
Getting started with Hardware Abstraction Layer
(HAL) on PSOC™ Edge MCU

About this document
Scope and purpose

This document introduces the new Hardware Abstraction Layer (HAL) library for Infineon PSOC™ Edge MCUs.
Intended audience

This document is intended for users who are looking to migrate their applications to use the new HAL library or
use it in their applications in ModusToolbox™ applications.

AN241775

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-41775 Rev. **
www.infineon.com 2025-10-14

https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL) . 3
1.1 What is the new HAL? . 4
1.2 Using new HAL with ModusToolbox™ code examples .5

2 Important concepts for understanding HAL . 7
2.1 Typical HAL setup sequence . 7
2.2 Initialization sequence .9
2.3 RTOS integration . 9
2.4 SysPm callbacks . 9
2.5 Clock management . 10
2.6 Interrupt handling . 10

3 Guide to migrate code examples from legacy HAL-based code examples 12
3.1 Examples for HAL usage with middleware . 14
3.1.1 Retarget-io setup (UART usage) . 14
3.1.2 BMI 270 motion sensor (I2C usage) . 19
3.1.3 LPTimer setup for use with abstraction RTOS library . 22

4 Summary . 28

References .29

Revision history .30

Trademarks .31

Disclaimer . 32

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
Table of contents

Application note 2 002-41775 Rev. **
2025-10-14

1 Introduction to Infineon’s new Hardware Abstraction Layer
(HAL)

The Infineon device support library combines content from several distinct software packages into a single
package which includes the following software packages: The Peripheral Driver library (PDL), Device utilities,
Device information and Hardware abstraction Layer (HAL). Figure 1 shows a high-level overview of the software
stack used in a ModusToolbox™ application.

Tools

Libraries (Middleware)

Applications

Code Examples Reference Designs

Graphics Machine Learning Wi-Fi and Bluetooth® Core Libraries

HMI/CAPSENSE™ Voice/Audio Connectivity Security

Git and Make
Build system

Configurators
and Tuners

IDEs

Library Manager

Project Creator

Board Support Packages (BSPs)

Device Support Library

Peripheral Driver
Library (PDL)

Hardware Abstraction
Layer (HAL) Device Utilities Device Information

Figure 1 ModusToolbox™ software stack

The Infineon Hardware Abstraction Layer (HAL) for PSOC™ Edge device family has undergone significant
changes compared to the legacy HAL supported for PSOC™ 6 and other device families, refocusing on the needs
of middleware and streamlining its functionality.
The new HAL eliminates unnecessary APIs and drivers, de-emphasizing its usage in the application layer while
focusing on middleware support. Configuration can be handled via the Device Configurator, with initialization
performed by the Peripheral Driver Library (PDL). Hardware resource management, peripheral initialization and
routing configurations including pins and clocks, and other higher-level functionalities, previously abstracted
by legacy HAL, is now completely handled at the PDL level, with improved transparency and customization.
Some of these responsibilities are handled by the configurator tools running on the desktop. The tasks which
previously consumed MCU resources to perform at runtime are now performed once at the design configuration
stage itself, thereby improving runtime performance.
The HAL now focuses on portability, providing a consistent interface across different hardware platforms. This
guide will walk users through the changes, new procedures, and best practices for using the updated HAL,
ensuring a smooth transition and optimal performance.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Application note 3 002-41775 Rev. **
2025-10-14

1.1 What is the new HAL?
The functionality of legacy HAL is now split into different components as shown in Figure 2.

Legacy HAL

Peripheral
config

Peripheral
Initialization

HAL
initialization

HAL runtime
APIs

Hardware
Resource

Management
Pin Mapping

HAL interrupt
handlers

SysPm
callbacks

Async transfers IPC HAL

PDL

PDL default
SysPm

callbacks

Configurators

Peripheral
configuration

Hardware
Resource

management

Pin mapping

Application code

Peripheral
Initialization

Helper Libraries

Async transfer
utility

IPC library

New HAL

HAL runtime
APIs

HAL
initialization

HAL interrupt
handlers

Application
defined SysPm

callbacks

Clock
configuration

Figure 2 Comparison between legacy and new HAL

Table 1 below captures the high-level functional differences between legacy and new HAL and also establishes
the reasoning behind the update.

Table 1 Comparison between legacy and new HAL

Parameter Legacy HAL new HAL

Purpose and layering clarity Legacy HAL often blended
features and hidden setup steps
that sometimes hid what was
happening at the device level

The new HAL becomes a separate
layer focused on serving the
middleware

Configuration and initialization split The configuration and initialization
patterns were often mixed, or done
via HAL helpers that abstracted
device setup

The new HAL expects that the
resource must be enabled either in
the configurator or directly in the
application code using PDL APIs.
Middleware talks to a consistent
HAL API once the device is set up

(table continues...)

