PSOC™ Edge MCU

Programming Specification

About this document

Scope and purpose

Infineon

This document provides the information necessary to acquire the PSOC™ Edge MCU family. It describes the
communication protocol required for access by an external programmer, explains the acquisition algorithm,
and gives a basic description of the physical connection. Pin locations and the electrical and timing
specifications of the physical connection are not a part of this document: they can be found in the device
datasheet. The algorithms described in the following sections are compatible with the entire PSOC™ Edge MCU
family.

Intended audience

This document is intended for anyone who wants to program PSOC™ Edge MCU.

Abbreviations and definitions

Abbreviation Definition

AHB AMBA (advanced microcontroller bus architecture) high-performance
bus, an Arm ® data transfer bus

DAP Debug Access Port

JTAG Joint Test Action Group

NVM Non-Volatile Memory

RRAM Resistive Random-Access Memory

S-AHB Slave AHB Interface

SWD Serial Wire debug

SWJ-DP Serial Wire JTAG Debug Port

TAP Test Access Port

XIP eXecute In Place

Reference documents

This document should be read in conjunction with the following documents:

Arm Debug Interface Architecture Specification ADIv6.0 (IHI0074)

Arm® CoreSight™ System-on-Chip SoC-600 Technical Reference Manual (100806)
Arm CoreSight Architecture Specification v3.0 (IH10029)

Armv8-M Architecture Reference Manual (DDI0553)

Arm® Cortex®-M33 Processor Technical Reference Manual (100230)

Arm® Cortex®-M55 Processor Technical Reference Manual (101051)

PSoC™ Edge E84 MCU architecture reference manual (002-37464)

Authenticated debug for PSOC™ Edge (AN239757)

Getting started with PSOC™ Edge security (AN237849)

Programming Specification Please read the Important Notice and Warnings at the end of this document
www.infineon.com page 1 of 66

002-37778 Rev. *F
2025-09-12

https://developer.arm.com/documentation/ihi0074
https://developer.arm.com/documentation/100806
https://developer.arm.com/documentation/ihi0029
https://developer.arm.com/documentation/ddi0553
https://developer.arm.com/documentation/100230
https://developer.arm.com/documentation/101051

o _.
PSOC™ Edge MCU Infineon
Programming Specification

About this document

e Selecting and configuring memories for power and performance in PSOC™ Edge MCU (AN239774)

002-37778 Rev. *F

Programming Specification 2 of 66
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Table of contents

Table of contents

AbouUt this dOCUMENT.....cciiiiiiiniiiiiniiierieiiniiiesiaiiaeirestaeisestestsessestesssessssssssssssessasssssssssssssssssssssssassassne 1
Table Of CONTENTS....ciuiiiiiiiineiiiiniiieriiineitesiaiisestesiaetsestascsesrestasssessascsssssssassssssassssssssssssssssassasssassassses 3
1 INErOAUCEION couuiiiiieiiiiiiiiiiiniineniiiiaecteiiaiceesisiteecsestscsestssssessssssscssssssssessssssssssssssssessssssssssssassansss 5
11 PrOZIaAMIMEY .ttt ettt e s st e s s et e e s nt e e s s nsaee s sensaees s nnneessennaaessennneessenneneesanns 5
1.2 PSOC™ Edge MCU family OVEIVIEWcc.evuirieieiiiiiirieriesiesieiet ettt st sttt svesaeseesa e e saesaesasaeas 5
2 Nonvolatile Memory SUDSYStEM. . ..cuciiiiiiiieiiiiiiciiiiniieeiieiieeciiisecssieicsecsssssecsesssscsessssssesssssssssesss 7
2.1 Resistive Random-Access MemMOrY (RRAM)iviiieeirieriieeeiereetesteseestesseseessessesssesssessessesssessessesssenns 7
2.2 EXECULE TN PLACE (XIP) eeitteietee ettt ettt ettt tee et e eete e eeateeenseeeesseesabeseesteeenseseesseessesensseesnsesensseenns 8
3 HEX fil@u.cuuiniieiiniinireniniinesianiaesresiaisesiostaesrestasssestascssssessassssssassssssessassssssssssssssssassssssassnsssassnssne 9
4 The Protocol StaCK...ccieiuiiiieiiiieieiaiieietiireietatietetserecesssrecessssecessssecessssecsssssesessssssassssscessssssasssese 10
41 COMMUNICATION INEEITACE ..icvvieee ettt et et et esae e ereeeabeeabeebeebeessseesseeassenseenseeseessnas 10
4.2 Program and debUg iNterfaCe.......ccueiiiriririrereese ettt ettt s a et sa e ae e e e sasaeas 10
421 DI ol 0T VY= e (o' 11 o TSR 11
4.2.2 SWD/JTAG Selection and DAP QCCESSuuvieveeerieeereeeeteeceteeecteeeeireeeeteeeetveeeseeeesseesseeensasessseeensseenns 11
423 o 0N 2] et | - V7T TSR 12
5 AcqUISItion AlBOrithM ..cc.iveiieiiniiiiiniineiieniniiaiiiineinesiesiaesrestacsestestasssesrascasssessasssnssassassssssascanss 15
5.1 COUE OVEIVIEW ...eiieeeeeeieeeeetctee e te et estesee st et e s se e s e seese e seesesssessesssessesseassesesssasseaseessessesssensesseessensesssenes 15
5.2 DAP initialization SUBIOULINESveieeeeeereecee ettt ettt te e eetreeebee e treeebee e baeesnsesenseeens 17
5.2.1 DAP _HANASNAKE. .. .ecteeteetteiectecte ettt ettt eeteerbe e be e s teestbeeabeebeebaebeesbaeesaessseenbeenbaetaeseesssennns 17
5.2.2 DY = 1 o) USRS 17
5.2.3 DY e Yot=] 0V oS TTTN 18
5.2.4 RS .ttt e et e st e s et e s e e e s et e e e e et e s e raae s e raae e e s neae e e e nrnaeeennns 19
5.3 ACQUITE PSOC™ EAZE MCU.....eiuiiiiiiiienieetesiesiteteie et e ste st st esae st estesas st essessaessassasssensesssensesssensensesssensens 23
53.1 Step 1 - CheCk DOOt IDLE StAte......cciceeiieeeieteceeteseetete sttt ste st e et e s a e ae e e s e reesnenns 24
5.3.2 SteP 2 - aCUITE IN ST MOTE ..ottt s ee s e e teebeesbe e s baesbeesraesatasnsaens 25
5.3.3 Step 3 - acquire PSOC™ Edge MCU using vector CatChcocvevevieniinieiieceteieseeeee et 26
5.4 Unlock the access to the CPU (helper fUNCLIONS)cc.ieverieiececeecescee et 28
5.4.1 WaItFOrWRFAMOGEiccveieieeeeeectee ettt ettt et e eeteeeebeeeebeeeesbeeeeseeensseeesseeesssessseessesensseessesensseenns 30
5.4.2 ACQUITEINWEFAMOUE ...ttt te et e s e et e e et e s e e s e se s e e seesaessesseestessesssansensesssensesssenses 31
5.4.3 LOQADEDUGCEIT ...ttt ettt ettt ettt b et et e s b sb e b e s b e be b et et eneenesaenes 32
5.4.4 SEAMTWEFARGQUEST ..ttt ettt sttt ettt e et e e s s e bre e e s s bt e e e sssstaeesssstaeessssseessssssaeesssssaessnnns 33
5.5 Unlock the access to the CPU using the debug certificateoevevenieiieinininenerceecceeeeens 34
5.5.1 UNIOCKCPUACCESS .ovveeeteeeeieeeeiteeeiteeeeteeeeeeeeeteeeetveeeseeeesseeesseeesssessseessesessssessseseesseessesensseesnsesenseen 34
5.5.2 UNIOCKCPUACCESSANAHAILoicvierieriettecteecee ettt ete e e s e e ebeebeesbeesbeesbaesbaeerseenbeenbaesaesssesssennne 35
6 Appendix A: Intel hex file format......cccciiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiniiieececietitsecsccsssessesscssssssessessesans 36
7 Appendix B: Joint test action group (JTAG) Protocolcccecereecirnicracrnecirnscrecraessssscrssssssssnscsnnes 38
8 AppendiX C: Code eXamPLe cucviiiiiiiiiiiieiaiieiiiiieeiaiiesiersecsetsssessesscsssssssssssssssssssssssssssssssssssssssass 40
8.1 Hardware-specific backend fUNCLIONS........cvocvieieciieceee et 40
8.1.1 EXERIN INT ISITAG(VOIA) e eiireiiietieetee ettt ettt et ettt e e e be e e sate e ebesessteesssesesbeessnbessseeesnsesenseeans 40
8.1.2 EXEEIN INT SEEXRES(STAtE); . veirerrieireereeeeitieeeeesteee et e sttt et e e e et e s beere e seeseesbesseessesesrsensenseessenseessensenns 40
8.1.3 eXtern int SEtVOtAgE(VOILAZE); . coverueeeiririeririertertetet ettt sttt ettt sb et ettt 40
8.14 extern int SWJSequence(out_bits, NUM_DITS);ccccvecieeeiieirenieceeececeecreeeere e 40
8.1.5 extern int Read/WriteDAP(reg, ap_n_dp, ValUe);ccuevurirerirenenieieieeetneeesiesie et 40
8.1.6 extern void SysSIeepMS(UINt32_t MSEC); ..evvvireeiecerieeiesreseetesteeeerae s e e te e e eessessnessesseesaessessaessenes 41
8.1.7 extern int SYSGEtTIMEMS(VOI)]..cuiverieieieieirerererteseet et stestesteste e e se s e ressestessesaeaeseeseeseesens 41
8.2 Constants and static data USEd iN COAEoouiiiiiiiiieceeecee et et e e re e e bee e baesarae s 41
Programming Specification 30f66 002-37778 Rev. *F

2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Table of contents

8.2.1 Application common constants and definitions.........ccvecieiecinieccceceeeee e 41
8.2.2 MCU-specific constants and definitionS........ccoceeierenirierecceeeeeeese e 42
8.2.3 Standard ARM constants and definitioNS.........ceeceiieciecineececeeeee e 43
8.3 Memory access and POLlING fFUNCLIONSocvieieeieeieieeeeeee et e ae s ae e nes 45
8.3.1 REAAAPV2....... ettt ettt ettt ettt s bbbt et et et e e b s b e b e s b et et e st et eneenesaeenes 45
8.3.2 WIHTEAPVZ .ttt ettt ettt s te st e s ae e s be e s bt e s sabeesabaeesbteessbaesssaeesssaesssaesnssaesssaeenseesssseesnsseenns 45
8.3.3 REAAMEM ...ttt sttt ettt et s b s bbb e bt e et besb e b e s b et e b e st enteneenesaeenes 46
8.3.4 WIHEEIMEIM ittt ettt sttt e st esbe e s st e e sabe e s bae e bt e e s baesssseessbaesssaesnsseesnsaeenseeessseesnsseenns 46
8.3.5 POIIMEIM ...ttt sttt e et e e s e e s e st e s be st e e beessaesstessseesse e beebaesseesreesstesntaesaeaseeareennes 47
8.4 DAP security loW-1eVEL fUNCLIONSvieuieieeeeeceecee ettt sae s s es 47
8.4.1 YT U (=YY L OO SUPRRPRPPRR 47
8.4.2 REAAANGINIESECUIE ...ttt st ettt ettt sb e b s b e s b e s e e e e et esesaeenes 47
8.5 ARM Core control and register acCess fFUNCLIONScoevieieiiieinirerereesce e 48
8.5.1 REAACOIEREG ...ttt ettt ettt et ettt e s b et e b e e at et e sae et e besatebesaeensensesasenses 48
8.5.2 WEIEECOMEREE. ...ttt ettt ettt ettt ettt e b et s bt e et esat et e s beeat e se e st et esseeneensesseensans 48
8.5.3 [a2 o1 U= = TR 49
8.5.4 HAIECPU .ottt ettt ettt sb ettt et et et e b s b e b e s b et et e st e st eneenesaenes 51
8.5.5 RESUMECPU ...ttt ettt sttt ettt st e ee e st e s st e saeesaeesanesane e neeeneesnee 51
8.6 DAP iNitialiZation fUNCLIONS.....c.ccviiieeecteeeeee ettt et ae s b et e b e sreeaesssensenseennensas 51
8.6.1 DAP_HANASNAKE....c..eoteriiteieieieteteet ettt ettt ettt ettt ettt b s b s b be s et et e e enesaenes 51
8.6.2 DAP NI e iiteieiteeete ettt ettt e e e e e e ae e s be e st e e e ba e s ba e e e a b e e e e e ear b e e et ae e bt e e e bae e taeeetae e baeeenraesraean 52
8.6.3 DAP_HandShaKeANGINIT...c.coverieieieieiirieiesertestetete ettt sttt ettt sa b s b sse s e s et e e enesaeenes 53
8.6.4 DAP_SCANAP ...ttt sttt ettt st st s b et ettt et b e s bbb et et et et e st e bbb et et et et et et eaenaeens 53
8.7 SYSERIM FESEL . ittt eebee e s s bt e e s s bt e e s s sbae e s ssasta e e s ssaaessssaeesssssnesensssaessssnsneesssssees 54
8.7.1 RESET ..ttt s s ba s aas e sbae s 54
8.8 ROM boot status checking and POLlING......cocceoeriiriiririieeeeeee ettt 55
8.8.1 1720 o} d Ve | L= TP 55
8.8.2 WaITFOIrBOOTIALE ...ttt ettt ettt sb sttt ae st et e e b saens 56
8.9 AcqUISItioN NElPEr FUNCHIONSeiviieeieeeeeceee ettt a e b e re et e sbe e s e beesaennens 56
8.9.1 GtV ECtOIrTaDIEDALA. .. e cueeueeeeieieieteteete ettt et ettt et sbe bbbt e e sene 56
8.9.2 SetPCandSPFroOMVECtOrTabIE.ottt et e be e be e s e e sraesataearaens 57
8.10 ACUISITION FUNCLIONS ...veeeviiieieieeeetecie ettt ettt et e sbe et e tesba et e be e e enbessaesseseessensesseensensesseensens 58
8.10.1 ACQUITETESTMOAE ...ttt te et e et e e e e s e et e b e e s e seesaessesseestessesssessensesssensensennses 58
8.10.2 F Yol [0 1YVt (o] G- | el o NPT 59
8.10.3 A CGUITE .eeireeireeseeete st et esteesteesae s st sae s se e seesseessaesssesstesssessseesseesseesssessseesseesseesseesseesssesssesssasnseesseesnes 60
8.11 UNIOCKING @CCESS 10 the CPUcuiiiiiiiieieeieteeeeeet sttt ettt ettt et saees 61
8.11.1 WaItFOIWEFAMOAE ... ei ettt sttt et e et e e teste e te e ste e beesbaesreesatesatesateessaaseeessesnseensesnseeseensens 61
8.11.2 ACQUITEINWEFAMOUEceeeiiieeteieeteteee e te et e s et e e e et e s e e s e se s e e sessaessesseessessesssansassasnsenseessenses 62
8.11.3 LOAADEDUGCEIT ...ttt sb ettt et b e bbb et e et ne e enes 62
8.11.4 STAMTWEFARGQUEST ...eeeeeeeeeeeetee ettt et e ettt e s seste e s s st e e s sensteessenneaessensseessennseessenssaessesenessanne 63
8.11.5 UNLOCKCPUACCESS ..cnveitentieiteieniteteie ettt ettt et e sbt st et e st e te s bt et e b e e st et e sae et esbesateseeseenbesseentenses 63
8.11.6 UNLOCKCPUACCESSANAHAILviieeiieierieieeeeteieetee sttt st et te st ese s et e sae et esbe s e essessessessesssensas 64
REVISION NiSTOrY..cuiiiiiiiiiiiiniiniiinieiineiieniaiisesienisessesrasisestostascsestascssssssssssssssasssssssssassssssasssssssssasssnss 65
Programming Specification 4 of 66 002-37778 Rev. *F

2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Introduction

1 Introduction

This document provides the information necessary to acquire the PSOC™ Edge MCU family. It describes the
communication protocol required for access by an external programmer, explains the acquisition algorithm,
and gives a basic description of the physical connection. Pin locations and the electrical and timing
specifications of the physical connection are not a part of this document: they can be found in the device
datasheet. The algorithms described in the following sections are compatible with the entire PSOC™ Edge MCU
family.

1.1 Programmer

IDE SWD/JTAG
(ModusToolBox or == HEX-File |m—) PROGRAMMER) MCU

supported third party IDEs)

Software Middleware | Hardware

< »lg
< »€ P

\ 4

Figure 1 Programmer in Development Environment

In the manufacturing environment, the integrated development environment (IDE) block is absent because its
main purpose is to produce a binary file (hex, elf, etc.). The programmer performs three functions:

e Parses the binary file and extracts the necessary information
o Interfaces with the silicon as a Serial Wire Debug (SWD) or JTAG master
e Implements the programming algorithm by translating the data from binary file into SWD or JTAG signals

The structure of the programmer depends on its requirements. It can be software- or firmware-centric.

In a software-centric structure, the programmer’s hardware works as a bridge between the protocol (such as
USB) and SWD or JTAG. An external device (software) passes all SWD/JTAG commands to the hardware through
the protocol. The bridge is not involved in parsing the binary file and programming algorithm. This is the task of
the upper layer (software). Examples of such programmers are MiniProg4 and Segger J-Link.

A firmware-centric structure is an independent hardware design in which all the functions of the programmer
are implemented in one device, including storage for the binary file. Its main purpose is to act as a mass
programmer in manufacturing.

