

Low-power system design with PSOC™ Edge MCU and AIROC™ Wi-Fi & Bluetooth® combo chip

About this document

Scope and purpose

This application note describes how to use the PSOC™ Edge MCU and AIROC™ Wi-Fi & Bluetooth® combo chip to design a low-power connectivity solution for Internet of Things (IoT) applications. The technical description in this application note applies to other applications based on PSOC™ Edge MCU and AIROC™ Wi-Fi & Bluetooth® combo chip.

This application note provides an overview of low-power modes and features in the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip. It also describes various techniques, such as host offload features to optimize power consumption in the connectivity system, and assist with the Low-Power Assistant (LPA) tool.

Intended audience

This document is intended for anyone using the AIROC™ Wi-Fi & Bluetooth® combo chip and PSOC™ Edge MCU to design a low-power connectivity solution for IoT applications.

Table of contents

	About this document	1
	Table of contents	2
1	Introduction	4
2	Low-power overview	5
2.1	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip power modes	5
2.2	PSOC™ Edge E84 MCU power modes	6
2.3	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip power-related hardware signals	7
2.4	Power mode transition of host MCU PSOC™ Edge and AIROC™ CYW55513	9
3	WLAN power optimization techniques	11
3.1	IEEE 802.11 (Wi-Fi) power saving	11
3.1.1	Beacon interval	11
3.1.2	Listen interval	11
3.1.3	DTIM period	11
3.1.4	Power-saving methods	12
3.1.4.1	Power Save-Poll (PS-Poll)	12
3.1.4.2	802.11 Power Save without Poll (PS-non-Poll)	13
3.1.4.3	Association timeout limit	14
3.1.5	802.11ac-friendly features	14
3.2	Wi-Fi power save implementation	14
3.2.1	Wi-Fi Host Driver (WHD) power save interface	14
3.2.2	Cyclic timers in network stack	15
3.3	Host offloads to WLAN device	16
3.3.1	ARP offload	16
3.3.2	Packet filter offload	17
3.3.3	TCP keepalive offload	19
3.3.4	DHCP Lease Time Renew offload	19
3.3.5	ICMP offload	20
3.3.6	Neighbor Discovery (ND) offload	21
3.3.7	NULL keepalive offload	22
3.3.8	NAT keepalive offload	23
3.3.9	Wake on Wireless LAN	24
3.3.10	MQTT keepalive offload	25
4	Bluetooth® power optimization techniques	27
4.1	Advertisement events	27
4.2	Connection events	28
4.2.1	Connection interval	28
4.2.2	Use Peripheral latency	28
4.2.3	Bluetooth® LE parameters in Bluetooth® Configurator	28

Table of contents

5	Low-Power Assistant (LPA)	32
5.1	LPA configuration	32
6	Power measurement using KIT_PSE84_EVAL_EPC2	34
6.1	Hardware setup	34
6.2	PSOC™ Edge MCU: WLAN low-power code example	34
6.3	PSOC™ Edge MCU: WLAN offloads code example	37
6.4	PSOC™ Edge MCU: Bluetooth® LE CTS Client code example	47
6.5	PSOC™ Edge MCU: Bluetooth® LE CTS Server code example	52
6.5.1	Power measurement	53
7	Summary	56
	References	57
	Glossary	58
	Revision history	61
	Trademarks	62
	Disclaimer	63

1 Introduction

1 Introduction

The PSOC™ Edge E84 MCU is a programmable embedded system-on-chip (SoC) with dual CPUs, integrating Arm® Cortex®-M33 and Arm® Cortex®-M55. It features a range of capabilities, including a neural network (NN) coprocessor, and incorporate functional blocks to support graphics, audio, and digital signal processor (DSP) capabilities. This MCU is designed for ultra-low-power applications, particularly in wearables and Internet of Things (IoT) products.

The AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip device runs the lower levels of the connectivity stack in hosted mode while a host processor such as PSOC™ Edge E84 MCU runs the upper levels of the connectivity stack and the application. This solution supports Bluetooth® and Wi-Fi. The communication between the host MCU and the AIROC™ device happens via UART in case of Bluetooth® LE and Secure-Digital-Input-Output (SDIO) in case of Wi-Fi.

AIROC™ CYW55513 is a low-power, single-chip device that supports single-stream, tri-band Wi-Fi 6/6E, IEEE 802.11ax-compliant Wi-Fi MAC/baseband/radio, and Bluetooth®/Bluetooth® Low Energy 5.3. In 802.11ax mode, the device supports rates up to 1024 QAM MCS11 in 20 MHz channels. All legacy rates in the 802.11a/b/g/n/ac are also supported. Included on-chip are 2.4 GHz, 5-7 GHz transmit power amplifiers (PA), and low-noise amplifiers (LNA). The device can operate with an external power amplifiers and low-noise amplifiers, and antenna diversity, if improved range is required. An SDIO v3.0 interface or Generic Serial Peripheral Interface (GSPI) are available for interfacing with the host.

AIROC™ CYW55513 includes a Bluetooth® subsystem that is Bluetooth® 5.3-compliant, supporting Basic Rate, Enhanced Data Rate (EDR), and Bluetooth® Low Energy. The device supports Bluetooth® Low Energy 2 Mbps, Bluetooth® Low Energy 1 Mbps, Low Energy Mesh, Low Energy Long Range (LR), and advertising extensions.

The device can support Bluetooth® Low Energy audio, with Low Complexity Communication (LC3) codec running on the device, enabling typical smart watch audio use cases. A pair of time-division multiplexing (TDM) interfaces enables a flexible interface for various audio use cases and a pulse-density modulation (PDM) interface is available for connecting digital microphones. The device includes on-chip power amplifiers supporting three different output power paths optimized for best efficiency, 0 dBm, +13 dBm, and +19 dBm path for driving poor antennas in wearable devices. The device also features a flexible Bluetooth® receiver offering a dedicated Bluetooth® LNA (dLNA) path or a Bluetooth® receive path that can be shared (sLNA) with the 2.4 GHz WLAN receive path. A 4-wire UART or SDIO (shared with Wi-Fi) interface is available for interfacing with the host processor.

AIROC™ CYW55513 is designed to address the needs of Internet on Things (IoT) devices that require minimal power consumption and compact size. AIROC™ CYW55513 includes advance coexistence hardware mechanisms and algorithms which ensure that simultaneous WLAN and Bluetooth® operation is optimized for maximum performance.

This application note requires a basic knowledge of the AIROC™ CYW55xxx Wi-Fi & Bluetooth® combo chip and PSOC™ Edge MCU architecture, and the ability to develop applications using ModusToolbox™ software.

2 Low-power overview

2 Low-power overview

2.1 AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip power modes

AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip has been designed with the stringent power consumption requirements of battery-powered IoT devices in mind. [Table 1](#) lists the power mode supported in AIROC™ CYW55513 device.

Table 1 Power modes in AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip

Power mode	Description
Active	<ul style="list-style-type: none">• All WLAN blocks in the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip are powered up and fully functional with active carrier sensing and frame transmission and reception• All required regulators are enabled and put in the most efficient mode based on the load current• Clock speeds are dynamically adjusted by the PMU sequencer
Sleep (station doze state)	<ul style="list-style-type: none">• The radio, analog domains, and most of the linear regulators are powered down. The rest of the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip remains powered up in an idle/retained state• All main clocks (PLL, crystal oscillator, or TCXO) are shut down to reduce active power to the minimum level. The 32.768 kHz LPO clock is available only for the PMU sequencer. This is necessary to allow the PMU sequencer to wake up the chip and transition to Active mode• Logic states in the digital core are saved and preserved into a retention memory in the always-ON domain before the digital core is powered off. Upon a wakeup event triggered by PMU timers or an external interrupt, logic states in the digital core are restored to their pre-Deep-Sleep settings to avoid lengthy hardware reinitialization. In Sleep mode, the primary source of power consumption is leakage current
power Down (Off)	<ul style="list-style-type: none">• AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip is effectively powered OFF by shutting down all internal regulators. The chip is brought out of this mode by external logic reenabling the internal regulators

AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip includes an advanced WLAN power management unit (PMU) sequencer, which provides significant power savings. It puts the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip device into various power management states appropriate to the current environment and activities performed.

The PMU enables and disables internal regulators, switches, and other blocks based on the computation of the required resources and a power management state transition table that describes the relationship between resources and the time needed to enable and disable them. Configurable, free-running counters (running at 32.768 kHz LPO clock) in the PMU sequencer are used to turn ON/turn OFF individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for the current mode. Slower clock speeds are used wherever possible. See the [AIROC™ Wi-Fi & Bluetooth® combo chip](#) for details on the PMU.

2 Low-power overview

2.2 PSOC™ Edge E84 MCU power modes

The PSOC™ Edge MCU can operate in three CPU power modes and five system modes as described in [PSOC™ Edge E84 MCU power modes](#). These modes are intended to minimize the average power consumption in an application. See the AN237976 – PSOC™ Edge MCU low-power modes and power reduction techniques application note [\[4\]](#). **Table 2** summarizes PSOC™ Edge MCU power modes and provides a simplified version for representing power mode transitions in a design with PSOC™ Edge MCU and AIROC™ Wi-Fi & Bluetooth® combo chip.

Table 2 PSOC™ Edge MCU power modes

Power mode	Description
<i>CPU Active Power modes</i>	
System High Performance (HP)	<ul style="list-style-type: none"> Core logic runs at 0.9 V All CPU power modes supported All peripherals and CPU power modes are available at maximum clock speed
System Low Power (LP)	<ul style="list-style-type: none"> Core logic runs at 0.8 V All CPU power modes supported All peripherals and CPU power modes are available at reduced clock speed
System Ultra-Low Power (ULP)	<ul style="list-style-type: none"> Core logic runs at 0.7 V All CPU power modes supported All peripherals and CPU power modes are available at minimum clock speed
<i>System Power Modes</i>	
CPU Active	<ul style="list-style-type: none"> Normal CPU code execution Available in system HP, LP, or ULP mode
CPU Sleep	<ul style="list-style-type: none"> CPU halts code execution Available in system HP, LP, or ULP mode
CPU Deep Sleep	<ul style="list-style-type: none"> CPU halts code execution Requests system deep sleep entry Available in system HP, LP, or ULP mode

(table continues...)

2 Low-power overview

Table 2 (continued) PSOC™ Edge MCU power modes

Power mode	Description
System Deep Sleep ¹⁾	<ul style="list-style-type: none"> Occurs when all CPUs are in CPU Deep Sleep and Power Policy Units (PPUs²⁾) are set to the correct states as mentioned in Table 2 All the high-speed clock sources are off SRAM and System SRAM (SoCMEM) are retained Low-speed clock sources (PILO and WCO) are ON Low-power analog and some digital peripherals are available for operation and as wake-up sources This mode has two sub-modes: <ul style="list-style-type: none"> The key difference lies in the amount of retained logic and memory, influencing software choices for current versus wake time trade-offs: <ul style="list-style-type: none"> Deep Sleep RAM: Does not retain Active mode logic, requiring a processor reset upon wake-up. However, it retains a configurable amount of SRAM and SoCMEM, allowing software to store key information for a faster "warm" reboot compared to a full "cold" reboot Deep Sleep Off: Retains neither Active mode logic nor memories, necessitating a complete "cold" reboot to restore the application to its previous state
System Hibernate	<ul style="list-style-type: none"> CPUs, SRAM, System SRAM, and clocks are OFF GPIO output states are frozen Low-power comparator, RTC alarm, and dedicated WAKEUP pins are available to wake up the system

1) The device will not enter System Deep Sleep mode until all related Power Policy Units (PPUs) are set to the correct states, as specified in [Table 2](#)

2) See the PSOC™ Edge E84 MCU architecture reference manual for more information on Power Policy Unit (PPU)

2.3 AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip power-related hardware signals

AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip has six hardware signals that provide the power control interface to the host (PSOC™ Edge MCU)

Table 3 Hardware signals in AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip

Signal	Description
WL_REG_ON	This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is OR-gated with the BT_REG_ON input to control internal AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip regulators. When this pin is <u>HIGH</u> , the regulators are enabled, and the WLAN section is out of reset. When this pin is <u>LOW</u> , the WLAN section is in reset. If BT_REG_ON and WL_REG_ON are both <u>LOW</u> , the regulators are disabled

(table continues...)

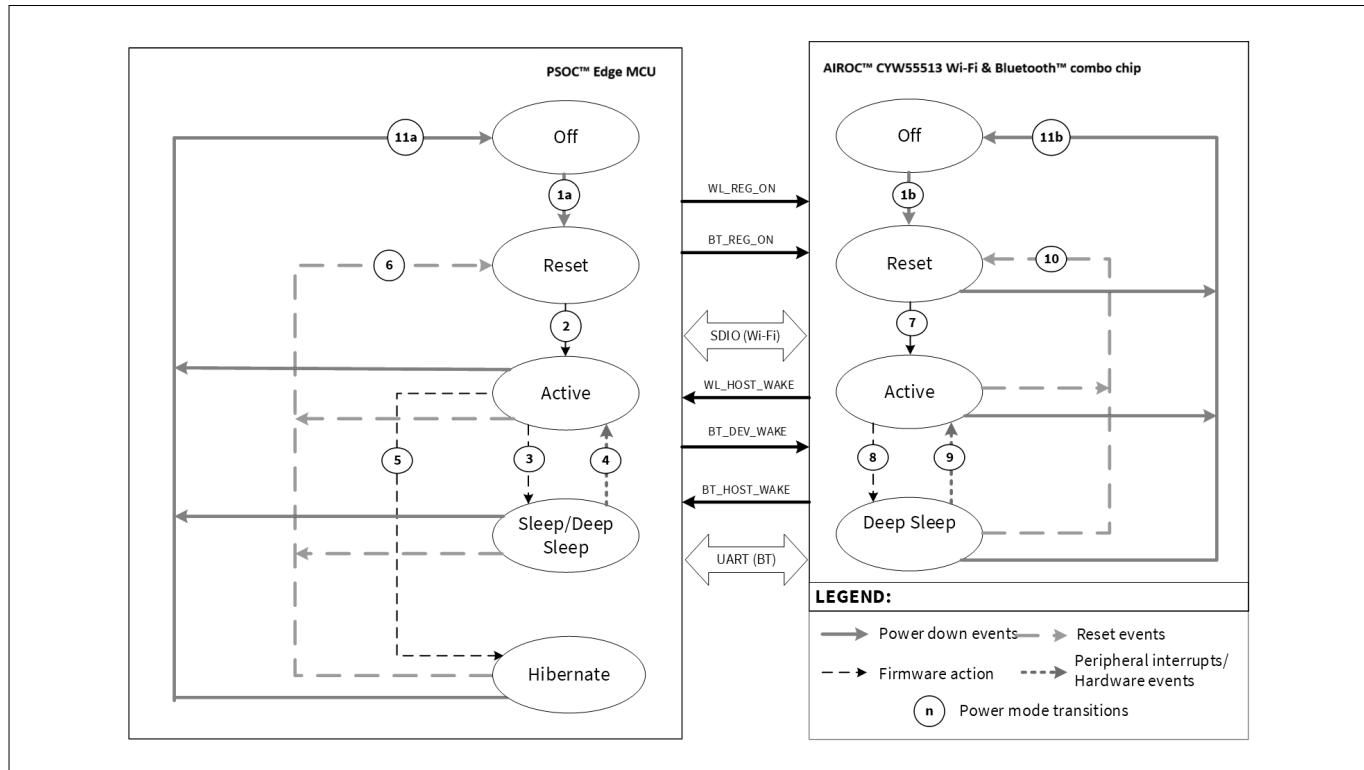

2 Low-power overview

Table 3 (continued) Hardware signals in AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip

Signal	Description
BT_REG_ON	This signal is used by the PMU (with WL_REG_ON) to decide whether to power down internal AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip regulators. When this pin is <u>HIGH</u> , the regulators are enabled, and the Bluetooth® section is out of reset. When this pin is <u>LOW</u> , the Bluetooth® section is in reset. If BT_REG_ON and WL_REG_ON are <u>LOW</u> , the regulators will be disabled
BT_DEV_WAKE	Bluetooth® device wake-up: Signal from the host (PSOC™ Edge MCU) to AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip indicating that the host requires attention like sending data to the Bluetooth® controller <ul style="list-style-type: none"> Asserted: The Bluetooth® device must wake up or remain awake Deasserted: The Bluetooth® device may sleep when all other sleep criteria are met The polarity of this signal is software-configurable and can be asserted as <u>HIGH</u> or <u>LOW</u> . Default is asserted <u>HIGH</u>
BT_HOST_WAKE	Host wake-up signal from the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip. Bluetooth® controller to the host indicating that the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip Bluetooth® controller has data for the host <ul style="list-style-type: none"> Asserted: Host device must wake up or remain awake Deasserted: Host device may sleep when all other sleep criteria are met The polarity of this signal is software-configurable and can be asserted as <u>HIGH</u> or <u>LOW</u> . Default is asserted <u>HIGH</u>
WL_HOST_WAKE	Host wake-up signal from the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip WLAN device to the host indicating that the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip WLAN device has data for the host to process. This signal is an active <u>HIGH</u> signal <ul style="list-style-type: none"> HIGH: Host device must wake up or remain awake LOW: Host device may sleep when sleep criteria are met
WL_DEV_WAKE	WLAN device wake-up signal. This signal is not used in current designs and SDIO-based wake-up is used to wake up the WLAN device

2 Low-power overview

2.4 Power mode transition of host MCU PSOC™ Edge and AIROC™ CYW55513

Figure 1 Simplified power mode transitions in PSOC™ Edge MCU + AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip design

Table 4 Power mode transitions

Transition	Description	Trigger
1a	PSOC™ OFF to reset transition	Power supply applied to PSOC™ Edge MCU
1b	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip OFF to reset transition	Power supply applied to AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip
2	PSOC™ reset to Active transition	Firmware (boot/startup) transitions from reset to Active mode
3	PSOC™ Active to Sleep or Deep Sleep transition	Firmware (OS idle task) transitions from active to Sleep or Deep Sleep mode
4	PSOC™ Sleep or Deep Sleep to active transition	Wake-up (interrupt) from Sleep/Deep Sleep; typical sources in an AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip design: <ul style="list-style-type: none"> • WL_HOST_WAKE (Deep Sleep or Sleep) • BT_HOST_WAKE (Deep Sleep or Sleep) • SDIO and UART interrupt (Sleep) • Low-power timer interrupts
5	PSOC™ active to Hibernate transition	Firmware (enter hibernate) transitions from active to Hibernate mode

(table continues...)

