AN241775 (infineon

Getting started with Hardware Abstraction Layer
(HAL) on PSOC™ Edge MCU

About this document
Scope and purpose

This document introduces the new Hardware Abstraction Layer (HAL) library for Infineon PSOC™ Edge MCUs.
Intended audience

This document is intended for users who are looking to migrate their applications to use the new HAL library or
use it in their applications in ModusToolbox™ applications.

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-41775 Rev. **
www.infineon.com 2025-10-14

https://www.infineon.com

o~ .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

Table of contents

Table of contents

Aboutthisdocument 1

Table of contents i i e 2
1 Introduction to Infineon’s new Hardware AbstractionLayer (HAL) 3
1.1 What isthe NeW HAL? .. e et et e 4
1.2 Using new HAL with ModusToolbox™ code examples ..ottt 5
2 Important concepts forunderstanding HAL i ittt 7
2.1 TYPICal HAL SetUP SEQUENCE . . ettt et e ettt ettt e ettt et aeaeees 7
2.2 INitialiZation SEQUENCE ittt e e e e 9
2.3 RTOS INtegration e e e 9
2.4 SYSPM Callbacks . .o ot e e e e 9
2.5 Clock Managementt e e e 10
2.6 Interrupt handling 10
3 Guide to migrate code examples from legacy HAL-based codeexamples................. 12
3.1 Examples for HAL usage with middleware......... ..o e e 14
311 Retarget-io SetUpP (UART USAZE) . .ottt e ettt et e e e eaens 14
3.1.2 BMI 270 MOtion SENSOI (I2C USAZE) -« v v v v vttt et ettt et et e e et ei e aeeas 19
3.1.3 LPTimer setup for use with abstraction RTOS library 22
4 QUMM AN Y ..ottt ittt et ettt ettt et e e 28

RE I ENCES o e e 29

ReVISION MiStOrY e e e 30

Trademarks e e e 31

DiSClaiMer . .. e 32
Application note 2 002-41775 Rev. **

2025-10-14

o~ _.
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ < |n f| neon

Edge MCU

1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

1 Introduction to Infineon’s new Hardware Abstraction Layer
(HAL)

The Infineon device support library combines content from several distinct software packages into a single
package which includes the following software packages: The Peripheral Driver library (PDL), Device utilities,
Device information and Hardware abstraction Layer (HAL). Figure 1 shows a high-level overview of the software
stack used in a ModusToolbox™ application.

Applications

Code Examples Reference Designs
Project Creator

Libraries (Middleware)

Library Manager

HMI/CAPSENSE™ Voice/Audio Connectivity Security

Machine Learning Wi-Fi and Bluetooth® Core Libraries

Board Support Packages (BSPs) Configurators
and Tuners

Device Support Library

Git and Make

Peripheral Driver Hardware Abstraction Build system

Device Information

Device Utilities

Library (PDL) Layer (HAL)

Figure 1 ModusToolbox™ software stack

The Infineon Hardware Abstraction Layer (HAL) for PSOC™ Edge device family has undergone significant
changes compared to the legacy HAL supported for PSOC™ 6 and other device families, refocusing on the needs
of middleware and streamlining its functionality.

The new HAL eliminates unnecessary APIs and drivers, de-emphasizing its usage in the application layer while
focusing on middleware support. Configuration can be handled via the Device Configurator, with initialization
performed by the Peripheral Driver Library (PDL). Hardware resource management, peripheral initialization and
routing configurations including pins and clocks, and other higher-level functionalities, previously abstracted
by legacy HAL, is now completely handled at the PDL level, with improved transparency and customization.
Some of these responsibilities are handled by the configurator tools running on the desktop. The tasks which
previously consumed MCU resources to perform at runtime are now performed once at the design configuration
stage itself, thereby improving runtime performance.

The HAL now focuses on portability, providing a consistent interface across different hardware platforms. This

guide will walk users through the changes, new procedures, and best practices for using the updated HAL,
ensuring a smooth transition and optimal performance.

Application note 3 002-41775 Rev. **
2025-10-14

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU

infineon

1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

1.1

What is the new HAL?

The functionality of legacy HAL is now split into different components as shown in Figure 2.

Legacy HAL
Peripheral Peripheral
config Initialization
HAL HAL runtime
initialization APIs
Pin Mapping
HAL interrupt SysPm
handlers callbacks
Async transfers IPC HAL

Hardware
Resource
Management

PDL default
SysPm
callbacks

Application code

Peripheral

Configurators

Peripheral
configuration

Hardware
Resource
management

Pin mapping

Clock
configuration

Initialization

Application
defined SysPm
callbacks

New HAL

HAL runtime
APIs

HAL

Helper Libraries

Async transfer
utility

IPC library

initialization

HAL interrupt
handlers

Figure 2

Comparison between legacy and new HAL

Table 1 below captures the high-level functional differences between legacy and new HAL and also establishes

the reasoning behind the update.

Table 1

Comparison between legacy and new HAL

Parameter

Legacy HAL

new HAL

Purpose and layering clarity

Legacy HAL often blended
features and hidden setup steps
that sometimes hid what was
happening at the device level

The new HAL becomes a separate
layer focused on serving the
middleware

Configuration and initialization split

The configuration and initialization
patterns were often mixed, or done
via HAL helpers that abstracted
device setup

The new HAL expects that the
resource must be enabled eitherin
the configurator or directly in the
application code using PDL APIs.
Middleware talks to a consistent
HAL APl once the device is set up

(table continues...)

Application note

002-41775 Rev. **
2025-10-14

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU

afineon

1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Table 1

(continued) Comparison between legacy and new HAL

Parameter

Legacy HAL

new HAL

Moving functionality down to PDL

Some higher-level functionality
lived in the HAL, potentially
masking device differences

This new design re-centers device-
dependent behavior in the PDL
layer, where it belongs. This
improves predictability,
performance tuning, and debug
experience of applications

Some high-level HAL functionality
(like IPC and Async Transfer) is split
into separate libraries that can be
used together with either HAL or
PDL

Enables transparency

The legacy HAL relied on
behind-the-scenes 'magic’ like
auto-allocation, implicit power or
clock steps

The new HAL defines explicit code
paths and clearer control. This
helps certification, analysis, and
maintenance specially for safety
and security sensitive applications

1.2 Using new HAL with ModusToolbox™ code examples

As discussed in the earlier section, ModusToolbox™ code examples will no longer directly interface with the HAL
drivers. All code examples supporting the PSOC™ Edge family of devices use the new design flow for HAL usage.