This document does not discuss the specific implementation of the programmer. It focuses on data flow,
algorithms, and physical interfacing.

1.2 PSOC™ Edge MCU family overview

The PSOC™ Edge MCU family is a Dual-CPU utilizing the Arm® Cortex®-M55 and Cortex®-M33 processor cores. This
MCU family supports the Arm® SWJ-DP Interface for programming and debugging operations, using SWD or JTAG
protocols.

The PSOC™ Edge MCU includes the internal RRAM memory for the secure applications and relies on the external
flash memory chip connected via the high-speed QSPI/Octal SPI/HyperBus™ interface where the user
application and data are stored. Upon reset, the application can either be copied to the system RAM or
executed directly from the external flash thanks to the SMIF XIP (eXecute In Place) feature.

Programming Specification 5 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification

Introduction

The part can be programmed after it is installed in the system by way of the SWD or JTAG interface (in-system
programming). External flash memory is programmed by means of Flash Loaders. Flash Loader is a small
application which gets uploaded to the system RAM and executed. The debugger then passes the programming
data to the Flash Loader, which then performs the actual flash programming.

This document does not describe the actual programming process; instead, it focuses on the specific device
acquisition procedures required for flash programming. Many important topics are detailed in the appendices.
Other device-specific information can be found in the device’s datasheet or reference manual.

This document includes the following appendices:
Appendix A: Intel hex file format
Appendix B: Joint test action group (JTAG) protocol

Appendix C: Code example

Programming Specification 6 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Nonvolatile memory subsystem

2 Nonvolatile memory subsystem

This chapter describes the nonvolatile memory subsystem of the PSOC™ Edge MCU.

RRAM NVM - PSE84xGxS2 (EPC2 security)

Secure

Non-Secure

0x3200 0000

0x3201 OFFF
0x3201 1000

0x3206 O9FFF
0x3206 A00O

0x3207 FFFF

0x2200 0000

0x2201 OFFF
0x2201 1000

0x2206 9FFF
0x2206 A00O

0x2207 FFFF

System

User data

356 KB

System

RRAM NVM - PSE84xGxS4 (EPC4 security)

Secure

Non-Secure

0x3200 0000

0x3201 OFFF
0x3201 1000

0x3203 FFFF
0x3204 0000

0x3207 FFFF

0x2200 0000

0x2201 OFFF
0x2201 1000

0x2203 FFFF
0x2204 A000

0x2207 FFFF

System

User data

188 KB

System

eXecute In Place (XIP)

Secure

Non-Secure

0Xx7000 0000

OxX73FF FFFF
0x7400 0000

Ox77FF FFFF

0x6000 0000

OX63FF FFFF
0Xx6400 0000

OX67FF FFFF

PORT 0

64 MB

PORT 1

64 MB

A

Up to 128MB
of external
memory
mapped
space

Nonvolatile subsystem

2.1 Resistive Random-Access Memory (RRAM)
PSOC™ Edge MCU family contains up to 512 KB of nonvolatile Resistive Random-Access Memory (RRAM).

The base address of the RRAM NVM in MCUs address space is 0x3200 0000 / 0x2200 0000 (Secure/Non-Secure S-
AHB aliases). The programmable address range (user’s area that can be safely used for the applications and
custom data) may vary depending on the MCU security level:

e 0x3201 1000 - 0x3206 9FFF (0x2201 1000 - 0x2206 9FFF) - 356 KB for PSE84xGxS2 devices (EPC2 security)

e 0x3201 1000 - 0x3203 FFFF (0x2201 1000 - 0x3203 FFFF) - 188 KB for PSE84xGxS4 devices (EPC4 security)

002-37778 Rev. *F
2025-09-12

Programming Specification 7 of 66

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Nonvolatile memory subsystem

While the default offset of the programmable area is 0x11000, users may free up to 28 KB of the additional
space at the start of this area by replacing the extended boot image and setting the appropriate offset in the
programming tools.

Refer to “Selecting and configuring memories for power and performance in PSOC™ Edge MCU” application
notes for the detailed memory map and guidance on the applications and data storage selection.

Refer to “Getting started with PSOC™ Edge security” application notes for the details of replacing the extended
bootimage.

2.2 eXecute in Place (XIP)

The eXecute in Place (XIP) region is not associated with any physical memory in PSOC™ Edge MCU. The purpose
of the XIP region is to map the address space of the external memory devices, which are connected to the MCU
using the SMIF IP block. When the SMIF block is configured in XIP/Memory mode, it maps the AHB bus accesses
to the external memory device addresses to make it behave like internal memory. This allows the CPU to
execute code directly from external memory or use it as additional data storage.

Programming of the external flash memory devices via the SMIF IP block can be supported using a flash loader.
A flash loader is an application compiled for a target CPU that implements programming algorithms and
follows specific rules (framework) defined by a third-party IDE like Keil pVision, where CMSIS-based flash
loaders are used. Such algorithms are loaded into target SRAM by programming software and executed from
there for memory bank programming. Infineon provides support of such algorithms for 3 party development
tools like Keil pVision (MDK-ARM), IAR Embedded Workbench and SEGGER J-Link Software and
Documentation Pack.

Programming Specification 8 of 66 002-37778 Rev. *F
2025-09-12

http://www.keil.com/uvision/
https://www.keil.com/pack/doc/CMSIS/Pack/html/flashAlgorithm.html
https://www.keil.com/pack/doc/CMSIS/Pack/html/flashAlgorithm.html
http://www.keil.com/uvision/
https://www.iar.com/iar-embedded-workbench/
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Hex file

3 Hex file

The hexadecimal (hex) file describes the nonvolatile configuration of the project. It is the data source for the
programmer, where the data sections must conform to the non-volatile memory subsystem, described in

Section 2.

The hex file for the PSOC™ Edge MCU follows the Intel hex file format. Intel’s specification is very generic and
defines only some types of records that can make up the hex file. The specification allows customizing the
format for any possible silicon architecture. The silicon vendor defines the functional meaning of the records,
which typically varies for different chip families. See Appendix A: Intel hex file format for details of the Intel

hex file format.

Programming Specification 9 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

The protocol stack

4 The protocol stack

This chapter explains the low-level details of the communication interface. Figure 3 illustrates the stack of
protocols involved in the programming process. The programmer must implement both hardware and
software components.

Programming Algorithm
(Step 1 ... Step N)

SWD or JTAG
Read / Write

Communication Interface
(SWD/JTAG, Hardware Access
Commands)

Logical SWD or
JTAG signal _I__,__

Physical Layer
(Signals, interfacing with chip)

Signals on the LineI

Figure 3 Programmer’s protocol stack

e The programming algorithm protocol, the topmost protocol, implements the whole programming flow in
terms of logical and algorithmic steps. This protocol is implemented completely in software. Its smallest
building block is the SWD or JTAG command. The whole programming algorithm is the meaningful flow of
these blocks.

e The communication interface layer acts as a bridge between pure software and hardware
implementations. SWJ interface implements a set of lower-level (protocol-dependent) commands. It also
transforms the software representation of these commands into line signals (digital form). The SWJ
interface helps to isolate the programming algorithm from hardware specifics, which makes the algorithm
reusable.

o The physical layer is the complete hardware specification of the signals and interfacing pins, and includes
drive modes, voltage levels, resistance, and other components.

4.1 Communication interface

The external device (whether it is Infineon-supplied programmer and debugger or a third-party device that
supports programming and debugging) can access most internal resources through the “Program and debug”
interface provided in PSOC™ Edge MCU. The serial wire debug (SWD) or the JTAG interface can be used as the
communication protocol between the external device and the MCU.

4.2 Program and debug interface

The main purpose of PSOC™ Edge MCU program and debug interface is to support programming and
debugging through the JTAG or SWD interface and to provide read and write access to all memory and registers
in the system while debugging, including the Cortex®-M33 register banks when the core is running or halted.

Programming Specification 10 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

The protocol stack

The MCU implements a debug access port (DAP), which integrates SWJ-DP (serial wire/JTAG debug port) and
complies with the Arm® specification “Arm® Debug Interface Architecture Specification ADIv6.0 (IHI0074)”.

The debug physical port pins communicate with the DAP through the high-speed /0 matrix (HSIOM). The DAP
communicates with the Cortex®-M33 and Cortex®-M55 CPU using the Arm®-specified advanced high-
performance bus (AHB) interface. AHB is the systems interconnect protocol used inside the device, which
facilitates memory and peripheral register access by the AHB master. The PSOC™ Edge MCU has several AHB
masters, including the Arm® CM33, Arm® CM55 CPU cores, and DAP. The external host can effectively take
control of the entire device through the DAP to perform programming and debugging operations.

The debug port (DP) connects to the DAP bus, which in turn connects to one of two access ports (AP), namely:

e The CM33-AP located inside the CM33 core gives access to the CM33 internal debug components. The
CM33-AP port also allows access to the rest of the system through the CM33 AHB master interfaces. This
provides the debug host the same view as an application running on the CM33 core. Additionally, the CM33-
AP port provides access to the debug components in the CM33 core through the external peripheral bus
(EPB).

e The CM55-AP located inside the CM55 core gives access to the CM55 internal debug components. The
CM55-AP port also allows access to the rest of the system through the CM55 AHB master interfaces. This
provides the debug host the same view as an application running on the CM55 core. Additionally, the CM55-
AP port provides access to the debug components in the CM55 core through the external peripheral bus
(EPB).

e The System-AP, which gives access to the rest of the system. This allows access to the system ROM table,
which is not intended to be reached any other way. The system ROM table provides the MCU ID.

4.2.1 DAP power domain

Almost all the debug components are part of the active power domain. The only exception is the SWD/JTAG-DP,
which is part of the Deep-Sleep power domain. This allows the debug host to connect during Deep-Sleep mode,
while the application is 'running' or powered down. This enables infield debugging for low-power applications
in which the chip is mostly in Deep-Sleep mode.

After the debugger is connected to the chip, it must bring the chip to the active state before any operation. For
this, the SWD/JTAG-DP has a register (DP_CTL_STAT) with two power request bits. The two bits are
CDBGPWRUPREQ and CSYSPWRUPREQ, which request for debug power and system power, respectively. These
bits must remain set for the duration of the debug session.

Note that only the two SWD pins (SWCLKTCK and SWDIOTMS,) are operational during the Deep-Sleep mode -
the JTAG pins are operational only in active mode. The JTAG debug and JTAG boundary scan are not available
when the system is in Deep-Sleep mode.

4.2.2 SWD/JTAG selection and DAP access

JTAG and SWD are mutually exclusive because of the Arm® SWJ-DP implementation and because they share
pins. Therefore, an external programmer/debugger must be able to switch to the required protocol. The
watcher circuit, implemented in SWJ-DP, detects a specific state switching sequences on SWDIOTMS and
determines whether the JTAG, SWD, or DORMANT state is active. By default, JTAG operations are selected on
power-on reset and therefore the JTAG protocol may be used from reset without sending a switching sequence.
The debugger, however, may not know in advance the state of the debug logic when connecting to the target,
so putting the debug interface in a DORMANT state first, and then switching to JTAG or SWD is
recommended.For a more detailed description, see the “Switching between SWD and JTAG” section in “Arm
Debug Interface Architecture Specification ADIv6.0 (IHI0074)”.

Programming Specification 11 of 66 002-37778 Rev. *F
2025-09-12

https://developer.arm.com/documentation/ihi0074
https://developer.arm.com/documentation/ihi0074

o _.
PSOC™ Edge MCU Infineon
Programming Specification

The protocol stack

The DAP functionally is splitinto two control units:

e Debug port (DP) - Is responsible for the physical connection to the programmer or debugger.

e Access port (AP) - Provides the interface between the DAP module and one or more debug components
(such as the Cortex®-M33 or Cortex®-M55 CPU).

For more information about the DP/AP access commands and registers, see the “The Access Port” chapter “Arm
Debug Interface Architecture Specification ADIv6.0 (IHI0074)”.

For information on the structure of the JTAG, see Appendix B: Joint test action group (JTAG) protocol

4.2.3 Physical layer

This section summarizes the hardware connection between the programmer and the PSOC™ Edge MCU for
programming. Figure 4 shows the generic connection between the MCU and the programmer. See Table 1 for
pins/signals description.

Check the device datasheet for the part’s package pins location, electrical, and timing specifications.

Host TARGET
Programmer
VDD VDDD

XRES XRES

o) SWCLKTCLK SWCLKTCLK (P6.3)
% SWDIOTMS SWDIOTMS (P6.2)
g TDO TDI (P6.1)
- TDI SWOTDO (P6.0)
GND VSS
Figure 4 Connection schematic of the programmer
Table1l Pins/signals
Pin SWD JTAG Description
Signal name Mandatory | Signal name | Mandatory
SWCLKTCLK | SWCLK YES TCLK YES Data synchronization clock,
(serial wire (test clock) driven by the host
clock) programmer/debugger.

For SWD, the host should
perform all read or write
operations on the SWDIO line
on the falling edge of SWDCK.
The MCU performs read or
write operations on SWDIO on
the rising edge of SWDCK.

For JTAG, the host writes to the
TMS and TDI pins of the MCU
on the falling edge of TCK and

Programming Specification 12 of 66 002-37778 Rev. *F
2025-09-12

https://developer.arm.com/documentation/ihi0074
https://developer.arm.com/documentation/ihi0074

PSOC™ Edge MCU

Programming Specification

(infineon

The protocol stack

Pin

SWD

JTAG

Signal name

Mandatory

Signal name

Mandatory

Description

the MCU reads data on its TMS
and TDI lines on the rising edge
of TCK. MCU writes to its TDO
line on the falling edge of TCK
and the host reads from the
TDO line of the MCU on the
rising edge of TCK.

SWDIOTMS

SWDIO

(serial wire
data
input/output)

YES

TMS

(test mode
select)

YES

SWDIO is a bidirectional data
input/output signal.

TMS is the JTAG test mode
select signal, which is sampled
at the rising edge of TCK to
determine the next state.

SWOTDO

SWO

(serial wire
output)

NO

TDO

(test data
out)

YES

SWO signal (also known as
TRACESWO) is required for
serial wire viewer (SWV) and
not required for SWD
programming. It provides real-
time data trace information
from the MCU, via the SWO pin,
while the CPU continues to run
at full speed. Data trace via
SWV is not available using the
JTAG interface.

TDO signal represents the data
shifted out of the device’s test
or programming logic and is
valid on the falling edge of TCK
when the internal state
machine is in the correct state.

TDI

TDI

(Test Data
In)

YES

TDI signal represents the data
shifted into the device’s test or
programming logic. Itis
sampled at the rising edge of
TCK.

XRES

XRES

(External
Reset)

NO

XRES
(Reset)

NO

External reset active LOW
signal. The XRES is not related
to the ARM standard. It is used
to reset the part as a first step
in a programming flow.

1 XRES pin is mandatory for "Reset" MCU acquisition mode, but not used for "power cycle" mode.
Programming Specification

13 of 66

002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

The protocol stack

Pin SWD JTAG Description
Signal name Mandatory | Signal name | Mandatory
Note: XRES pin/signal is not TRST
(test reset) signal for the
JTAG interface, which is the
optional pin that
asynchronously resets only
the JTAG test logic.
GND GND (Ground) | YES GND YES Negative supply voltage
(Ground) (Ground)
VDD VDD NO i VDD NO 1 Positive supply voltage. The
(voltage drain (voltage MCU can be powered by
drain) drain drain) external power supply or by
programmer.

You can program a chip in either reset (recommended) or power cycle mode. The mode affects only the first
step - how to reset the part at the start of the programming flow. All other steps are the same.

Reset mode: To start programming, the host toggles the XRES line and then sends SWD/JTAG commands (see
Hardware-specific subroutines section). The power on the PSOC™ Edge MCU board can be supplied by the
host or by an external power adapter (the VDD line can be optional).

o Power cycle mode: To start programming, the host powers on the MCU and then starts sending the
SW/JTAG commands. The XRES line is not used.

The programmer should implement MCU acquisition in reset mode. It is also the only way to acquire the MCU if
the board consumes too much current, which the programmer cannot supply. Power cycle mode support is
optional and should be used only in the following conditions:

e TheXRES pin is not available on the part’s package

e Thethird-party programmer does not implement the XRES line, but can supply power to the MCU.

1 VDD pin is mandatory for "power cycle" MCU acquisition mode, where the programmer powers the MCU and external power is not

applied. For "reset" acquisition mode, the source of power supplier does not matter, so the pin is optional.
Programming Specification 14 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Acquisition algorithm

5 Acquisition algorithm

This chapter describes in detail the acquisition flow of the PSOC™ Edge MCU. It starts with a high-level
description of the algorithm and then describes every step using code examples. All code is based on upper-
level subroutines composed of atomic SWJ instructions.

5.1 Code overview

The algorithms rely on a few low-level, hardware-specific subroutines which must be implemented by the user.
This document provides only a short overview of these functions and does not specify the implementation
details.

Hardware-specific backend functions for details.

Subroutine Description

ISJTAG () Returns any non-zero value if the underlying transport is JTAG (zero for SWD)

SetXRES (...) Controls the voltage supplied by the debug adapter to power the target MCU. This
function is optional and should return an error if not implemented.

SetvVoltage(..) | Controlsthe voltage supplied by the debug adapter to power the target MCU. This
function is optional and should return an error if not implemented.

SWJSequence (..) | Generates the given bit sequence on the SWDIO/TMS pin, used for JTAG->SWD and SWD-
>JTAG switching

ReadDAP (...) Reads (or writes) data to the CoreSight registers

WriteDAP (..)