2 Low-power overview

Table 4 (continued) Power mode transitions

Transition	Description	Trigger
6	PSOC™ transitions to reset state	Any reset event including hibernate wake-up, external reset, and so on.
7	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip reset to active transition	External events transition AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip out of reset; either BT_REG_ON or WL_REG_ON pulled HIGH by PSOC™ Edge MCU.
8	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip active to Deep Sleep transition	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip enters DS0 mode; managed by on-chip PMU and requires enabling power save in the device
9	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip Deep Sleep to active transition	External events or PMU transitions AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip to active mode; possible PSOC™ Edge MCU actions: <ul style="list-style-type: none"> • BT_DEV_WAKE • SDIO interrupt
10	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip transitions to reset state	External events transition AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip to reset state; both WL_REG_ON and BT_REG_ON are pulled LOW by PSOC™ Edge MCU
11a	PSOC™ transitions to OFF state	Power supply removed from PSOC™ Edge MCU (Power Down)
11b	AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip transitions to OFF state	Power supply removed from AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip (Power Down)

3 WLAN power optimization techniques

3 WLAN power optimization techniques

3.1 IEEE 802.11 (Wi-Fi) power saving

Topics in this section are partly based on information contained in the IEEE [802.11 specification document](#). The 802.11 standard includes several parameters that allow stations to save power, although power saving is accomplished at the expense of throughput or latency to the station.

This section only provides an overview of power-saving methods and associated terms from the IEEE specification. If you are already familiar with the topic and interested in the implementation, see [Wi-Fi power save implementation](#).

3.1.1 Beacon interval

Beacon frames are periodic frames broadcast by the Wi-Fi access points (APs) to communicate throughout the serviced area the characteristics of the connection offered to the Wi-Fi stations (STAs). This information is used by STAs trying to connect to the network as well as STAs already associated with the Basic Service Set (BSS). The period at which beacon frames are transmitted is called “Target Beacon Transmission Time” (TBTT) or simply “Beacon Interval”. Even though the beacon interval is configurable for a given AP, it is typically set to 102.4 ms (100-time units, where the 1-time unit is 1024 μ s as per 802.11 specifications). The beacon interval information is available as part of the beacon frame itself. See the [802.11 specification](#) for details. In addition, each beacon includes a Traffic Indication Map (TIM) that contains information regarding packets buffered for STAs. It is the responsibility of the STAs to read the TIM and retrieve the packets destined for them.

3.1.2 Listen interval

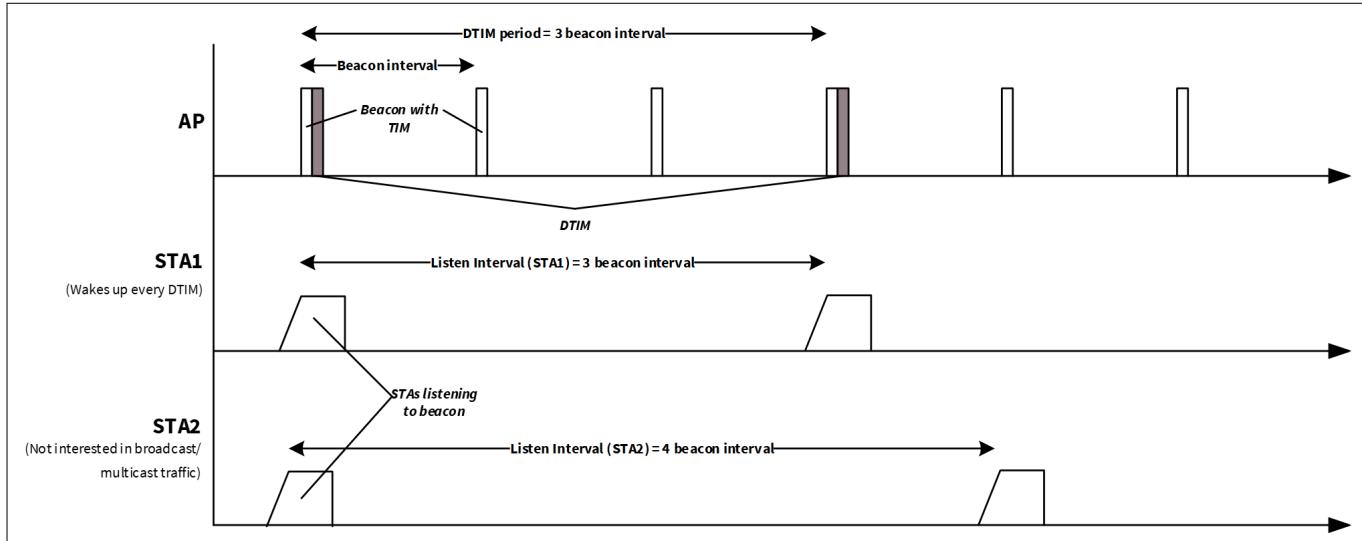
To save power, STAs sleep by powering down most of the Wi-Fi subsystem. While the STAs are asleep, APs buffer frames for them and indicate the availability through beacon TIMs. The sleeping STAs periodically wake up to listen to traffic announcements (TIMs) and determine whether the AP has any buffered frames. When STAs associate with an AP, part of the data in the Association Request frame is the listen interval. The listen interval indicates to the AP the frequency at which a power save station will wake up to listen to beacon frames. An AP may use the listen interval as a guide to determine the duration it should retain buffered frames for a power save station. Larger listen intervals require more AP memory for frame buffering.

APs generally do not consider the listen interval requested by an STA. If an STA sets the listen interval to a value, there is no guarantee that the AP buffers all the packets received for the station while the station is asleep. In addition, if the AP supports Delivery Traffic Indication Map (DTIM), that setting may override the listen interval requested by STAs.

Most APs enforce an association timeout on stations, that is, if the AP has not received a frame from a station within the association timeout (usually 60 seconds) or the station has not returned an ACK to a keep-alive frame, the station is disassociated. The association timeout cannot be negotiated by the station.

3.1.3 DTIM period

The DTIM period is a parameter associated with an infrastructure network and is advertised in the AP Beacon frame. The polled approach using standard TIMs is not suitable for multicast and broadcast frames, because it takes too much capacity to transmit multicast and broadcast frames multiple times. Instead of the polled approach, broadcast and multicast frames are delivered after every DTIM interval.


Increasing the DTIM allows stations to conserve power more effectively at the cost of buffer space in the AP. It also delays the reception of multicast and broadcast frames by all stations, including stations in active mode.

Note that the listen interval is recommended to be equal to (or less than) the DTIM period for the STA to receive all unicast, multicast, and broadcast packets. This ensures an optimal power and latency tradeoff.

3 WLAN power optimization techniques

Usually, the DTIM period is set as the number of beacon intervals in the AP. The default DTIM period for most APs are either DTIM=1 (DTIM every beacon), DTIM=3 (DTIM every third beacon), or DTIM=10. In the case of DTIM=3, the station needs to only wake from low-power mode to receive every third beacon and any ensuing queued broadcast or multicast traffic.

Figure 2 explains the beacon interval, listen interval, and DTIM period in an infrastructure network.

Figure 2 802.11 infrastructure network operation

3.1.4 Power-saving methods

Although the 802.11 transmitted power consumption is at least five times higher than the received power consumption, even for medium transmit-duty-cycle applications, much of the energy in a battery-powered Wi-Fi station is consumed by the receiver. Unless power save techniques are used, the 802.11 receiver may be powered ON for significant periods of time while the station waits for network clients to respond to requests. It does not take very long for a 130-mW receiver power consumption to discharge a battery.

Wi-Fi STAs use different mechanisms to save power. STAs with low duty cycle and long battery life requirements, Wi-Fi sensors, for example, may use the standard 802.11 Power Save Poll (PS-Poll) mechanism. STAs requiring higher throughput, wireless speakers, for example, consider using a non-standard 802.11 power save mechanism. These methods are described in this section.

Note: STAs requiring a more fine-grained power save mechanism to differentiate power save for various traffic priorities may consider using unscheduled automatic power save delivery (U-APSD) or Wi-Fi multimedia (WMM) power save. AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip currently does not support WMM power save.

3.1.4.1 Power Save-Poll (PS-Poll)

Power Save-Poll suits for STAs that primarily transmit data to the Wi-Fi network at low-duty cycles. The PS-poll mechanism works as follows:

1. STA sends a frame to the AP with the Power Management bit set and then goes to Sleep mode
2. AP notes that the STA has gone to Sleep mode and buffers frames for the STA
3. STA wakes up periodically to check the AP beacon frame for an indication of buffered frames. The wake period depends on the configured listen interval and whether the STA is configured to receive group-addressed frames from a beacon containing a DTIM

3 WLAN power optimization techniques

4. If the AP indicates that it has buffered frames addressed to the STA, the STA sends a PS-Poll frame to the AP
5. The AP sends a frame to the STA and sets the 'More Data' bit if additional frames are buffered
6. The STA might send another PS-Poll frame to retrieve additional buffered frames (if the More Data bit is set) or return to Sleep mode
7. When the STA needs to transmit data, it can wake up and transmit data anytime without waiting for the beacon interval as the AP is active all the time

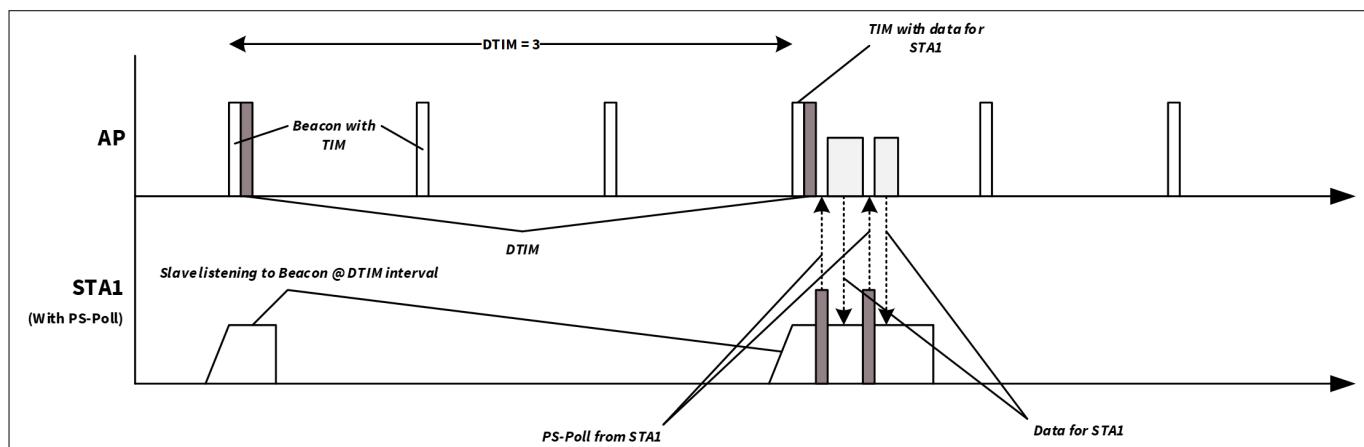


Figure 3 Power Save-Poll

3.1.4.2 802.11 Power Save without Poll (PS-non-Poll)

A non-standard mechanism known broadly as 802.11 power save without poll (PS-non-poll) enables STAs to use 802.11 power saving based on a 'trigger' frame as follows:

1. STA sends a frame to the AP with the 'Power Management' bit set and then goes to Sleep mode
2. AP notes that the STA has gone to Sleep and buffers frames for the STA
3. STA wakes up periodically. The STA may (or may not) first check the AP beacon frame for an indication of buffered frames before sending any frames to the AP
4. The STA sends a Null Function data frame, or a data frame if available, to the AP with the Power Management bit cleared
5. The AP notes that the STA is awake and sends buffered frames
6. STA receives the frames, waits for a timeout period to receive additional frames (if available), and then returns to sleep as described in Step 1.

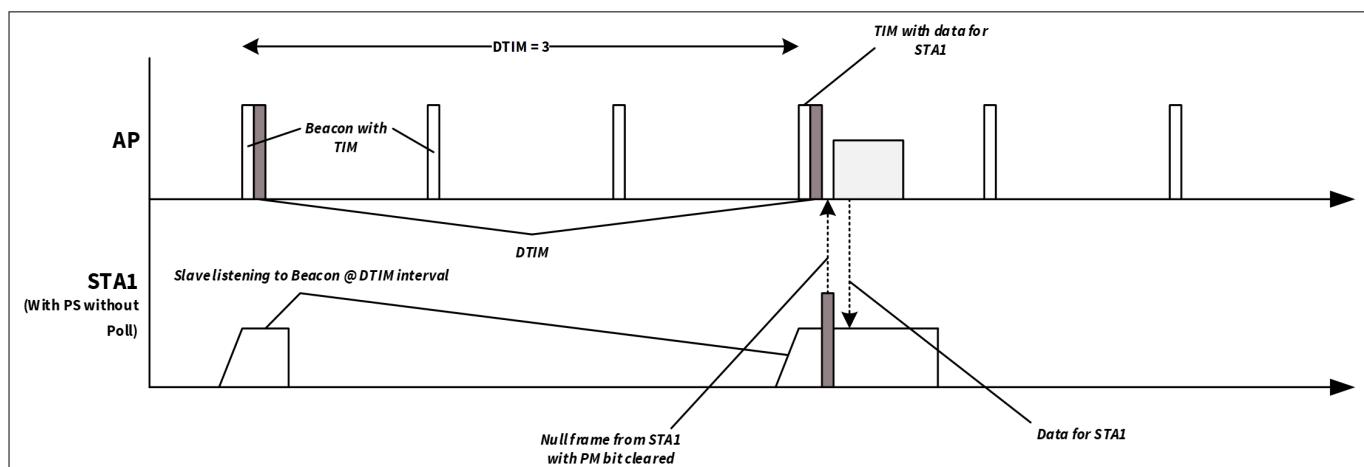


Figure 4 Power Save without Poll

3 WLAN power optimization techniques

3.1.4.3 Association timeout limit

If an STA does not expect to receive directed frames from the AP asynchronously, and it is not interested in receiving broadcast or multicast traffic, then further power savings may be achieved.

Because APs generally have an association timeout limit with a default value of 60 seconds, an STA that uses power save must wake up before the association timeout expires and send or receive a directly addressed frame to inform the AP that the STA is still associated. Failure to comply results in the AP de-authenticating the STA. Some APs allow the association timeout limit to be set to a value higher than 60 seconds, but the higher limit is not signaled to the station and must be manually configured.