In case of middleware usage, the expected flow is as follows:
1. Application initializes and enables the peripheral using configurator-generated PDL configuration

structures or via the PDL APIs

2. Application then sets up the peripheral with a context object using HAL APIs. Note that this step only
initializes the HAL data structures and does not initialize the hardware

3. The HAL object is then passed on to the middleware which performs the requested operations using
configurator-generated HAL API

See the sequence diagram in the Figure 3 for the expected ModusToolbox™ application flow.

Application note

002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)

Middleware HAL PDL
Appllcgtlon

= ‘ 1 1
Middleware interaction) ! ! !
Perform middleware operation ! | !
i | |
Perform operation(s) on HAL instance o | |
- |
Perform operation(s) on underlying hardware !
Operationsuccess o
|
Operation success I
... |
T
Direct hardware interaction J i |
| |
Perform operation on hardware instafite ! !
|
Operation success I l
.. e oo eeeeeeemoeeeeemeeeeseceessemcessssstesessoceisseceeseeeeean
T

I
Application Middleware m m

Figure 3 Application flow diagram for usage with or without middleware

This application note guides you about the workflows necessary for setting up and using HAL in code examples.
This document covers a high-level overview of necessary concepts for understanding HAL, and provides
pointers to migrate an existing HAL-based code example to new HAL-based approach featuring example code
snippets.

Application note 6 002-41775 Rev. **
2025-10-14

o~ .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

2 Important concepts for understanding HAL

2 Important concepts for understanding HAL

2.1 Typical HAL setup sequence

There are two broad buckets of HAL driver APl organization:
« Setup functions: Initialize a HAL object for a specific hardware instance
« Runtime functions: Perform operations after setup (read, write, start, stop, etc.)

This section describes how to use the setup function in PSOC™ Edge applications. The setup function has the
following signature:

mtb_hal_<functional_block>_setup(mtb_hal <functional_block>_t* obj
mtb_hal_<functional_block>_config t* cfg
cy_stc_<functional_block>_context_t* context
mtb_hal_clock_t* clock

Table 2 Setup parameter description

Parameter Description

Pointer to a driver-specific HAL object (for example, You must allocate this object in the application and

mtb_hal_uart_t*) then pass it into the setup function. This HAL object
should be treated as a handle and its fields should not
be modified by the application. The setup function
will use this object to initialize the instance for usage
by subsequent runtime HAL functions
You must always pass the same object to all
subsequent runtime APIs for that hardware instance.
If this HAL object is passed into other libraries that use
the HAL, it must be passed as a pointer reference

Pointer to the HAL configuration structure (for This is generally generated by the Infineon Device

example, mtb_hal_uart_configurator_t*) Configurator tool at build time for the configured

resource. You can also define this structure at
application level when required. This structure
contains the hardware configuration parameters
needed for HAL operations. The configuration
structures are available in the <application-
directory>/bsps/TARGET_<BSP>/config/
GeneratedSource/ folder

For drivers that support clock configuration, this
structure includes a pointer to an mtb_hal_clock_t
that provides the HAL’s default clock interface
functions

(table continues...)

Application note 7 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

2 Important concepts for understanding HAL

Table 2 (continued) Setup parameter description

Parameter Description

Pointer to the PDL context structure (for example, Some drivers require this additional context object for
cy_stc_scb_uart_context_t*) low-level implementation. It is an internal, opaque

object used by the driver. The firmware should not
read from it or write to it

The application is responsible for allocating the
context and passing it by reference to the driver’s
setup and runtime functions. The same context
pointer must also be passed to the PDL initialization
function which is called before the HAL setup

The application must ensure that the allocated
context structure is valid and in scope while the
peripheral instance is in use

Pointer to a custom clock instance (for example, Optional parameter. You may pass this if a custom
mtb_hal_clock_t*) clock interface function is required. A common use
case is split responsibilities across security domains:

+ Thesecure partition owns and manages the clock
« The non-secure partition controls the peripheral

If a custom clock interface is not required, you may
pass NULL for this parameter. In this case, the HAL uses
the default clock interface from the HAL configuration
structure

The following is an example code snippet for UART initialization using HAL:

/* Application code starts */

/* Application-owned instances */

mtb_hal_uart_t uart_obj; /* Opaque handle for the UART */

const mtb_hal_config_t* uart_cfg = ... /* Generated by the device configurator */
cy_stc_scb_uart_context_t uart_context = .../* Opaque context structure for PDL */
const mtb_hal_clock_t custom_clock = ... /* Optional custom clock interface */

/* Setup: provide the object, configuration, and optionally a custom clock */
mtb_hal_uart_setup(&uart_obj, &hal_cfg, &uart_context, &custom_clock);

/* If not overriding the clock, pass NULL: */
// mtb_hal_uart_setup(&uart_obj, &hal_cfg, &uart_context, NULL);

/* Application code ends */

/* Middleware code starts */

/* Use the same object for all runtime operations */
mtb_hal_uart_write(&uart_obj, tx_buf, tx_len);

mtb_hal_uart_read(&uart_obj, rx_buf, rx_len);

/* Middleware code ends */

Application note 8 002-41775 Rev. **
2025-10-14

o~ .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

2 Important concepts for understanding HAL

For a more detailed discussion, see section Examples for HAL usage with middleware.

2.2 Initialization sequence

The application is responsible for initializing the hardware that middleware libraries will access through the
HAL. You may refer to the retarget-io initialization sequence in the PSOC Edge MCU: Hello World code example.
The HAL instance should be initialized in the following sequence:

Initialize the peripheral with the PDL APIs

Enable the peripheral using the PDL APIs

Set up the corresponding HAL object using the _setup function

Initialize the middleware using the same HAL object

If applicable, configure and enable the interrupt handler using the PDL APIs

If present, register the syspm callback handler using the PDL APIs

oS, hwbhe

When the Device Configurator is used to set up the hardware, it automatically generates configuration
structures. The application may ignore these generated structures and define them manually if required.