SysSleepMs (...) Delays the execution by the given number of milliseconds

SysGetTimeMs () | Returnsthe number of milliseconds that have elapsed since some fixed time pointin the
past

See Constants and static data used in code for a detailed list of constants used by the subroutines.

The device acquisition flow includes many low-level operations that are used in most steps. The execution flow
of these subroutines is straightforward, so only a summary table is provided here. The high-level and complex
operations are explained in details in the following sections.

See Appendix C: Code example for a detailed description.

Subroutine Description Example
Memory access and polling functions

ReadAPv2 (..) Reads MEM-AP register of the APv2 architecture 8.3.1

WriteAPv2 (..) Writes MEM-AP register of the APv2 architecture 8.3.2

ReadMemn (...) Reads a 32-bit value from the memory address provided 8.3.3

WriteMem/(...) Writes a 32-bit value to the memory address provided 8.3.4
PollMem(..) Polls for the expected bit-field value in the given register 8.3.5
DAP security low-level functions

SecureAddr (...) Returns secure alias for a given address 8.4.1

Programming Specification 15 of 66 002-37778 Rev. *F

2025-09-12

PSOC™ Edge MCU
Programming Specification

infineon

Acquisition algorithm

Subroutine Description Example
ReadAndInitSecure (..) Reads Current Domain Secure mode 8.4.2
ARM Core control and register access functions
ReadCoreReg (...) Reads the Arm® core register, special-purpose register, or 8.51
floating-point register
WriteCoreReg (..) Writes the Arm® core register, special-purpose register, or 8.5.2
floating-point register
EnableCPU () Enable CPU 8.5.3
HaltCPU () Enables debug and halts the CPU using the DHCSR register 8.5.4
ResumeCPU () Enables debug and resumes the CPU using the DHCSR 8.5.5
register
DAP initialization functions
DAP Handshake (..) Performs a handshake 8.6.1
DAP Init (..) Initializes the debug port 8.6.2
DAP HandshakeAndInit (..) Performs a handshake and initializes the debug port 8.6.3
DAP_ ScanAP Scans the Access Ports for the first available with CPU 864
registers access
System reset
Reset (..) Resets the device using different methods 8.7.1
ROM boot status checking and polling
IsBootIdle (..) Check whether the device is in WFA (wait for action), IDLE 8.8.1
or DEAD branches
WaitForBootIdle (..) Waits for the device to be in IDLE or DEAD branches 8.8.2
Acquisition helper functions
GetVectorTableData (..) Gets the reset address and initial SP values from the 8.9.1
application vector table
SetPCandSPFromVectorTable (..) | Setsthe PCand SP by getting the values from the vector 8.9.2
table
Acquisition functions
AcquireTestMode (..) Performs device acquisition in test mode 8.10.1
AcquireVectorCatch (..) Performs target acquisition using Vector Catch 8.10.2
Acquire (..) Performs a variety of chip acquisition attempts using 8.10.3
different methods and reset types
Unlocking access to the CPU
WaitForWFAMode (..) Waits for the boot code to enter WFA mode; used in the 8.111
unlock procedure using debug certificates
AcquireInWFAMode (...) Acquires the device in WFA mode; used in the unlock 8.11.2
procedure using debug certificates
Programming Specification 16 of 66 002-37778 Rev. *F

2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

Subroutine Description Example

LoadDebugCert (..) Loads the debug certificate to the RAM; used in the unlock 8.11.3
procedure using debug certificates

StartWFARequest (...) Starts the WFA request; used in unlock procedure using 8.11.4
debug certificates

UnlockCPUAccess (...) Unlocks the access to the CPU using given debug 8.11.5
certificate

UnlockCPUAccessAndHalt (..) Resets the CPU and halts it at the first instruction using 8.11.6
given debug Certificate

5.2 DAP initialization subroutines

The very first step required to initiate a connection between the debugger and the target MCU is to initialize the
DAP port. This can be achieved by using the following subroutines:

5.2.1 DAP_Handshake

Waits for the debug interface to become enabled after a device reset. In the worst case, when the boot code
performs a complex application HASH verification, the boot time may last up to 3000 ms and depends on the
CPU clock used by the boot code. When the PowerCycle pre-reset type is used for acquisition, the timeout
depends on the design schematic and must be longer.

See the code example provided in DAP_Handshake.

int DAP_Handshake(void)

yes o<

Timeout expired 7 -
! ln 0
yes, JTAG no, SWD

Transport is JTAG 7

SWJSequence(SWD_to_DORMANT)
SWJSequence{DORMANT_to JTAG)

SWJSequence(JTAG to_DORMANT)
SWJSequence(DORMANT_to_SWD)

ReadDAP(DP_REG_DPIDR, ACC_DF, &v)

no

(v & DP_IDCODE_MSK) == DP_IDCODE_VAL

‘\;es

Figure 5 Flowchart of the DAP_Handshake subroutine

5.2.2 DAP_lInit

Initializes the debug port for programing operations. DAP must be enabled and accessible at the moment this
function is called.

Accepts access port number as the input:

Programming Specification 17 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU im'l eon

Programming Specification
Acquisition algorithm

e (0-SystemAP
e 1-CM33AP
e 2-CM55AP

See the code example in DAP_Init.

int DAP_Init(uint&_t apNum)

Power up DAP and clear sticky errors

res = WriteDAP(DP_REG_CTRL_STAT, ACC_DP, res = WriteDAP(DP_REG_ABORT, ACC_DP,
DP_CTRL_STAT_CSYSPWRUPREQ | DP_ABORT_ORUNERRCLR |
DP_CTRL_STAT_CDBGPRWUPREQ | DPF_ABORT_WDERRCLR |

DP_CTRL_STAT_STICKYERR) DP_ABORT_STKERRCLR |
DP_ABORT_STKCMPCLRY),

res |- WriteDAP(DP_REG_CTRL_STAT, ACC_DF,
DP_CTRL_STAT_CSYSPWRUPREQ |
DP_CTRL_STAT_CDBGPRWUFPREQ)

Initialize DP->SELECT and AP->CSW

reg_addr = AP_ADDR[apNum] + APV2_REG_CSW,
select_reg_value = reg_addr & DP_SELECT_MSK;
reg_index = (reg_addr == AP_REG_A3AZ_LSH) & AP_REG_A3A2_MSK;

res = WriteDAP{DP_REG_SELECT, ACC_DP, select_reg_value)

res = WriteDAP({reg_index, ACC_AP, res = WriteDAP (reg_index, ACC_AP,
AP_CSW_PROT_VAL | AP_CSW_PROT_NS_VAL|
AP_CSW_SIZE_WORD) AP_CSW_SIZE_ WORD)

Figure 6 Flowchart of the DAP_Init subroutine

5.2.3 DAP_ScanAP

Scans the access ports first available with CPU registers access.

002-37778 Rev. *F

Programming Specification 18 of 66
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

int DAP_ScanAP{uint&_t *apMNum)

CPU AP found,
Implementer is ARM

*apNum = curtAP

Figure 7 Flowchart of the DAP_ScanAP subroutine

See the code example in DAP_ScanAP.

5.2.4 Reset

The reset procedure is used during device acquisition; thus, it is very important for reset to reliably happen
regardless of the state and hardware configuration of the target board. The most reliable reset type is hardware
reset because it performs a full reset of the device including the reset of the retention registers which preserve
their state between software resets.

The hardware reset signal can be routed to other (external to the MCU) peripherals on the target board. This
ensures that all target systems start from the well-known state after reset.

Moreover, a hardware reset is required to perform the MCU acquisition in test mode, which is the
recommended and most reliable acquisition method. It is strongly recommended to have the XRES pin properly
routed to the debug connector.

If it is not possible for the debugger to perform a hardware reset for some reason (e.g., XRES signal not
connected), the reset subroutine uses several strategies to ensure that the reset is successful. These include the
following:

e Hardware reset by toggling the XRES pin

Programming Specification 19 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification

Acquisition algorithm

Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit
Software reset by setting the AIRCR.SYSRESETREQ bit

Software reset by setting the AIRCR.VECTRESET bit

Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit

See the code example in Reset.

infineon

int Reset(uintd_t rsiType, uini8_t apNum)

Hardware reset
by toggling XRES pin

res = Reset_XRES()

Software Reset using
SRSS _RES _SOFT_CTL register

Software Reset using
AIRCR.SYSRESETREQ bit.

This reset type requires
access to the CPU Access Port

res = Reset_SYSRESETREQ{apMNum)

Software Reset using

AIRCR VECTRESET bit.

This reset type requires
access to the CPU Access Port.

Reset using CTRL/STAT.CDBEGRSTREQ bit

Figure 8 High-level flowchart of the reset procedure

Programming Specification 20 of 66

002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

int Reset_SOFT_CTL{uint®_t apNum) int Reset SYSRESETREQ(uint8_t apNum)

res = WriteAPv2(apNum, AP_REG_TAR,
SRSS RES SOFT_CTL)

res = WriteAPv2(apNum, AP_REG_TAR,
AIRCR_ADDR)

res = WriteAPv2{apNum, AP_REG_TAR,
SRSS RES SOFT_CTL)

res = WriteAPvZ{apNum, AP_REG_TAR,
AIRCR_ADDR)

res = WriteAPv2(apNum, AP_REG_DRW,
SRSS RES SOFT_CTL_TRIG_SOFT)

res = WriteAPv2(apNum, AP_REG_DRW,
(AIRCR_VECTKEY_VAL | AIRCR_SYSRESETREQ))

Figure 9 SOFT_RES_CTL and SYSRESETREQ reset

Programming Specification 21 0f 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

int Resei VECTRESET(uint8_t apNum)

res = WriteMem{apNum, DHCSR_ADDR,
DHCSR_DBGKEY VAL |
DHCSR_C_HALT |
DHCSR_C_DEBUGEN)

res = WriteMem{apMum, DHCSR_ADDR,
DHCSR_DBGKEY VAL |
DHCSR_C_HALT |
DHCSR_C_DEBUGEN)

int Reset CDBGRSTREQ(void)

res = PoliIMem(DHCSR_ADDR, res = DAP_Handshake()
DHCSR_S _HALT, 0, DHCSR_S_HALT,
TIMEOUT_HALT_CFU, 0, &v)

res = WriteDAP{DP_REG_CTRL_STAT, ACC_DP,
DP_CTRL_STAT_CSYSPWRUPREQ |

res = WriteAPv2(apNum, AP_REG_DRW, DP_CTRL_STAT_CDBGPRWUPREQ |

(AIRCR_VECTKEY_ VAL | AIRCR_SYSRESETREQ)) DP_CTRL_STAT_CDBGRSTREQ)

Figure 10 VECTRESET and CDBGRSTREQ reset

002-37778 Rev. *F

Programming Specification 22 of 66
2025-09-12

PSOC™ Edge MCU im eon

Programming Specification
Acquisition algorithm

5.3 Acquire PSOC™ Edge MCU

The first step for the debugger before any programming or debugging actions is to acquire the device in a known
good state and prevent execution of the user’s code, which can put the MCU into a bad or corrupted state or
repurpose the SWJ pins ! (use them as GPIO) such that the external debugger will not be able to communicate

with the device.
There are several different steps performed by the debugger sequentially for PSOC™ Edge MCU acquisition:
A. Check the boot IDLE state
B. Acquire in test mode with hardware reset
C. Acquirein test mode with software reset
D

. Acquire with VectorCatch with software reset

Acquire (apNum, acqMethods)

Check Access Port is suitable for
Vector Catch and Breakpoint
acuisition methods

Check IDLE
Check whether the device is
already in IDLE or DEAD branch

Test mode
Try to acquire in Test mode using
hardware and software pre-reset types

Vector Catch
Try to acquire with Vector Catch using
hardware and software pre-reset types

Figure 11 Top-level acquisition flowchart for PSOC™ Edge MCU

Programming Specification 23 0f 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification

Acquisition algorithm

See the code example in Acquire.

5.3.1 Step 1 - check boot IDLE state

The IDLE state of the PSOC™ Edge MCU is the state when the ROM boot code did not launch the user’s application,
but is executing an endless loop in one of the following branches:

e IDLE branch. The boot code entered test mode or waits for the debugger for further actions in
preproduction lifecycle stages such as SORT, NORMAL, or RMA.

e DEAD branch. Indicates recoverable failure occurred (invalid TOC object, for example).

e CORRUPTED branch. Indicates that the major system failure occurred (BIST failed, for example), the
debugger has limited MCU access (via system access port only) and the programming is not possible.

IDLE and DEAD branches are sufficient MCU states for the debugger to perform further programming or
debugging actions, so the additional device acquisition steps are not required.

Acquire_Checkldle {...)

DAP_HandshakeAndinit (...)

no

WaitForBootldle (...)

suocaznm?%

‘yes

Figure 12 Flowchart for step 1 - check boot IDLE state

Programming Specification 24 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

5.3.2 Step 2 - acquire in test mode

The test mode acquisition step has strict timing requirements that the host must meet to enter test mode
successfully.

o txres ‘I‘tlite_up‘ P tboot s tIisten -
XRES
Internal
RESET
Co:;Z'M X reset \X boot code X wait for port acquire X host commands
JTAG to set .
SWD not connected X X SWD XTEST_M ODE><)avallable
[/
SWD Setting TEST_MODE = 1
CONNECTED will prevent any customer
firmware from starting
TEST_MODE
Figure 13 Timing diagram for entering test mode

This diagram details the chip’s internal signals while entering test mode. Everything starts from toggling the
XRES line (or applying power) so that the chip enters internal reset mode for t;;.. ., period. After that, the
system boot code starts execution. When completed, the CPU waits during a t1;<ten period for a special
connection sequence on the SWJ port. If, during this time, the host sends the correct sequence of SWJ
commands, the CPU enters test mode. Otherwise, it starts the execution of the user’s code. Timing parameters
may vary depending on the boot code execution flow (see Table 2). Therefore, the best way to enter test mode
is to start sending an acquire sequence immediately after XRES is toggled (or power is supplied in power cycle
mode). This sequence is sent iteratively until it succeeds (all SWJ transactions are ACKed and all conditions are
met).

Table 2 Boot timing parameters
Parameter Description Min Max Units
tiite_up Time from reset release until the CPU begins executing the | - 250 us
boot code
thoot Time from when the boot code started execution until it 0.7 5000 ms

opens SWJ lines and starts waiting for the TEST_MODE
sequence. This time varies depending on the CPU clock,
device lifecycle stage, etc.

Blisten Amount of time the boot code waits and listens forthe SWJ | 0 100 ms
port initialization sequence before starting the application
firmware execution. Note that the default duration of the
listen window (tisten) is 100 ms, but it may vary depending
on the eFuse data.

Programming Specification 25 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

Figure 13 shows the test mode acquisition procedure. It is detailed in terms of the SWD transaction.

* Poll for the IDLE status
WaitForBootldle (apNum)

AcquireTestMode (rsiType, apNum)

o -

WriteMem (SRSS_TST_MODE, SRSS_TST_MODE_TEST_MODE);
ReadDAP (DP_REG_RDBUFF, ACC_DF, &v)

Figure 14 Flowchart for step 2 - acquire in test mode

See the code example in AcquireTestMode.

5.3.3 Step 3 - acquire PSOC™ Edge MCU using vector catch

The “acquire chip” sequence in the previous section is based on entering the PSOC™ Edge MCU into the test
mode by triggering a hard-reset condition, and then sending the acquire sequence within the specified time
window. The hard-reset condition is generated by toggling either the XRES pin or the power supply to the
device. Programming by entering test mode using XRES or power cycling is the recommended method for third-
party production programmers or any other general-purpose programmer.

There might be cases where the host programmer hardware or software constraints might prevent
programming of the device in test mode. These constraints can include:

e The host programmer hardware might be I/O-pin-constrained and cannot spare an extra /O for toggling the
XRES pin or the power supply to the MCU. Only the SWJ protocol pins are available for programming.

e The host programmer software application is unable to meet the timing requirements to enter test Mode
after triggering a hard-reset condition. In such a scenario, the MCU enters the user code execution mode
after the test mode timing window elapses.

For a host programmer with any of these constraints, the modified acquire-chip sequence provided in this
section does not require XRES/power supply toggling, and it does not have the test-mode timing requirements.

Programming Specification 26 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Acquisition algorithm

Only the SWJ protocol pins are used for programming. This modified sequence works only under the following
conditions:

e The SWJ pins on the MCU have not been repurposed for any other application-firmware-specific use. If the
SWJ pins are repurposed as part of the existing firmware image in the flash memory, the SWJ pins are not
available for communication with the host SWJ interface to update the existing firmware image.

e The access restriction properties allow the SWJ access to the access debug ports (normal access restriction
properties are applicable if the device is in the normal protection state, secure and dead access restriction
properties are applicable if the device is in the secure and dead protection states respectively).

Developers wanting to program devices using the modified sequence should be aware of these limitations.
Devices coming from the factory satisfy both these conditions, and therefore can be programmed using the
modified acquire sequence. However, if firmware that does not meet any of these conditions is programmed to
the MCU, subsequent re-programming of the device is not possible using the modified acquire sequence. Due
to this limitation, this method is not recommended for third-party programmers or general-purpose
programmers because they would generally be required to support programming under all possible operating
conditions.

Programming Specification 27 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Acquisition algorithm

AcquireVectorCatch{uint&_t rsiType, uint8_t apNum)

It is not possible to handle Reset(rstType, apNum)
CPU state (e_g. breakpoints) via the b4 .