3.1.5 802.11ac-friendly features

AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip provides 802.11ac friendliness by supporting 1024-QAM (for 20-MHz channels in the 5-GHz band) enabling data rates of up to 78 Mbps with 802.11ac APs. This enables superior throughput and reduced power consumption in the device by sending/receiving data and then going back to sleep faster. In addition, it supports 802.11ac's 'explicit beamforming' feature to offer significantly higher throughputs than 802.11n chipsets at any given range.

3.2 Wi-Fi power save implementation

3.2.1 Wi-Fi Host Driver (WHD) power save interface

The power save implementation is provided as part of the [WHD library](#). In addition, platforms such as FreeRTOS implement their power save mechanisms on top of the WHD to provide seamless low-power integration.

[Table 5](#) describes the low-level functions available as part of WHD providing various power-save features. See the [WHD API reference guide](#) for details.

Table 5 WHD power save APIs

WHD API	Description
whd_wifi_enable_powersave()	Enables PS-poll mode in the device (Power Save-Poll (PS-Poll))
whd_wifi_enable_powersave_with_throughput()	Enables 802.11 PS-non-poll mode in the device (see 802.11 Power Save without Poll (PS-non-Poll)). Use this mode when it is important to maintain throughput
whd_wifi_disable_powersave()	Disables power save mode in the device; by default, power save is enabled in the WLAN device.
whd_wifi_set_listen_interval() WHD Power save APIs	Sets the number of beacons to be skipped while the Wi-Fi chip is sleeping. Only works when Wi-Fi power save is enabled and the DTIM interval broadcasted by the AP is zero (that is, no DTIM in the network)
whd_wifi_get_listen_interval()	Gets the current value of all beacon listen interval variables

Note that power save with throughput is enabled in the WLAN device by default. The enable/disable power save APIs can be called to change or disable the power save option in the WLAN. The WLAN automatically manages the entry and exit of DS0 after the power save is enabled. The PSOC™ Edge MCU: WLAN low power code example [\[8\]](#) demonstrates the use of WHD power save APIs. To achieve good Wi-Fi throughput, refer to the [Wi-Fi Bluetooth® tester](#) application, which provides a technical framework for optimizing Wi-Fi performance.

3 WLAN power optimization techniques

3.2.2 Cyclic timers in network stack

Platforms that implement network stacks, such as lightweight TCP/IP stack (lwIP), run periodic timers for various network-related activities. These timers are used as ticks for network activity such as Address Resolution Protocol (ARP) cache table expiry and Dynamic Host Configuration Protocol (DHCP) lease renewal timeouts. The period of these timers can vary from 100 ms to 60 s. The host waking up periodically to service these timers is required for proper functioning. However, if the application wants to suspend these timers when it does not anticipate any network timeout activity and for a longer stay in low-power modes, there is an option to suspend and resume the network stack.

This feature is provided as part of the low-power assistant middleware helper files. The `wait_net_suspend()` API, available in the `lpa/helpers/net_activity/network_activity_handler.h` file, lets you suspend the network stack for a predefined duration or until an activity is detected, if the network remains inactive within a given time window. This API function lets you safely suspend the network and resume it whenever any network activity gets detected. [Figure 5](#) shows the suspend the network stack. operation in different scenarios with network suspend duration of 5000 ms, network inactivity monitor window of 150 ms, and network inactivity duration of 100 ms.

Scenario 1: `wait_net_suspend()` detects no network activity for more than 100 ms within the 150 ms window and suspends the network. No network activity is detected for the network suspend duration of 5000 ms. Therefore, `wait_net_suspend()` resumes the network stack after 5000 ms.

Scenario 2: `wait_net_suspend()` detects network activity in the 150 ms window and inactivity is less than 100 ms. `wait_net_suspend()` does not suspend the network stack.

Scenario 3: `wait_net_suspend()` detects no network activity for more than 100 ms within the 150 ms window and suspends the network. Network activity is detected before the expiry of 5000 ms duration. Therefore, `wait_net_suspend()` resumes the network stack immediately.

3 WLAN power optimization techniques

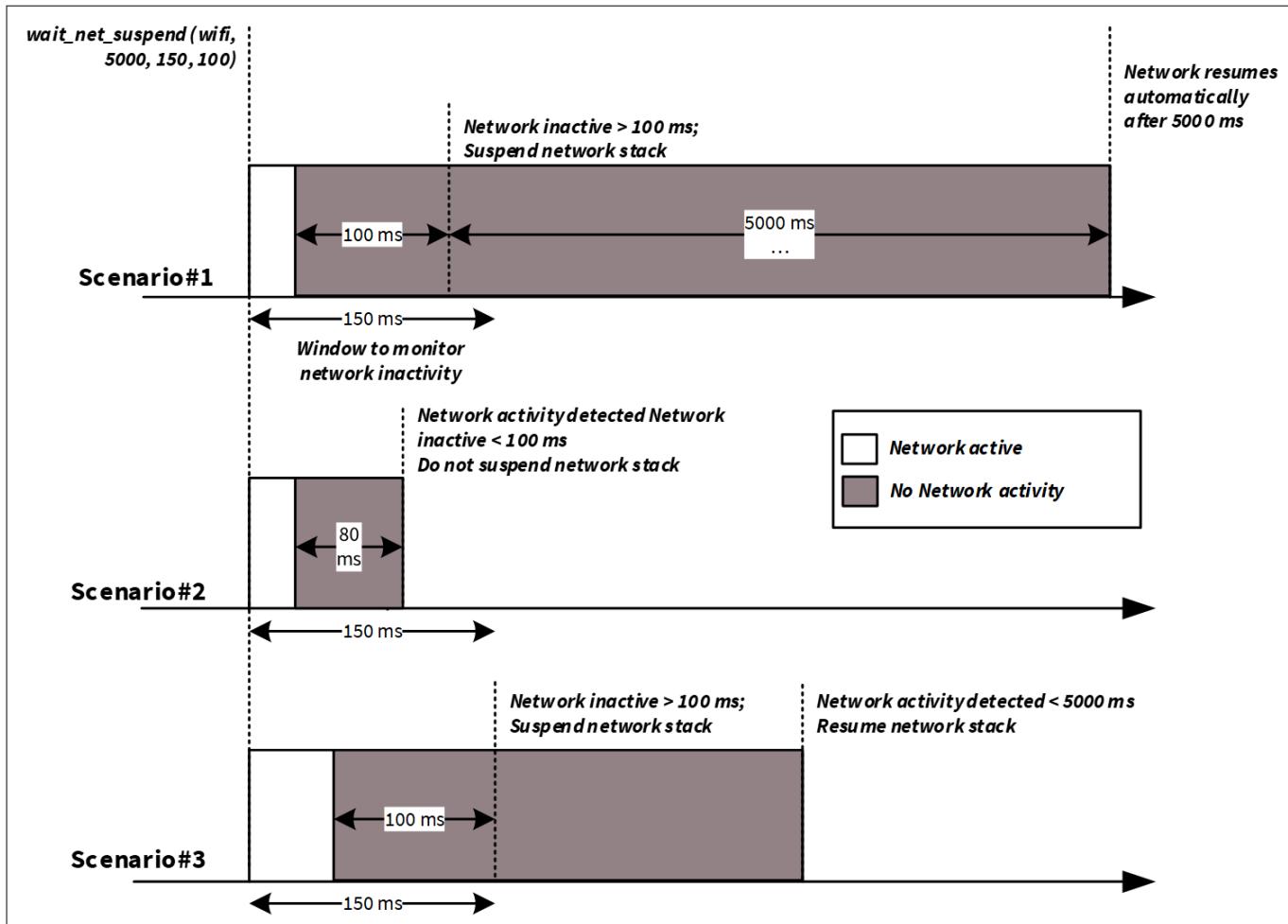


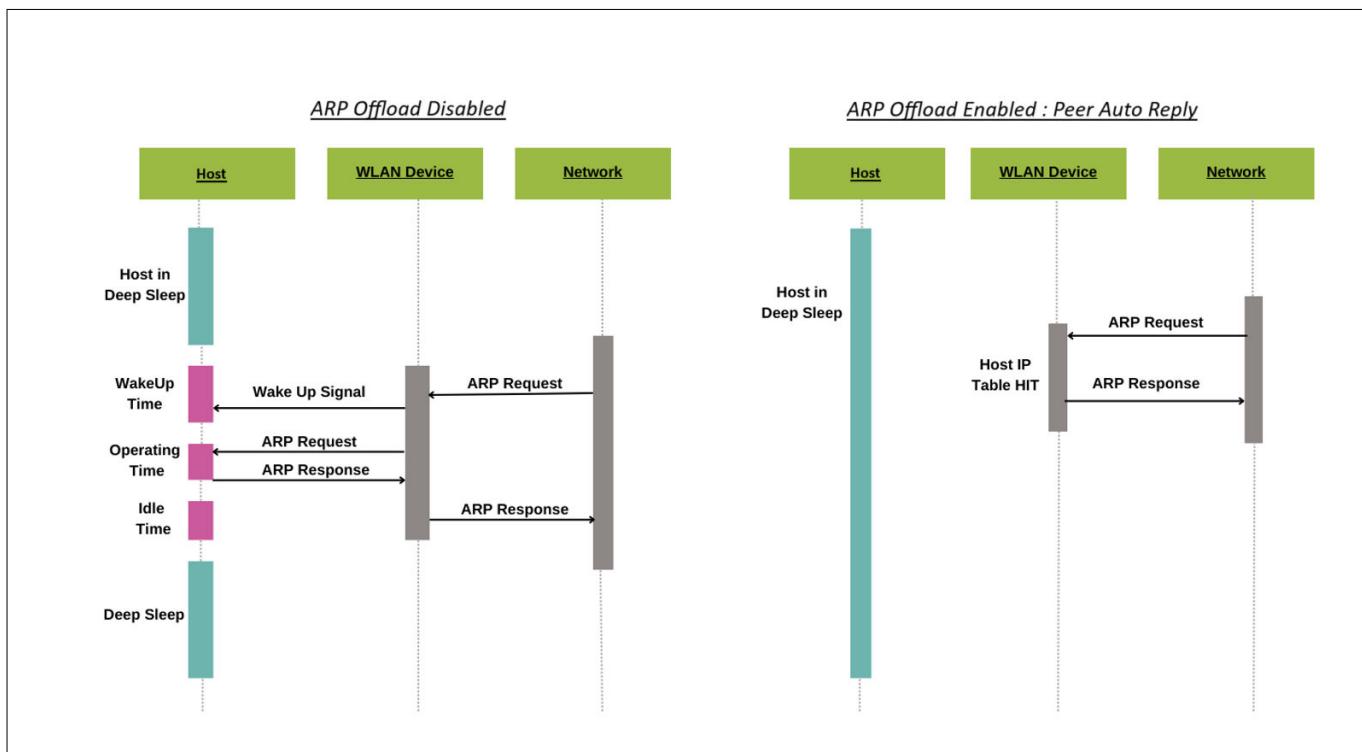
Figure 5 `wait_net_suspend()` operation

3.3 Host offloads to WLAN device

The AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip has an Arm® Cortex®-M33 core that performs all the WLAN device activities. It supports various offloads that execute certain functionalities on behalf of the host without interrupting the host state.

Host offloads play a key role in determining host power consumption because offloads let the host go into Deep Sleep for extended periods of time while the WLAN device handles tasks such as 802.11 roaming, ARP, IPv6 neighbor resolution, key rotation, DHCP Lease time renewal, NAT keepalives, NULL keepalives, Wake on wireless LAN, MQTT keepalives, and TCP keepalives on behalf of the host. In addition, these offloads free the host CPU for other, more powerful tasks such as audio or sensor data processing. This in turn improves the overall system efficiency and power.

The following sections describe offloads supported by AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip. The offloads can be enabled using the Infineon low-power assistant middleware. Using the LPA middleware in ModusToolbox™ is explained in [Low-Power Assistant \(LPA\)](#) section.


3.3.1 ARP offload

ARP is a data link layer protocol for mapping an IP address to a physical MAC address of a device. Such mapping is necessary for any WLAN device to keep updated on [IP:MAC] details of all nearby devices in its network. Using the ARP protocol, a device can detect duplicate IP addresses in a network. This is also useful in notifying peer devices of an IP address change.

3 WLAN power optimization techniques

Because ARP request and response packets are a common activity in any WLAN network, the host device usually gets flooded by many requests; the host needs to remain active to respond to such requests, especially in a crowded network. ARP requests packets from a peer and usually wakes the host if it is sleeping. The ARP offloading feature in the AIROC™ Wi-Fi & Bluetooth® combo chip handles responding to ARP requests from a peer so that these requests will not disturb the host. The AIROC™ Wi-Fi & Bluetooth® combo chip device holds a cache (of eight entries); the host is woken up only if there is a cache miss as shown in [Figure 6](#).

In addition to auto-replies to peers, AIROC™ Wi-Fi & Bluetooth® combo chip can use the cache to reply to the host (PSOC™ Edge MCU) as well when the host sends an ARP request to the network. The Host Auto Reply feature works similarly to Peer Auto Reply, where it responds to host ARP requests directly if a cache hit occurs, and if a cache miss occurs, the request is forwarded to the network, thereby reducing unnecessary broadcast traffic and conserving power. This feature is complemented by the ability of the AIROC™ Wi-Fi & Bluetooth® combo chip device to snoop ARP info from host-network communication, that is, whenever a host sends an ARP response packet over to the network, the [IP:MAC] information is cached into the AIROC™ Wi-Fi & Bluetooth® combo chip ARP cache table. ARP offload reduces the power consumption of your connected systems by reducing the time that the host needs to stay awake due to ARP broadcast traffic.

Figure 6 ARP offload feature

3.3.2 Packet filter offload

Packet filters are a crucial feature that enables the host processor to selectively allow or block specific types of packets from the WLAN subsystem, thereby conserving power and reducing unnecessary wake-ups. By configuring packet filters, the host processor can limit the types of packets that are passed up to it, preventing unrequired packets from waking it up from a power-saving System Deep Sleep mode or preventing it from entering this mode.

Packet filters are particularly useful when trying to keep the host processor in a low-power state for as long as possible or when trying to get it into this state as soon as possible. By filtering out unnecessary packets, the host processor can conserve power and reduce latency.

Supported packet filters are as follows:

- Network layer/EtherType filters, which are based on the 16-bit EtherType field present in Ethernet packets

3 WLAN power optimization techniques

- Internet Protocol (IP) filters, which are based on the 8-bit IP protocol number
- Port filters, which are based on the 16-bit port numbers used by TCP and UDP applications
- Transport layer/IP protocol filters, which filter based on the IP protocol number
- Applications layer/TCP and UDP port numbers filters, which filter based on the port numbers used by TCP and UDP applications
- Source port filters, which filter based on the source port numbers used by TCP and UDP applications
- Destination port filters, which filter based on the destination port numbers used by TCP and UDP applications
- Port range filters, which filter based on a range of port numbers used by TCP and UDP applications
- ARP filters, which filter based on ARP packets
- Internet Control Message Protocol (ICMP) filters, which filter based on ICMP packets
- Transfer Control Protocol (TCP) filters, which filter based on TCP packets
- User Datagram Protocol (UDP) filters, which filter based on UDP packets
- IP filters, which filter based on IP packets
- Action filters, which can be configured to either keep (send to host) or toss (drop/discard) packets

Each filter type has its own set of configuration options and considerations. For example, EtherType filters can be used to match specific protocols, such as ARP or IP, while IP protocol filters can be used to match specific protocols, such as TCP or UDP. Port filters can be used to match specific applications, such as SSH or FTP.

When configuring packet filters, it is essential to consider the specific requirements of the application and the network environment. For example, if the application needs to perform ping operations, then an IP protocol filter for ICMP must be enabled, along with an EtherType filter for ARP.

Packet filters can be used to enable or disable an approach to packet filtering, where only specific types of packets are allowed or blocked, respectively.