2.3 RTOS integration

Some HAL drivers can behave differently in an RTOS environment, especially for operations that need to wait
for a significant amount of time. In an RTOS-aware configuration, these functions perform waits through the
RTOS API so other threads can continue running. In non-RTOS (bare-metal) environments, they use busy-wait
loops instead. To indicate that an RTOS is in use, enable the RT0S_AWARE component (COMPONENTS+=RTOS_AWARE) in
the project Makefile. When this is set, the HAL uses the RTOS Abstraction APIs to handle waits.

When using the HAL in an RTOS environment with the RTOS_AWARE component enabled, HAL driver setup must
occur after the RTOS has been initialized to ensure that RTOS resources, such as semaphores used by the HAL
drivers, are properly initialized.

Itis not safe to invoke more than one operation on the same HAL driver instance at the same time. If multiple
threads access a HAL driver instance, the caller is responsible for enforcing mutual exclusion (for example, with
an RTOS mutex or semaphore) so that only one thread interacts with that instance at any given time.

2.4 SysPm callbacks

Two kinds of APIs exist in the legacy system power management (SysPm) HAL:

1. Power state transitions: The functions like cyhal_syspm_enter_deepsleep() that help in transitioning
across the device’s power mode

2, Callback support: These APIs help to decide if it’s safe to change power modes and to prepare/restore
peripherals around those transitions

The new HAL keeps the power mode transition functions (e.g. ,enter Sleep/DeepSleep) but does not keep the
functions to transition between different active power states like (Low Power (LP), Ultra Low Power (ULP) and
High performance (HP)). Middleware (for example, an RTOS) can call these APIs to enter low-power modes. The
application must take care of all steps (including changing the core voltage and system clock frequencies)
necessary to prepare for or restore after a transition to a low-power state.

The new HAL no longer auto-registers the System Power Management (sysPm) callbacks. It is the application's
responsibility to register callbacks where necessary. The PDL provides ready-made, default callback
implementations for common peripherals. The Device Utilities (device-utils) handles the pre-defined sysPm
callback implementations for peripherals which require special handling when the MCU enters or exits
DeepSleep. This helps in having a reliable and controlled power management experience.

Application note 9 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/mtb-example-psoc-edge-hello-world
https://github.com/Infineon/abstraction-rtos

o~ .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

2 Important concepts for understanding HAL

2.5 Clock management

The application is responsible for setting up and initializing clocks, either directly through PDL API or through
Device Configurator GUI. Some HAL drivers may need to adjust a clock at run time (for example, changing a
UART baud rate). To enable this, each driver’s _setup function accepts an optional mtb_hal_clock_t pointer that
provides a clock interface the driver can use. See section Initialization sequence for details.

There are now two ways to provide the clock interface

+ The configurator generates a structure (often referenced as _hal_config) for all initialized peripherals that
includes a pointer to the HAL's default clock interface (mtb_hal_clock_t). If no custom clock interface is
supplied (parameter passed as NuLL), the driver will use this default interface automatically. This is ideal for
simple applications that don’t need special clock handling

« Incase custom clock control is required for a peripheral, you must pass the relevant custom clock interface
to the _setup function. A common use case is when the secure partition owns clock management, while a
non-secure partition owns the peripheral. The custom clock interface can enforce that separation

2.6 Interrupt handling

HAL drivers that support interrupt handling expose a function to process peripheral interrupts (commonly
named process_interrupts or _process_interrupt). Any middleware that relies on such a HAL driver provides its
own wrapper around the driver’s interrupt-processing functions.

For every peripheral instance used by a middleware (and typically for instances the application uses directly as
well), the application is responsible for implementing and registering the interrupt handler. That handler must
invoke the corresponding middleware-level interrupt processing function for that specific instance. This
instance-by-instance linkage ensures that interrupts are routed correctly, preserves the separation of concerns
among the application, middleware, and HAL, and keeps the interrupt path consistent across the code base.

See Figure 4 for a sequence diagram on the interrupt handling mechanism in Modustoolbox™ applications
which use HAL through middlewares.

Application note 10 002-41775 Rev. **
2025-10-14

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU

infineon

2 Important concepts for understanding HAL

Application Software
PN . - A
i e Interrupt Service Routine Middleware HAL PDL
Initialize hardware i ' i i
T T T >
< : : : -
Initialize HAL : : : !
>
< : : " :
Register interrupt handler | | - |
= i i i | |
Initialize middleware | - ‘ i i
T > | |
i Register callback and enable event i i
i > i
i Store callback info on HAL object i
| B i |
| Interrupt Happgned | | | -
mw_process_interrupts(&hal_obj)_ | | |
- 1 1
mtb_hal_<driver>_process_interrupts(&hal_obj)_ | i
> i
Get interrupt status (hal_obj->base)_ |
>
__ interrupt status register value I
Depending on the peripheral and the interrupt, the HAL i
may perform some other operations on the peripheral |
apart from invoking the callback. i
opt [Interrupt status matches an enabled event] :
o callback{events) L
[]
> i
< ' |
£ | | |
opt / [Errorfuring interrupt handling]) | |
GEREED Gies Application specific interrupt error handling | |
; ! o
Main thread Interrupt Service Routine m HAL PDL
// \\
Figure 4 Interrupt handling using HAL

Application note

11

002-41775 Rev. **
2025-10-14

o _.
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ ‘ |n f| neon

Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

3 Guide to migrate code examples from legacy HAL-based
code examples

This section provides tips and suggestions to migrate existing HAL-based code examples to either completely
PDL-based or PDL with HAL for middleware setup. All PSOC™ Edge code examples available in ModusToolbox™
already follow this strategy.

The legacy Infineon HAL provided a generic interface which was supposed to be used across multiple MCU
product families. This was achieved by having the HAL as a layer built on top of platform-specific Peripheral
Driver Libraries (PDL). In the legacy implementation, most of the HAL APIs were wrapping PDL APIs to achieve
the desired functionality (see the PDL API reference guide for details). While the new HAL is focused on the
needs of middleware libraries, it can be used by an application if the functionality provided meets the
application needs.