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Application note 4 002-41775 Rev. **
2025-10-14

Table 1 (continued) Comparison between legacy and new HAL

Parameter Legacy HAL new HAL

Moving functionality down to PDL Some higher-level functionality
lived in the HAL, potentially
masking device differences

This new design re-centers device-
dependent behavior in the PDL
layer, where it belongs. This
improves predictability,
performance tuning, and debug
experience of applications
Some high-level HAL functionality
(like IPC and Async Transfer) is split
into separate libraries that can be
used together with either HAL or
PDL

Enables transparency The legacy HAL relied on
behind-the-scenes 'magic' like
auto-allocation, implicit power or
clock steps

The new HAL defines explicit code
paths and clearer control. This
helps certification, analysis, and
maintenance specially for safety
and security sensitive applications

1.2 Using new HAL with ModusToolbox™ code examples
As discussed in the earlier section, ModusToolbox™ code examples will no longer directly interface with the HAL
drivers. All code examples supporting the PSOC™ Edge family of devices use the new design flow for HAL usage.
In case of middleware usage, the expected flow is as follows:
1. Application initializes and enables the peripheral using configurator-generated PDL configuration

structures or via the PDL APIs
2. Application then sets up the peripheral with a context object using HAL APIs. Note that this step only

initializes the HAL data structures and does not initialize the hardware
3. The HAL object is then passed on to the middleware which performs the requested operations using

configurator-generated HAL API
See the sequence diagram in the Figure 3 for the expected ModusToolbox™ application flow.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Application note 5 002-41775 Rev. **
2025-10-14

Application

Application

Middleware

Middleware

HAL

HAL

PDL

PDL

Middleware interaction
Perform middleware operation

Perform operation(s) on HAL instance

Perform operation(s) on underlying hardware

Operation success

Operation success

Direct hardware interaction
Perform operation on hardware instance

Operation success

Figure 3 Application flow diagram for usage with or without middleware

This application note guides you about the workflows necessary for setting up and using HAL in code examples.
This document covers a high-level overview of necessary concepts for understanding HAL, and provides
pointers to migrate an existing HAL-based code example to new HAL-based approach featuring example code
snippets.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Application note 6 002-41775 Rev. **
2025-10-14

2 Important concepts for understanding HAL

2.1 Typical HAL setup sequence
There are two broad buckets of HAL driver API organization:
• Setup functions: Initialize a HAL object for a specific hardware instance
• Runtime functions: Perform operations after setup (read, write, start, stop, etc.)
This section describes how to use the setup function in PSOC™ Edge applications. The setup function has the
following signature:

mtb_hal_<functional_block>_setup(mtb_hal_<functional_block>_t* obj,
 mtb_hal_<functional_block>_config_t* cfg,
 cy_stc_<functional_block>_context_t* context,
 mtb_hal_clock_t* clock);

Table 2 Setup parameter description

Parameter Description

Pointer to a driver-specific HAL object (for example,
mtb_hal_uart_t*)

You must allocate this object in the application and
then pass it into the setup function. This HAL object
should be treated as a handle and its fields should not
be modified by the application. The setup function
will use this object to initialize the instance for usage
by subsequent runtime HAL functions
You must always pass the same object to all
subsequent runtime APIs for that hardware instance.
If this HAL object is passed into other libraries that use
the HAL, it must be passed as a pointer reference

Pointer to the HAL configuration structure (for
example, mtb_hal_uart_configurator_t*)

This is generally generated by the Infineon Device
Configurator tool at build time for the configured
resource. You can also define this structure at
application level when required. This structure
contains the hardware configuration parameters
needed for HAL operations. The configuration
structures are available in the <application-
directory>/bsps/TARGET_<BSP>/config/
GeneratedSource/ folder
For drivers that support clock configuration, this
structure includes a pointer to an mtb_hal_clock_t
that provides the HAL’s default clock interface
functions

(table continues...)

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
2 Important concepts for understanding HAL

Application note 7 002-41775 Rev. **
2025-10-14

Table 2 (continued) Setup parameter description

Parameter Description

Pointer to the PDL context structure (for example,
cy_stc_scb_uart_context_t*)

Some drivers require this additional context object for
low-level implementation. It is an internal, opaque
object used by the driver. The firmware should not
read from it or write to it
The application is responsible for allocating the
context and passing it by reference to the driver’s
setup and runtime functions. The same context
pointer must also be passed to the PDL initialization
function which is called before the HAL setup
The application must ensure that the allocated
context structure is valid and in scope while the
peripheral instance is in use

Pointer to a custom clock instance (for example,
mtb_hal_clock_t*)

Optional parameter. You may pass this if a custom
clock interface function is required. A common use
case is split responsibilities across security domains:
• The secure partition owns and manages the clock
• The non-secure partition controls the peripheral
If a custom clock interface is not required, you may
pass NULL for this parameter. In this case, the HAL uses
the default clock interface from the HAL configuration
structure

The following is an example code snippet for UART initialization using HAL:

/* Application code starts */

/* Application-owned instances */
mtb_hal_uart_t uart_obj; /* Opaque handle for the UART */
const mtb_hal_config_t* uart_cfg = ... /* Generated by the device configurator */
cy_stc_scb_uart_context_t uart_context = .../* Opaque context structure for PDL */
const mtb_hal_clock_t custom_clock = ... /* Optional custom clock interface */

/* Setup: provide the object, configuration, and optionally a custom clock */
mtb_hal_uart_setup(&uart_obj, &hal_cfg, &uart_context, &custom_clock);

/* If not overriding the clock, pass NULL: */
// mtb_hal_uart_setup(&uart_obj, &hal_cfg, &uart_context, NULL);

/* Application code ends */

/* Middleware code starts */

/* Use the same object for all runtime operations */
mtb_hal_uart_write(&uart_obj, tx_buf, tx_len);
mtb_hal_uart_read(&uart_obj, rx_buf, rx_len);

/* Middleware code ends */

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
2 Important concepts for understanding HAL

Application note 8 002-41775 Rev. **
2025-10-14

For a more detailed discussion, see section Examples for HAL usage with middleware.

2.2 Initialization sequence
The application is responsible for initializing the hardware that middleware libraries will access through the
HAL. You may refer to the retarget-io initialization sequence in the PSOC Edge MCU: Hello World code example.
The HAL instance should be initialized in the following sequence:
1. Initialize the peripheral with the PDL APIs
2. Enable the peripheral using the PDL APIs
3. Set up the corresponding HAL object using the _setup function
4. Initialize the middleware using the same HAL object
5. If applicable, configure and enable the interrupt handler using the PDL APIs
6. If present, register the SysPm callback handler using the PDL APIs
When the Device Configurator is used to set up the hardware, it automatically generates configuration
structures. The application may ignore these generated structures and define them manually if required.

2.3 RTOS integration
Some HAL drivers can behave differently in an RTOS environment, especially for operations that need to wait
for a significant amount of time. In an RTOS-aware configuration, these functions perform waits through the
RTOS API so other threads can continue running. In non-RTOS (bare-metal) environments, they use busy-wait
loops instead. To indicate that an RTOS is in use, enable the RTOS_AWARE component (COMPONENTS+=RTOS_AWARE) in
the project Makefile. When this is set, the HAL uses the RTOS Abstraction APIs to handle waits.
When using the HAL in an RTOS environment with the RTOS_AWARE component enabled, HAL driver setup must
occur after the RTOS has been initialized to ensure that RTOS resources, such as semaphores used by the HAL
drivers, are properly initialized.
It is not safe to invoke more than one operation on the same HAL driver instance at the same time. If multiple
threads access a HAL driver instance, the caller is responsible for enforcing mutual exclusion (for example, with
an RTOS mutex or semaphore) so that only one thread interacts with that instance at any given time.

2.4 SysPm callbacks
Two kinds of APIs exist in the legacy system power management (SysPm) HAL:
1. Power state transitions: The functions like cyhal_syspm_enter_deepsleep() that help in transitioning

across the device’s power mode
2. Callback support: These APIs help to decide if it’s safe to change power modes and to prepare/restore

peripherals around those transitions
The new HAL keeps the power mode transition functions (e.g. ,enter Sleep/DeepSleep) but does not keep the
functions to transition between different active power states like (Low Power (LP), Ultra Low Power (ULP) and
High performance (HP)). Middleware (for example, an RTOS) can call these APIs to enter low-power modes. The
application must take care of all steps (including changing the core voltage and system clock frequencies)
necessary to prepare for or restore after a transition to a low-power state.
The new HAL no longer auto-registers the System Power Management (SysPm) callbacks. It is the application's
responsibility to register callbacks where necessary. The PDL provides ready-made, default callback
implementations for common peripherals. The Device Utilities (device-utils) handles the pre-defined SysPm
callback implementations for peripherals which require special handling when the MCU enters or exits
DeepSleep. This helps in having a reliable and controlled power management experience.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
2 Important concepts for understanding HAL

Application note 9 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/mtb-example-psoc-edge-hello-world
https://github.com/Infineon/abstraction-rtos

2.5 Clock management
The application is responsible for setting up and initializing clocks, either directly through PDL API or through
Device Configurator GUI. Some HAL drivers may need to adjust a clock at run time (for example, changing a
UART baud rate). To enable this, each driver’s _setup function accepts an optional mtb_hal_clock_t pointer that
provides a clock interface the driver can use. See section Initialization sequence for details.
There are now two ways to provide the clock interface
• The configurator generates a structure (often referenced as _hal_config) for all initialized peripherals that

includes a pointer to the HAL’s default clock interface (mtb_hal_clock_t). If no custom clock interface is
supplied (parameter passed as NULL), the driver will use this default interface automatically. This is ideal for
simple applications that don’t need special clock handling

• In case custom clock control is required for a peripheral, you must pass the relevant custom clock interface
to the _setup function. A common use case is when the secure partition owns clock management, while a
non-secure partition owns the peripheral. The custom clock interface can enforce that separation