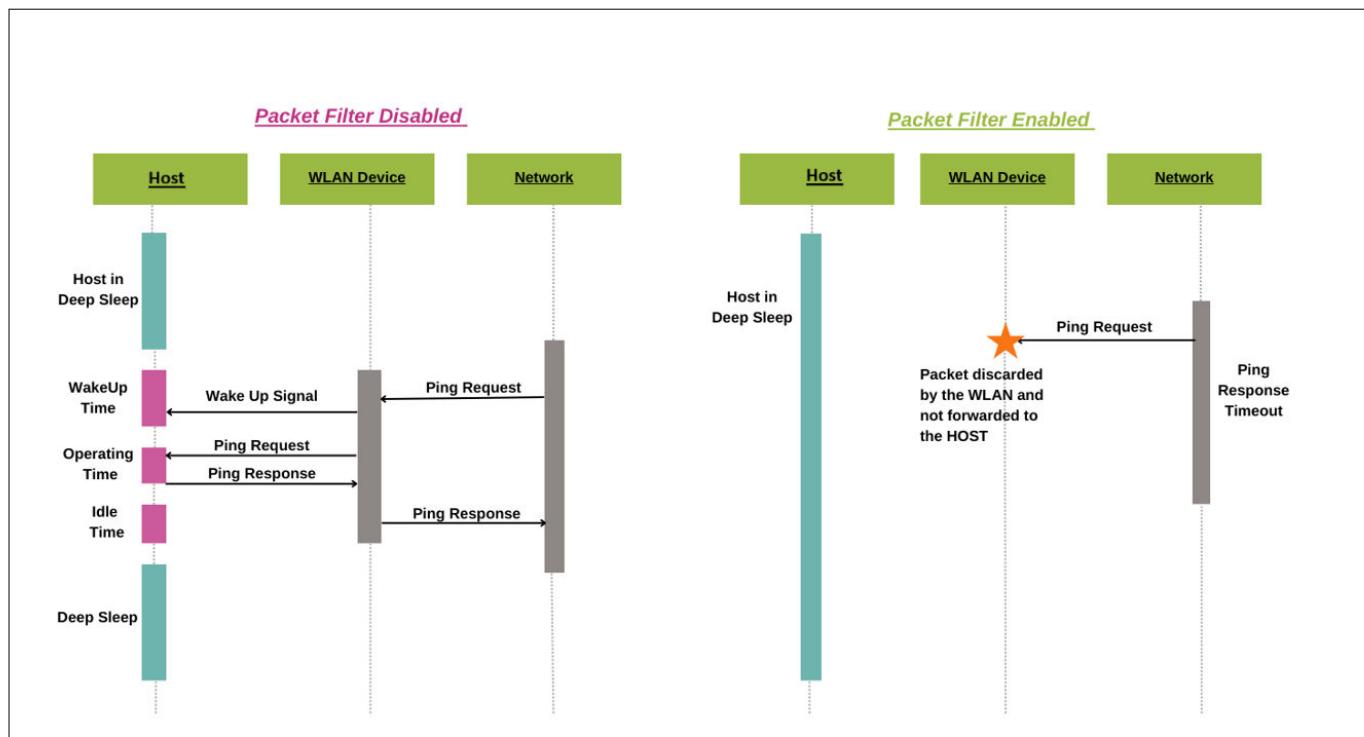
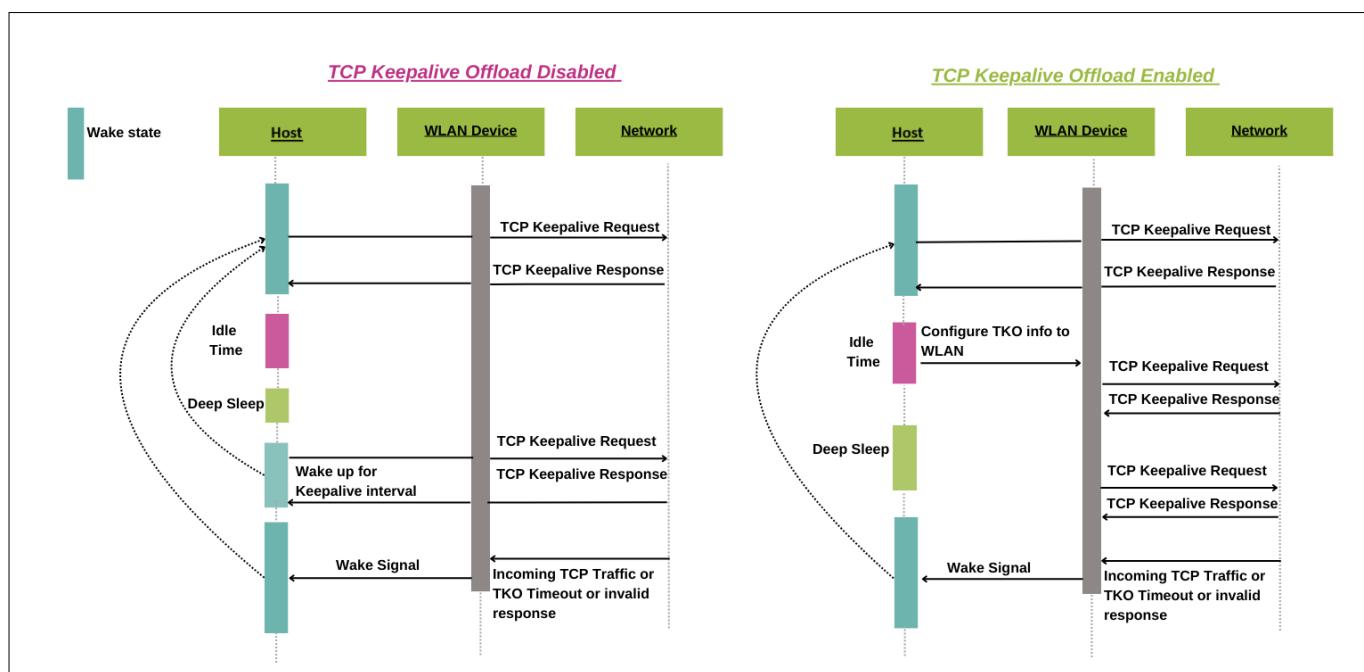


Figure 7


Packet filter showing ICMP packet filter: Disabled vs. enabled

3 WLAN power optimization techniques

3.3.3 TCP keepalive offload

A TCP keepalive packet is a message sent by one device to another to check whether the link between the two is operational or to prevent the link from being disconnected. When two devices connect over a network via TCP/IP, TCP keepalive packets can be used to determine whether the connection is still valid and terminate if needed. If a connection has been terminated because of a TCP keepalive timeout and the other device eventually sends a packet for the old connection, the device that terminated the connection sends a packet with the RST flag set to signal the other device that the old connection is no longer active. This forces the other device to terminate its end of the connection, therefore, a new connection can be established. Therefore, TCP keepalive packets can be used in checking for dead peers or for preventing disconnection because of network inactivity.

TCP keepalive offload: Typically, TCP keepalive packets are sent every 45 or 60 seconds on an idle TCP connection; the connection drops after three sequential ACKs miss. This means that the host MCU must wake up periodically to send TCP keepalive packets to maintain the TCP connection during the idle state. The TCP keepalive offloads part of the LPA help you improve the power consumption of your connected system by reducing the time the host needs to stay awake to support TCP keepalive requests. This is achieved by offloading the TCP keepalive functionality to the WLAN device so that the host MCU can be dedicated to your application. [Figure 8](#) shows that the host wakes up for incoming TCP traffic when offload is not enabled. On the other hand, the host can save more power by entering and staying in deep sleep for a longer time when the TCP keepalive activity is offloaded to the WLAN device.

Figure 8 TCPKA offload: Disabled vs. enabled

3.3.4 DHCP Lease Time Renew offload

Dynamic Host Configuration Protocol (DHCP) is a network management protocol that dynamically assigns IP addresses to devices on a network, enabling them to communicate using IP. DHCP streamlines the process of assigning IP addresses to all network devices, eliminating the need for manual configuration. When a DHCP-enabled client joins a network, it broadcasts a DHCP Discover message, prompting the DHCP server to respond with a DHCP Offer containing essential IP configuration information, such as the default gateway, IP address, DNS server IP address, and lease time period. The client then sends a DHCP Request message to accept the offered IP address, which the server confirms with a DHCP Acknowledgment (ACK) message. The assigned IP address remains valid for the specified lease time interval, after which the client must renew the IP address by sending a DHCP Request message before the lease expires.

3 WLAN power optimization techniques

With DHCP Lease Time Renew offload, the WLAN firmware intercepts the DHCP Offer and records the DHCP lease time. When the MCU is in a sleep state, the firmware proactively sends a DHCP Request to the DHCP server before the lease time expires, reducing the need for the MCU to wake up periodically to renew the IP address. When the MCU is in a wake state, the DHCP renew packet is sent by the network stack running on the host.

By offloading DHCP Lease Time Renew to the WLAN firmware, the host device can conserve power and reduce the overhead associated with frequent wake-ups to renew IP addresses. DHCP Lease Time Renew offload can also help improve network reliability and reduce the risk of IP address conflicts, as the WLAN firmware can ensure timely renewal of IP addresses even when the host is in a sleep state.

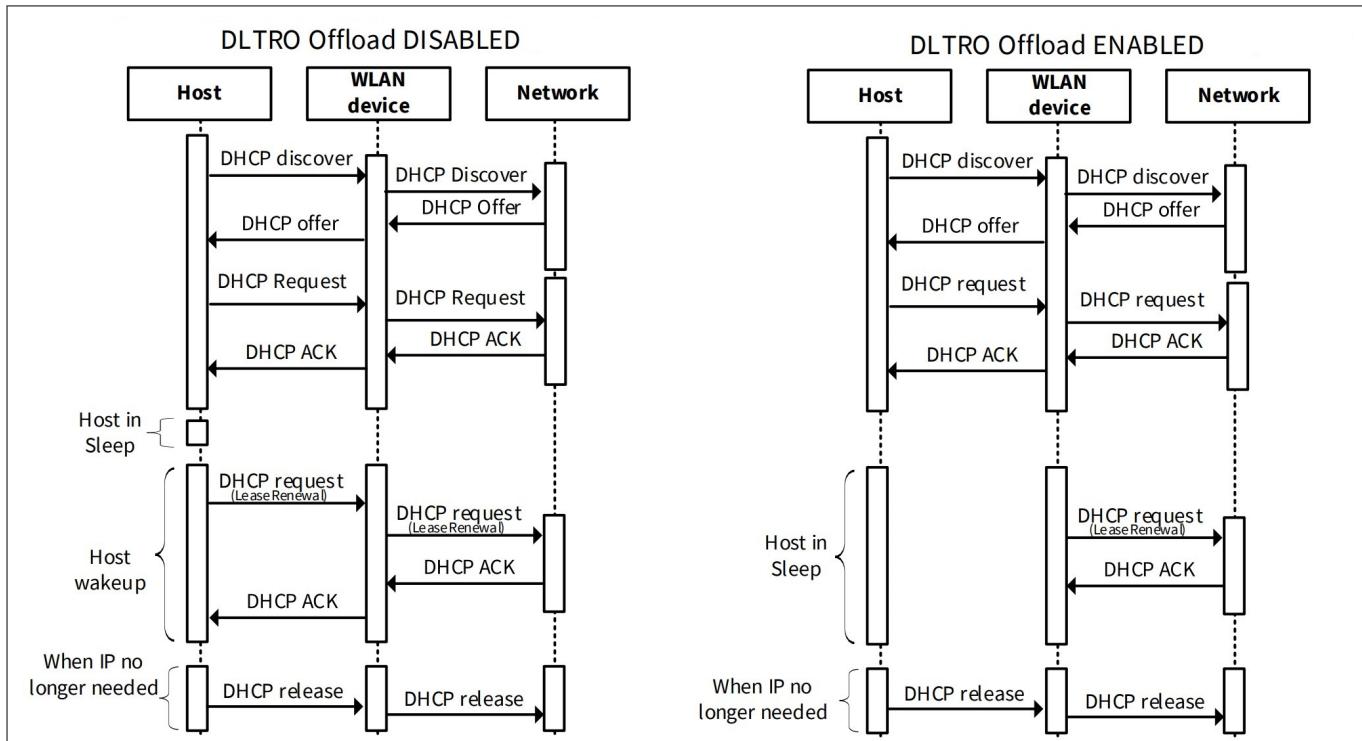


Figure 9 DLTRO offload: Disabled vs. enabled

3.3.5 ICMP offload

The Internet Control Message Protocol (ICMP) is a network layer protocol that enables network devices to troubleshoot communication issues by sending and receiving diagnostic messages. ICMP's primary function is to verify whether data packets are successfully reaching their intended destination by sending ICMP requests to a specific IP address and receiving timely responses. With ICMP offload, the WLAN firmware takes charge of responding to ICMP ECHO requests by sending PING ECHO response packets to the peer device without interrupting the host processor, allowing the host to remain in a low-power sleep state for an extended period. ICMP offload is active during both host wake and sleep states, ensuring seamless network communication.

By offloading ICMP processing to the WLAN firmware, the host device can conserve power and reduce latency, as it is no longer required to wake up and process ICMP requests. ICMP offload can also help improve network responsiveness and reliability, as the WLAN firmware can respond to ICMP requests in real-time, even when the host is in a sleep state.

3 WLAN power optimization techniques

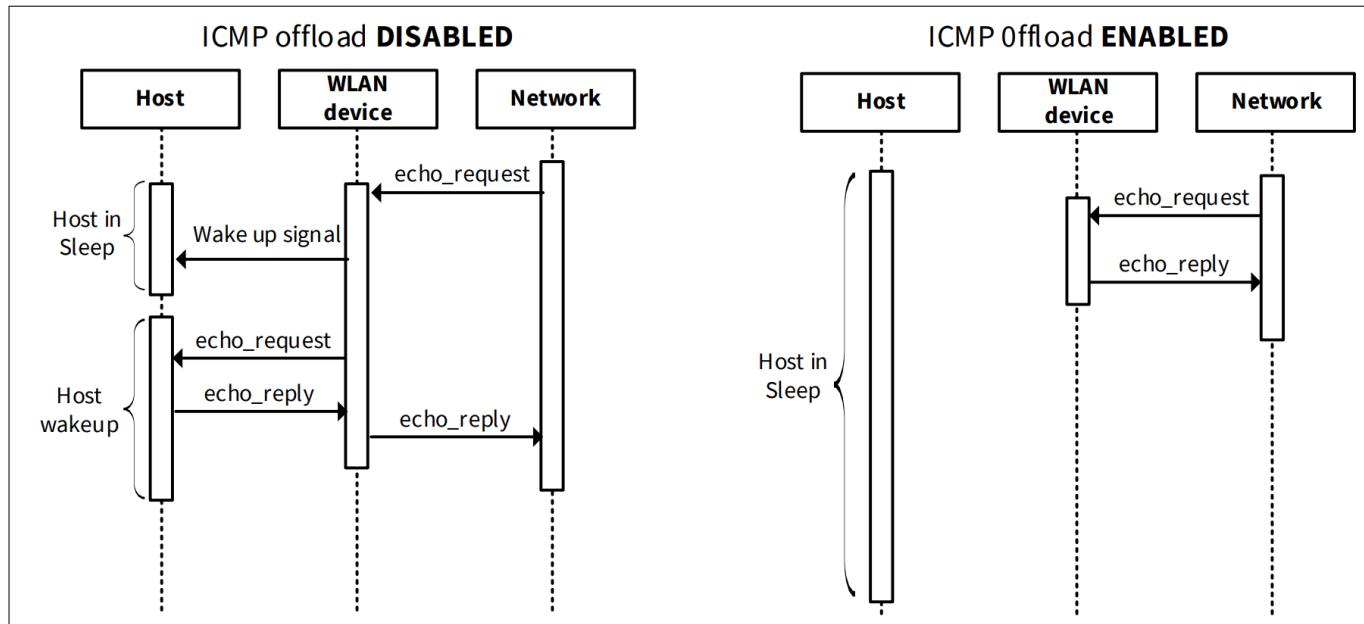


Figure 10 ICMP offload: Disabled vs. enabled

3.3.6 Neighbor Discovery (ND) offload

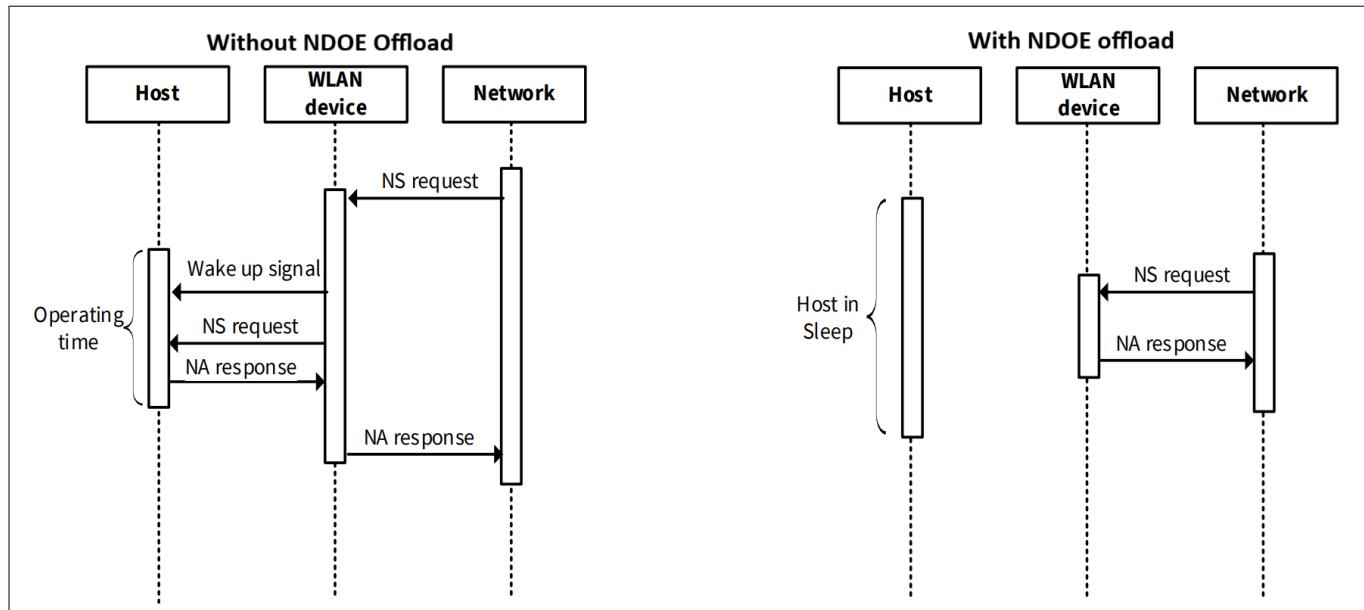
Neighbor Discovery (ND) is a network protocol used in conjunction with Internet Protocol Version 6 (IPv6) to enable nodes on the same link to discover and advertise their presence to neighboring devices. This protocol facilitates the exchange of link-layer addresses between nodes, similar to the Address Resolution Protocol (ARP) in IPv4.