This section takes the GPIO library functions as an example because they are widely used in applications. Some
inline functions (like read, write, and toggle) can directly be mapped from legacy HAL to PDL as shown in the
table below.

Table 3 Legacy HAL mapping to PDL

Legacy HAL PDL

cyhal _gpio_write(pin,value) Cy_GPIO_Write(port,pin,value)
cyhal_gpio_read(pin) Cy_GPIO_Read(port,pin)
cyhal_gpio_toggle(pin) Cy_GPIO_Inv(port, pin)

Other complex functions (like initialization) might not find an exact one-to-one mapping with PDL. You can use
the Infineon ModuToolbox™ Device Configurator to initialize and use the peripheral or you may write up your
own custom configuration for the initialization of peripherals in the application code using PDL APIs.

To configure a GPIO using ModuToolbox™ Device Configurator, follow the steps:
1. Open Device Configurator and navigate to the Pins tab and select the port and pin which need to be

configured
v Port 16
® P50 CYBSP SPI CLK
. P16[1] CYBSP_SPI_MOS
® ris2) CYBSP_SPI_MISO
. P16[2] CYBSP_SPI_CS
P16[4] CYBSP_USB_FAULT
. P16{5] CYBSP_USER_LED3, CYBSP_LED_BLUE
® rig[5) CYBSP_USER_LED2, CYBSP_LED_GREEN
® ris7 *¥BSP_USER_LED1, CYBSP_USER_LED, CYBSP_LED_RED
Figure 5 Select the port and pin number for the GPIO
2, Click the checkbox to enable the pin. All pins have a default alias which is used as reference in the

configuration structures and application code. You may optionally define a custom alias for your pin

3. When the pin is selected, use the Parameters pane to define the configurations for the pin like the drive
mode, drive strength, and slew rate.

Application note 12 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

P16([5] (CYESP_USER_LED3, CYESP_LED_BLUE) - Parameters

MName

¥ Ovenview
0 Configuration Help n GPIO Documentation

General
0 Drive Mode Strong Drive. Input buffer off
& Initial Drive State Low (0)
0 Secure attribute MNon-secure access (1)
“ Input
@ Threshold CMOS
@ Interrupt Trigger Type None
~ QOutput
e Slew Rate
6 Extended Drive Strength
@ Drive Strength
Internal Connection

@ Digital Output TCPWMI[0] Group[0] 32-bit Counter 5 pwm (CYBSP_PWM_LED_CTRL) [USED)

@ Digital InOut <unassigned>

Advanced
0 Store Config in Flash .

Figure 6 Define the configurations in the Parameters pane
4, The pin is now enabled and set up with the desired configurations. You can use the same alias to use the
pin
A GPIO can also be configured using PDL bypassing the Device Configurator. In this case, you will need to write
your own configuration structure and use it in the application code. See the following code snippet for
reference.

static const cy_stc_gpio pin_config_t LED1_config =

{

.outval = Qu, /* Start low (adjust to 1u if LED is active-low and
you want it off) */

.driveMode = CY_GPIO_DM_STRONG, /* Push-pull output */

.hsiom = HSIOM_SEL_GPIO, /* Route to GPIO function */

.slewRate = CY_GPIO_SLEW_FAST, /* Optional: fast edge rate */

.driveSel = CY_GPIO_DRIVE_ 1 2, /* Optional: 1/2 drive to reduce EMI/current */

.nonSec = 1u /* Mark pin as Non-Secure */

/* All other fields left at default (@): interrupts disabled, default thresholds, etc. */
}s

/* Initialize the LED pin with the configuration structure. */
Cy_GPIO_Pin_Init(CYBSP_USER_LED1_PORT, CYBSP_USER_LED1_PIN, &LED1_config);

/* Toggle the LED */
Cy_GPIO_Inv(CYBSP_USER_LED1_PORT, CYBSP_USER_LED1_PIN);

Application note 13 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

3.1 Examples for HAL usage with middleware

This section discusses the setup and usage of the new HAL with examples which are commonly used in PSOC™
Edge code examples.

3.1.1 Retarget-io setup (UART usage)

Retarget-io is a utility library to retarget the standard input/output (STDIO) messages to a UART port. With this
library, you can directly print messages on a UART terminal using printf(). You can specify the TX pin, RX pin,
and the baud rate when configuring the UART. See this library on GitHub: https://github.com/Infineon/retarget-
io.

You may refer to the PSOC Edge MCU: Hello World code example for a demonstration of using the UART HAL

with the retarget-io middleware.

1. As the first step, enable the SCB2 peripheral under the Peripherals tab in the Device Configurator and
select UART as the mode of operation. On PSOC™ Edge E84 evaluation kit, SCB2 is connected to the
KitProg UART bridge. Note that the SCB2 peripheral is enabled by default and configured in the BSP with
the alias cYBSP_DEBUG_UART as shown in the following figure

DBZCAA CYW355513IUBG

Analog Pins Clocks System Memory DMA

Resource Name(s) Personality
* Communication
~ Controller Area Metwork FD (CAN FD) 0
CAN FD 0 Channel 0 CYBSP_CAN_FD_CH_O
CAN FD 0 Channel 1
Ethernet 0
® i3c CYBSP_I3C_CONTROLLER
~ Quad Serial Memory Interface (QSPI) 0
@ osPi 0 Core 0 CYBSP_SMIF_CORE_0_XSPI_FLASH
~ Quad Serial Memory Interface (QSPI) 1
. QSPI 1 Core 0 CYBSP_SMIF_CORE_1_PSRAM
. SD Host Controller (SDHC) 0 CYBSP_WIFI_SDIO
. SD Host Controller (SDHC) 1 CYBSP_SDHC_1