System Access Port

res = DAP_HandshakeAndinit(apNum)

"5

yes

res = HalkCPLU()

5@

yes

Set VC_CORERESET and TRCENA res = WriteMem(DEMCR_ADDR, DEMCR_TRCENA | DEMCR_VC_CORERESET)

5@

yes

res = Reset(RST_TYPE_SOFT & RST_TYPES_ALLOWED, apNum)

>R

yes

res = DAP_HandshakeAndInit{apNum)

5@

yes

v=35_RESET_ST| S_HALT | C_DEBUGEN
res = PoliMem(DHCSR, v, 0, v, TIMEOUT_BOOT_END, 1, &v1)

res_tmp = WriteMem{DEMCR, DEMCR_TRCENA)

=5

no

OK

Figure 15 Acquire using vector catch

5.4 Unlock the access to the CPU (helper functions)

When the device is in SECURE lifecycle, the Cortex®-M33 or/and Cortex®-M55 access ports can be disabled by
the access restrictions policy. The access port can be either temporarily or permanently disabled. If temporarily
disabled, it can be re-enabled using the debug certificate.

Note that certificate cannot override the access port that is permanently disabled by access restrictions.

Programming Specification 28 of 66 002-37778 Rev. *F
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Acquisition algorithm

The BootROM verifies the certificate; if the verification successful, enables CM33-AP or/and CM55-AP as
specified in the certificate.

Debug certificate can be placed in:

1. RAM: Sys-AP must be enabled to load the debug certificate directly into the RAM which is reserved by
BootROM at the end of RAM macro 0. This flow can be used to debug L1 in PC1 and RAM applications in PCO.
Flow details:

a. Thedebugger sets the appropriate BOOT_DLM_CTL.REQUEST and issues a software reset by setting
RES_SOFT_CTL.TRIGGER_SOFT = 1.

b. The BootROM detects BOOT_DLM_CTL.REQUEST and sets appropriate BOOT_DLM_STATUS, and goes
to IDLE loop and waiting for BOOT_DLM_CTL.WFA to be cleared by the debugger. The Sys-AP is enabled
to allow debugger to upload the certificate.

c. Thedebuggerloads the debug token into the RAM using Sys-AP.
d. The debugger writes the address where the debug token was loaded to BOOT_DLM_CTL2

e. Thedebugger sets BOOT_DLM_CTL.WFA =0 to release the BootROM so that it can verify the debug
certificate.

f. Ifverification is successful, the appropriate APs are enabled.

2. External memory. This specification does not cover this option.

Programming Specification 29 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification

Acquisition algorithm

infineon

5.4.1 WaitForWFAMode
int WaitForWFAMode(int timeout)
1t = SysGetTimeMs()
SysSleepMs(10)
Read SRSS>TST DEBUG CTL
res = ReadMem(SRSS_TST_DEBUG_CTL, &v) register and check the WFA bit
is set, indicating a WFA mode
’
WFA branch reached
tDelta = SysGetTimeMs() - t
Figure 16 Wait for the device to enter WFA mode

This is a helper function used in the AcquirelnWFAMode subroutine. It polls the SRSS_BOOT_DLM_CTL register
waiting for the BootROM to enter WFA mode. In WFA mode, the BootROM is spinning in the IDLE loop waiting
for the debug certificate to be loaded by the debugger.

See the code example in WaitForWFAMode.

Programming Specification 30 of 66

002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification

Acquisition algorithm

5.4.2 AcquireinWFAMode

int AcquirelnWFAMode(uint32_t req)

res = WriteMem(SRSS_TST_DEBUG_CTL, req)

WriteMem(SR5S_RES_SOFT_CTL, SRSS_RES_SOFT_CTL_TRIG_SOFT)

res = DAP_HandshakeAndinit{0)

Figure 17 Acquire the device and wait for WFA mode

This function acquires the device in WFA mode and waits for the BootROM to be ready to accept the debug
certificate. The debugger sets the appropriate TST_BOOT_DLM.REQUEST and issues a software reset by setting
RES_SOFT_CTL.TRIGGER_SOFT =1.

See the code example in AcquireinWFAMode.

31of66 002-37778 Rev. *F

Programming Specification
2025-09-12

PSOC™ Edge MCU
Programming Specification

Acquisition algorithm

5.4.3 LoadDebugCert

infineon

fclose(T)

Load certificate binary
to the RAM starting at
address DEBUG_CERT_ADDR

int LoadDebugCert{const char *cert_path)

uint32_t cert_buffer[DEBUG_CERT_SIZE [/ 4]

fopen{cert_path, "rb")
fread(cert_buffer, 1, sizeof{cert_buffer),)

size_ti=0

res = WriteMem(DEBUG_CERT_ADDR + (1 * 4), cert_buffer[i])
i=i+4

Figure 18 Loads the debug certificate to the RAM

Reads the debug certificate and loads its contents to the RAM.

See the code example in LoadDebugCert.

Programming Specification

320f66

002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU

Programming Specification

Acquisition algorithm

5.4.4 StartWFARequest

infineon

int StartWFARequest(uint3_t *apNum)

This write triggers soft-reset

WriteMem(SRSS_TST_DEBUG_CTL, 0) causing transaction failure,
ignore return code

t = SysGetTimeMs()

SysSleepMs(10)

Scan the Access Ports for
res = DAP_ScanAP(apNum) the first available with
CPU registers access

CPU AP is closed, continue
pelling until timeout

tDelta = SysGeiTimeMs() - i

yes

Figure 19 Executes the WFA request

Executes the WFA request by clearing the SRSS_TST_DEBUG_CTL register and waits for the CM33 access port to
be opened by the BootROM.

See the code example i

Programming Specification

n StartWFARequest.

330f66

002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU iﬂleon

Programming Specification
Acquisition algorithm

5.5 Unlock the access to the CPU using the debug certificate

5.5.1 UnlockCPUAccess

int UnlockCPUAccess{const char *cert_paih)

res = DAP_HandshakeAndInit{0)

Switch to SysAP and acquire
the target in WFA mode

Load the debug
certificate to RAM

Execute WFA request,
this will unlock CM33 AP

Figure 20 Unlocks the access to the CM33 access port

This function performs whole unlock sequence described in Section 5.4 . After running this function, the device
is reset and CM33 access port is opened by the BootROM. The CPU is not halted after the reset, so it starts to
execute the application code. This is sufficient for the debugger to attach to the running target and observe its

state.

See the code example in UnlockCPUAccess.

Programming Specification 34 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU im eon

Programming Specification
Acquisition algorithm

5.5.2 UnlockCPUAccessAndHalt

int UnlockCPUAccessAndHalt{const char *cert_path)

Unlock the access to the CPU,
CPU will be reset and left in res = UnlockCPUAccess(cert_path)

running state

-.:-‘

VCE

Halt the CPU res = HaltCPU()

n o .:.
yES

Setup VectorCatch res = WriteMem{DEMCR_ADDR, DEMCR_TRCENA | DEMCR_VC_CORERESET)

>®

Run the unlock procedure again. This time
CPU will halt before entering the application res = UnlockCPUAccess{cert_path)

because of VectorCatch

12(3)

yEs

Switch to CM33 AP res = DAP_Init{1)
no .:‘

, v =DHCSR_S_RESET_ST | DHCSR_S_HALT | DHCSR_C. DEBUGEN
Wait for the CPU to halt res = PollMem(DHCSR_ADDR, v, 0, v, TIMEOUT_BOOT_END, 10, 8v1)

OK

Figure 21 Unlocks the access to the CM33 access port and halts the CPU

This function is similar to UnlockCPUAccess but performs whole unlock sequence twice. This allows to setup
vector catch in between UnlockCPUAccess invocations and halt the CPU before it starts to execute the
application code. This allows to launch the debug session from the very beginning of the application.

See the code example in UnlockCPUAccessAndHalt.

350f 66 002-37778 Rev. *F

Programming Specification
2025-09-12

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Appendix A: Intel hex file format

6 Appendix A: Intel hex file format

Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are
used, so the format is portable across most computer platforms. Each line (record) of Intel hex file consists of
six parts, as shown in Figure 22.

Start Code (Colon Byte Count Address Record Type Data Checksum
Character) (1 byte) (2 bytes) (1byte) (N bytes) (1 byte)
Figure 22 Hex file record structure

Start code, one character - an ASCIl colon (:)

e Byte count, two hex digits (1 byte) - specifies the number of bytes in the data field.
e Address, four hex digits (2 bytes) - a 16-bit address of the beginning of the memory position for the data.

e Record type, two hex digits (00 to 05) - defines the type of the data field. The record types used in the hex
file generated by Infineon are as follows:

- 00 - Data record, which contains the data and 16-bit address.

- 01 - End of file record, which is a file termination record and has no data. This must be the last line of the
file; only one is allowed for every file.

- 04 - Extended linear address record, which allows full 32-bit addressing. The address field is 0000, the
byte count is 02. The two data bytes represent the upper 16 bits of the 32-bit address, when combined
with the lower 16-bit address of the 00-type record.

o Data, asequence of ‘n’ bytes of the data, represented by 2n hex digits.
e Checksum, two hex digits (1 byte), which is the least significant byte of the two's complement of the sum of

the values of all fields except fields 1 and 6 (start code ‘:’ byte and two hex digits of the checksum).

Examples for the different record types used in the hex file generated for the PSOC™ Edge MCU are as follows:

Consider that these three records are placed in consecutive lines of the hex file (chip-level protection and end
of hex file).

:0200000490600A
:0100000002FD
: 00000001t

For the sake of readability, “record type” is highlighted in red and the 32-bit address of the chip-level protection
isin blue.

The first record (:0200000490600A) is an extended linear address record as indicated by the value in the record
type field (04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this
record. These data bytes (0x9060) specify the upper 16 bits of the 32-bit address of data bytes. In this case, all
the data records that follow this record are assumed to have their upper 16-bit address as 0x9060 (in other
words, the base address is 0x90600000). 0A is the checksum byte for this record:

Programming Specification 36 of 66 002-37778 Rev. *F
2025-09-12

http://en.wikipedia.org/wiki/ASCII

o _.
PSOC™ Edge MCU Infineon
Programming Specification

Appendix A: Intel hex file format

0x0A = 0x100 - (0x02+0x00+0x00+0x04+0x90+0x60) .

The next record (:0100000002FD) is a data record, as indicated by the value in the record type field (00). The
byte count is 01, meaning there is only one data byte in this record (02). The 32-bit starting address for these
data bytes is at address 0x90600000. The upper 16-bit address (0x9060) is derived from the extended linear
address record in the first line; the lower 16-bit address is specified in the address field of this record as 0000.
FD is the checksum byte for this record.

The last record (:00000001FF) is the end-of-file record, as indicated by the value in the record type field (01).
This is the last record of the hex file.

Programming Specification 37 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification
Appendix B: Joint test action group (JTAG) protocol

(infineon

The PSOC™ Edge MCU JTAG interface complies with the IEEE 1149.1 specification and provides additional
instructions. There are two TAPs in the silicon. One is in the 0SS for boundary scan and the other is in the
CPUSS DAP (IDCODE 0x4BA07477), which is used for device debug and programming. The two TAPs are
connected in series, where the TDO of the IOSS TAP is connected to the TDI of the DAP TAP. This isillustrated in
Figure 23.

7 Appendix B: Joint test action group (JTAG) protocol

IOSS TAP

Instruction Reg

CPUSS DAP TAP

Instruction Reg

(11701} [[7:01]
™ | DataReg 00 TDI| DataReg [Too

Figure 23 I0SS/DAP TAP connection

Each TAP consists of a 35-bit data register (called DP/AP access register). The size of the instruction register is 4-
bits for DAP TAP and 18-bits for I0OSS TAP. The important instructions to program the device through JTAG are
listed in Table 3.

Table 3 PSOC™ Edge MCU JTAG instructions

Bit Code Instruction MCU function

[3:0]

1110 IDCODE Connects TDI and TDO to the device 32-bit JTAG ID code

1010 DPACC Connects TDI and TDO to the DP/AP access register (35-bit) for access to the
debug port registers

1011 APACC Connects TDI and TDO to the DP/AP access register (35-bit) for access to the
access port registers

1111 BYPASS Bypasses the device by providing 1-bit latch (bypass register) connected
between TDI and TDO

If an instruction that is not applicable is shifted into a TAP, the TAP goes into bypass mode. In bypass mode, the
data register is only 1 bit long with the contents of 0. The bypass mode is used to isolate the MCU TAP. For
example, if targeting the IOSS TAP, the DAP TAP is put in bypass mode by shifting in the BYPASS instruction into
its instruction register and if targeting the DAP TAP, the I0SS TAP will be placed in bypass mode. See the
examples of TAPs configuration in Figure 24.

002-37778 Rev. *F
2025-09-12

Programming Specification 38 of 66

PSOC™ Edge MCU
Programming Specification

infineon

Appendix B: Joint test action group (JTAG) protocol

Instruction Regs.

TDI 18-bits

I0SS

a.

™0
DAP

Data Regs. {bypass, apacc}, read_data = data_reg[34:3] b.

TDI

35-bits —TDO

I0SS

DAP

Data Regs. {apacc, bypass}, read_data = data_reg[35:4] c.

TDI— 35-bits

——{0}—>m0

I0SS

DAP

Figure 24 10SS/DAP TAP configuration examples

a. Instruction registers combined. 26 bits total.

b. Access the DAP’s APACC registers for device debug and programming. 0SS TAP in bypass mode. 36 bits

total.

c. Access the IOSS APACC registers for enabling test modes. DAP TAP in bypass mode. 36 bits total.

Programming Specification

39 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

8 Appendix C: Code example

8.1 Hardware-specific backend functions

The following code example is written in hardware-independent way so that it relies on a few backend
functions which must be implemented by the user. Implementation of these functions will be different across
different debug adapters and different operating systems.

This code expects that the following functions are available during linking:

8.1.1 extern int IsJTAG(void);

/**
* Returns any non-zero value if underlying transport is JTAG (zero for SWD).
*/

extern int IsJTAG(void);

8.1.2 extern int SetXRES(state);

[HHAEFA AR AK A K KA KKK KA K KA KKK A KKK A KA A KK A A KA KKK KKK KA KKK KKK

* Controls the logic level on XRES (nSRST) pin.
*
Parameters:
state - value for the XRES pin (zero -> logic low, non-zero -> logic high)

*
*
*
* Return value:
* zero - 0.K.
* non-zero - Error

*/
extern int SetXRES(int state);

8.1.3 extern int SetVoltage(voltage);

/**

* Controls the voltage supplied by the debug adapter to power the target MCU.

* This function is optional and should return Error if not implemented.
*

* Parameters:

* voltage - output voltage, in millivolts
*

* Return value:

* zero - 0.K.

* non-zero - Error

*/

extern int SetVoltage(uint32_t voltage);

8.1.4 extern int SWJSequence(out_bits, num_bits);

/**

* Generates given bit sequence on the SWDIO/TMS pin, used for JTAG->SWD and SWD->JTAG switching.
*

* Parameters:

* out_bits - pointer to buffer containing sequence bit data, LSB first
* num_bits - number of bits in sequence

*

* Return value:

* zero - 0.K.