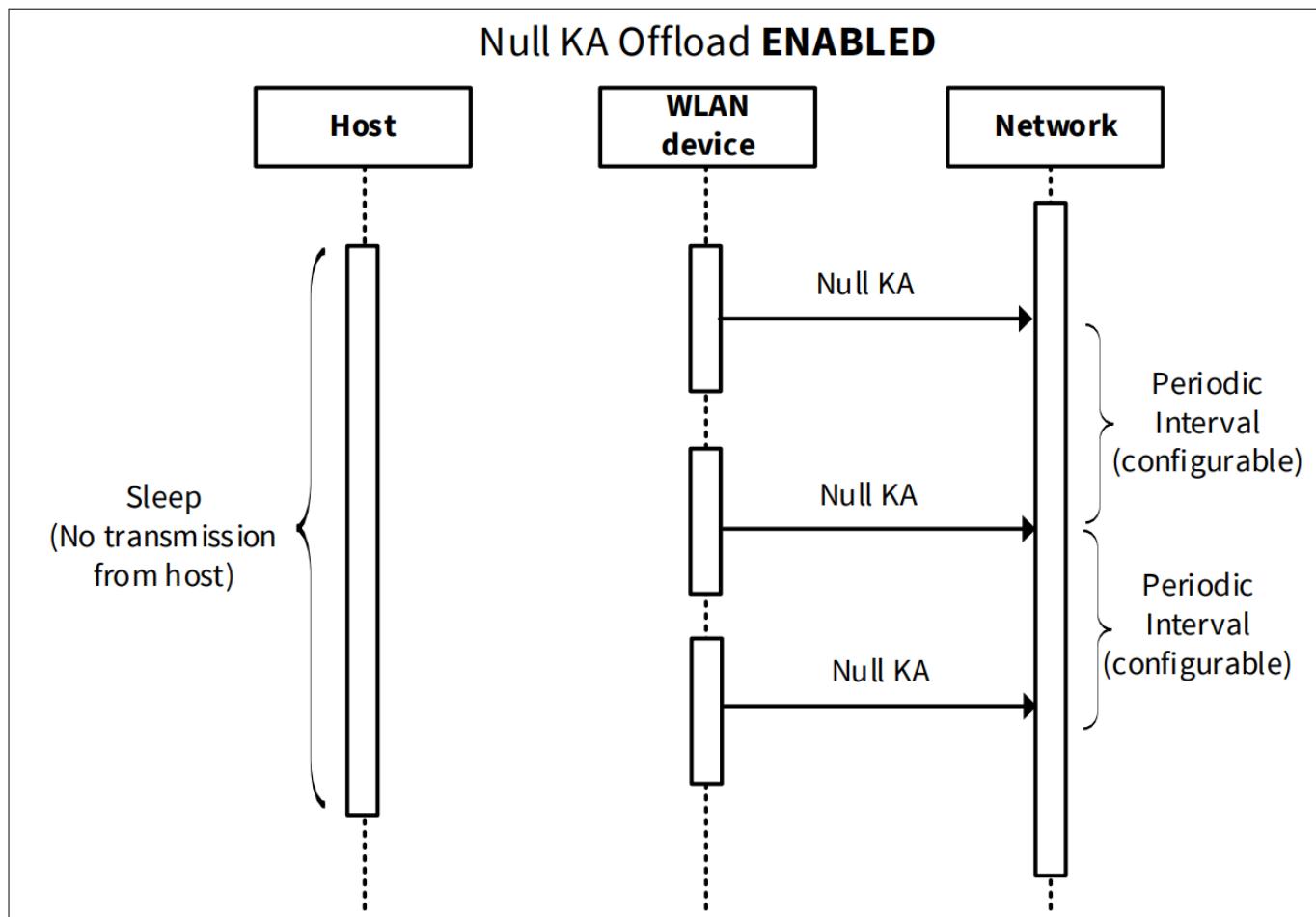
Neighbor Solicitation (NS) messages are sent by a node to determine the link-layer address of a neighboring device or to verify the reachability of a cached link-layer address. These messages are also used for Duplicate Address Detection (DAD) to prevent IP address conflicts. In response to a Neighbor Solicitation, a node sends a Neighbor Advertisement (NA) message, which provides the MAC address associated with a specific IPv6 link-local address. Unsolicited Neighbor Advertisements are also sent to announce changes to a node's IPv6 link-local address. When a device is in a wake state, the network stack receives Neighbor Solicitation messages and responds with Neighbor Advertisement messages.

With Neighbor Discovery offload, the WLAN firmware assumes responsibility for responding to Neighbor Solicitation requests by sending Neighbor Advertisement packets to the peer device without waking up the host processor, allowing the host to remain in a low-power sleep state for an extended period.

By offloading Neighbor Discovery to the WLAN firmware, the host device can conserve power and reduce the overhead associated with processing Neighbor Solicitation messages, resulting in improved battery life and reduced latency.

3 WLAN power optimization techniques




Figure 11 Network discovery offload: Disabled vs. enabled

3.3.7 NULL keepalive offload

NULL keepalive is a mechanism designed to prevent wireless connections from being dropped due to inactivity. NULL keepalive packets are 802.11/L2 packets that are transmitted at regular intervals to maintain the wireless association/connection. With NULL keepalive offload, the WLAN firmware assumes responsibility for sending NULL keepalive packets at intervals specified by you. The default interval for NULL keepalive is 110 seconds, which is pre-configured in the WLAN firmware. You have the flexibility to adjust these intervals using the Device Configurator, with the constraint that the interval value must fall within the range of 1 second to 4200 seconds.

The power consumption of the device can be further optimized by adjusting the interval value for NULL keepalive packets, as a longer interval can result in lower power consumption, but may also increase the risk of connection drops.

3 WLAN power optimization techniques

Figure 12 Flow of null keepalive transmit

3.3.8 NAT keepalive offload

NAT keepalive periodically sends small UDP packets between the client and server to maintain the NAT tables in routers, ensuring smooth packet forwarding and preventing packet drops due to idle timeouts. With NAT keepalive offload, the WLAN firmware (FW) takes over the responsibility of sending keepalive packets at regular intervals, even when the host is in a sleep state. This feature is active in both host sleep and wake states.

NAT keepalive offload can help reduce the host's power consumption by offloading the keepalive packet transmission to the WLAN firmware, allowing the host to remain in a low-power state for longer periods. The configured interval for sending keep-alive packets can be adjusted to balance between maintaining NAT table entries and minimizing network traffic.

3 WLAN power optimization techniques

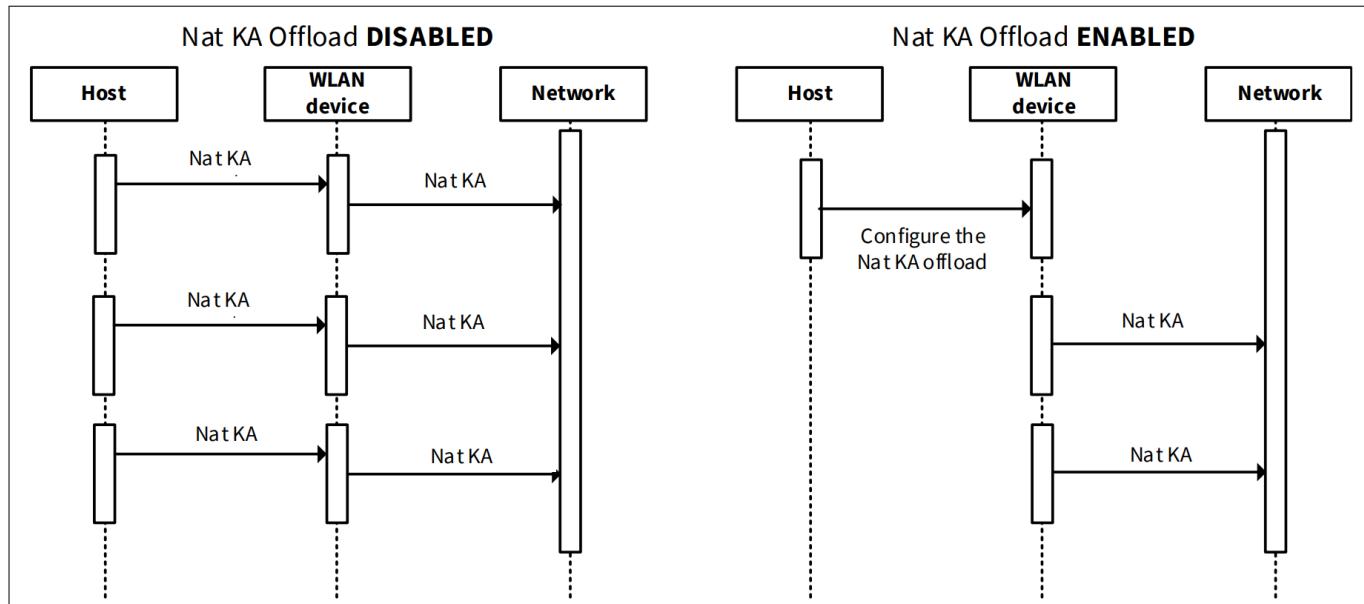
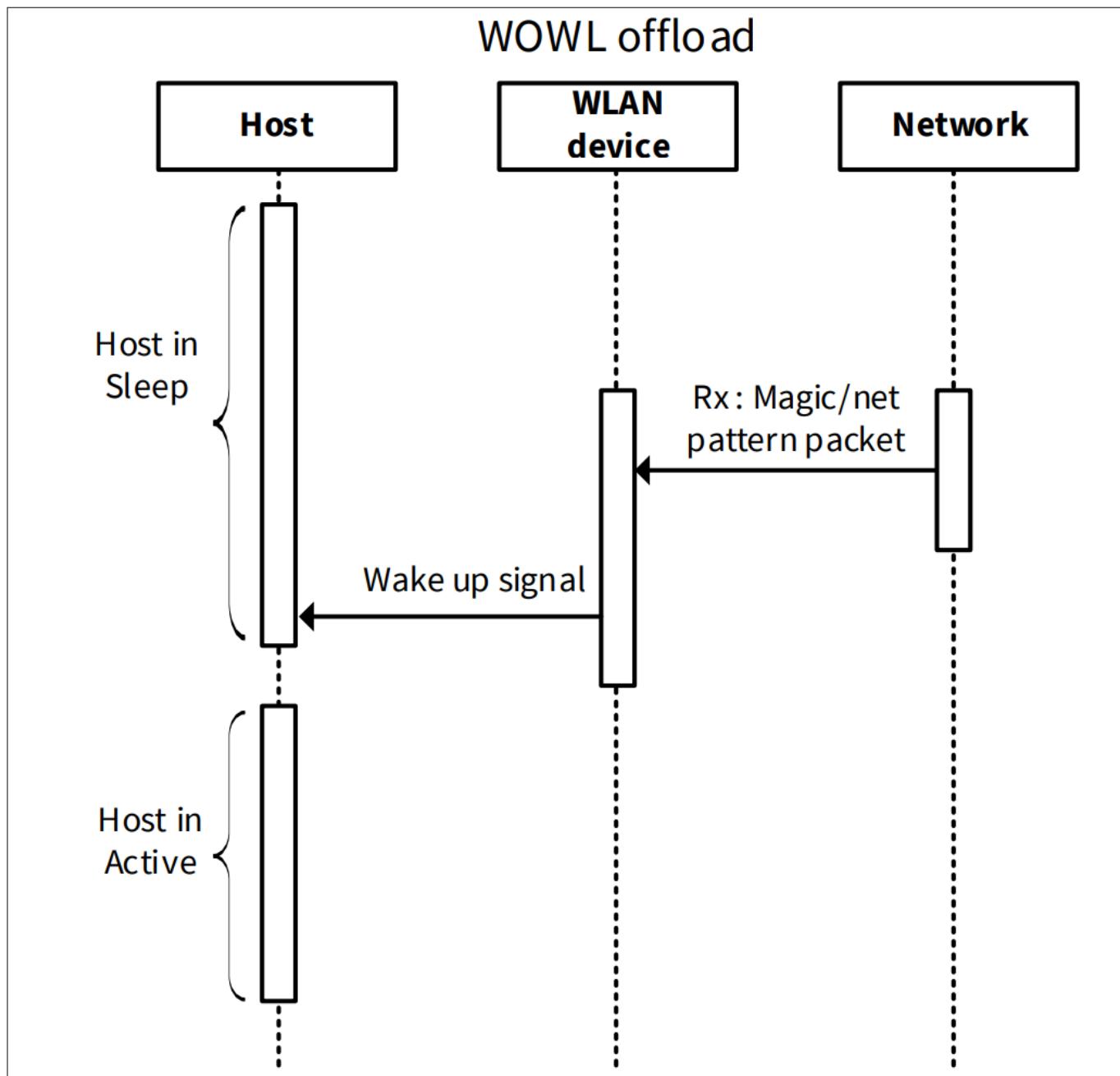


Figure 13 NATKA offload: Disabled vs. enabled

3.3.9 Wake on Wireless LAN

Wake on Wireless LAN (WOWL) allows a host to be turned on or awakened when a WLAN firmware receives a specific network message from the Access Point (AP). This feature is enabled when the host is in a low-power state, enabling the device to conserve energy. The intention of WOWL is to allow the host to enter a sleep mode and wake up only when a specific packet is received, reducing power consumption.


Wake on Magic Pattern: When a magic packet is received, the WLAN firmware wakes up the host. The magic packet is a broadcast packet containing a payload of 6 bytes of all 255 (FF FF FF FF FF FF in hexadecimal), followed by sixteen repetitions of the target 48-bit MAC address. This feature is particularly useful for remote management and maintenance.

Wake on Net Pattern: This feature wakes up the host when the packet received in the WLAN matches the configured net pattern, mask, and offset. This allows for more flexibility and customization in determining which packets can wake up the host.

Wake on Pattern Configuration: By configuring wake on patterns, the host can remain in a sleep state for longer periods without waking up for incoming packets, resulting in significant power savings.

Wake on Unicast: This feature allows the host to wake up when a unicast packet is received, providing an additional option for waking up the host.

WOWL Timeout: A configurable timeout can be set to determine how long the host remains in a sleep state before waking up, providing more control over power management.

Figure 14 Basic flow exchange in wake-on-WLAN

3.3.10 MQTT keepalive offload

MQTT keepalive offload is a feature of the Low-Power Assistant (LPA) tool that reduces power consumption by minimizing the time the host needs to stay awake to support MQTT keepalive requests, which is achieved by offloading the keepalive functionality to the WLAN firmware, allowing the host MCU to remain in Sleep mode and only wake up when an MQTT message containing a pre-configured pattern is received.