2.6 Interrupt handling
HAL drivers that support interrupt handling expose a function to process peripheral interrupts (commonly
named process_interrupts or _process_interrupt). Any middleware that relies on such a HAL driver provides its
own wrapper around the driver’s interrupt-processing functions.
For every peripheral instance used by a middleware (and typically for instances the application uses directly as
well), the application is responsible for implementing and registering the interrupt handler. That handler must
invoke the corresponding middleware-level interrupt processing function for that specific instance. This
instance-by-instance linkage ensures that interrupts are routed correctly, preserves the separation of concerns
among the application, middleware, and HAL, and keeps the interrupt path consistent across the code base.
See Figure 4 for a sequence diagram on the interrupt handling mechanism in Modustoolbox™ applications
which use HAL through middlewares.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
2 Important concepts for understanding HAL

Application note 10 002-41775 Rev. **
2025-10-14

Figure 4 Interrupt handling using HAL

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
2 Important concepts for understanding HAL

Application note 11 002-41775 Rev. **
2025-10-14

3 Guide to migrate code examples from legacy HAL-based
code examples

This section provides tips and suggestions to migrate existing HAL-based code examples to either completely
PDL-based or PDL with HAL for middleware setup. All PSOC™ Edge code examples available in ModusToolbox™

already follow this strategy.
The legacy Infineon HAL provided a generic interface which was supposed to be used across multiple MCU
product families. This was achieved by having the HAL as a layer built on top of platform-specific Peripheral
Driver Libraries (PDL). In the legacy implementation, most of the HAL APIs were wrapping PDL APIs to achieve
the desired functionality (see the PDL API reference guide for details). While the new HAL is focused on the
needs of middleware libraries, it can be used by an application if the functionality provided meets the
application needs.

This section takes the GPIO library functions as an example because they are widely used in applications. Some
inline functions (like read, write, and toggle) can directly be mapped from legacy HAL to PDL as shown in the
table below.

Table 3 Legacy HAL mapping to PDL

Legacy HAL PDL

cyhal_gpio_write(pin,value) Cy_GPIO_Write(port,pin,value)

cyhal_gpio_read(pin) Cy_GPIO_Read(port,pin)

cyhal_gpio_toggle(pin) Cy_GPIO_Inv(port, pin)

Other complex functions (like initialization) might not find an exact one-to-one mapping with PDL. You can use
the Infineon ModuToolbox™ Device Configurator to initialize and use the peripheral or you may write up your
own custom configuration for the initialization of peripherals in the application code using PDL APIs.
To configure a GPIO using ModuToolbox™ Device Configurator, follow the steps:
1. Open Device Configurator and navigate to the Pins tab and select the port and pin which need to be

configured

Figure 5 Select the port and pin number for the GPIO
2. Click the checkbox to enable the pin. All pins have a default alias which is used as reference in the

configuration structures and application code. You may optionally define a custom alias for your pin
3. When the pin is selected, use the Parameters pane to define the configurations for the pin like the drive

mode, drive strength, and slew rate.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 12 002-41775 Rev. **
2025-10-14

Figure 6 Define the configurations in the Parameters pane
4. The pin is now enabled and set up with the desired configurations. You can use the same alias to use the

pin
A GPIO can also be configured using PDL bypassing the Device Configurator. In this case, you will need to write
your own configuration structure and use it in the application code. See the following code snippet for
reference.

static const cy_stc_gpio_pin_config_t LED1_config =
{
 .outVal = 0u, /* Start low (adjust to 1u if LED is active-low and
you want it off) */
 .driveMode = CY_GPIO_DM_STRONG, /* Push-pull output */
 .hsiom = HSIOM_SEL_GPIO, /* Route to GPIO function */
 .slewRate = CY_GPIO_SLEW_FAST, /* Optional: fast edge rate */
 .driveSel = CY_GPIO_DRIVE_1_2, /* Optional: 1/2 drive to reduce EMI/current */
 .nonSec = 1u /* Mark pin as Non-Secure */
 /* All other fields left at default (0): interrupts disabled, default thresholds, etc. */
};

/* Initialize the LED pin with the configuration structure. */
Cy_GPIO_Pin_Init(CYBSP_USER_LED1_PORT, CYBSP_USER_LED1_PIN, &LED1_config);

/* Toggle the LED */
Cy_GPIO_Inv(CYBSP_USER_LED1_PORT, CYBSP_USER_LED1_PIN);

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 13 002-41775 Rev. **
2025-10-14

3.1 Examples for HAL usage with middleware
This section discusses the setup and usage of the new HAL with examples which are commonly used in PSOC™

Edge code examples.