* non-zero - Error

*/

extern int SWJSequence(const uint8 t* out_bits, size t num_bits);

8.1.5 extern int Read/WriteDAP(reg, ap_n_dp, value);

/**

* Reads (or Writes) data to CoreSight registers.
*

* Parameters:
Programming Specification 40 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

reg - register address

For Read operation this parameter should take one of the following values:
- DP_REG_DPIDR 0x00

- DP_REG_CTRL_STAT ox04

- DP_REG_SELECT 0x08

- DP_REG_RDBUFF 0x0C

- AP_REG_CSW 0x00
- AP_REG_TAR 0x04
- AP_REG_DRW 0x0C
For Write operation this parameter should take one of the following values:
- DP_REG_ABORT 0x00

DP_REG_CTRL_STAT @x@4
- DP_REG_SELECT ©oxes8
- DP_REG_RDBUFF @xeC

- AP_REG_CSW 0x00
- AP_REG_TAR ox04
- AP_REG_DRW 0x8C

ap_n_dp - true for AP registers, false for DP registers
value - value to write (or pointer to the variable where read result will be stored)

Return value:
zero - 0.K.
non-zero - Error
*/
extern int ReadDAP(uint8_t reg, uint8_t ap_n_dp, uint32_t* value);
extern int WriteDAP(uint8_t reg, uint8_t ap_n_dp, uint32_t value);

¥ OX K X X X X X X X X X X X X X X X X ¥ X ¥ *
1

8.1.6 extern void SysSleepMs(uint32_t msec);

/**

* Delays execution by the given ammount of milliseconds
*

Parameters:
msec - delay time in milliseconds

Return value:

*

*

*

*

* none
*/

extern void SysSleepMs(uint32_t msec);

8.1.7 extern int SysGetTimeMs(void);

/**

* Returns the number of milliseconds that have elapsed since some fixed time point in the past.
*

Parameters:
none

Return value:

*
*
*
*
* number of milliseconds

*/
int SysGetTimeMs(void);

8.2 Constants and static data used in code

8.2.1 Application common constants and definitions

/* --- Error checking --- */

#tdefine RESULT_OK (@) /* Function return result: 0.K. */

#define RESULT_ERR (-1) /* Function return result: Error */

#define RESULT_ERR_CRITICAL (-15) /* Function return result: Critical Error */

#tdefine SUCCEEDED(result) ((result) >= (RESULT_OK))

#tdefine FAILED(result) ((result) < (RESULT_OK))

#tdefine BREAK_IF_FAILED(result) if (FAILED(result)) { break; }

/* --- Target acquisition methods --- */

#define ACQUIRE_CHECK_IDLE (1 << @) /* Initial check whether boot code is already in IDLE or DEAD branch */
#tdefine ACQUIRE_TEST_MODE (1 << 1) /* Test mode (TM) acquisition (recommended) */

#tdefine ACQUIRE_VECTOR_CATCH (1 << 2) /* Vector Catch */

/* --- MCU reset types --- */

Programming Specification 41 of 66 002-37778 Rev. *F

2025-09-12

PSOC™ Edge MCU

infineon

Programming Specification

Appendix C: Code example

#define RST_TYPE_XRES (1 << @) /* Hardware reset (XRES) */

#define RST_TYPE_POWER (1 << 1) /* Hardware reset (Power Cycle) */

#define RST_TYPE_RES_SOFT_CTL (1 << 2) /* Software reset (RES_SOFT CTL.TRIGGER_SOFT) */

#define RST_TYPE_SYSRESETREQ (1 << 3) /* Software reset (AIRCR.SYSRESETREQ) */

#define RST_TYPE_VECTRESET (1 << 4) /* Software reset (AIRCR.VECTRESET) */

#define RST_TYPE_CDBGRSTREQ (1 << 5) /* Software reset (DP->CTRL/STAT.CDBGRSTREQ) */

#define RST_TYPE_SOFT (RST_TYPE_RES_SOFT_CTL | RST_TYPE_SYSRESETREQ | RST_TYPE_VECTRESET |

RST_TYPE_CDBGRSTREQ)
#define RST_TYPE_HARD
#define RST_TYPE_ANY

/* --- Misc. --- */
#define ERR_ADDR_MSK
#define LOOP_CODE

(RST_TYPE_XRES | RST_TYPE_POWER)
(RST_TYPE_HARD | RST_TYPE_SOFT)

OxFOVVRLVY /* Error mask for SP and PC values*/
OXE7FEE7FE /* Endless loop */

8.2.2 MCU-specific constants and definitions

/* --- Suitable acquisition methods and reset types --- */

#define ACQUIRE_METHODS_ALLOWED (\
ACQUIRE_CHECK_IDLE |
ACQUIRE_TEST_MODE |
ACQUIRE_VECTOR_CATCH)

#tdefine RST_TYPES_ALLOWED (
RST_TYPE_XRES |
RST_TYPE_RES_SOFT_CTL |
RST_TYPE_SYSRESETREQ |
RST_TYPE_VECTRESET |
RST_TYPE_CDBGRSTREQ)

/* --- Access Ports --- */
#define AP_SYS

#define AP_CM33

#define AP_CM55

#define AP_MAX

#define AP_TO_USE

#define AP_TO USE_STRICT
only */

static const uint32_t AP_ADDR[] = { /* Array of

AP[@] System Access Port */

AP[1] Cortex-M33 Access Port */

AP[2] Cortex-M55 Access Port */

Maximum number of Access Ports for scanning algorithm */

Preferred Access Port (AP[1] - CM33 Core is used by default in this script) */
"@" - Can use any available AP if needed; "1" - Strict AP usage to preferred

AP adresses: */

Address of System Access Port - AP[@] */
Address of Cortex-M33 Access Port - AP[1] */
Address of Cortex-M55 Access Port - AP[2] */

OxF0000000, /*
OxF0002000, /*
OXFOPP6000 /*

¥
/* --- AP/DP registers --- */
#define DP_IDCODE_MSK OxFOOOOFFF /* DP IDCODE 0x4C@13477 for SWD or ©x4BA@7477 for JTAG */
#define DP_IDCODE_VAL 0x40000477

/* AP->CSW.Prot (bits[30:24]): */
#tdefine AP_CSW_PROT_VAL (6x0B<<24) /* 0Ox0BOOOLOO: Bus access protection control for Secure access */
#tdefine AP_CSW_PROT_NS_VAL (0x4B<<24) /* 0x4B00OO0OO: Bus access protection control for Non Secure access. */
#tdefine AP_CSW_PROT_MSK (Ox4F<<24) /* 0x4F000000: Bus access protection control mask. */
#tdefine AP_CSW_SIZE_WORD (2<< @) /* AP->CSW.Size: Size of access <- Word (32-bits)

* AP->CSW typical write value: 0x4B000002 */
#define DP_SELECT_MSK OXFFFFFFFO /* Mask for bits[31:4] of DP->SELECT register */
#define AP_REG_A3A2_MSK (3u << 2u) /* Mask for Bits[3:2] of the AP register address */
#define APV2_REG_CSW oxDoo /* Offset of AP->CSW register */
#define APV2_REG_TAR oxDo4 /* Offset of AP->TAR register */
#define APV2_REG_DRW oxbecC /* Offset of AP->DRW register */
/* --- Target memory mapping --- */
#tdefine SRAM_NS_BASE 0x24000000
#tdefine SRAM_S_BASE 0x34000000
#tdefine SRAM_SIZE 0x00010000
#define SRAM_DBG_ADDR (SRAM_NS_BASE + 0x8000) /* Address in SRAM for the debug messages and status. */
#define SRAM_LOOP_ADDR (SRAM_NS_BASE + 0x8004) /* Address in SRAM for infinite loop. Safe option is to avoid
* bottom addresses that might be used by the boot code */
#tdefine SRAM_STATUS_ADDR (SRAM_NS_BASE + 0x0000) /* Address in SRAM, where boot code or application stores the */
* status word */

/* --- Target-specific registers and definitions --- */
#define CPUSS_CM33_CTL 0x42260000 /* MXCM33_CM33_CTL */
#define CPUSS_CM33_S_VT_BASE 0x42261000 /* MXCM33_CM33_S_VECTOR_TABLE_BASE */
#define CPUSS_CM33_NS_VT_BASE 0x42261004 /* MXCM33_CM33_NS_VECTOR_TABLE_BASE */
#define CPUSS_CM55_CTL 0x44160000 /* MXCM55_CM55_CTL */
#define CPUSS_CM55_S_VT_BASE 0x44161000 /* MXCM55_CM55_S_VECTOR_TABLE_BASE: CM55 secure vector table base */

Programming Specification

002-37778 Rev. *F
2025-09-12

42 of 66

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

#define CPUSS_CM55_NS_VT_BASE 0x44161004 /* MXCM55_CM55 NS _VECTOR_TABLE_BASE: CM55 non-secure vector table base

*/
#define MSK_CPUSS_CMx_CTL_CPU_WAIT ©x00000010
#define SRSS_TST_MODE 0x42400400 /* SRSS->TST_MODE: Test Mode Control Register */

#define SRSS_TST_MODE_TEST _MODE (1 << 31) /* SRSS->TST_MODE.TEST_MODE:
* 1 - Indicates the chip is in test mode. © - Normal operation mode */
#define SRSS_BOOT_DLM_CTL 0x42400404 /* SRSS->TST_DEBUG_CTL: Debug Control Register */
#define SRSS_BOOT_DLM CTL_DEBUG_WFA (1<<31) /* SRSS->TST_DEBUG_CTL.DEBUG_WFA: Wait for Action.
* Set by BootROM when it waits for application or debug certificate to
* be loaded into the RAM. The bit must be cleared to continue BootROM
* operation. */
#define SRSS_BOOT_DLM_STATUS 0x4240040C /* SRSS->BOOT_DLM_STATUS: Debug Status Register */
#define SRSS_RES_SOFT_CTL 0x42400410 /* SRSS->RES_SOFT_CTL: Soft Reset Trigger Register */
#tdefine SRSS_RES_SOFT_CTL_TRIG_SOFT (1 <<@) /* SRSS->RES_SOFT_CTL.TRIGGER_SOFT: Triggers a soft reset.
* The reset clears this bit. */

/* --- Boot code status --- */

#define L1BOOT_ID_MSK OxFFO00000 /* Mask for MODULE_ID in status word */

#define L1BOOT_ID_SUCCESS OxAAGOORRD /* The module IDs for BootROM in case of success */

#define L1BOOT_ID_FAIL OXEEQ00000 /* The module IDs for BootROM in case of fail */

#define L1BOOT_STATUS_MSK OXOOFFFFFF /* Mask for RESULT_CODE (status) in status word */

#define L1BOOT_IDLE_BRANCH_REACHED ©x0000B5F8 /* Result code indicating BootROM reached IDLE branch */

/* --- Timings --- */

#tdefine TIMEOUT_HANDSHAKE 2500 /* Maximum possible boot time until the debug interface is enabled */
#tdefine TIMEOUT_HANDSHAKE_SMALL 5 /* Small timeout for the handshake when performed not after reset */
#tdefine TIMEOUT_LISTEN_WND 200 /* Timeout for Listen window duration (100ms max) */

#define TIMEOUT_HALT_CPU 10 /* Timeout for CPU halt/unhalt actions */

/* --- Debug Certificate --- */

#define DEBUG_CERT_SIZE 808

#define DEBUG_CERT_ADDR 0Xx2000FC00

#define WFA_REQUEST DEBUG_CERT 2

uint32_t _DOMAIN_SECURE; /* The state of DSCSR->CDS bit (Current Domain Secure) */
uint32_t _DP_SELECT_LAST = OxFFFFFFFF; /* Last value written to DP.SELECT */

8.2.3 Standard ARM constants and definitions

/* --- Debug Access Port (DAP) --- */
#define ACC_DP (@) /* APnDP for DP access */
#define ACC_AP (1) /* APnDP for AP access */
#define DP_ABORT_ORUNERRCLR (1 << 4) /* DP->ABORT.ORUNERRCLR : Clears CTRL/STAT.STICKYORUN */
#define DP_ABORT_WDERRCLR (1 << 3) /* DP->ABORT.WDERRCLR : Clears CTRL/STAT.WDATAERR */
#define DP_ABORT_STKERRCLR (1 << 2) /* DP->ABORT.STKERRCLR : Clears CTRL/STAT.STICKYERR */
#define DP_ABORT_STKCMPCLR (1 << 1) /* DP->ABORT.STKCMPCLR : Clears CTRL/STAT.STICKYERR */

/* DP->ABORT typical write value: 0x0000001E */
#define AP_SELECT_APSEL_RSH (24) /* AP->SELECT.APSEL (bits[31:24], 0xFFQ0@000): Selects an AP */
#tdefine DP_CTRL_STAT_CSYSPWRUPREQ (1 << 30) /* DP->CTRL/STAT.CSYSPWRUPREQ : System powerup request */
#tdefine DP_CTRL_STAT_CDBGPRWUPREQ (1 << 28) /* DP->CTRL/STAT.CDBGPRWUPREQ : Debug powerup request */
#tdefine DP_CTRL_STAT_CDBGRSTREQ (1 << 26) /* DP->CTRL/STAT.CDBGRSTREQ : Debug reset request */
#define DP_CTRL_STAT_STICKYERR (1<< 5) /* DP->CTRL/STAT.STICKYERR : Error in AP transaction */
#define DP_CTRL_STAT_STICKYCMP (1 << 4) /* DP->CTRL/STAT.STICKYCMP : Match on a pushed operations */
#tdefine DP_CTRL_STAT_STICKYORUN (1 << 1) /* DP->CTRL/STAT.STICKYORUN : Overrun detection */
/* --- System Control Block (SCB) --- */
#define CPUID_ADDR OXEQOOEDOO /* SCB->CPUID Base Register */
#define VTOR_ADDR OXEQOOEDO8 /* SCB->VTOR Vector Table Offset Register */
#define AIRCR_ADDR OXEQOOEDOC /* SCB->AIRCR: Application Interrupt and Reset Control Register */
#tdefine AIRCR_VECTKEY_VAL (Ox05FA<<16) /* SCB->AIRCR.VECTKEY 1 Vector Key. */
#tdefine AIRCR_SYSRESETREQ (1 << 2) /* SCB->AIRCR.SYSRESETREQ : System Reset Request */
#tdefine AIRCR_VECTRESET (1 << @) /* SCB->AIRCR.VECTRESET : Core Reset Request */
/* --- Debug Control Block (DCB) --- */
#define DHCSR_ADDR OXEQOOEDFO /* DCB->DHCSR: Debug Halting Control and Status Register */
#define DHCSR_DBGKEY_VAL (OxAB5F << 16) /* DCB->DHCSR.DBGKEY : Must write ©xA®5F to DBGKEY to enable write

* accesses to bits[15:0] */
#define DHCSR_S_RESET_ST (1 << 25) /* DCB->DHCSR.S_RESET_ST: Reset sticky status. Indicates whether the PE
* has been reset since the last read of the DHCSR. */

#define DHCSR_S_SLEEP (1 << 18) /* DCB->DHCSR.S_SLEEP : Is processor sleeping */
#tdefine DHCSR_S_HALT (1 << 17) /* DCB->DHCSR.S_HALT : Is processor in Debug state */
#define DHCSR_C_HALT (1 << 1) /* DCB->DHCSR.C_HALT : Processor halt bit */
#define DHCSR_C_DEBUGEN (1 << ©) /* DCB->DHCSR.C_DEBUGEN : Halting debug enable bit */

/* (DBGKEY|C_HALT|C_DEBUGEN = @xA@5F0003) */

Programming Specification 43 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

#tdefine DCRSR_ADDR OXEQOOEDF4 /* DCB->DCRSR: Debug Core Register Selector Register */
#define DCRSR_REGWNR (1 << 16) /* DCB->DCRSR.REGWnR: Specifies the access type for the transfer
* ('@' - Read, '1' - Write)*/
#define DCRSR_REGSEL_MSK 0x0000007F /* DCB->DCRSR.REGSEL: Specifies the ARM core register, special-purpose
* register, or Floating-point extension register */
#tdefine DCRSR_REGSEL_XxPSR 0x10 /* DCB->DCRSR.REGSEL = xPSR */
#define DCRSR_REGSEL_MSP 0x11 /* DCB->DCRSR.REGSEL = Main stack pointer, MSP */
#define DCRSR_REGSEL_PC OxOF /* DCB->DCRSR.REGSEL = PC / DebugReturnAddress */
#define DCRDR_ADDR OXEQOOEDF8 /* DCB->DCRDR: Debug Core Register Data Register */
#define DEMCR_ADDR OXEQOOEDFC /* DCB->DEMCR: Debug Exception and Monitor Control Register */
#define DEMCR_VC_CORERESET (1 << ©0) /* DCB->DEMCR.VC_CORERESET: Reset Vector Catch.
* Halt running system if Core reset occurs. */
#define DEMCR_TRCENA (1 << 24) /* DCB->DEMCR.TRCENA: Global enable for all DWT and ITM features */
#tdefine xPSR_T (1 << 24) /* xPSR.T: Thumb bit */
#define DSCSR_ADDR OXEQOOEE@8 /* DCB->DSCSR: Debug Security Control and Status Register */
#tdefine DSCSR_CDS (1 << 16) /* DCB->DSCSR.CDS: Current Domain Secure */

/**

* SWJ state switching sequences
***/

/* SWD to DORMANT - standard ARM command to switch SWJ-DP from SWD to dormant state:
* 1) Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD
* interface is in the reset state. The target only detects the SWD-to-DS sequence when it is
* in the reset state. Note: Fifty-six cycles will be used here to align subsequent data.
* 2) Send the 16-bit SWD-to-DS select sequence on SWDIOTMS. This sequence can be represented as either:
* - Ox3DC7 transmitted MSB first.
* - OXE3BC transmitted LSB first. */
static const uint8_t bSWD_to_DORMANT_len = 9 * 8;
static const uint8_t bSWD_to_DORMANT[] = {
OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
OxBC, OxE3
s

/* JTAG to DORMANT - standard ARM command to switch SWJ-DP from JTAG to dormant state:
* 1) Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence places the JTAG TAP state
* machine into the Test-Logic-Reset state, and selects the IDCODE instruction.
Note: Eight cycles will be used here to align subsequent data.
2) Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.
This sequence can be represented as either:
- OX2EEEEEE6 transmitted MSB first, that is, starting from bit 30.

* - Ox33BBBBBA transmitted LSB first. */
static const uint8_t bJITAG_to_DORMANT_len =
static const uint8_t bJITAG_to_DORMANT[] = {

OXFF,
OxBA, OxBB, OxBB, 0x33

1

/* DORMANT to SWD - standard ARM command to switch SWJ-DP from dormant state to SWD:
* 1) Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the target is
* not in the middle of detecting a Selection Alert sequence. The target is permitted to detect the

* ¥ X ¥

5 * 8;

* Selection Alert sequence even if this 8-cycle sequence is not present.

* 2) Send the 128-bit Selection Alert sequence on SWDIOTMS. This sequence can be represented as either:
* - Ox49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.

* - Ox19BCOEA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

* 3) Send four SWCLKTCK cycles with SWDIOTMS LOW.

* 4) Send 16-bit Arm CoreSight SW-DP activation code sequence on SWDIOTMS.

* This sequence can be represented as either:

* - Ox58 transmitted MSB first.

* - Ox1A transmitted LSB first.