3 WLAN power optimization techniques

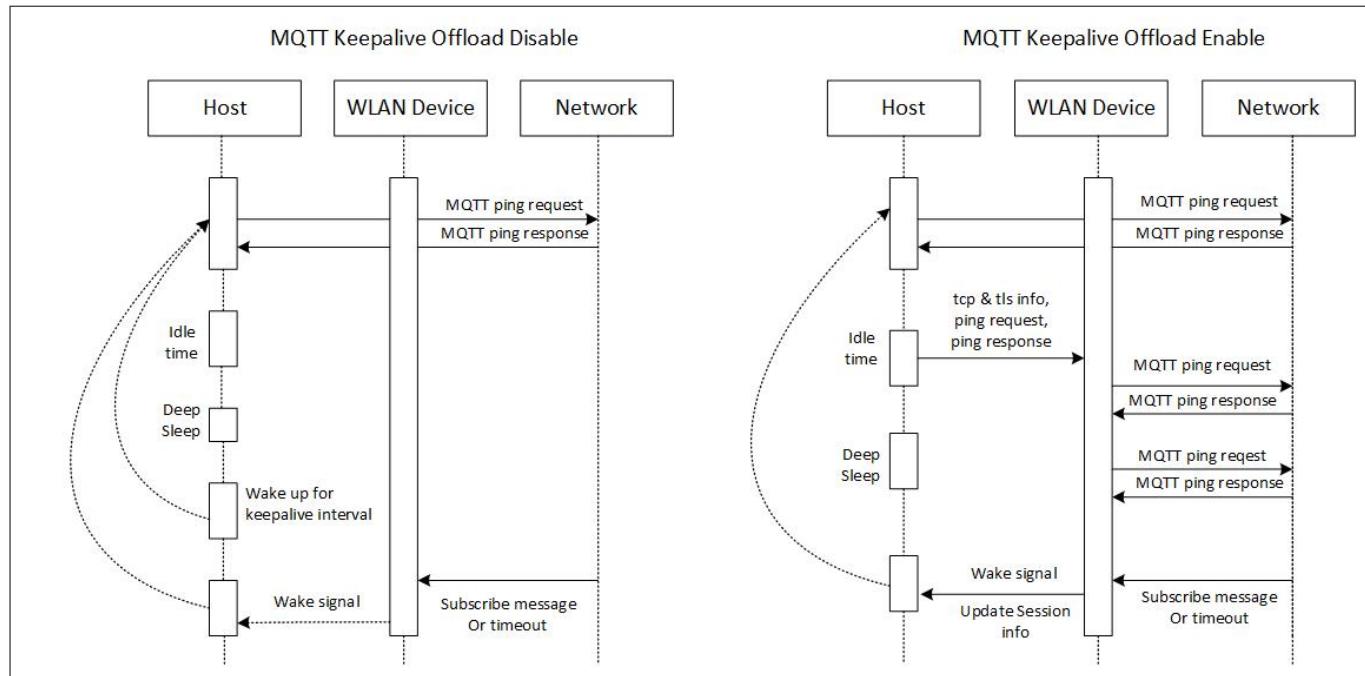


Figure 15 MQTT offload: Disabled vs. enabled

4 Bluetooth® power optimization techniques

AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip supports a Bluetooth® 5.3 + BR/EDR-compliant/Bluetooth® LE radio.

Common operations related to power consumption in a Bluetooth® LE application include advertisement and connection events. It is discussed how to optimize various parameters related to both advertisement and connection events to reduce power consumption. This section assumes that you are familiar with Bluetooth® LE fundamentals. See Vol 6: “Core System package [Low Energy Controller]” of the latest [Bluetooth® Core specification](#) for Bluetooth® LE fundamentals.

Bluetooth® Configurator

The Bluetooth® Peripheral/Central has an additional configurator called the “Bluetooth® Configurator”; used to generate the AIROC™ Bluetooth® LE GATT database and various Bluetooth® settings for the application. These settings are stored in the file named *design.cybt*. Note that, unlike the Device Configurator, the Bluetooth® Configurator settings, and files are local to each respective application.

For detailed information on how to use the Bluetooth® Configurator, see the [Bluetooth® Configurator guide](#).

4.1 Advertisement events

Advertisement events broadcast the capabilities of a Bluetooth® LE Peripheral device to Bluetooth® LE Central devices listening to the events. These events can constitute the major portion of a Bluetooth® device’s battery consumption, if not carefully chosen. The interval between two successive advertisement events from the Peripheral forms the advertising interval; it can be fixed or a random value between a min and maximum interval.

To achieve the lowest possible power during advertisement events, you should maximize the advertising interval. However, a larger advertising interval leads to a longer detection time at the Central device and a subsequently longer time for getting connected to the Central. The advertising interval should be between 20 ms and 10.24 seconds. In addition, the advertisement interval between a min and maximum not only improves the tradeoff between power and latency, but also improves the detection probability in noisy environments by randomizing the time at which an advertisement packet is sent out.

Using Bluetooth® Configurator, the advertisement packet duration or interval can be set.

Table 6 Advertising interval selection

Application requirement	Suggested advertisement interval
The application requires shorter detection and connection establishment periods such as audio devices or devices that send real-time data	20 to 100 ms
The application does not have aggressive connection requirements but still prefers low latency such as fitness trackers or smart watches	100 to 1000 ms
The application does not care about latency; power consumption is of more importance, such as in the case of beacons	1000 to 10000 ms

In addition to the advertisement interval, the amount of data transmitted during advertisement impacts the power consumption during advertisement events. The smaller the advertisement payload, the lower the power consumption.

4 Bluetooth® power optimization techniques

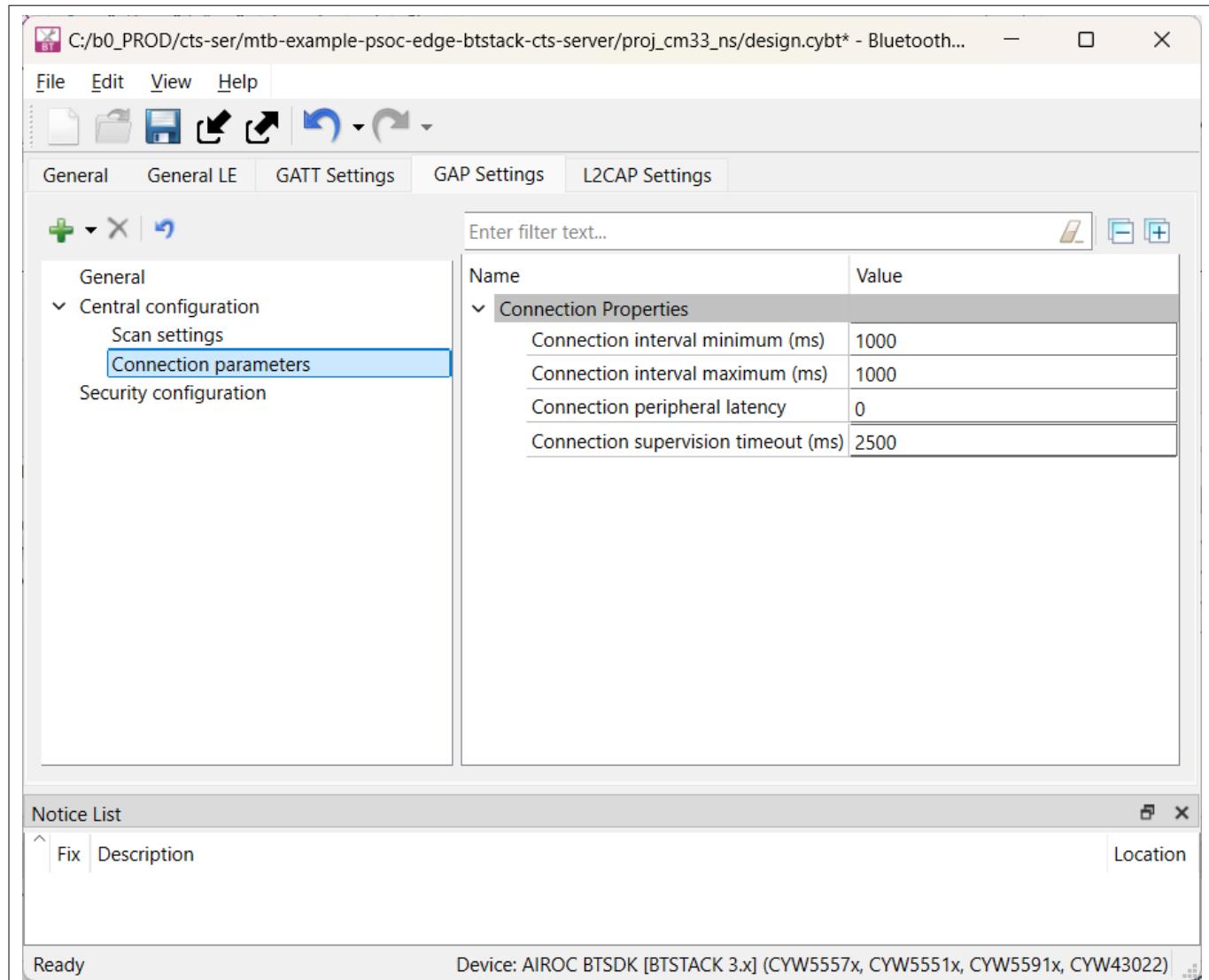
4.2 Connection events

4.2.1 Connection interval

The connection interval for a Bluetooth® LE link is set by the Central device when a connection is created with the Peripheral device. The Peripheral should have a connection interval that matches the rate at which the sensor data from the Peripheral is sent to the Central device. If the initial connection interval set by the Central is lower than necessary, the Peripheral should request the Central to increase the connection interval to reduce current consumption. This can be done after a connection is established by sending a “connection parameter update request” to the Central.

4.2.2 Use Peripheral latency

Peripheral latency is a Bluetooth® LE feature that allows a Peripheral to listen to the Central device on connection events at a reduced rate. This is useful if the Peripheral device is inactive for some time and has to wait for some activity to occur to send data to the Central device. If no activity is detected for some time, the Peripheral can enter Peripheral latency by sending a connection update request to the Central device. The Peripheral can extend the interval between connection events at which it listens to the Central. This allows the Bluetooth® LE device and the host to be put into Deep Sleep mode for longer durations.


The key advantage of using Peripheral latency is that when the peripheral application detects activity, it can switch the Bluetooth® LE device back ON to listen to the Central at the original connection interval until the data transfer is completed. This avoids the latency in sending the data upon the first activity.

4.2.3 Bluetooth® LE parameters in Bluetooth® Configurator

Figure 16, Figure 17, and Figure 18 show the configurations of connection parameters, advertisement settings, and scan settings respectively.

Adjusting these parameters can minimize power consumption by keeping the device in low power mode for longer periods, only waking up when required. Refer [PSOC™ Edge MCU: Bluetooth® LE CTS Server code example](#) and [PSOC™ Edge MCU: Bluetooth® LE CTS Client code example](#) for more information on power consumption across various modes.

4 Bluetooth® power optimization techniques

Figure 16 Connection parameters in Bluetooth® Configurator

4 Bluetooth® power optimization techniques

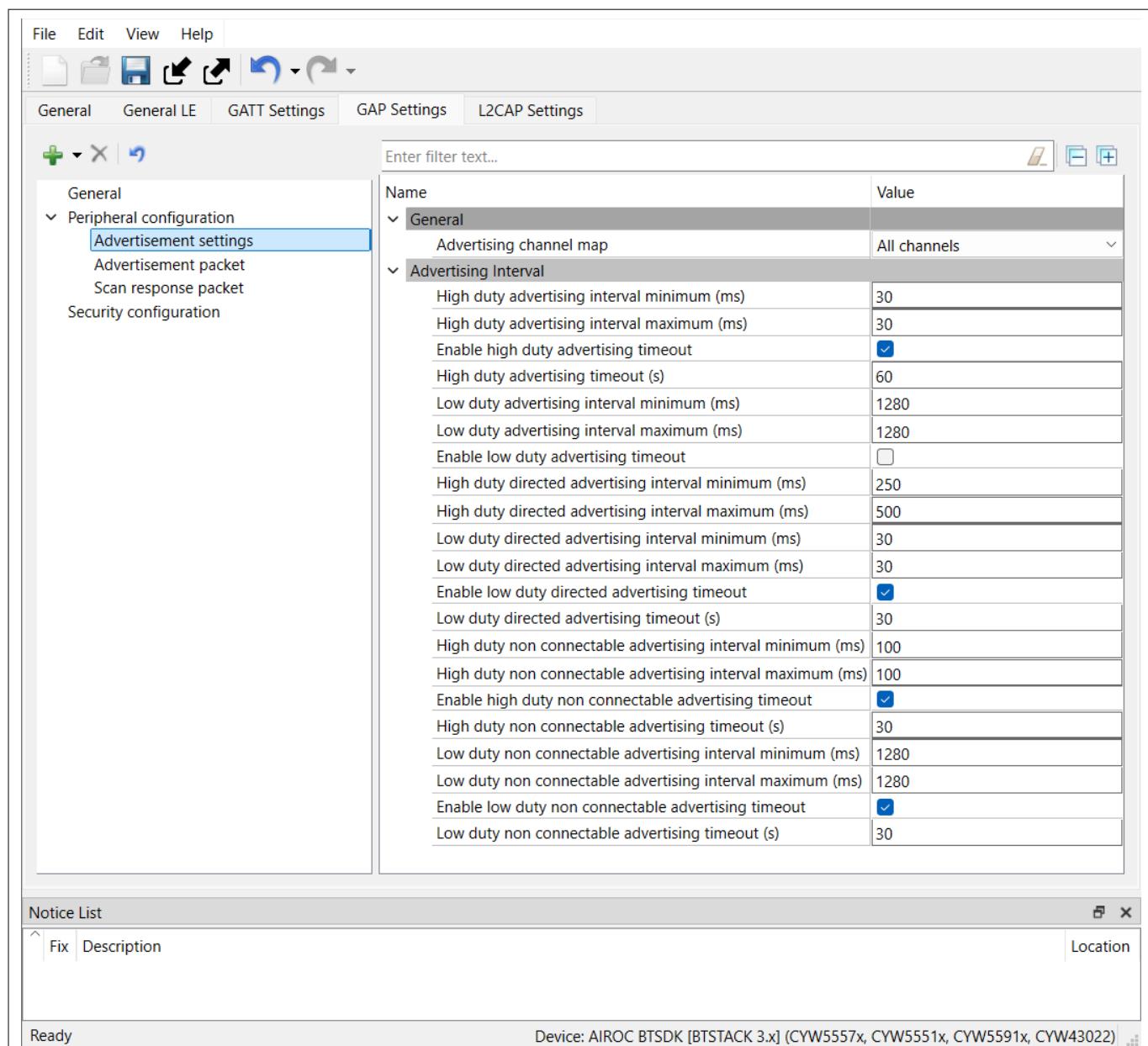
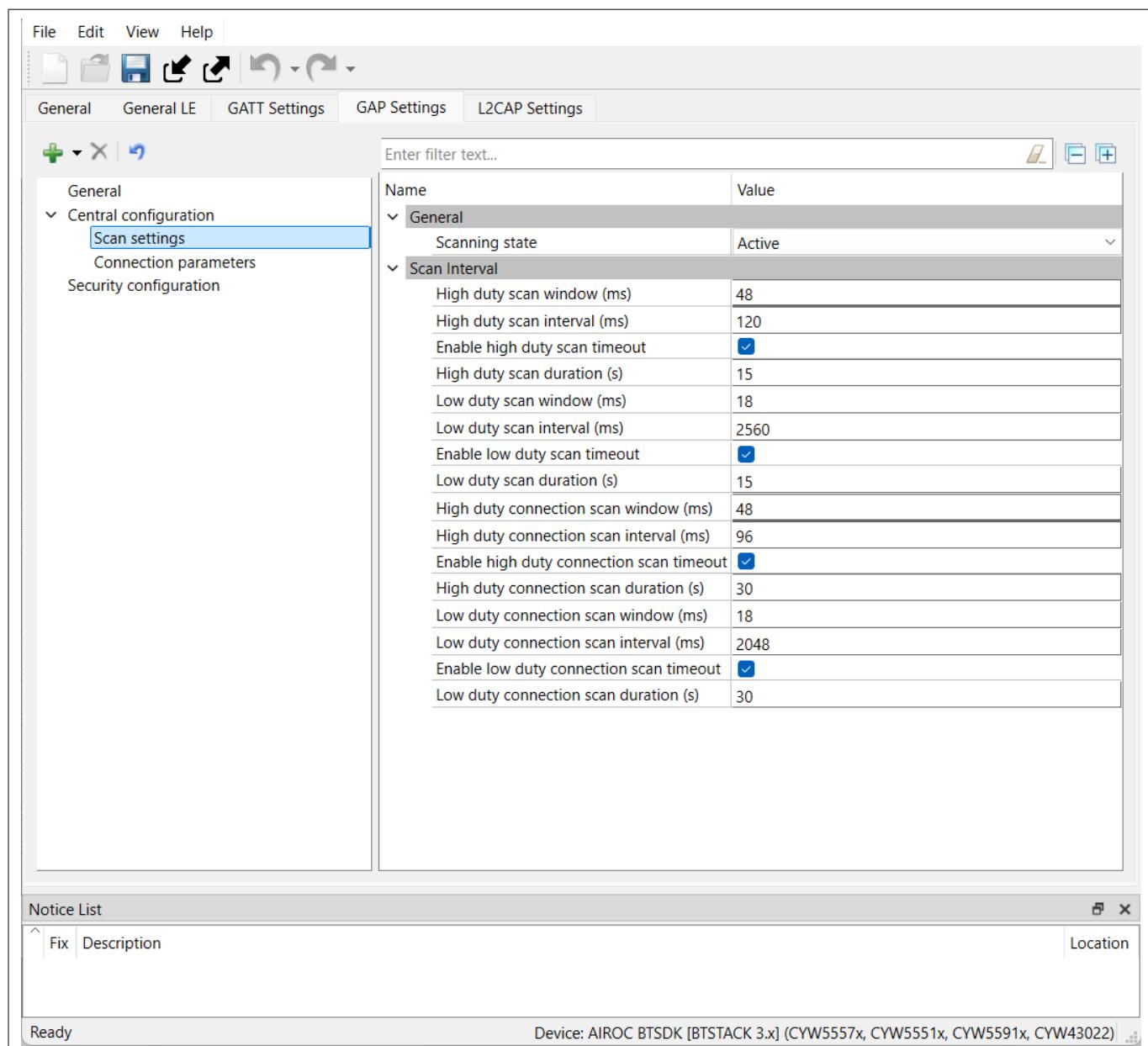