. Senal Communication Block (SCB) 0 CYBSP_[2C_COMTROLLER 12C-4.0

Serial Communication Block (SCB) 1
. Senal Communication Block (SCE) 2 CYBSP_DEBUG_UART UART-3.0
Senal Communication Block (SCB) 3
. Serial Communication Block (SCB) 4 CYBSP_BT_UART UART-3.0
. Serial Communication Block (SCB) 5 CYBSP_EZ_|2C_TARGET EZ12C-3.0
Serial Communication Block (5CB) 6
Serial Communication Block (SCE) 7
Serial Communication Block (SCE) &
Serial Communication Block (SCE) 9
. Serial Communication Block (SCB) 10 CYBSP_SPI_COMNTROLLER
Serial Communication Block (SCB) 11

~ Time Division Multiplexing (TDM)

® oMo CYBSP_TDM_COMNTROLLER 0
TDM1
. Universal Serial Bus (USB) 0 CYBSP_USB_DEVICE_ O
Figure 7 SCB2 peripheral aliased and configured for UART operation
Application note 14 002-41775 Rev. **

2025-10-14

https://github.com/Infineon/retarget-io
https://github.com/Infineon/retarget-io
https://github.com/Infineon/mtb-example-psoc-edge-hello-world

Getting started with Hardware Abstraction Layer (HAL) on PSOC™

Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

infineon

2, Configure the SCB2 block to be used as UART with the following set of configurations in the Parameters
pane. Configuration includes the clock source configuration for the UART peripheral, UART TX and RX
pins, CTS/RTS pins if flow control is desired, baud rate, and other UART config parameters

Serial Communication Bloc

MName

~ QOwerview

7] Configuration Help

~ General
a' Com Mode
e' Baud Rate (bps)
© Oversample
0 Bit Order
© Data Width
0 Parity
© stop Bits
0 Enable Digital Filter
Support R5-485
© Tx-Enable
Flow Control
@ Enable Flow Control
@ CTs Polarity
@ RIS Polarity
@ RTS Activation Level
Connections

@ Clock

@ =

o ™

© RX Trigger Output

e' TX Trigger Qutput
* Actual Baud Rate

0 Actual Baud Rate

e' Baud Rate Accurac

0 Clock Frequency
“ Tligger[_e'.-el

@ RXFIFO Level

© TXFIFO Level

- Multi Processor Mode

@ Address
© Mask

Advanced
Break Signal Bits
7] g
@ Break Level

APl Mode
€ APl Mode

@ Enable Multi Processor Mode

0 Accept Matching Address in RX FIFO

0 Drop on Frame Error
@ Drop on Parity Error

@ Sstore Config in Flash

2 (CYBSP_DEBUG_UART) - Parameters

Open UART (SCB) Documentation
Standard

115200

10

LSB First

& bits

Naone

1 bit

Active Low
Active Low

63

16 bit Divider 1 clk (CYBSP_DEBUG_UART_CLK_DIV) [USED]

P6[5] digital_inout (CYBSP_DEBUG_UART_RX) [USED]

P6[7] digital_inout (CYBSP_DEBUG_UART_TX) [USED]
<unassigned>

<unassigned>

& 114042
0.224
& 1.149425 MHz

n

Low Level Pulse Detection

High Level

Figure 8

Application note

UART configuration parameters

15 002-41775 Rev. **

2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

3. Set up the clock divider value depending on the desired baud rate in the Clocks tab as shown in the
following figure. This setting is already configured with the 16-bit divider 1 clock divider in the default

BSP
' :-.f q CLK_HF10 (100 MHz)
:E ; 1.149 MHz
ES Serial Communication Block (SCB) 2 clock_sch_en (CYBSP_DEBUG_UART) [USED] = ..
Figure 9 UART clock divider
4, Import the 'retarget-io' middleware library using ModusToolbox™ Library Manager. See [1] on steps to
add libraries to projects
5. Once imported, add #include "cy_retarget_io.h" inclusion in the application source file

6. Create and use the HAL object DEBUG_UART_hal_obj to set up the UART HAL and pass the same object to
initialize the retarget-io middleware

7. Follow the steps as highlighted in the section Initialization sequence to initialize and set up the SCB
UART

a. Initialize the SCB UART

result = (cy_rslt_t)Cy SCB UART Init(CYBSP_DEBUG_UART_HW,
&CYBSP_DEBUG_UART config,
&DEBUG_UART_context);

/* Check Result */

b. Enable the UART peripheral

Cy_SCB_UART_Enable(CYBSP_DEBUG_UART_HW);

c. Set up the HAL UART object

result = mtb_hal_uart_setup(&DEBUG_UART_hal_obj,
&CYBSP_DEBUG_UART_hal_config,
&DEBUG_UART_context, NULL);
/* Check result */

8. Initialize the middleware using the HAL object

result = cy_retarget_io_init(&DEBUG_UART_hal_obj);
/* Check result */

Application note 16 002-41775 Rev. **
2025-10-14

o~ .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

9. If required, register a callback to handle the transitions to low-power modes. If the system idle power
mode is set as Sleep or Deep Sleep, it is essential to register the syspm callback for the peripheral.
This can be done by registering with Cy_SysPm_RegisterCallback either the predefined callbacks from
the syspm callbacks under Device Utilities (device-utils) library or a new callback function specific to
your application needs. This callback will manage the necessary procedures for the peripheral while
transitioning in and out of low-power modes like Sleep or Deep Sleep gracefully. For more information,
refer to Cy_SysPm_RegisterCallback in PDL documentation. See the PSOC Edge MCU: Hello World code
example for SysPm callback implementation for the retarget-io middleware

10. Start printing to UART using printf()

Application note 17 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/mtb-example-psoc-edge-hello-world/blob/master/proj_cm33_ns/retarget_io_init.c#L55

Getting started with Hardware Abstraction Layer (HAL) on PSOC™
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

See the following code snippets for implementation details.

infineon

/* For the RetargetIO (Debug UART) usage. */
static cy_stc_scb_uart_context_t DEBUG_UART_context;
static mtb_hal _uart_t DEBUG_UART_hal obj;

/* Retarget-io deepsleep callback parameters */
#if (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP)

/* Context reference structure for Debug UART */
static mtb_syspm_uart_deepsleep_context_t retarget_io _syspm_ds_context =