* 5) Send a sequence to place the target into a known state - at least 50 SWCLKTCK cycles with SWDIOTMS HIGH.
*

This sequence ensures that the SWD interface is in the line reset state.
* 6) Send at least 2 idle with SWDIOTMS LOW */

static const uint8 t bDORMANT_to_SWD_len = 25 * 8;

static const uint8_t bDORMANT_to_SWD[] = {

OXFF,

0x92, OxF3, 0x09, 0x62,

0x95, ox2D, 0x85, 0x86,

OxE9, OxAF, OxDD, OxE3,

OxA2, OxOE, OxBC, ©x19,

OxAQ, OxF1,

OxFF, OxFF, OxFF, OxFF, OxFF,

Ox3F

s

Programming Specification 44 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

/* DORMANT to JTAG - standard ARM command to switch SWJ-DP from dormant state to JTAG:
* 1) Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the target is
* not in the middle of detecting a Selection Alert sequence. The target is permitted to detect the
Selection Alert sequence even if this 8-cycle sequence is not present.
2) Send the 128-bit Selection Alert sequence on SWDIOTMS.
This sequence can be represented as either:
- Ox49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.
- Ox19BCOEA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.
3) Send four SWCLKTCK cycles with SWDIOTMS LOW.
4) Send 16-bit Arm CoreSight SW-DP activation code sequence on SWDIOTMS.
This sequence can be represented as either
- 0x50 transmitted MSB first.
- OxOA transmitted LSB first.
5) Send a sequence to place the target into a known state: four SWCLKTCK cycles with SWDIOTMS LOW
to ensure that the TAP state machine is in the Run-Test/Idle state. Then at least five SWCLKTCK
* cycles with SWDIOTMS HIGH to ensure that the TAP state machine is in the Test-Logic/Reset state */
static const uint8 t bDORMANT_to_JTAG_len = 20 * 8;
static const uint8_t bDORMANT_to_JTAG[] = {
OXFF,
0x92, OXF3, 0x09, 0x62,
0x95, Ox2D, 0x85, Ox86,
OxE9, OXAF, OxDD, OxE3,
OxA2, OXOE, OXBC, 0x19,
0xA0, OXx00,
OXFF

s

¥ oKX X X X X X X X ¥ ¥ ¥

8.3 Memory access and polling functions

8.3.1 ReadAPv2

/***

* Reads MEM-AP register of the APv2 architecture (CoreSight SoC-600)

*

* Return value

* © SUCCEEDED

* 1 FAILED

*/

static int ReadAPv2(uint8_t apNum, uint32_t regOffset, uint32_t *value) {
int result;

uint32_t reg_addr; /* Effective AP's register address */
uint32_t select_reg value; /* DP->SELECT value for access to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific register in a bank,

* are provided with APACC transactions */
/* Used as RegIndex in ReadDAP/WriteDAP functions */

reg_addr = AP_ADDR[apNum] + regOffset;
select_reg_value = reg_addr & DP_SELECT_MSK;
reg_index = reg_addr & AP_REG_A3A2_MSK;
/* Update DP->SELECT value if needed */
if (select_reg value != _DP_SELECT_LAST) {

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg_value);

if (SUCCEEDED(result)) {

_DP_SELECT_LAST = select_reg_value;

¥
} else {
result = RESULT_OK;

/* Read AP register value */
if (SUCCEEDED(result)) {
result = ReadDAP(reg_index, ACC_AP, value);

}

return result;

8.3.2 WriteAPv2

/***
* Writes MEM-AP register of the APv2 architecture (CoreSight SoC-600)

Return value
© SUCCEEDED

Programming Specification 45 of 66 002-37778 Rev. *F
2025-09-12

* ¥ %

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

* 1 FAILED

*/

static int WriteAPv2(uint8_t apNum, uint32_t regOffset, uint32_t value) {
int result;

uint32_t reg_addr; /* Effective AP's register address */
uint32_t select_reg value; /* DP->SELECT value for access to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific register in a bank,

* are provided with APACC transactions */
/* Used as RegIndex in ReadDAP/WriteDAP functions */

reg_addr = AP_ADDR[apNum] + regOffset;
select_reg_value = reg_addr & DP_SELECT_MSK;
reg_index = reg_addr & AP_REG_A3A2_MSK;
/* Update DP->SELECT value if needed */
if (select_reg value != _DP_SELECT_LAST) {

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg_value);

if (SUCCEEDED(result)) {

_DP_SELECT_LAST = select_reg_value;

¥
} else {
result = RESULT_OK;

/* Read AP register value */
if (SUCCEEDED(result)) {

result = WriteDAP(reg_index, ACC_AP, value);
}

return result;

8.3.3 ReadMem

/**

* Reads 32-bit value from provided memory address.
*

* Return value

* >= 0 0.K.

* < © Error

*/

static int ReadMem(uint8_t apNum, uint32_t address, uint32_t *value) {
int result;
/* AP.TAR <- address */
result = WriteAPv2(apNum, APV2_REG_TAR, address);
if (SUCCEEDED(result)) {
/* AP.DRW -> value */
result = ReadAPv2(apNum, APV2_REG_DRW, value);
}

return result;

8.3.4 WriteMem

/**

* Writes uint32_t value to provided memory address.

*

* Return value
* >= @ 0.K.
* < © Error
*/

static int WriteMem(uint8_t apNum, uint32_t address, uint32_t value) {
int result;
/* AP.TAR <- address */
result = WriteAPv2(apNum, APV2_REG_TAR, address);
if (SUCCEEDED(result)) {
/* AP.DRW <- value */
result = WriteAPv2(apNum, APV2_REG_DRW, value);
}

return result;

Programming Specification 46 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

8.3.5 PollMem

/**

* Polls for the expected bit-field value in given register
*

* Return value

* >= 0 0.K.

* < © Error/Timeout

*/

static int PollMem(uint32_t regAddr, uint32_t fieldMsk, uint32_t rsh, uint32_t expectedValue, int timeout,
uint32_t sleepBetweenPolling, uint32_t *regValue) {
int result;

int t;
int tDelta;
tDelta = -1;

result = RESULT_ERR;

t = SysGetTimeMs();
do {
result = ReadMem(AP_TO_USE, regAddr, regValue);
BREAK_IF_FAILED(result);
if (((*regValue & fieldMsk) >> rsh) == expectedValue) {
result = RESULT_OK;
break;

¥
/* Sleep between polling - let the CPU do its job and avoid too much garbage on SWD */

if ((sleepBetweenPolling > 0) && (tDelta >= © /* not first iteration*/)) {
SysSleepMs(sleepBetweenPolling);

¥
tDelta = SysGetTimeMs() - t;

} while (tDelta < timeout);

return result;

}

8.4 DAP security low-level functions

8.4.1 SecureAddr

/***

* Returns secure alias for a given address (sets bit[28])
*
*/
uint32_t SecureAddr(uint32_t address) {
if (_DOMAIN_SECURE) { address |= (1 << 28); }
else (_DOMAIN_SECURE) { address &= (~(1 << 28)); }
return address;

}

8.4.2 ReadAndInitSecure

/***

* Reads "Debug Security Control and Status Register" (DSCSR)
and checks "Current Domain Secure" (CDS) bit

*

*

* Return value

* >= 0 0.K.

* < @ Error

*/

int ReadAndInitSecure (void) {
int result;
uint32_t v;
_DOMAIN_SECURE = 0;

result = ReadMem(AP_TO_USE, DSCSR_ADDR, &v);
if (SUCCEEDED(result)) {
_DOMAIN_SECURE = v & DSCSR_CDS;

}
else {
printf("Warning, DSCSR register is unaccesible. Assumed Non-secure CDS");
}
Programming Specification 47 of 66 002-37778 Rev. *F

2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

if (_DOMAIN_SECURE != 0) {
printf("Current domain secure state: Secure");
}
else {
printf("Current domain secure state: Non-secure");

}

/* Read current CSW value */
result = ReadAPv2(AP_TO_USE, APV2_REG_CSW, &v);
if (SUCCEEDED(result)) {

/* Clean PROT bits */

v &= (~AP_CSW_PROT_MSK);

/* Apply proper PROT value */

if (_DOMAIN_SECURE) {

v |= (AP_CSW_PROT_VAL & AP_CSW_PROT_MSK);

else {
v |= (AP_CSW_PROT_NS_VAL & AP_CSW_PROT_MSK);

/* Write back to CSW */
result = WriteAPv2(AP_TO_USE, APV2_REG_CSW, V);

}
return result;
}
8.5 ARM Core control and register access functions

8.5.1 ReadCoreReg

/***

* Reads ARM core register, special-purpose register, or Floating-point extension register
CPU must be halted for this operation

*

*

* Return value

* >= 0 0.K.

* < © Error

*/

int ReadCoreReg(uint32_t regsel, uint32_t* value) {

/* DCRSR (OXE@OOEDF4) <- (REGWNR == read) | REGSEL */
int result = WriteMem(AP_TO_USE, DCRSR_ADDR, (regsel & DCRSR_REGSEL_MSK));
if (SUCCEEDED(result)) {

/* DCRDR (©OXE@OOEDF8) -> value */

result = ReadMem(AP_TO_USE, DCRDR_ADDR, value);

}

return result;

}

8.5.2 WriteCoreReg

/***

* Writes ARM core register, special-purpose register, or Floating-point extension register
* CPU must be halted for this operation

*

* Return value

* >= 0 0.K.

* < @ Error

*/

int WriteCoreReg(uint32_t regsel, uint32_t value) {

/* DCRDR (@XE@@OEDF8) <- value */
int result = WriteMem(AP_TO_USE, DCRDR_ADDR, value);
if (SUCCEEDED(result)) {
/* DCRSR (OXE@QOEDF4) <- (REGWNnR == write) | REGSEL */
result = WriteMem(AP_TO_USE, DCRSR_ADDR, (DCRSR_REGWNR | (regsel & DCRSR_REGSEL_MSK)));

}

return result;
}
Programming Specification 48 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

8.5.3 EnableCPU

/***
Enable CPU

*
*
* Return value
* >= @ 0.K. (CPU is enabled)
* < © Error/Timeout
*/
int EnableCPU(void) {
LOG_ENTRY();
int result;
uint32_t CPU_CTL_ADDR;
uint32_t vtbl_addr;
uint32_t entry_addr;
uint32_t sp;
uint32_t v;
uint32_t vi;

/* Set registers addresses, depending on the current CPU */
if (AP_TO_USE == AP_CM33) {

CPU_CTL_ADDR = SecureAddr(CPUSS_CM33 CTL);
} else if (AP_TO_USE == AP_CM55) {

CPU_CTL_ADDR = SecureAddr(CPUSS_CM55_CTL);
} else {

LOG_EXIT(RESULT_ERR);

return RESULT_ERR;
}
fprintf(stderr, "CPU_CTL_ADDR = ©x%08" PRIx32 "\n", CPU_CTL_ADDR);
/* Check CPU_WAIT bit over CM33 AP */
result = ReadMem(AP_CM33, CPU_CTL_ADDR, &v);
if (SUCCEEDED(result)) {

if ((v & MSK_CPUSS_CMx_CTL_CPU_WAIT) != @) {

fprintf(stderr, "CPU is in WAIT state after the reset, resuming...\n");

/* Check VTOR and set it to some *safe* place if not set by the boot */
result = ReadMem(AP_TO_USE, VTOR_ADDR, &vtbl_addr);
if (SUCCEEDED(result)) {
fprintf(stderr, "VTOR: 0x%08" PRIX32 "\n", vtbl_addr);
if ((vtbl_addr >= SecureAddr(SRAM_NS_BASE)) && (vtbl_addr < SecureAddr(SRAM_NS_BASE + SRAM_SIZE))) {
} else {
fprintf(stderr, " replacing with 0x%@8" PRIx32 "\n", SecureAddr(SRAM_NS_BASE));
vtbl_addr = SecureAddr(SRAM_NS_BASE);
result WriteMem(AP_TO_USE, VTOR_ADDR, vtbl_addr);

}
¥

if (FAILED(result)) {
LOG_EXIT(result);
return result;

}

/* Check reset handler and set it to some *safe* place if not set by the boot */
result = ReadMem(AP_TO_USE, vtbl_addr + 4, &entry_addr);
if (SUCCEEDED(result)) {
fprintf(stderr, "Reset handler: ©x%08" PRIx32 "\n", entry_addr);
if ((entry_addr >= SecureAddr(SRAM_NS_BASE)) && (entry_addr < SecureAddr(SRAM_NS_BASE + SRAM_SIZE)) &&
(entry_addr != vtbl_addr)) {
/* No modification of the entry_addr required */
} else {
/* Use secure address. Force LSB to 1 to avoid LOCKUP due to the THUMB bit not being set. */
entry_addr = SecureAddr(SRAM_LOOP_ADDR) | 1;
fprintf(stderr, " replacing with 0x%08" PRIx32 "\n", entry_addr);
result = WriteMem(AP_TO_USE, vtbl_addr + 4, entry_addr);
}

}

if (FAILED(result)) {
LOG_EXIT(result);
return result;

}

/* Check reset handler code */
result = ReadMem(AP_TO_USE, entry_addr & OxFFFFFFFC, &v);

Programming Specification 49 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

if (SUCCEEDED(result)) {
fprintf(stderr, "Reset handler code: ©x%08" PRIx32 "\n", v);
if (v == 0) {
fprintf(stderr, " replacing with infinite loop ©x%08" PRIX32 "\n", LOOP_CODE);
result = WriteMem(AP_TO_USE, entry_addr & OxFFFFFFFC, LOOP_CODE);
}
¥

if (FAILED(result)) {
LOG_EXIT(result);
return result;

}

/* Check SP */
result = ReadMem(AP_TO_USE, vtbl_addr, &sp);
if (SUCCEEDED(result)) {
fprintf(stderr, "SP by VTOR = 0x%08" PRIX32 "\n", sp);
if ((sp >= SecureAddr(SRAM_NS_BASE)) && (sp < SecureAddr(SRAM_NS_BASE + SRAM_SIZE)) && (sp != vtbl_addr)) {
/* No modification of the entry_addr required */

} else {
sp = SecureAddr(SRAM_DBG_ADDR);
fprintf(stderr, " replacing with 0x%@8" PRIx32 "\n", sp);

result = WriteMem(AP_TO_USE, vtbl_addr, sp);
}
¥

/* Check DEMCR against DEMCR_TRCENA and DEMCR_VC_CORERESET bits */
if (SUCCEEDED(result)) {
result = ReadMem(AP_TO_USE, DEMCR_ADDR, &v);
if (SUCCEEDED(result)) {
if ((v & (DEMCR_TRCENA | DEMCR_VC_CORERESET)) != (DEMCR_TRCENA | DEMCR_VC_CORERESET)) {
v |= DEMCR_TRCENA | DEMCR_VC_CORERESET;
result = WriteMem(AP_TO_USE, DEMCR_ADDR, vV);
¥
}
¥

/* Write DEBUG_ENABLED bit to DHCSR */
if (SUCCEEDED(result)) {
result = WriteMem(AP_TO_USE, DHCSR_ADDR, DHCSR_DBGKEY VAL | DHCSR_C_DEBUGEN);

}

/* Clear CPU_WAIT bit */
if (SUCCEEDED(result)) {

fprintf(stderr, "Clearing CPU_WAIT bit\n");

/* Access to CPU_CTL_ADDR over AP_CM33 only */

result = WriteMem(AP_CM33, SecureAddr(CPU_CTL_ADDR), 0);
¥

/* Wait for core halt */
if (SUCCEEDED(result)) {
\ = DHCSR_S_RESET_ST;
result = PollMem(DHCSR_ADDR, v, ©, v, TIMEOUT LISTEN WND, 1, &v1);
if (SUCCEEDED(result)) {
v = DHCSR_S_HALT | DHCSR_C_DEBUGEN;
result = PollMem(DHCSR_ADDR, v, @, v, TIMEOUT LISTEN WND, 1, &v1);
}
¥

/* Read xPSR register, set the thumb bit, and restore modified value to XPSR register */
if (SUCCEEDED(result)) {
result = ReadCoreReg(DCRSR_REGSEL_XPSR, &v);
if (SUCCEEDED(result)) {
result = WriteCoreReg(DCRSR_REGSEL_xPSR, (v | xPSR_T));
}

}

/* Set PC and SP*/
if (SUCCEEDED(result)) {
result = WriteCoreReg(DCRSR_REGSEL_PC, entry_addr);

¥
if (SUCCEEDED(result)) {
result = WriteCoreReg(DCRSR_REGSEL_MSP, sp);

}

Programming Specification 50 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

/* Run infinite loop in SRAM */
if (SUCCEEDED(result)) {

result = WriteMem(AP_TO_USE, DHCSR_ADDR, DHCSR_DBGKEY VAL | DHCSR_C_DEBUGEN);
¥

} else {
fprintf(stderr, "CPU is not in WAIT state...\n");

¥
} else {

fprintf(stderr, "The CPU_WAIT bit cannot be checked due to CPU_CTL_ADDR is inaccessible.\n");
}

LOG_EXIT(result);
return result;

8.5.4 HaltCPU

/**
Enables debug and halts the CPU using the DHCSR register

Return value
>= @ 0.K.
< @ Error

* X X X ¥

*/

static int HaltCPU(void) {
int result;
uint32_t v;

/* Enable debug, and halt the CPU using the DHCSR register: OxEQOOEDFO <- OxAQ5F0003 */
result = WriteMem(AP_TO_USE, DHCSR_ADDR, DHCSR_DBGKEY_VAL | DHCSR_C_HALT | DHCSR_C_DEBUGEN);

/* Check S_HALT bit [17] in DHCSR register (@OxE@OOEDFO) */
if (SUCCEEDED(result)) {

result = PollMem(DHCSR_ADDR, DHCSR_S_HALT, ©, DHCSR_S HALT, TIMEOUT HALT CPU, 0, &v);
}

return result;

8.5.5 ResumeCPU

/**

* Enables debug and resumes the CPU using the DHCSR register

*

* Return value
* >= 0 0.K.
* < © Error
*/

static int ResumeCPU(void) {
int result;
uint32_t v;

/* Resume CPU (keeping debug enabled) using the DHCSR register: OxEQOOEDFO <- OxAB5F0001 */
result = WriteMem(AP_TO_USE, DHCSR_ADDR, DHCSR_DBGKEY_VAL | DHCSR_C_DEBUGEN);

/* Check S_HALT (bit[17] in DHCSR register @OxEQOOEDFO) is cleared */
if (SUCCEEDED(result)) {
result = PollMem(DHCSR_ADDR, DHCSR_S_HALT, ©, ©, TIMEOUT_HALT_CPU, 0, &v);

}
return result;
}
8.6 DAP initialization functions

8.6.1 DAP_Handshake

/**
* Handshake: wait for debug interface becomes enabled after device reset. In the worst case, when
* the boot code performs application HASH verification, boot time is around 2000ms and depends on
Programming Specification 51 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

* CPU clock used by boot code. For PowerCycle, timeout depends on the design schematic and must be
* longer.
*
* Return value
* >= 0 0.K.
* < @ Error
*/
static int DAP_Handshake(uint32_t timeout) {
uint32_t v;
int tDelta;
int t SysGetTimeMs();
int result = RESULT_ERR;

do {
if (IsITAG()) {
/* If the interface was left in SWD by a previous session,
* try switching to JTAG once over the dormant state. */
SWJSequence (& SWD_to_DORMANT[@], bSWD_to_DORMANT_len);
SWJSequence (& DORMANT_to_JTAG[©], bDORMANT_to_JTAG_len);
} else {
/* Switch to SWD over the dormant state */
SWJSequence (& JITAG_to_DORMANT[@], bITAG_to_DORMANT_len);
SWJSequence (&bDORMANT_to_SWD[@], bDORMANT_to_SWD_len);
}
Vv = 0;
ReadDAP (DP_REG_DPIDR, ACC_DP, &v);
/* DAP is responsive if we can read IDCODE */
if ((v & DP_IDCODE_MSK) == DP_IDCODE_VAL) {
_DP_SELECT_LAST = @; /* Zeroing last used value of DP->SELECT */
result = RESULT_OK;
break;

¥
tDelta = SysGetTimeMs() - t;
} while (tDelta < timeout); /* Timeout reached? */

return result;

}

8.6.2 DAP_Init

/**

* Initialize the Debug Port for programing operations. Accepts Access Port number as input:
Q0 - System AP; 1 - CM33 AP.