3.1.1 Retarget-io setup (UART usage)
Retarget-io is a utility library to retarget the standard input/output (STDIO) messages to a UART port. With this
library, you can directly print messages on a UART terminal using printf(). You can specify the TX pin, RX pin,
and the baud rate when configuring the UART. See this library on GitHub: https://github.com/Infineon/retarget-
io.
You may refer to the PSOC Edge MCU: Hello World code example for a demonstration of using the UART HAL
with the retarget-io middleware.
1. As the first step, enable the SCB2 peripheral under the Peripherals tab in the Device Configurator and

select UART as the mode of operation. On PSOC™ Edge E84 evaluation kit, SCB2 is connected to the
KitProg UART bridge. Note that the SCB2 peripheral is enabled by default and configured in the BSP with
the alias CYBSP_DEBUG_UART as shown in the following figure

Figure 7 SCB2 peripheral aliased and configured for UART operation

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 14 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/retarget-io
https://github.com/Infineon/retarget-io
https://github.com/Infineon/mtb-example-psoc-edge-hello-world

2. Configure the SCB2 block to be used as UART with the following set of configurations in the Parameters
pane. Configuration includes the clock source configuration for the UART peripheral, UART TX and RX
pins, CTS/RTS pins if flow control is desired, baud rate, and other UART config parameters

Figure 8 UART configuration parameters

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 15 002-41775 Rev. **
2025-10-14

3. Set up the clock divider value depending on the desired baud rate in the Clocks tab as shown in the
following figure. This setting is already configured with the 16-bit divider 1 clock divider in the default
BSP

Figure 9 UART clock divider
4. Import the 'retarget-io' middleware library using ModusToolbox™ Library Manager. See [1] on steps to

add libraries to projects
5. Once imported, add #include "cy_retarget_io.h" inclusion in the application source file
6. Create and use the HAL object DEBUG_UART_hal_obj to set up the UART HAL and pass the same object to

initialize the retarget-io middleware
7. Follow the steps as highlighted in the section Initialization sequence to initialize and set up the SCB

UART
a. Initialize the SCB UART

result = (cy_rslt_t)Cy_SCB_UART_Init(CYBSP_DEBUG_UART_HW,
 &CYBSP_DEBUG_UART_config,
 &DEBUG_UART_context);

/* Check Result */

b. Enable the UART peripheral

Cy_SCB_UART_Enable(CYBSP_DEBUG_UART_HW);

c. Set up the HAL UART object

result = mtb_hal_uart_setup(&DEBUG_UART_hal_obj,
 &CYBSP_DEBUG_UART_hal_config,
 &DEBUG_UART_context, NULL);
/* Check result */

8. Initialize the middleware using the HAL object

result = cy_retarget_io_init(&DEBUG_UART_hal_obj);
/* Check result */

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 16 002-41775 Rev. **
2025-10-14

9. If required, register a callback to handle the transitions to low-power modes. If the system idle power
mode is set as Sleep or Deep Sleep, it is essential to register the SysPm callback for the peripheral.
This can be done by registering with Cy_SysPm_RegisterCallback either the predefined callbacks from
the SysPm callbacks under Device Utilities (device-utils) library or a new callback function specific to
your application needs. This callback will manage the necessary procedures for the peripheral while
transitioning in and out of low-power modes like Sleep or Deep Sleep gracefully. For more information,
refer to Cy_SysPm_RegisterCallback in PDL documentation. See the PSOC Edge MCU: Hello World code
example for SysPm callback implementation for the retarget-io middleware

10. Start printing to UART using printf()

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 17 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/mtb-example-psoc-edge-hello-world/blob/master/proj_cm33_ns/retarget_io_init.c#L55

See the following code snippets for implementation details.

/* For the RetargetIO (Debug UART) usage. */
static cy_stc_scb_uart_context_t DEBUG_UART_context;
static mtb_hal_uart_t DEBUG_UART_hal_obj;

/* Retarget-io deepsleep callback parameters */
#if (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP)

/* Context reference structure for Debug UART */
static mtb_syspm_uart_deepsleep_context_t retarget_io_syspm_ds_context =
{
 .uart_context = &DEBUG_UART_context,
 .async_context = NULL,
 .tx_pin =
 {
 .port = CYBSP_DEBUG_UART_TX_PORT,
 .pinNum = CYBSP_DEBUG_UART_TX_PIN,
 .hsiom = CYBSP_DEBUG_UART_TX_HSIOM
 },
 .rts_pin =
 {
 .port = DEBUG_UART_RTS_PORT,
 .pinNum = DEBUG_UART_RTS_PIN,
 .hsiom = HSIOM_SEL_GPIO
 }
};

/* SysPm callback parameter structure for Debug UART */
static cy_stc_syspm_callback_params_t retarget_io_syspm_cb_params =
{
 .context = &retarget_io_syspm_ds_context,
 .base = CYBSP_DEBUG_UART_HW
};

/* SysPm callback structure for Debug UART */
static cy_stc_syspm_callback_t retarget_io_syspm_cb =
{
 .callback = &mtb_syspm_scb_uart_deepsleep_callback,
 .skipMode = SYSPM_SKIP_MODE,
 .type = CY_SYSPM_DEEPSLEEP,
 .callbackParams = &retarget_io_syspm_cb_params,
 .prevItm = NULL,
 .nextItm = NULL,
 .order = SYSPM_CALLBACK_ORDER
};
#endif /* (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP) */

void init_retarget_io(void)
{

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 18 002-41775 Rev. **
2025-10-14

 cy_rslt_t result = CY_RSLT_SUCCESS;