{

.uart_context = &DEBUG_UART_context,

.async_context = NULL,

JEx_pin =

{
.port = CYBSP_DEBUG_UART_TX_PORT,
.pinNum = CYBSP_DEBUG_UART_TX_PIN,
.hsiom = CYBSP_DEBUG_UART_TX_HSIOM

}J

.rts_pin =

{
.port = DEBUG_UART_RTS_PORT,
.pinNum = DEBUG_UART_RTS_PIN,
.hsiom = HSIOM_SEL_GPIO

}

}s

/* SysPm callback parameter structure for Debug UART */
static cy_stc_syspm_callback_params_t retarget_io_syspm_cb_params =
{

.context

&retarget_io_syspm_ds_context,

.base CYBSP_DEBUG_UART_HW

}s

/* SysPm callback structure for Debug UART */
static cy_stc_syspm_callback_t retarget_io_syspm_cb =

{
.callback = &mtb_syspm_scb_uart_deepsleep_callback,
.skipMode = SYSPM_SKIP_MODE,
.type = CY_SYSPM_DEEPSLEEP,
.callbackParams = &retarget_io_syspm_cb_params,
.prevItm = NULL,
.nextItm = NULL,
.order = SYSPM_CALLBACK_ORDER
}s

#endif /* (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP) */

void init_retarget_io(void)

{

Application note 18

002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

cy_rslt_t result = CY_RSLT_SUCCESS;

/* Initialize the SCB UART */

result = (cy_rslt_t)Cy SCB_UART Init(CYBSP_DEBUG_UART_HW,
&CYBSP_DEBUG_UART_config,
&DEBUG_UART_context);

/* UART initialization failed. Stop program execution. */
if (CY_RSLT_SUCCESS != result)
{

handle_app_error();

/* Enable the SCB UART */
Cy_SCB_UART_Enable(CYBSP_DEBUG_UART_HW);

result = mtb_hal_uart_setup(&DEBUG_UART_hal_obj,
&CYBSP_DEBUG_UART_hal_config,
&DEBUG_UART_context, NULL);

/* UART setup failed. Stop program execution. */
if (CY_RSLT_SUCCESS != result)
{

handle_app_error();

/* Initialize retarget-io to use the debug UART port. */
result = cy retarget_io_init(&DEBUG_UART_hal_obj);

/* retarget-io initialization failed. Stop program execution. */
if (CY_RSLT_SUCCESS != result)
{

handle_app_error();

#if (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP)
/* UART SysPm callback registration for retarget-io */
Cy_SysPm_RegisterCallback(&retarget_io_syspm_cb);
#tendif /* (CY_CFG_PWR_SYS_IDLE_MODE == CY_CFG_PWR_MODE_DEEPSLEEP) */
}

3.1.2 BMI 270 motion sensor (12C usage)

The BMI270 inertial measurement unit (IMU) motion sensor library provides functions for interfacing with the
Bosch BMI270 12C 16-bit inertial measurement unit (IMU) with 3-axis accelerometer and 3-axis gyroscope. The
sensor-motion-bmi270 is a middleware library and can be set up to be used with the new HAL workflow. The
Bosch BMI270 sensor is available on the PSOC™ Edge E84 Evaluation Kit and is interfaced to the MCU through
12C (SCBO). The same sensor may connect to some other 12C instance on a different evaluation board. See the
board documentation for details. See this library on GitHub: https://github.com/Infineon/sensor-motion-
bmi270.

You may refer to the PSOC Edge MCU: Sensor hub data acquisition code example for a demonstration of using
the 12C HAL with the BMI 270 motion sensor library.

Application note 19 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/sensor-motion-bmi270
https://github.com/Infineon/sensor-motion-bmi270
https://github.com/Infineon/mtb-example-psoc-edge-sensor-hub-data-acquisition

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

1. As the first step, enable the SCBO peripheral under the Peripherals tab in the Device Configurator and
select 12€ as the mode of operation. Note that the SCBO peripheral is enabled by default and configured
in the BSP with the alias cYBSP_12C_CONTROLLER

2, Configure the SCB2 block to be used as 12C with the following set of configurations in the Parameters
pane. Configurations include the 12C mode, data rate, Clock , SCL and SDA connections

Serial Communication Block (SCB) 0 (CYBSP_12C_COMNTROLLER) - Parameters

MName
* Qverview
e Configuration Help Open |2C (5CE) Documentation
¥ General
© Mode Master
& Manual Data Rate Control
@ Data Rate (kbps) 400
@ Use TXFIFO ¥
@ UseRXFIFO (vl
@ Enable Wakeup from Deep Sleep Mode
~ Connections
© Clock & 16 bit Divider 0 clk (CYBSP_I12C_CONTROLLER_CLK_DIV) [USED
@ scL P8[0] digital_inout (CYBSP_I2C_SCL) [USED]
© soa o P8[1] digital_inout (CYBSP_I2C_SDA) [USED]
e SCL Output (scl_tng) <unassigned>

O rx Trigger Qutput <unassigned>

e TK Trigger Output <unassigned>

¥ Actual Data Rate
0 Actual Data Rate (kbps) 400
0 tLow (ns) 1600
@ tHigh (ns) 900
@ Clock Frequency 10 MHz
~ Advanced
@ Store Config in Flash

Figure 10 12C configuration parameters

3. Import the sensor-motion-bmi27e middleware library using ModusToolbox™ Library Manager. See [1] on
steps to add libraries to projects

4, Once imported, Add #include "mtb_bmi270.h" inclusion in the application source file
5. Create and use the CYBSP_I2C_CONTROLLER_hal_obj HAL object to set up the 12C HAL and pass the same
object to initialize the sensor-motion-bmi27e middleware

6. Follow the steps as highlighted in the section "Initialization sequence" to initialize and set up SCB 12C
a. Initialize SCB 12C

initStatus = Cy_SCB_I2C_Init(CYBSP_I2C_CONTROLLER_HW,
&CYBSP_I2C_CONTROLLER_config,
&CYBSP_I2C_CONTROLLER_context);
/* Check result */

Application note 20 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

b. Enable the 12C peripheral

Cy_SCB_I2C_Enable(CYBSP_I2C_CONTROLLER_HW);

c. Set up the HAL 12C object

result = mtb_hal_i2c_setup(&CYBSP_I2C_CONTROLLER_hal_obj,
&CYBSP_I2C_CONTROLLER_hal_config,
&CYBSP_I2C_CONTROLLER_context,
NULL);

/* Check result */

7. Initialize the middleware using the HAL object

result = mtb_bmi276 init_i2c(&bmi270,
&CYBSP_I2C_CONTROLLER_hal_obj,
MTB_BMI270_ADDRESS_DEFAULT);
/* Check result */

8. Configure the sensor and use it in the application code

Application note 21 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

See the following code snippets for implementation details.