*
*
* Return value
* >= 0 0.K.
* < @ Error
*/
static int DAP_Init(uint8_t apNum) {
LOG_ENTRY();

int result;

uint32_t reg_addr; /* Effective AP's reg addr */
uint32_t select_reg_value; /* DP->SELECT value for acces to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific register in a bank.

* Used as RegIndex in ReadDAP/WriteDAP functions */

/* Power up DAP using DP.CTRL/STAT: [3@]:CSYSPWRUPREQ, [28]:CDBGPWRUPREQ
* And clear sticky errors:
* - SWD: Using AP.ABORT register
* - JTAG: Using DP.CTRL/STAT: [5]:STICKYERR, [4]:STICKYCMP, [1]:STICKYORUN
* For JTAG, sticky error bits are read-write enabled and writing '1' to these bits clears associated sticky
errors.
* For SWD, these bits are read-only and to clean the sticky errors, you should write to appropriate bits of
* DP.ABORT register */
if (IsITAG()) { /* ITAG */
result = WriteDAP(DP_REG_CTRL_STAT, ACC_DP,
DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT_CDBGPRWUPREQ | DP_CTRL_STAT_STICKYERR /* 0©x50000020
*1)5
} else { /* SWD */
result =
WriteDAP(DP_REG_ABORT, ACC_DP,
DP_ABORT_ORUNERRCLR | DP_ABORT_WDERRCLR | DP_ABORT_STKERRCLR | DP_ABORT_STKCMPCLR /* 0x0000001E
*1);
if (SUCCEEDED(result)) {
Programming Specification 52 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

result = WriteDAP(DP_REG_CTRL_STAT, ACC_DP, DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT CDBGPRWUPREQ); //
0X50000000
}
}

/* Initialize DP->SELECT and AP->CSW */

if (SUCCEEDED(result)) {
/* Get effective address of CSW register */
reg_addr AP_ADDR[apNum] + APV2_REG_CSW;
select_reg value = reg_addr & DP_SELECT_MSK;
reg_index reg_addr & AP_REG_A3A2_MSK;

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg_value); /* DP->SELECT <- select_reg_value */
if (SUCCEEDED(result)) {
_DP_SELECT_LAST = select_reg_value; /* Update last used value of DP->SELECT */

/* Set CSW (DbgSwEnable=0, Prot=0x0B, SPIDEN=0, Mode=0x0, TrInProg=0, DeviceEn=0, AddrInc=Auto-increment off,
* Size=Word (32 bits)) */
/* Note: Set Prot bits in DAP CSW register, because of no access to CPU registers via M33 or M55 AP without
these
* bits */
if (_DOMAIN_SECURE != 0) {
result = WriteDAP(reg_index, ACC_AP, AP_CSW_PROT_VAL | AP_CSW_SIZE_WORD); /* 0x0B000002 */
} else {
result = WriteDAP(reg_index, ACC_AP, AP_CSW_PROT_NS_VAL | AP_CSW_SIZE_WORD); /* 0x4B000002 */
¥
¥
}

LOG_EXIT(result);
return result;

}

8.6.3 DAP_HandshakeAndInit

/**

* Performs Handshake and Initializes the Debug Port Accepts Access Port number as input:
0 - System AP; 1 - CM33 AP.

>= 0 0.K.

*
*

* Return value
*

* < @ Error

*/
static int DAP_HandshakeAndInit(uint8_t apNum, uint32_t timeout) {
int result;

result = DAP_Handshake(timeout);
if (SUCCEEDED(result)) {

result = DAP_Init(apNum);

if (SUCCEEDED(result)) {}
}

return result;

8.6.4 DAP_ScanAP

/**

Scans the Access Ports for the first available with CPU registers access.

Return value
>= 0 0.K.
< © Error

* X X ¥ ¥

*/
int DAP_ScanAP(uint8_t *apNum) {
uint32_t v;
uint8_ t currAP;
int result;

/* Try all possible Access Ports */
currAP = AP_SYS;
while (currAP < AP_MAX) {

if (currAP != AP_SYS) {

Programming Specification 53 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification
Appendix C: Code example

/* Initializes DAP and selects Access Port with provided number */
result = DAP_HandshakeAndInit(currAP, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {
/* Try to read CPUID register @OxEQOQEDOO */
result = ReadMem(currAP, CPUID_ADDR, &v);
/* If the CPUID Implementer is ARM, the Access Port is correct (we have access to the ARM
* registers) */
if (SUCCEEDED(result) & ((v & OxFFOP0O000) == 0x41000000)) {
*apNum = currAP;
LOG_EXIT(result);
return RESULT_OK;
}
}
}

CUrrAP += 1;

}

return RESULT_ERR;

}

8.7 System reset

8.7.1 Reset

/**

* Resets the device using either of:

* 1. Hardware reset by toggling XRES pin

* 2. Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit
* 3. Software reset by setting the AIRCR.SYSRESETREQ bit

* 4. Software reset by setting the AIRCR.VECTRESET bit

* 5. Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit
*

* Return value

* >= 0 0.K.

* < © Error

*/

static int Reset(uint8_t rstType, uint8_t apNum) {
LOG_ENTRY();

uint32_t v;
int result;
result = RESULT_ERR;

/* Attempt to reset the device with different methods
* Notel: do not check OK/WAIT/FAULT ACKs for the data write phase since the target immediately
* reboots.
* Note2: caller code needs to do Handshake and DAP Init after reset or in case of failure */

/* 1. Hardware reset by toggling XRES pin */
if ((rstType & RST_TYPE_XRES) != 0) {

SetXRES(Q); /* NRESET == LOW */
SysSleepMs(50); /* Make sure that device recognizes the reset */
SetXRES(1); /* NRESET == HIGH */

result = RESULT_OK;
}

/* 2. Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit:
* This type of software reset can work via SYS-AP, so it is more preferable vs. SYSRESETREQ */
if (FAILED(result) &% ((rstType & RST_TYPE_RES_SOFT_CTL) != 0)) {
/* AP.TAR <- @(SRSS->RES_SOFT_CTL) */
result = WriteAPv2(apNum, APV2_REG_TAR, SecureAddr(SRSS_RES_SOFT_CTL));
if (FAILED(result)) {
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {
result = WriteAPv2(apNum, APV2_REG_TAR, SRSS_RES_SOFT_CTL);
}

¥
/* AP.DRW <- TRIGGER_SOFT bit */
if (SUCCEEDED(result)) {
WriteAPv2(apNum, APV2_REG_DRW, SRSS_RES_SOFT_CTL_TRIG_SOFT);
}
}

Programming Specification 54 of 66

infineon

002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

/* 3. Software reset by setting the AIRCR.SYSRESETREQ bit */
if (FAILED(result) && ((rstType & RST_TYPE_SYSRESETREQ) != 0) && (apNum != AP_SYS)) {
/* AP.TAR <- @(AIRCR OXE@OOEDOC) */
result = WriteAPv2(apNum, APV2_REG_TAR, AIRCR_ADDR);
if (FAILED(result)) {
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {
result = WriteAPv2(apNum, APV2_REG_TAR, AIRCR_ADDR);
¥

¥
/* AP.DRW <- @x@5FA0Q04 */

if (SUCCEEDED(result)) {
WriteAPv2(apNum, APV2_REG_DRW, (AIRCR_VECTKEY_VAL | AIRCR_SYSRESETREQ));
¥
}

/* 4. Software reset by setting the AIRCR.VECTRESET bit */
if (FAILED(result) && ((rstType & RST_TYPE_VECTRESET) != @) &% (apNum != AP_SYS)) {
/* A debugger must halt the processor before using VECTRESET, otherwise the effect is unpredictable */
/* Enable debug, and halt the CPU using the DHCSR register: OxEOQOOEDFO <- OxAQ5F0003 */
result = WriteMem(apNum, DHCSR_ADDR, DHCSR_DBGKEY_VAL | DHCSR_C_HALT | DHCSR_C_DEBUGEN);
if (FAILED(result)) {
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {
result = WriteMem(apNum, DHCSR_ADDR, DHCSR_DBGKEY_VAL | DHCSR_C_HALT | DHCSR_C_DEBUGEN);
¥

if (SUCCEEDED(result)) {
result = PollMem(DHCSR_ADDR, DHCSR_S_HALT, ©, DHCSR_S_HALT, TIMEOUT HALT CPU, 0, &v);
if (SUCCEEDED(result)) {
/* AIRCR OXE@OOEDOC <- Ox05FAQ001 */
result = WriteMem(apNum, AIRCR_ADDR, AIRCR_VECTKEY_ VAL | AIRCR_VECTRESET);
¥
¥
}

/* 5. Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit.

* In worst case, if standard software reset via SYSRESETREQ failed, it may mean that the

* firmware did very bad things disabling the debug pins or AHB_AP access (anything behind the
DAP). However, if we still can access the DAP registers, the last thing we could try is to
reset the target via DP->CTRL/STAT.CDBGRSTREQ.*/
if (FAILED(result) &% ((rstType & RST_TYPE_CDBGRSTREQ) != 0)) {

result = DAP_Handshake(TIMEOUT_HANDSHAKE) ;

if (SUCCEEDED(result)) {

WriteDAP(DP_REG_CTRL_STAT, ACC_DP,
DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT_CDBGPRWUPREQ | DP_CTRL_STAT_CDBGRSTREQ);

* %

¥
3

LOG_EXIT(result);
return result;

8.8 ROM boot status checking and polling

8.8.1 IsBootldle

/**

* Check if device is in WFA (Wait For Action), IDLE or DEAD branches, what is sufficient condition
* for programming
*
* Return value
* >= 0 0.K.
* < @ Error
*/
static int IsBootIdle(uint8_t apNum, uint32_t *stopPolling) {
int result;
uint32_t v;
*stopPolling = 9;

/* Read SRSS->TST_DEBUG_CTL register and check the WFA bit is set, indicating a special mode with
* additional restrictions for debugger. Normal programming/debugging is not possible - need reset/acquire */
result = ReadMem(apNum, SecureAddr(SRSS_BOOT_DLM_CTL), &v);

Programming Specification 55 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

if (SUCCEEDED(result)) {
if ((v & SRSS_BOOT_DLM_CTL_DEBUG_WFA) != 0) {
stopPolling = 1; / WFA branch, no sense to continue polling - need to do reset/acquire */
result = RESULT_ERR;
¥
}

/* Check the status reported by boot code in RAM.
* Both, DEAD and IDLE branches are sufficient for programming */
if (SUCCEEDED(result)) {
result = ReadMem(apNum, SecureAddr(SRAM_STATUS_ADDR), &v);
if (SUCCEEDED(result)) {
if ((v & L1BOOT_ID_MSK) == L1BOOT_ID_SUCCESS) {
if ((v & L1BOOT_STATUS_MSK) != L1BOOT_IDLE_BRANCH_REACHED) {
result = RESULT_ERR; /* Not IDLE branch */
}

}

else {
if ((v & L1BOOT_ID _MSK) != L1BOOT_ID FAIL) {
result = RESULT_ERR; /* No status word */
}

}
}
}

return result;

}

8.8.2 WaitForBootldle

/**

* Waits for the device to be in IDLE or DEAD branches
*

* Return value

* >= 0 0.K.

* < © Error

*/

static int WaitForBootIdle(uint8_t apNum, int timeout) {
int result;
int t;
int tDelta;
uint32_t stopPolling;
tDelta = -1;

result = IsBootIdle(apNum, &stopPolling);
if (FAILED(result) && (result != RESULT_ERR_CRITICAL) && (stopPolling == 0)) {
t = SysGetTimeMs();
do {
/* Sleep between polling - let the target do its job and avoid too much garbage on SWD */
SysSleepMs(190);
result = IsBootIdle(apNum, &stopPolling);
if (SUCCEEDED(result) || (result == RESULT_ERR_CRITICAL) || (stopPolling != 0)) {
/* No sense to wait if target is in CORRUPTED state (result == RESULT_ERR_CRITICAL) or in
* WFA branch or when the application is already launched (stopPolling != @) */
break;

tDelta = SysGetTimeMs() - t;
} while (tDelta < timeout);

return result;

}
8.9 Acquisition helper functions
8.9.1 GetVectorTableData

/**

* Gets Reset Address and Initial SP values from application Vector Table

*
* Return value
* >= 0 0.K.
Programming Specification 56 of 66 002-37778 Rev. *F

2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

* < @ Error
*/
static int GetVectorTableData(uint32_t *resetAddress, uint32 t *sp) {
int result;
uint32_t v;
uint32_t vtBase;

*resetAddress 0;
*sp = 0;

/* Check Vector Table base address for Cortex core.
* Note: Zero in Vector Table base register or in reset address (reset handler + 4) likely
* indicates that the target is in preproduction state, so the ROM boot code debugging is enabled. */
result = ReadMem(AP_TO_USE, VTOR_ADDR, &vtBase);
if (SUCCEEDED(result) {
if (vtBase == 0) {
vtBase = SecureAddr(SRAM_S_BASE);

}

if (SUCCEEDED(result) &% ((vtBase & ERR_ADDR_MSK) != ERR_ADDR_MSK)) {
/* Get Reset Address from Vector Table */
result = ReadMem(AP_TO_USE, vtBase + 4, &v);
if (SUCCEEDED(result) &% ((v & ERR_ADDR_MSK) != ERR_ADDR_MSK)) {
*resetAddress = v;

/* Get Initial SP value from Vector Table */
result = ReadMem(AP_TO_USE, vtBase, &v);
if (SUCCEEDED(result) & (v != ©) & ((v & ERR_ADDR_MSK) != ERR_ADDR_MSK)) {
*sp = v;
} else {
result = RESULT_ERR;
}
} else {
result = RESULT_ERR;
¥
} else {
result = RESULT_ERR;
¥
}

return result;

}

8.9.2 SetPCandSPFromVectorTable

/**

* Sets PC and SP getting the values from Vector Table
*

* Return value

* >= @ 0.K.

* < © Error

*/

static int SetPCandSPFromVectorTable(void) {
int result;
uint32_t v;
uint32_t pc;
uint32_t sp;

/* Get PC and SP for the application in flash */
result = GetVectorTableData(&pc, &sp);
if (SUCCEEDED(result) && ((pc & ERR_ADDR_MSK) != ERR_ADDR_MSK) && ((sp & ERR_ADDR_MSK) != ERR_ADDR_MSK)) {
/* Set PC */
result = WriteCoreReg(DCRSR_REGSEL_PC, pc);
if (SUCCEEDED(result)) {
/* Set MSP */
result = WriteCoreReg(DCRSR_REGSEL_MSP, sp);
if (SUCCEEDED(result)) {
/* Read xPSR register, set the thumb bit, and restore modified value to xPSR register */
result = ReadCoreReg(DCRSR_REGSEL_xPSR, &v);
if (SUCCEEDED(result)) {
result = WriteCoreReg(DCRSR_REGSEL_xPSR, (v | XPSR_T));
}
}

¥
} else {
Programming Specification 57 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

result = RESULT_ERR;

}
return result;
}
8.10 Acquisition functions

8.10.1 AcquireTestMode

AR AR KA KA KA KKK KK KA KA KKK A K AR KA KA A KA A A KA KA KK KK KA KA KA KKK KKK

* Performs device acquisition in test mode:

* 1. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP
* 2. Set TEST_MODE bit in TST_MODE SRSS register

* 3. Poll for the IDLE status set by boot code in RAM

* 4. Prepares target for debug

*

* Return value

¥ >=0 0.K.

