history

Revision history

Document Date Description of changes

revision

o 2025-12-10 Initial release.

User guide 76 002-42330 Rev. **

2025-12-10



Trademarks

All referenced product or service names and trademarks are the property of their respective owners.
PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.

Edition 2025-12-10
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document reference number
002-42330 Rev. **

Important Notice

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of
non-infringement of third-party rights and implied warranties
such as warranties of fitness for a specific use/purpose or
merchantability.

Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.

The data contained in this document is exclusively intended for
technically qualified and skilled customer representatives. It is
the responsibility of the customer to evaluate the suitability of
the Product for the intended application and the customer’s
specific use and to verify all relevant technical data contained
in this document in the intended application and the
customer’s specific use. The customer is responsible for
properly designing, programming, and testing the functionality
and safety of the intended application, as well as complying
with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall responsibility
for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:

Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security
Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual
property laws and treaties of the United States, Germany, and
other countries worldwide. All rights reserved. Therefore, you
may use the software only as provided in the software license
agreement accompanying the software.

If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in
the software (a) for software provided in source code form, to
modify and reproduce the software solely for use with Infineon
hardware products, only internally within your organization, and
(b) to distribute the software in binary code form externally to
end users, solely for use on Infineon hardware products. Any
other use, reproduction, modification, translation, or
compilation of the software is prohibited. For further information
on the Product, technology, delivery terms and conditions, and
prices, please contact your nearest Infineon office or visit
https://www.infineon.com


mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Key features
	1.2 Rotor field-oriented control
	1.3 Motor control tuning flow

	2 Motor parameters required for Motor Suite Motor Control Library tuning
	2.1 Motor/load parameters
	2.2 Parameter configuration hints

	3 Parameter configuration
	3.1 How to configure motor and load parameters
	3.2 How to configure voltage and current measurement parameter
	3.3 How to configure key system parameters
	3.3.1 Control mode
	3.3.2 Control loop frequency
	3.3.3 State transition threshold
	3.3.3.1 Start-up threshold parameters
	3.3.3.2 Observer threshold parameters (speed control):
	3.3.3.3 Current control threshold parameters:

	3.3.4 Rate limiter


	4 Verification of ADC measurement
	4.1 DC bus voltage measurement
	4.2 Motor phase current measurement

	5 Motor parameter identification
	5.1 Parameter identification using Motor Suite motor profiler
	5.1.1 Motor Suite motor profiler execution steps
	5.1.2 Profiler parameters
	5.1.3 Parameter tuning in profiler mode
	5.1.3.1 Rotor lock state
	5.1.3.1 Resistance estimation
	5.1.3.2 Inductance estimation
	5.1.3.3 Mechanical parameter and flux linkage estimation

	5.1.4 How to run a motor profiler using Motor Suite GUI

	5.2 How to measure motor parameter manually
	5.2.1 Stator resistance (Rs)
	5.2.1.1 Measurement procedure
	5.2.1.2 Measurement example

	5.2.2 Stator inductance (Lq, Ld)
	5.2.2.1 Measurement procedure
	5.2.2.2 Measurement example

	5.2.3 Motor poles number (p)
	5.2.3.1 Measurement procedure



	6 Startup method tuning
	6.1 Open-loop V/F control
	6.1.1 V/F parameters
	6.1.2 Troubleshooting
	6.1.3 How to configure parameters

	6.2 Open-loop I/F control
	6.2.1 I/F parameters
	6.2.2 Troubleshooting
	6.2.3 How to configure parameters


	7 Control loop tuning
	7.1 Current controller
	7.1.1 Current control parameters
	7.1.1.1 Troubleshooting

	7.1.2 Current controller parameter calculation – Example
	7.1.3 How to configure parameters
	7.1.4 Update the current control parameter directly

	7.2 Speed controller
	7.2.1 Speed control parameters
	7.2.1.1 Troubleshooting

	7.2.2 Speed controller parameter calculation – Example
	7.2.3 Speed open-loop to closed-loop transition
	7.2.4 How to configure parameters
	7.2.5 Update the speed control parameter directly

	7.3 PID Tuner

	8 How to configure a new board and motor
	8.1 Configuration for new motor
	8.2 Configuration for new power board
	8.2.1 Voltage and current measurement
	8.2.2 Temperature measurement

	8.3 Configuration for new control board
	8.3.1 Change in ADC pins


	9 GUI to code parameter mapping
	10 Fault handling
	10.1 Fault response actions
	10.2 Fault/protection summary
	10.3 Fault clear mechanism

	11 MADK power board configuration
	11.1 Hardware used
	11.2 Software configuration
	11.2.1 Device configuration
	11.2.2 Parameter configuration


	12 Appendix
	12.1 Parameter handling
	12.2 State machine handling
	12.3 Initialization and interrupt handling in motor control
	12.4 ModusToolbox™ file structure
	12.5 How to override library function with a user-defined function

	13 Abbreviations and definitions
	References
	Revision history
	Disclaimer