/* HAL objects for sensor-motion-bmi270 library. */
static mtb_hal_i2c_t CYBSP_I2C_CONTROLLER_hal_obj;
cy_stc_scb_i2c_context_t CYBSP_I2C_CONTROLLER_context;

{
initStatus = Cy_SCB_I2C_Init(CYBSP_I2C_CONTROLLER_HW,

&CYBSP_I2C_CONTROLLER config,
&CYBSP_I2C_CONTROLLER context);

/* I2C initialization failed. Stop program execution. */

if (CY_SCB_I2C_SUCCESS != initStatus)

{

handle_app_error();

}

Cy SCB_I2C_Enable(CYBSP_I2C_CONTROLLER_HW);

result = mtb_hal_i2c_setup(&CYBSP_I2C_CONTROLLER_hal_obj,
&CYBSP_I2C_CONTROLLER hal_config,
&CYBSP_I2C_CONTROLLER_context,
NULL) ;

/* HAL I2C setup failed. Stop program execution. */

if (CY_RSLT_SUCCESS != result)

{

handle_app_error();

}

/* Initialize can configure platform-dependent function pointers. */

result = mtb_bmi270_init_i2c(&bmi270,
&CYBSP_I2C_CONTROLLER_hal_obj,
MTB_BMI270_ADDRESS_DEFAULT);

/* BMI270 sensor initialization failed. Stop program execution. */
if (CY_RSLT_SUCCESS != result)

{

handle_app_error();

3.1.3 LPTimer setup for use with abstraction RTOS library

The RTOS abstraction layer provides a simple RTOS-agnostic implementation of common RTOS services such
as threads, semaphores, mutexes, queues, and timers. See this library on GitHub: https://github.com/Infineon/
abstraction-rtos.

For PSOC™ Edge code examples based on FreeRTOS, the tickless idle mode must be implemented for power
saving in Deep Sleep by setting up the LPTimer instance in the application. The RTOS interface will be treated
as a middleware. An HAL object will be passed to the abstraction RTOS library. In this example, the LPTimer
instance is set up for the CM33 CPU. A similar setup must be done on the CM55 side using another instance of
LPTimer.

You may refer to the PSOC Edge MCU: Empty application code example for a demonstration of using the
LPTimer with the BMI 270 motion sensor library.

Application note 22 002-41775 Rev. **
2025-10-14

https://github.com/Infineon/abstraction-rtos
https://github.com/Infineon/abstraction-rtos
https://github.com/Infineon/mtb-example-psoc-edge-empty-app

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

1. As the first step, enable the Multi-Counter Watchdog TImer (MCWDT) 0 peripheral under the Peripherals
tab in the Device Configurator. Note that the MCWDTO peripheral is enabled by default and configured in
the BSP Device Configurator with the alias cyBsp_cm33_LPTIMER_0. MCWDTO instance is meant to be used
with CM33 CPU while the MCWDT1 instance should be used with CM55 CPU as also indicated by the alias

2. Configure the MCWDTO block with the following set of configurations in the Parameters pane:

Multi-Counter Watchdog Timer (MCWDT) 0 (CYBSP_CM33_LPTIMER_0) - Parameters

Mame

~* Owverview

e Configuration Help Open MCWDT Documentation

¥ Counter
@ Low Frequency Clock f CLK_LF (32.77 kHz + 2%)
~ CounterD (16-bit)
@ Clear on Match Free Running
@ Match 3276
© Mode Interrupt
* Counter] (16-bit)
@ Clear on Match Free Running
& Match 32768
@ Mode Interrupt
* Counter2 (32-bit)
@ Mode No Action
@ Period/ ToggleBit 0

Cascade

@ Cascade COCI)
© CascadeC1C2

Window Operation
@ COLowerlimit Mode No Action
0 C0 Lowerlimit 0
0 C1 Lowerlimit Mode No Action
© <1 Lowerimit 0

* Advanced

@ store Config in Flash .

Figure 11 LPTimer configuration parameters

3. The abstraction-rtos middleware library is a dependent library for the FreerRTOS middleware library. It
is therefore automatically fetched when FreeRTOs is added to the code example. See [1] on steps to add
libraries to projects

4, Include the header files for the abstraction-rtos library in the application source file: - #include
"cyabs_rtos.h"

5. Create and use the HAL object 1ptimer_obj to set up the LPTimer HAL and pass the same object to
initialize the abstraction-rtos middleware

Application note 23 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

6. Follow the steps as highlighted in the "Initialization sequence" section to initialize and set up the
LPTimerd instance

a. Initialize the LPTimer interrupt and interrupt handler as necessary

/* Interrupt configuration structure for LPTimer */
cy_stc_sysint_t lptimer_intr_cfg =
{
.intrSrc = CYBSP_CM33_LPTIMER_O@_IRQ,
.intrPriority = APP_LPTIMER_INTERRUPT_PRIORITY
¥

/* Initialize the LPTimer interrupt and specify the interrupt handler. */
cy_en_sysint_status_t interrupt_init_status =
Cy_SysInt_Init(&lptimer_intr_cfg,
lptimer_interrupt_handler);

/* LPTimer interrupt initialization failed. Stop program execution. */
if(CY_SYSINT_SUCCESS != interrupt_init_status)
{

handle_app_error();

b. Initialize the MCWDTO peripheral block

/* Initialize the MCWDT block */
cy_en_mcwdt_status_t mcwdt_init_status =
Cy_MCWDT_Init(CYBSP_CM33_LPTIMER_©_HW,
&CYBSP_CM33_LPTIMER @ config);