* < @ Error

*/

static int AcquireTestMode(uint8_t rstType, uint8_t apNum) {
LOG_ENTRY();

int result;
uint32_t v;

/* 1. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP
* a. Do hardware (XRES) or one of the software reset. It is critical for Test Mode acquisition,
* so stop in case of failure.
* b, Handshake (wait for debug interface to become enabled after device reset), initialize the
* Debug Port, and select the appropriate Access Port (AP) */

result = Reset(rstType, apNum);

if (SUCCEEDED(result)) {
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);

}

/* 2. Set TEST_MODE bit in TST_MODE SRSS register

if (SUCCEEDED(result)) {
result = WriteMem(apNum, SecureAddr(SRSS_TST_MODE), SRSS_TST_MODE_TEST_MODE);
/* Read RDBUFF to make sure that the last AP write actually happens as SW-DP may buffer/delay it
* until next DAP access*/
ReadDAP (DP_REG_RDBUFF, ACC_DP, &v);

}

/* 3. Poll for the IDLE status set by boot code and check PC points to address in ROM*/
if (SUCCEEDED(result)) {
result = WaitForBootIdle(apNum, TIMEOUT_LISTEN_WND);
if (FAILED(result)) {
/* CPU can be in WAIT state, so it needs to be enabled */
result = EnableCPU();
¥
}

/* 4. Prepares target for debug

*

a. Clear TEST_MODE bit in SRSS->TST_MODE.TEST_MODE register

b. Set SP and PC values from the vector table. Needs to be done after Test mode acquisition to
withdraw target from IDLE loop Otherwise, such commands as "go" or "step" will not work after
acquisition */

* ¥ X *

if (SUCCEEDED(result)) {
result = WriteMem(apNum, SecureAddr(SRSS_TST_MODE), ©0);
if (SUCCEEDED(result) && (apNum != AP_SYS)) {
SetPCandSPFromVectorTable();
¥
}

LOG_EXIT(result);
return result;

}

Programming Specification 58 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU

infineon

Programming Specification

Appendix C: Code example

8.10.2 AcquireVectorCatch

/***
*

* X X ¥ X ¥ ¥

*/
stat
Lo

in
in
ui
ui

/*

*

* X X X ¥ X

if

/*

* ¥ X ¥ ¥

if

}
/*

*

* ¥ X ¥ *

if

Prog

3k >k 3k 3k sk 5k >k 3k >k ok 5k ok 3k k >k ok >k 3k 3k 3k %k >k >k 5k 3k 3k 3k %k ok >k 5k 3k 3k >k >k >k 5k >k sk %k >k >k >k >k 3k 3k 3k >k >k >k 5k 3k 3k 3k >k >k >k 3k 3k %k %k %k >k >k 5k >k %k %k >k >k >k k >k k%

Performs target acquisition using Vector Catch:

1. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP
2. Halt CPU, set DEMCR->VC_CORERESET, and issue software reset

3. Connect to the DAP and check CPU is halted

Return value
>= 0 0.K.
< @ Error

ic int AcquireVectorCatch(uint8_t rstType, uint8_t apNum) {
G_ENTRY();

t result;
t resultTmp;
nt32_t v;
nt32_t vi;

1. Pre-reset and connect
a. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP

Pre-reset is not critical for the Vector Catch acquisition,

so do not check for the result and do not stop if it is failed
b. Handshake (wait for debug interface to become enabled after device reset),

initialize the Debug Port and select appropriate Access Port (AP) with the CPU access
c. Update Current Domain Secure */
(apNum == AP_SYS) {
/* It is not possible to handle CPU state (e.g. breakpoints) via the System Access Port */
result = RESULT_ERR;
else {
Reset(rstType, apNum);
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {

/* Update Current Domain Secure */

result = ReadAndInitSecure();

2. Halt CPU, set DEMCR->VC_CORERESET and issue software reset
a. Enable debug and halt CPU as quickly as possible right after Reset+Handshake+InitDAP
It is not mandatory to do this quickly, but there is a good chance to stop
in Listen window or at least prevent user application from doing too much "bad" stuff
b. Set VC_CORERESET and TRCENA bits in DEMCR register
c. Issue software reset*/
(SUCCEEDED(result)) {
result = HaltCPU();
if (SUCCEEDED(result)) {
/* Set VC_CORERESET and TRCENA: DEMCR (OXE@OOEDFC) = 0x01000001 */
result = WriteMem(apNum, DEMCR_ADDR, DEMCR_TRCENA | DEMCR_VC_CORERESET);
if (SUCCEEDED(result)) {
result = Reset(rstType, apNum);
}
¥

3. Connect to the DAP and check CPU is halted
a. Handshake and initialize the Debug Port
b. Verify reset indeed occurred and CPU is halted in debug mode
c. Verify CPU is halted and in debug mode.
It must be verified in separate step after the reset confirmation to avoid raise conditions.
d. Clear VC_CORERESET, but leave TRCENA bit enabled. Do it even in failed scenario */
(SUCCEEDED(result)) {
result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE) ;
if (SUCCEEDED(result)) {
\" = DHCSR_S_RESET_ST;
result = PollMem(DHCSR_ADDR, v, ©, v, TIMEOUT_LISTEN_WND, 1, &v1);
if (SUCCEEDED(result)) {

v = DHCSR_S_HALT | DHCSR_C_DEBUGEN;
result = PollMem(DHCSR_ADDR, v, ©, v, TIMEOUT_LISTEN_WND, 1, &v1);
}
ramming Specification 59 of 66 002-37778 Rev. *F

2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

¥
resultTmp = WriteMem(apNum, DEMCR_ADDR, DEMCR_TRCENA); // DEMCR (@OXE@@@EDFC) <- TRCENA
if (FAILED(resultTmp) && SUCCEEDED(result)) {
result = RESULT_ERR;
¥
}

if (SUCCEEDED(result)) {
/* CPU can be in WAIT state, so it needs to be enabled */
result = EnableCPU();

}

LOG_EXIT(result);
return result;

8.10.3 Acquire

/**

* Performs a variety of chip acquisition attempts:

* 1. Check if the device is already in IDLE or DEAD branches

* 2. Try to acquire in Test mode (TM). This is recommended and the only 100% reliable method. But
* it will not work if debugger cannot meet timing requirements or Listen window is disabled.

* 3. Try to acquire using the Vector Catch

* Acquisition methods may be invoked twice - with hardware (XRES) and software pre-reset.

*

* | Note that XRES connection is strongly required for the hardware reset. Otherwise, neither of
* the above methods will work if the firmware does "bad" things such as:

* - Repurposes the debug pins (intentionally or unintentionally)

* - Disables/Protects access ports and the Listen window is turned off or too short

* - Intentionally or unintentionally corrupts values in MMIO registers and the Listen window is
* turned off or too short In this case, there is no way for the debugger to establish even basic
* communication with the target

*

* Return value

¥ >=0 0.K.

* < @ Error

*/

int Acquire(uint8_t *apNum) {
LOG_ENTRY();

int result;

uint32_t v;

uint8_t vi;

uint8_t acgqMethods;
result = RESULT_ERR;

acqMethods = ACQUIRE_METHODS_ALLOWED;

/* SysAP should always use Secure Access */
if (*apNum == 0)
_DOMAIN_SECURE = 1;

/* --- (@) Attach --- */

if (acgMethods == 0) {
/* Just init DAP if all acquisition methods are disabled */
result = DAP_HandshakeAndInit(*apNum, TIMEOUT_HANDSHAKE);

}

/* --- (1) Check IDLE --- */
/* Check whether the device is already in IDLE or DEAD branch, what is sufficient condition for programming,
* so Reset/Acquire is not needed. */
if ((acgMethods & ACQUIRE_CHECK_IDLE) != 0) {
result = DAP_HandshakeAndInit(*apNum, TIMEOUT_HANDSHAKE_SMALL);
if (SUCCEEDED(result)) {
/* L1BOOT_ID_FAIL in SRAM_STATUS_ADDR indicates that boot code reached the
* CORRUPTED branch - major system failure occurred (e.g. BIST failed). Debugger has limited
* MCU access (via System Access Port only), programming/debugging is not possible */
result = ReadMem(*apNum, SecureAddr(SRAM_STATUS_ADDR), &v);
if (!SUCCEEDED(result) || (v & L1BOOT_ID_MSK) == L1BOOT_ID_FAIL) {
result = RESULT_ERR_CRITICAL;

}
}
if (SUCCEEDED(result)) {
result = WaitForBootIdle(*apNum, TIMEOUT_LISTEN_WND);

Programming Specification 60 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

¥
}

/* 2. Try to acquire in Test mode (TM) */
if (FAILED(result) && (result != RESULT_ERR_CRITICAL) && ((acgMethods & ACQUIRE_TEST MODE) != 0)) {
result = AcquireTestMode (RST_TYPE_HARD & RST_TYPES_ALLOWED, *apNum);
if (FAILED(result) && (result != RESULT_ERR_CRITICAL)) {
/* If the acquisition failed for some reason (e.g. XRES is not connected), try to acquire in
* Test mode using software reset This should work if there is no valid user application so
* the ROM boot code is in WFA state or if the Listen window is wide enough and running
* application did not disabled or corrupted the debug infrastructure */
result = AcquireTestMode(RST_TYPE_SOFT & RST_TYPES_ALLOWED, *apNum);
¥
}

/* Try to acquire using the Vector Catch or the alternate sequence (breakpoint in RAM) */
if (FAILED(result) && (result != RESULT_ERR_CRITICAL) &&
((acgMethods & (ACQUIRE_BREAKPOINT | ACQUIRE_VECTOR_CATCH)) != 0)) {
result = RESULT_OK;

/* If SYS-APP is not strictly preferred, try to find first available AP with CPU access */
if (*apNum == AP_SYS) {
if (AP_TO_USE_STRICT != 0) {
result = RESULT_ERR;
} else {
result = DAP_ScanAP(&vl);
if (SUCCEEDED(result)) {
*apNum = v1;
}
¥
¥

if (SUCCEEDED(result)) {
result = RESULT_ERR;

/* 3. Try to acquire using the Vector Catch */
if ((acgMethods & ACQUIRE_VECTOR_CATCH) != 0) {
result = AcquireVectorCatch(RST_TYPE_HARD & RST_TYPES_ALLOWED, *apNum);
if (FAILED(result)) {
result = AcquireVectorCatch(RST_TYPE_SOFT & RST_TYPES_ALLOWED, *apNum);
}

}
}
}

LOG_EXIT(result);
return result;

}

8.11 Unlocking access to the CPU

8.11.1 WaitForWFAMode

/**

* Polls the target (with given timeout) waiting for WFA mode to be entered
*
* Return value
* >= 0 0.K.
* < @ Error
*/
static int WaitForWFAMode(uint8_t apNum, int timeout) {
int result = RESULT_ERR;
int t;
int tDelta;
uint32_t v;

t = SysGetTimeMs();

do {
/* Sleep between polling - let the target do its job and avoid too much garbage on SWD */
SysSleepMs(10);

/* Read SRSS->BOOT_DLM_CTL register and check the WFA bit is set, indicating a WFA mode */
result = ReadMem(apNum, SRSS_BOOT_DLM_CTL, &v);
Programming Specification 61 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

if (SUCCEEDED(result)) {
if ((v & SRSS_BOOT_DLM_CTL_DEBUG_WFA) != 9) {
/* WFA branch reached */
result = RESULT_OK;
break;
¥
¥

tDelta = SysGetTimeMs() - t;
} while (tDelta < timeout);

return result;

}

8.11.2 AcquirelnWFAMode

/**

* Acquires the target in WFA mode using specified request code
*
* Return value
* >= 0 0.K.
* < @ Error
*/
static int AcquireInWFAMode(uint8 t apNum, uint32_t req) {
int result;

result = WriteMem(apNum, SRSS_BOOT_DLM_CTL, req);

if (SUCCEEDED(result)) {
/* This write triggers soft-reset causing transaction failure, ignore the error */
WriteMem(apNum, SRSS_RES_SOFT_CTL, SRSS_RES_SOFT_CTL_TRIG_SOFT);

result = DAP_HandshakeAndInit(©, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result)) {
result = WaitForWFAMode (apNum, TIMEOUT_HANDSHAKE);
¥
}

return result;

8.11.3 LoadDebugCert

/**

* Reads the debug certificate and loads it to the RAM
*

* Return value
* >= 0 0.K.
* < © Error

*/
static int LoadDebugCert(uint8_t apNum, const char *cert_path) {
int result = RESULT_OK;

size_t num_reads = 0;
uint32_t cert_buffer[DEBUG_CERT_SIZE / 4];

if (cert_path == NULL)
cert_path = "debug_cert/debug_cert_oem.bin";

struct stat s;

result = stat(cert_path, &s);

if (result) {
log write("Failed to read the Debug Certificate '%s'", cert_path);
result = RESULT_ERR_CRITICAL;

}

if (SUCCEEDED(result) && s.st_size != DEBUG_CERT_SIZE) {
log write("Debug Certificate size mismatch");
result = RESULT_ERR_CRITICAL;

}

if (SUCCEEDED(result)) {
FILE *f = fopen(cert_path, "rb");
if (F) |
num_reads = fread(cert_buffer, 1, sizeof(cert_buffer), f);

Programming Specification 62 of 66 002-37778 Rev. *F
2025-09-12

o~ _.
PSOC™ Edge MCU Infineon
Programming Specification
Appendix C: Code example

if (num_reads != sizeof(cert_buffer))
result = RESULT_ERR_CRITICAL;

fclose(f);

if (SUCCEEDED(result)) {
for (uint32_t i = ©; i < DEBUG_CERT_SIZE / 4; i++) {
result = WriteMem(apNum, DEBUG_CERT_ADDR + (i * 4), cert_buffer[i]);
if (FAILED(result)) {
break;

return result;

}

8.11.4 StartWFARequest

/**

* Executes WFA request. Target must be acquired in FWA mode before

* calling this function.
*

* Return value

* >= 0 0.K.

* < © Error

*/

static int StartWFARequest(uint8 t *apNum) {
int result;
int t;
int tDelta;

/* This write triggers soft-reset causing transaction failure, ignore the error */
WriteMem(*apNum, SRSS_BOOT_DLM CTL, 9);

t = SysGetTimeMs();

do {
/* Sleep between polling - let the target do its job and avoid too much garbage on SWD */
SysSleepMs(10);

/* Scan the Access Ports for the first available with CPU registers access */
result = DAP_ScanAP(apNum);
if (SUCCEEDED(result))

break;

/* CPU AP is closed, continue polling */
tDelta = SysGetTimeMs() - t;
} while (tDelta < TIMEOUT_ HANDSHAKE);

return result;

}

8.11.5 UnlockCPUAccess

/**

* Unlocks the access to the CPU using given debug certificate.

* CPU is left running after calling this function. The following
* steps are performed:

* 1. Target is acquired in WFA mode with request #2

* 2. Debug certificate is loaded into RAM

* 3. WFA request #2 is executed, this will enable CM33 AP

*

*

*

*

Return value
>= 0 0.K.
< © Error
*/
int UnlockCPUAccess(uint8_t apNum, const char *cert_path) {
int result = DAP_HandshakeAndInit(apNum, TIMEOUT_HANDSHAKE);
if (SUCCEEDED(result))
result = AcquireInWFAMode(apNum, WFA_REQUEST_DEBUG_CERT);

Programming Specification 63 of 66 002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification

Appendix C: Code example

if (SUCCEEDED(result))
result = LoadDebugCert(apNum, cert_path);

if (SUCCEEDED(result))
result = StartWFARequest(&apNum);

return result;

}

8.11.6 UnlockCPUAccessAndHalt

/**
* Resets the CPU and halts it at the first instruction using given

Debug Certificate. This function is require only to launch the

debug session from the beginning of code execution.

*
*
*
* Return value
* >= 0 0.K.
* < © Error
*/
int UnlockCPUAccessAndHalt(uint8 t apNum, const char *cert_path) {
int result;
uint32_t vi;
uint32_t v;

result = UnlockCPUAccess(apNum, cert_path);

if (SUCCEEDED(result))
result = HaltCPU();

if (SUCCEEDED(result))
result = WriteMem(apNum, DEMCR_ADDR, DEMCR_TRCENA | DEMCR_VC_CORERESET);

if (SUCCEEDED(result))
result = UnlockCPUAccess(apNum, cert_path);

if (SUCCEEDED(result))
result = DAP_Init(apNum);

if (SUCCEEDED(result)) {
v = DHCSR_S_RESET_ST | DHCSR_S_HALT | DHCSR_C_DEBUGEN;

result = PollMem(DHCSR_ADDR /* OXE@@QEDF® */, v, @, v, TIMEOUT_HANDSHAKE, 10, &v1);
}

return result;

Programming Specification 64 of 66

infineon

002-37778 Rev. *F
2025-09-12

PSOC™ Edge MCU
Programming Specification

Revision history

(infineon

Date

Version

Description

2025-09-12

*F

Initial public release

Programming Specification

65 of 66

002-37778 Rev. *F
2025-09-12

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-12
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG.
AllRights Reserved.

Do you have a question about this
document?

Go to www.cypress.com/support

Document reference
002-37778 Rev. *F

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