 /* Initialize the SCB UART */
 result = (cy_rslt_t)Cy_SCB_UART_Init(CYBSP_DEBUG_UART_HW,
 &CYBSP_DEBUG_UART_config,
 &DEBUG_UART_context);

 /* UART initialization failed. Stop program execution. */
 if (CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }

 /* Enable the SCB UART */
 Cy_SCB_UART_Enable(CYBSP_DEBUG_UART_HW);

 result = mtb_hal_uart_setup(&DEBUG_UART_hal_obj,
 &CYBSP_DEBUG_UART_hal_config,
 &DEBUG_UART_context, NULL);

 /* UART setup failed. Stop program execution. */
 if (CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }

 /* Initialize retarget-io to use the debug UART port. */
 result = cy_retarget_io_init(&DEBUG_UART_hal_obj);

 /* retarget-io initialization failed. Stop program execution. */
 if (CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }

#if (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP)
 /* UART SysPm callback registration for retarget-io */
 Cy_SysPm_RegisterCallback(&retarget_io_syspm_cb);
#endif /* (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP) */
}

3.1.2 BMI 270 motion sensor (I2C usage)
The BMI270 inertial measurement unit (IMU) motion sensor library provides functions for interfacing with the
Bosch BMI270 I2C 16-bit inertial measurement unit (IMU) with 3-axis accelerometer and 3-axis gyroscope. The
sensor-motion-bmi270 is a middleware library and can be set up to be used with the new HAL workflow. The
Bosch BMI270 sensor is available on the PSOC™ Edge E84 Evaluation Kit and is interfaced to the MCU through
I2C (SCB0). The same sensor may connect to some other I2C instance on a different evaluation board. See the
board documentation for details. See this library on GitHub: https://github.com/Infineon/sensor-motion-
bmi270.
You may refer to the PSOC Edge MCU: Sensor hub data acquisition code example for a demonstration of using
the I2C HAL with the BMI 270 motion sensor library.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 19 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/sensor-motion-bmi270
https://github.com/Infineon/sensor-motion-bmi270
https://github.com/Infineon/mtb-example-psoc-edge-sensor-hub-data-acquisition

1. As the first step, enable the SCB0 peripheral under the Peripherals tab in the Device Configurator and
select I2C as the mode of operation. Note that the SCB0 peripheral is enabled by default and configured
in the BSP with the alias CYBSP_I2C_CONTROLLER

2. Configure the SCB2 block to be used as I2C with the following set of configurations in the Parameters
pane. Configurations include the I2C mode, data rate, Clock , SCL and SDA connections

Figure 10 I2C configuration parameters
3. Import the sensor-motion-bmi270 middleware library using ModusToolbox™ Library Manager. See [1] on

steps to add libraries to projects
4. Once imported, Add #include "mtb_bmi270.h" inclusion in the application source file
5. Create and use the CYBSP_I2C_CONTROLLER_hal_obj HAL object to set up the I2C HAL and pass the same

object to initialize the sensor-motion-bmi270 middleware
6. Follow the steps as highlighted in the section "Initialization sequence" to initialize and set up SCB I2C

a. Initialize SCB I2C

initStatus = Cy_SCB_I2C_Init(CYBSP_I2C_CONTROLLER_HW,
 &CYBSP_I2C_CONTROLLER_config,
 &CYBSP_I2C_CONTROLLER_context);
/* Check result */

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 20 002-41775 Rev. **
2025-10-14

b. Enable the I2C peripheral

Cy_SCB_I2C_Enable(CYBSP_I2C_CONTROLLER_HW);

c. Set up the HAL I2C object

result = mtb_hal_i2c_setup(&CYBSP_I2C_CONTROLLER_hal_obj,
 &CYBSP_I2C_CONTROLLER_hal_config,
 &CYBSP_I2C_CONTROLLER_context,
 NULL);
/* Check result */

7. Initialize the middleware using the HAL object

result = mtb_bmi270_init_i2c(&bmi270,
 &CYBSP_I2C_CONTROLLER_hal_obj,
 MTB_BMI270_ADDRESS_DEFAULT);
/* Check result */

8. Configure the sensor and use it in the application code

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 21 002-41775 Rev. **
2025-10-14

See the following code snippets for implementation details.