/* MCWDT initialization failed. Stop program execution. */
if(CY_MCWDT_SUCCESS != mcwdt_init_status)
{

handle_app_error();

Application note 24 002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

c. Enable the MCWDTO instance

/* Enable MCWDT instance */
Cy_MCWDT_Enable(CYBSP_CM33_LPTIMER_©_HW,
CY_MCWDT_CTR_Msk,
LPTIMER_© WAIT TIME_USEC);

d. Set up the LPTimer HAL object

* Setup LPTimer using the HAL object and desired configuration as defined

* in the device configurator. */

cy_rslt_t result = mtb_hal_lptimer_setup(&lptimer_obj,
&CYBSP_CM33_LPTIMER_©_hal_config);

/* LPTimer setup failed. Stop program execution. */
if(CY_RSLT_SUCCESS != result)

{

handle_app_error();

}

7. Initialize the middleware using the HAL object

/* Pass the LPTimer object to abstraction RTOS library that implements
* tickless idle mode */

cyabs_rtos_set_lptimer(&lptimer_obj);

8. LPTimer is now set up to enable tickless idle mode

Application note 25 002-41775 Rev. **
2025-10-14

Getting started with Hardware Abstraction Layer (HAL) on PSOC™
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

See the following code snippet for implementation details.

infineon

/* LPTimer HAL object */
static mtb_hal_lptimer_t lptimer_obj;

static void lptimer_interrupt_handler(void)

{

mtb_hal_lptimer_process_interrupt(&lptimer_obj);

static void setup_tickless_idle_timer(void)

{
/* Interrupt configuration structure for LPTimer */
cy_stc_sysint_t lptimer_intr_cfg =
{
.intrSrc = CYBSP_CM33_LPTIMER_@_IRQ,
.intrPriority = APP_LPTIMER_INTERRUPT_PRIORITY
};
/* Initialize the LPTimer interrupt and specify the interrupt handler. */
cy_en_sysint_status_t interrupt_init_status =
Cy_SysInt_Init(&lptimer_intr_cfg,
lptimer_interrupt_handler);
/* LPTimer interrupt initialization failed. Stop program execution. */
if(CY_SYSINT_SUCCESS != interrupt_init_status)
{
handle_app_error();
}
/* Enable NVIC interrupt. */
NVIC_EnableIRQ(lptimer_intr_cfg.intrSrc);
/* Initialize the MCWDT block */
cy_en_mcwdt_status_t mcwdt_init_status =
Cy_MCWDT_TInit(CYBSP_CM33_LPTIMER_©_HW,
&CYBSP_CM33_LPTIMER_©@ config);
/* MCWDT initialization failed. Stop program execution. */
if(CY_MCWDT_SUCCESS != mcwdt_init_status)
{
handle_app_error();
}
/* Enable MCWDT instance */
Cy_MCWDT_Enable(CYBSP_CM33_LPTIMER_@_HW,
CY_MCWDT_CTR_Msk,
LPTIMER_© WAIT_TIME_USEC);
/* Setup LPTimer using the HAL object and desired configuration as defined
Application note 26

002-41775 Rev. **
2025-10-14

Ct'y
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

3 Guide to migrate code examples from legacy HAL-based code examples

* in the device configurator. */
cy_rslt_t result = mtb_hal_lptimer_setup(&lptimer_obj,
&CYBSP_CM33_LPTIMER_0@_hal_config);

/* LPTimer setup failed. Stop program execution. */
if(CY_RSLT_SUCCESS != result)
{

handle_app_error();

/* Pass the LPTimer object to abstraction RTOS library that implements
* tickless idle mode */
cyabs_rtos_set_lptimer(&lptimer_obj);

Application note 27 002-41775 Rev. **
2025-10-14

o~ _.
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon

Edge MCU

4 Summary

4 Summary

This guide introduces Infineon’s redesigned Hardware Abstraction Layer (HAL) for PSOC™ Edge and how to use
it effectively. The new HAL is streamlined and middleware-focused; therefore, you should not use it directly in
an application. Device setup, resource management, pins, clocks, and higher-level configuration are handled
explicitly by the Peripheral Driver Library (PDL) and the Device Configurator, with device-specific details
centralized in a device support library. The redesign clarifies layering, separates configuration from
initialization, moves device-dependent behavior down to PDL, thereby improving transparency, predictability,
and debuggability. HAL’s role is to support portability and a consistent APl for middleware once the hardware is
already configured.

Application note 28 002-41775 Rev. **
2025-10-14

o~ _.
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ ‘ |n f| neon

Edge MCU

References

References

[1] Infineon Technologies AG: AN235935 - Getting started with PSOC™ Edge E8 MCU on ModusToolbox™
software; Available online

Application note 29 002-41775 Rev. **
2025-10-14

https://www.infineon.com/AN235935

o~ _.
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon

Edge MCU

Revision history

Revision history

Document Date Description of changes
revision
** 2025-10-14 Initial release
Application note 30 002-41775 Rev. **

2025-10-14

o .
Getting started with Hardware Abstraction Layer (HAL) on PSOC™ |n f| neon
Edge MCU

Trademarks

Trademarks

The Bluetooth” word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

Application note 31 002-41775 Rev. **
2025-10-14

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-10-14
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-vmt1758564423034

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction to Infineon’s new Hardware Abstraction Layer (HAL)
	1.1 What is the new HAL?
	1.2 Using new HAL with ModusToolbox™ code examples

	2 Important concepts for understanding HAL
	2.1 Typical HAL setup sequence
	2.2 Initialization sequence
	2.3 RTOS integration
	2.4 SysPm callbacks
	2.5 Clock management
	2.6 Interrupt handling

	3 Guide to migrate code examples from legacy HAL-based code examples
	3.1 Examples for HAL usage with middleware
	3.1.1 Retarget-io setup (UART usage)
	3.1.2 BMI 270 motion sensor (I2C usage)
	3.1.3 LPTimer setup for use with abstraction RTOS library

	4 Summary
	References
	Revision history
	Trademarks
	Disclaimer