Figure 17 Advertisement settings in Bluetooth® Configurator

4 Bluetooth® power optimization techniques

Figure 18 Scan settings in Bluetooth® Configurator

5 Low-Power Assistant (LPA)

The Infineon Low-Power Assistant (LPA) tool allows configuring PSOC™ Edge MCU host and WLAN (Wi-Fi/Bluetooth® radio) devices to provide low-power features. Key highlights of the LPA include the following:

- Self-aware firmware that detects configurations automatically and enables appropriate low-power features without any additional API calls
- Supports embedded operating systems, such as FreeRTOS
- GUI-based configuration for ease of use
- Supports low-power configuration for PSOC™ Edge MCU, Wi-Fi, and Bluetooth®

LPA lets you optimize various parts of your design to be energy-efficient. The LPA configuration is split into three main parts:

- **PSOC™ Edge MCU (host) low-power configuration:** Includes PSOC™ Edge MCU-specific low-power configurations, such as core voltage, regulator selection, and RTOS idle power mode
- **Wi-Fi low-power configuration:** Includes Wi-Fi-specific low-power configurations, such as Wi-Fi host wake signal selection and host offload configurations
- **Bluetooth® low-power configuration:** Includes Bluetooth® low-power configurations, such as host wake interrupt signal (device to host) and related device integration

Some of these configurations are already part of the firmware and some can be generated through the Device Configurator in ModusToolbox™ software or added manually through code. Given the simplicity of the configurations, adding them through a code is not difficult. However, using the configurator lets you take advantage of a GUI-based configurator in addition to making the generated configuration easily upgradable in the future; it is the recommended way to create low-power configurations.

See the [LPA documentation](#) for details on the middleware, configurators, and quick start.

The following sections provide a brief on the Wi-Fi, and Bluetooth® low-power configurations available and their usage in different platforms.

5.1 LPA configuration

To configure Low-Power Assistant (LPA) settings, some configurations are included in the firmware by default, while others require explicit enablement through the Device Configurator tool, which is part of the ModusToolbox™.

1. To access the Device Configurator, you can launch it from within ModusToolbox™. Once you have made the necessary configurations, the settings are saved to a file named `design.modus`. This file contains the configuration details for the LPA settings, as well as other device configurations, and can be used to generate the firmware for your device
2. To check the LPA settings, open **design.modus > PSOC™ Edge MCU device in target > System > PSOC™ Edge MCU-related power settings and design.modus > AIROC™ CYW55513 Wi-Fi & Bluetooth® > Power > Wi-Fi and Bluetooth® settings**
3. [Figure 19](#) shows the PSOC™ Edge MCU and Wi-Fi LPA (power) settings for the `TARGET_KIT_PSE84_EVAL_EPC2` target. You need to enable the **Power** setting to enable LPA configuration generation. For a detailed description of all the configurations, see the [LPA documentation](#)

5 Low-Power Assistant (LPA)

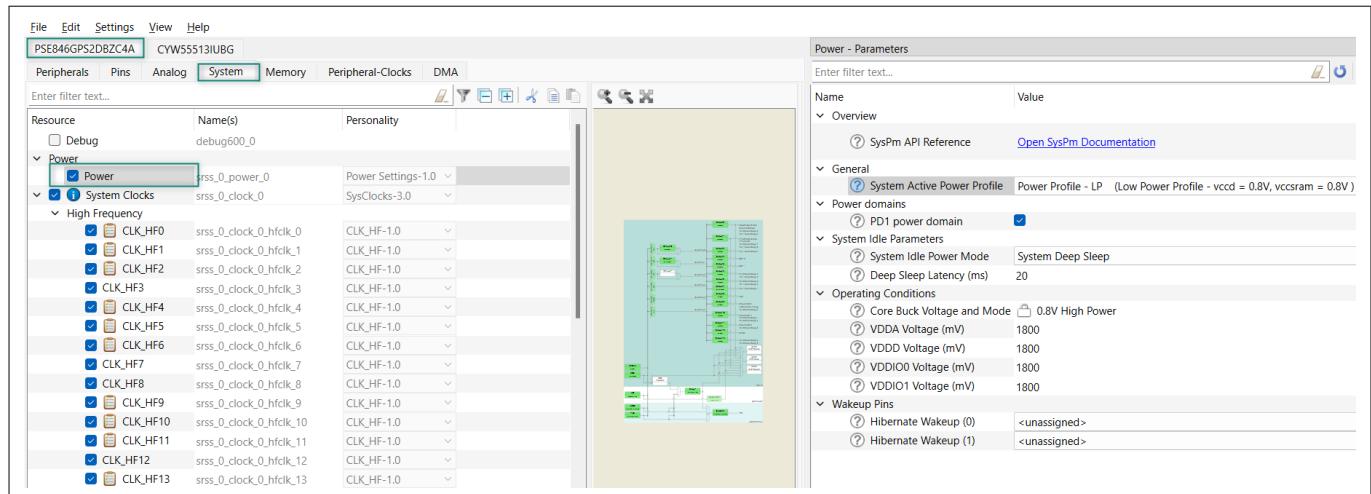


Figure 19 PSOC™ Edge MCU LPA configurations in *design.modus*

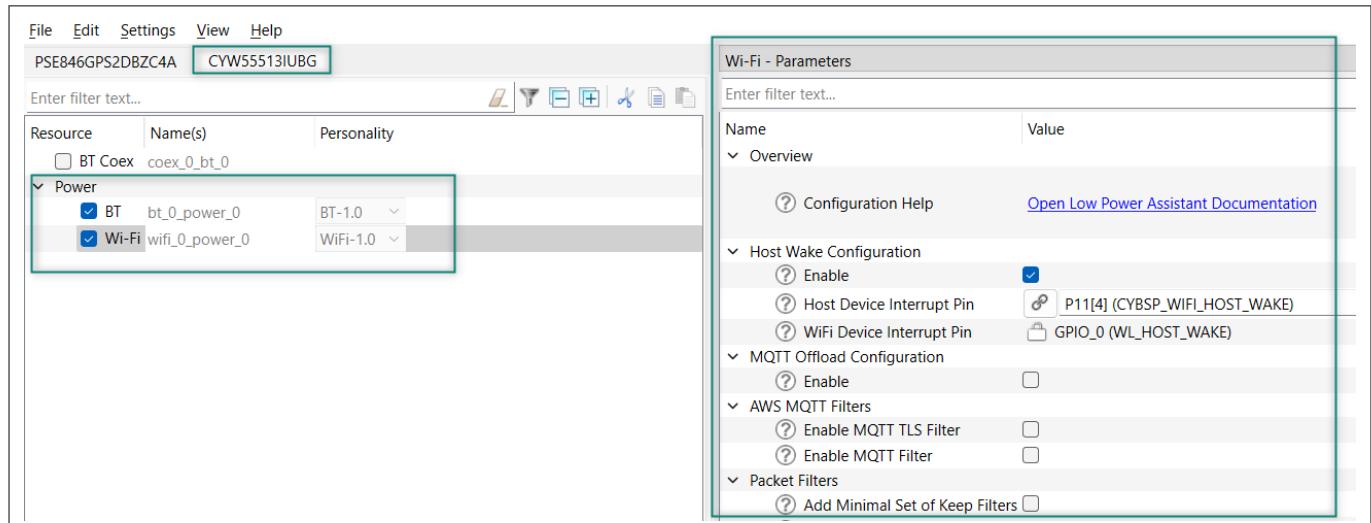


Figure 20 Wi-Fi/Bluetooth® LPA configuration in *design.modus*

6 Power measurement using KIT_PSE84_EVAL_EPC2

6 Power measurement using KIT_PSE84_EVAL_EPC2

6.1 Hardware setup

For power measurement, use a DC power analyzer such as [N6705B](#) from Keysight because it gives insights on power transitions and a better estimate of power saving achieved. If you do not have access to a power analyzer, use a simple 6 ½-digit multimeter to monitor the PSOC™ Edge MCU and WLAN average power individually.

Do the following for power measurement in KIT_PSE84_EVAL_EPC2:

PSOC™ Edge E84 Evaluation Kit is a generic kit to evaluate the PSOC™ Edge MCU features. To particularly measure the current consumption for this code example, the following changes are required on the hardware.

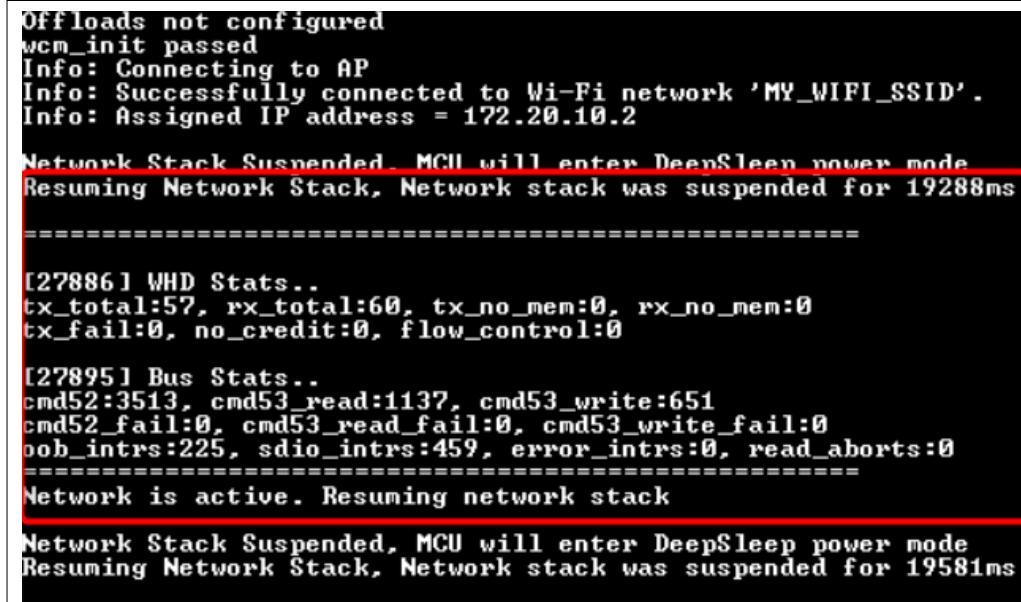
1. Remove resistor R188 (680 ohm) on the PSOC™ Edge E84 SOM to disable the connectivity to power LED (D3) on the SOM
2. Remove resistor R90 (10k ohm) and populate resistor R93 (4.7k ohm) on the PSOC™ Edge E84 SOM to disable the JTAG connected to AIROC™ CYW55513 module
3. Remove resistor R415 (0 ohm) on the KIT_PSOCE84_EVK to measure the AIROC™ CYW55513 VBAT current across it
4. Connect wires across J25 (VBAT) and J26 (VDDIO) on PSOC™ Edge E84 Evaluation Kit's baseboard to a power analyzer to measure the power consumed by the PSOC™ Edge E84 MCU
5. Similarly, connect wires across R415 on PSOC™ Edge E84 Evaluation Kit's baseboard to a power analyzer to measure the current consumed by the AIROC™ CYW55513 connectivity module

6.2 PSOC™ Edge MCU: WLAN low-power code example

This section describes power measurement in KIT_PSE84_EVAL_EPC2 with the PSOC™ Edge MCU: WLAN low power code example [\[8\]](#). This example can be used to measure AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip power consumption as documented in the datasheet.

By default, the example configures the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip in Power Save Without Poll (PS-non-Poll) mode for better throughput and suspends the network stack so that PSOC™ Edge MCU remains in Deep Sleep for as long as no activity is detected in the network.

1. Set up the KIT_PSE84_EVAL_EPC2 kit as explained in the [Hardware setup](#) section. Note that this section uses a Keysight N6705B as the reference setup to measure power
2. Turn on the channels to power the PSOC™ Edge MCU and AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip from the N6705B power analyzer from Keysight
3. Follow the README instructions provided in the PSOC™ Edge MCU: WLAN low power code example [\[8\]](#). Build and program the code example. After programming, the application starts automatically. [Figure 21](#) and [Figure 22](#) show the outputs respectively. You can connect the onboard KitProg for viewing logs in terminal software through the COM port
4. Ensure that the configured Wi-Fi AP is in range and the device connects to it


6 Power measurement using KIT_PSE84_EVAL_EPC2


```
COM8 - Tera Term VT
File Edit Setup Control Window Help
=====
PSOC EDGE MCU: WLAN Lowpower
=====

[435] chip ID: 55500, chip rev: 1, Support ChipId Read from SDIO Core
[1432] WLAN MAC Address : 00:A0:50:8D:E4:4F
[1435] WLAN Firmware : wl0: Mar 29 2024 01:03:03 version 28.10.190 <a5f78d3> FWID 01-6376a60b
[1439] WLAN CLM : API: 20.0 Data: IFX.BRANCH_18_53 Compiler: 1.49.5 ClmImport: 1.48.0 Customization: v1 23/09/11 Creation: 2024-03-28 23:29:23
[1447] WHD UVERSION : 4.0.0.23791
[1447] : EAP v4.0.0
[1451] : GCC 11.3
[1453] : 2024-05-27 22:57:37 -0500
Offloads not configured
wcm_init passed
Info: Connecting to AP
Info: Successfully connected to Wi-Fi network 'MY_WIFI_SSID'.
Info: Assigned IP address = 172.20.10.2
Network Stack Suspended, MCU will enter DeepSleep power mode
```