/* HAL objects for sensor-motion-bmi270 library. */
static mtb_hal_i2c_t CYBSP_I2C_CONTROLLER_hal_obj;
cy_stc_scb_i2c_context_t CYBSP_I2C_CONTROLLER_context;

{
 initStatus = Cy_SCB_I2C_Init(CYBSP_I2C_CONTROLLER_HW,
 &CYBSP_I2C_CONTROLLER_config,
 &CYBSP_I2C_CONTROLLER_context);
 /* I2C initialization failed. Stop program execution. */
 if (CY_SCB_I2C_SUCCESS != initStatus)
 {
 handle_app_error();
 }
 Cy_SCB_I2C_Enable(CYBSP_I2C_CONTROLLER_HW);
 result = mtb_hal_i2c_setup(&CYBSP_I2C_CONTROLLER_hal_obj,
 &CYBSP_I2C_CONTROLLER_hal_config,
 &CYBSP_I2C_CONTROLLER_context,
 NULL);
 /* HAL I2C setup failed. Stop program execution. */
 if (CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }
 /* Initialize can configure platform-dependent function pointers. */
 result = mtb_bmi270_init_i2c(&bmi270,
 &CYBSP_I2C_CONTROLLER_hal_obj,
 MTB_BMI270_ADDRESS_DEFAULT);

 /* BMI270 sensor initialization failed. Stop program execution. */
 if (CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }
}

3.1.3 LPTimer setup for use with abstraction RTOS library
The RTOS abstraction layer provides a simple RTOS-agnostic implementation of common RTOS services such
as threads, semaphores, mutexes, queues, and timers. See this library on GitHub: https://github.com/Infineon/
abstraction-rtos.
For PSOC™ Edge code examples based on FreeRTOS, the tickless idle mode must be implemented for power
saving in Deep Sleep by setting up the LPTimer instance in the application. The RTOS interface will be treated
as a middleware. An HAL object will be passed to the abstraction RTOS library. In this example, the LPTimer
instance is set up for the CM33 CPU. A similar setup must be done on the CM55 side using another instance of
LPTimer.
You may refer to the PSOC Edge MCU: Empty application code example for a demonstration of using the
LPTimer with the BMI 270 motion sensor library.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 22 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/abstraction-rtos
https://github.com/Infineon/abstraction-rtos
https://github.com/Infineon/mtb-example-psoc-edge-empty-app

1. As the first step, enable the Multi-Counter Watchdog TImer (MCWDT) 0 peripheral under the Peripherals
tab in the Device Configurator. Note that the MCWDT0 peripheral is enabled by default and configured in
the BSP Device Configurator with the alias CYBSP_CM33_LPTIMER_0. MCWDT0 instance is meant to be used
with CM33 CPU while the MCWDT1 instance should be used with CM55 CPU as also indicated by the alias

2. Configure the MCWDT0 block with the following set of configurations in the Parameters pane:

Figure 11 LPTimer configuration parameters
3. The abstraction-rtos middleware library is a dependent library for the FreeRTOS middleware library. It

is therefore automatically fetched when FreeRTOS is added to the code example. See [1] on steps to add
libraries to projects

4. Include the header files for the abstraction-rtos library in the application source file: - #include
"cyabs_rtos.h"

5. Create and use the HAL object lptimer_obj to set up the LPTimer HAL and pass the same object to
initialize the abstraction-rtos middleware

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 23 002-41775 Rev. **
2025-10-14

6. Follow the steps as highlighted in the "Initialization sequence" section to initialize and set up the
LPTimer0 instance
a. Initialize the LPTimer interrupt and interrupt handler as necessary

/* Interrupt configuration structure for LPTimer */
cy_stc_sysint_t lptimer_intr_cfg =
{
 .intrSrc = CYBSP_CM33_LPTIMER_0_IRQ,
 .intrPriority = APP_LPTIMER_INTERRUPT_PRIORITY
};

/* Initialize the LPTimer interrupt and specify the interrupt handler. */
cy_en_sysint_status_t interrupt_init_status =
 Cy_SysInt_Init(&lptimer_intr_cfg,
 lptimer_interrupt_handler);

/* LPTimer interrupt initialization failed. Stop program execution. */
if(CY_SYSINT_SUCCESS != interrupt_init_status)
{
 handle_app_error();
}

b. Initialize the MCWDT0 peripheral block

/* Initialize the MCWDT block */
cy_en_mcwdt_status_t mcwdt_init_status =
 Cy_MCWDT_Init(CYBSP_CM33_LPTIMER_0_HW,
 &CYBSP_CM33_LPTIMER_0_config);

/* MCWDT initialization failed. Stop program execution. */
if(CY_MCWDT_SUCCESS != mcwdt_init_status)
{
 handle_app_error();
}

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 24 002-41775 Rev. **
2025-10-14

c. Enable the MCWDT0 instance

/* Enable MCWDT instance */
Cy_MCWDT_Enable(CYBSP_CM33_LPTIMER_0_HW,
 CY_MCWDT_CTR_Msk,
 LPTIMER_0_WAIT_TIME_USEC);

d. Set up the LPTimer HAL object

* Setup LPTimer using the HAL object and desired configuration as defined
* in the device configurator. */
cy_rslt_t result = mtb_hal_lptimer_setup(&lptimer_obj,
 &CYBSP_CM33_LPTIMER_0_hal_config);

/* LPTimer setup failed. Stop program execution. */
if(CY_RSLT_SUCCESS != result)
{
 handle_app_error();
}

7. Initialize the middleware using the HAL object

/* Pass the LPTimer object to abstraction RTOS library that implements
* tickless idle mode */
cyabs_rtos_set_lptimer(&lptimer_obj);

8. LPTimer is now set up to enable tickless idle mode

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 25 002-41775 Rev. **
2025-10-14

See the following code snippet for implementation details.

/* LPTimer HAL object */
static mtb_hal_lptimer_t lptimer_obj;

static void lptimer_interrupt_handler(void)
{
 mtb_hal_lptimer_process_interrupt(&lptimer_obj);
}

static void setup_tickless_idle_timer(void)
{
 /* Interrupt configuration structure for LPTimer */
 cy_stc_sysint_t lptimer_intr_cfg =
 {
 .intrSrc = CYBSP_CM33_LPTIMER_0_IRQ,
 .intrPriority = APP_LPTIMER_INTERRUPT_PRIORITY
 };

 /* Initialize the LPTimer interrupt and specify the interrupt handler. */
 cy_en_sysint_status_t interrupt_init_status =
 Cy_SysInt_Init(&lptimer_intr_cfg,
 lptimer_interrupt_handler);

 /* LPTimer interrupt initialization failed. Stop program execution. */
 if(CY_SYSINT_SUCCESS != interrupt_init_status)
 {
 handle_app_error();
 }

 /* Enable NVIC interrupt. */
 NVIC_EnableIRQ(lptimer_intr_cfg.intrSrc);

 /* Initialize the MCWDT block */
 cy_en_mcwdt_status_t mcwdt_init_status =
 Cy_MCWDT_Init(CYBSP_CM33_LPTIMER_0_HW,
 &CYBSP_CM33_LPTIMER_0_config);

 /* MCWDT initialization failed. Stop program execution. */
 if(CY_MCWDT_SUCCESS != mcwdt_init_status)
 {
 handle_app_error();
 }

 /* Enable MCWDT instance */
 Cy_MCWDT_Enable(CYBSP_CM33_LPTIMER_0_HW,
 CY_MCWDT_CTR_Msk,
 LPTIMER_0_WAIT_TIME_USEC);

 /* Setup LPTimer using the HAL object and desired configuration as defined

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 26 002-41775 Rev. **
2025-10-14

 * in the device configurator. */
 cy_rslt_t result = mtb_hal_lptimer_setup(&lptimer_obj,
 &CYBSP_CM33_LPTIMER_0_hal_config);

 /* LPTimer setup failed. Stop program execution. */
 if(CY_RSLT_SUCCESS != result)
 {
 handle_app_error();
 }

 /* Pass the LPTimer object to abstraction RTOS library that implements
 * tickless idle mode */
 cyabs_rtos_set_lptimer(&lptimer_obj);
}

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
3 Guide to migrate code examples from legacy HAL-based code examples

Application note 27 002-41775 Rev. **
2025-10-14

4 Summary
This guide introduces Infineon’s redesigned Hardware Abstraction Layer (HAL) for PSOC™ Edge and how to use
it effectively. The new HAL is streamlined and middleware-focused; therefore, you should not use it directly in
an application. Device setup, resource management, pins, clocks, and higher-level configuration are handled
explicitly by the Peripheral Driver Library (PDL) and the Device Configurator, with device-specific details
centralized in a device support library. The redesign clarifies layering, separates configuration from
initialization, moves device-dependent behavior down to PDL, thereby improving transparency, predictability,
and debuggability. HAL’s role is to support portability and a consistent API for middleware once the hardware is
already configured.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
4 Summary

Application note 28 002-41775 Rev. **
2025-10-14

References
[1] Infineon Technologies AG: AN235935 - Getting started with PSOC™ Edge E8 MCU on ModusToolbox™

software; Available online

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
References

Application note 29 002-41775 Rev. **
2025-10-14

https://www.infineon.com/AN235935

Revision history
Document
revision

Date Description of changes

** 2025-10-14 Initial release

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
Revision history

Application note 30 002-41775 Rev. **
2025-10-14

Trademarks
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.
PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU
Trademarks

Application note 31 002-41775 Rev. **
2025-10-14

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-10-14
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-vmt1758564423034

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)
	1.1 What is the new HAL?
	1.2 Using new HAL with ModusToolbox™ code examples

	2 Important concepts for understanding HAL
	2.1 Typical HAL setup sequence
	2.2 Initialization sequence
	2.3 RTOS integration
	2.4 SysPm callbacks
	2.5 Clock management
	2.6 Interrupt handling

	3 Guide to migrate code examples from legacy HAL-based code examples
	3.1 Examples for HAL usage with middleware
	3.1.1 Retarget-io setup (UART usage)
	3.1.2 BMI 270 motion sensor (I2C usage)
	3.1.3 LPTimer setup for use with abstraction RTOS library

	4 Summary
	References
	Revision history
	Trademarks
	Disclaimer