Figure 21 Connected to AP and suspended the network stack


```
Offloads not configured
wcm_init passed
Info: Connecting to AP
Info: Successfully connected to Wi-Fi network 'MY_WIFI_SSID'.
Info: Assigned IP address = 172.20.10.2

Network Stack Suspended, MCU will enter DeepSleep power mode
Resuming Network Stack, Network stack was suspended for 19288ms
=====

[27886] WHD Stats..
tx_total:57, rx_total:60, tx_no_mem:0, rx_no_mem:0
tx_fail:0, no_credit:0, flow_control:0

[27895] Bus Stats..
cmd52:3513, cmd53_read:1137, cmd53_write:651
cmd52_fail:0, cmd53_read_fail:0, cmd53_write_fail:0
pob_intrs:225, sdio_intrs:459, error_intrs:0, read_aborts:0
=====

Network is active. Resuming network stack

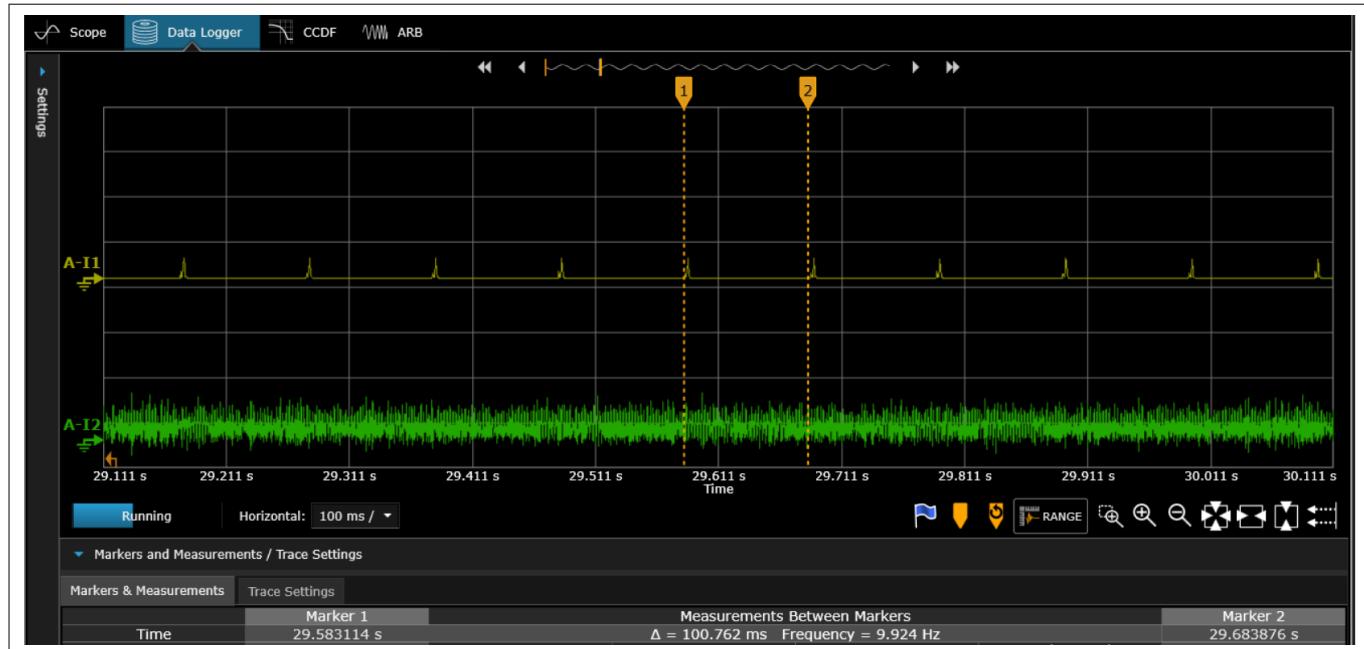

Network Stack Suspended, MCU will enter DeepSleep power mode
Resuming Network Stack, Network stack was suspended for 19581ms
```

Figure 22 Resuming the network stack

Turn on the Power Analyzer to see the current consumption across the AIROC™ CYW55513 connectivity module and the PSOC™ Edge E84 MCU as shown in [Figure 23](#).

The spikes in the current across the AIROC™ CYW55513 connectivity module is due to the beacons sent by the AP. The interval and amplitude of this beacon will vary based on the DTIM value, beacon interval, and frequency set in the router's configuration.

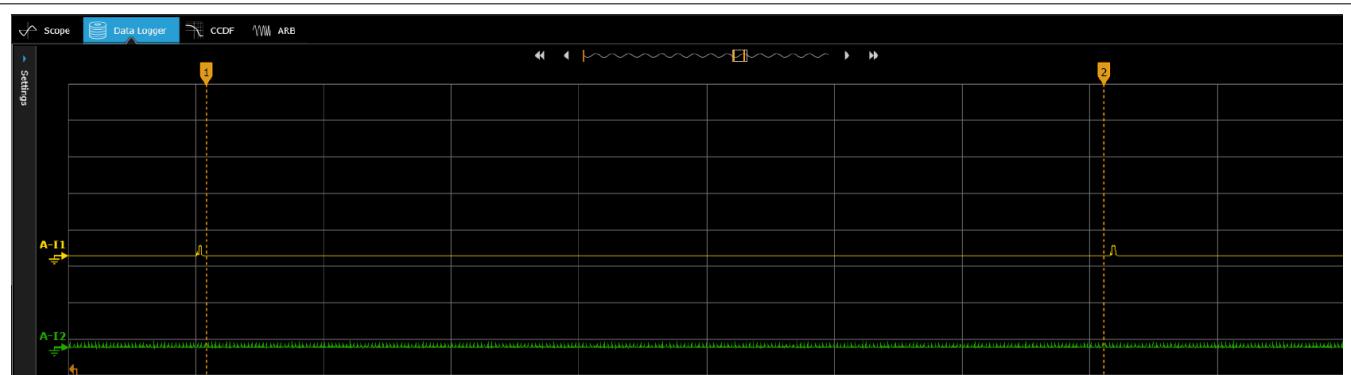

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 23 Sample Power Analyzer output

Note that in [Figure 23](#), the yellow pulse represents the current consumed by the AIROC™ CYW55513 connectivity module and the green pulse represents the current consumed by the PSOC™ Edge E84 MCU.

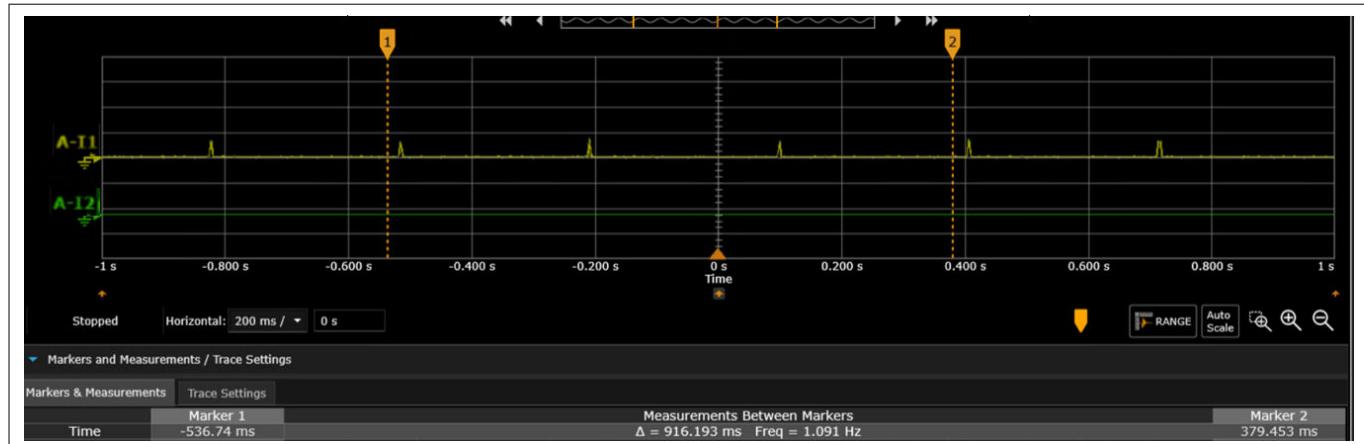

Measure the sleep current (with default router settings) between any two DTIM intervals in the AIROC™ CYW55513 module's current as shown in [Figure 24](#).

Figure 24 Measuring the Deep Sleep current

Enter the router's configuration page and set DTIM = 1, beacon interval = 100, and 2.4 GHz frequency and measure the average current over 3 DTIM intervals as shown in [Figure 25](#).

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 25 Average current over 3 DTIM periods for AP (2.4 GHz) beacon interval of 100 and AP DTIM of 1

Similarly, vary the DTIM to 3 and the frequency of the Wi-Fi router to 5 GHz and measure the current consumptions across AIROC™ CYW55513 connectivity module and PSOC™ Edge E84 MCU.

The power measurement of the PSOC™ Edge MCU in Deep Sleep state is 920.49 μ W, measured across VBAT (3.3 V) and VDDD (1.8 V). This represents the total power consumption in the Deep Sleep state.

Note: These power values are not optimized for low power. See the [PSOC™ Edge MCU: Power measurements code example for MCU power optimization](#).

Table 7 Typical current measurement values

State	Device	Current
Sleep	AIROC™ CYW55513 (VBAT)	54.45 μ A
Average current for this AP configuration (2.4 GHz) beacon interval of 100 and AP DTIM of 1	AIROC™ CYW55513 (VBAT)	715.46 μ A
Average current for this AP configuration (2.4 GHz) beacon interval of 100 and AP DTIM of 3	AIROC™ CYW55513 (VBAT)	253.57 μ A
Average current for this AP configuration (5 GHz) beacon interval of 100 and AP DTIM of 1	AIROC™ CYW55513 (VBAT)	540.26 μ A
Average current for this AP configuration (5 GHz) beacon interval of 100 and AP DTIM of 3	AIROC™ CYW55513 (VBAT)	220.24 μ A

6.3 PSOC™ Edge MCU: WLAN offloads code example

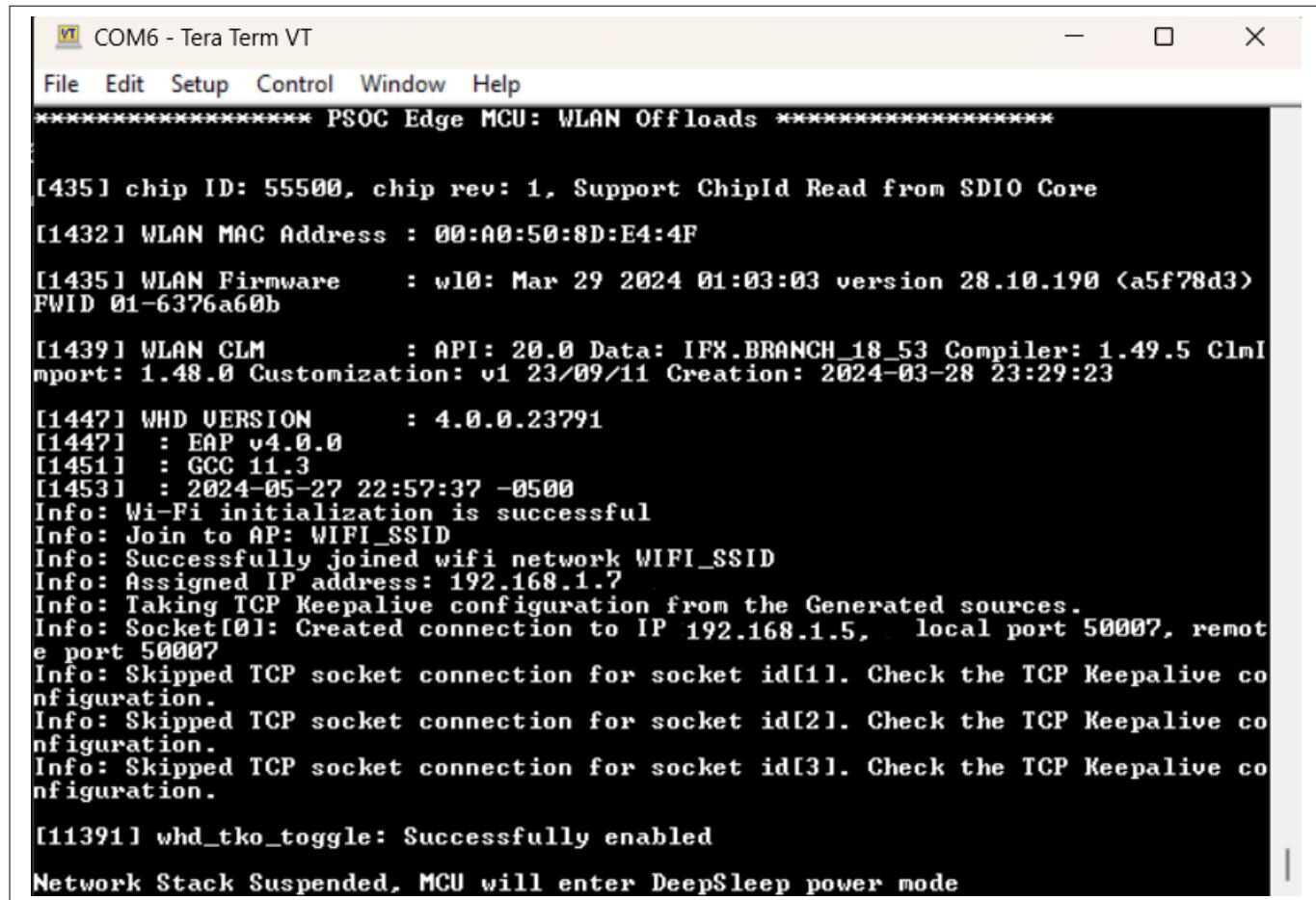
This section describes power measurement in KIT_PSE84_EVAL_EPC2 with the PSOC™ Edge MCU: WLAN offloads code example [9]. This code example demonstrates various WLAN offloads as mentioned in [Host offloads to WLAN device](#) of Section 3, which are offered by Infineon AIROC™ Wi-Fi devices using PSOC™ Edge MCU.

This code example focuses on Wi-Fi WLAN offloads. These features offloads to the WLAN device, allowing the host MCU to enter Sleep and Deep Sleep states. Therefore, reducing the overall system power consumption. By default, all WLAN offloads are enabled.

1. Set up the KIT_PSE84_EVAL_EPC2 kit as explained in the [Hardware setup](#) section. Note that this section uses the N6705B power analyzer from Keysight as a reference setup to measure power

6 Power measurement using KIT_PSE84_EVAL_EPC2

2. Turn on the channels to power PSOC™ Edge MCU and AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip from N6705B. You can connect the onboard KitProg to view logs in terminal software through the COM port
3. Ensure that the configured Wi-Fi AP is in range and that the device connects to it
4. To realize the capability of WLAN offloads and their impact on the host MCU in terms of power savings, the current measurement has been done by considering the following cases
5. To simulate a congested network environment, another Wi-Fi client device has associated to the same network to which the target kit has associated. In all these current measurement cases, the role of the client device is to send ping and ARP request packets periodically in its configured interval to the IP address of the target kit. Based on whether the LPA offloads are enabled, the host MCU stays in Deep Sleep power mode or wake up due to the ping and arp-ping requests from the client device
6. WLAN offloads can be enabled or disabled in the Wi-Fi parameters using the Device Configurator
7. Follow the README instructions provided in the code example [9]. Build and program the code example. After programming, the application starts automatically. [Figure 26](#) shows the output respectively


AP configuration:

- DTIM: 3
- Beacon Interval: 100 ms
- Band: 2.4 GHz

Wireshark setup for monitoring air logs

1. In this test setup, air sniffer (NUC) is used to monitor the Wireshark logs, which allows to monitor and inspect wireless network traffic, including Wi-Fi packets in real-time
2. Connect the air sniffer to a monitor or a display device to view the logs
3. Open Wireshark on the air sniffer, either by launching the application or downloading and installing it from the official website if you have not already
4. Filter the captured packets using the IP address, MAC address, or offload to focus on the specific traffic of interest

6 Power measurement using KIT_PSE84_EVAL_EPC2


```
COM6 - Tera Term VT
File Edit Setup Control Window Help
*****
PSOC Edge MCU: WLAN Offloads *****

[435] chip ID: 55500, chip rev: 1, Support ChipId Read from SDIO Core
[1432] WLAN MAC Address : 00:A0:50:8D:E4:4F
[1435] WLAN Firmware : wl0: Mar 29 2024 01:03:03 version 28.10.190 (a5f78d3)
FWID 01-6376a60b
[1439] WLAN CLM : API: 20.0 Data: IFX.BRANCH_18_53 Compiler: 1.49.5 ClmImport: 1.48.0 Customization: v1 23/09/11 Creation: 2024-03-28 23:29:23
[1447] WHD UERSON : 4.0.0.23791
[1447] : EAP v4.0.0
[1451] : GCC 11.3
[1453] : 2024-05-27 22:57:37 -0500
Info: Wi-Fi initialization is successful
Info: Join to AP: WIFI_SSID
Info: Successfully joined wifi network WIFI_SSID
Info: Assigned IP address: 192.168.1.7
Info: Taking TCP Keepalive configuration from the Generated sources.
Info: Socket[0]: Created connection to IP 192.168.1.5, local port 50007, remote port 50007
Info: Skipped TCP socket connection for socket id[1]. Check the TCP Keepalive configuration.
Info: Skipped TCP socket connection for socket id[2]. Check the TCP Keepalive configuration.
Info: Skipped TCP socket connection for socket id[3]. Check the TCP Keepalive configuration.

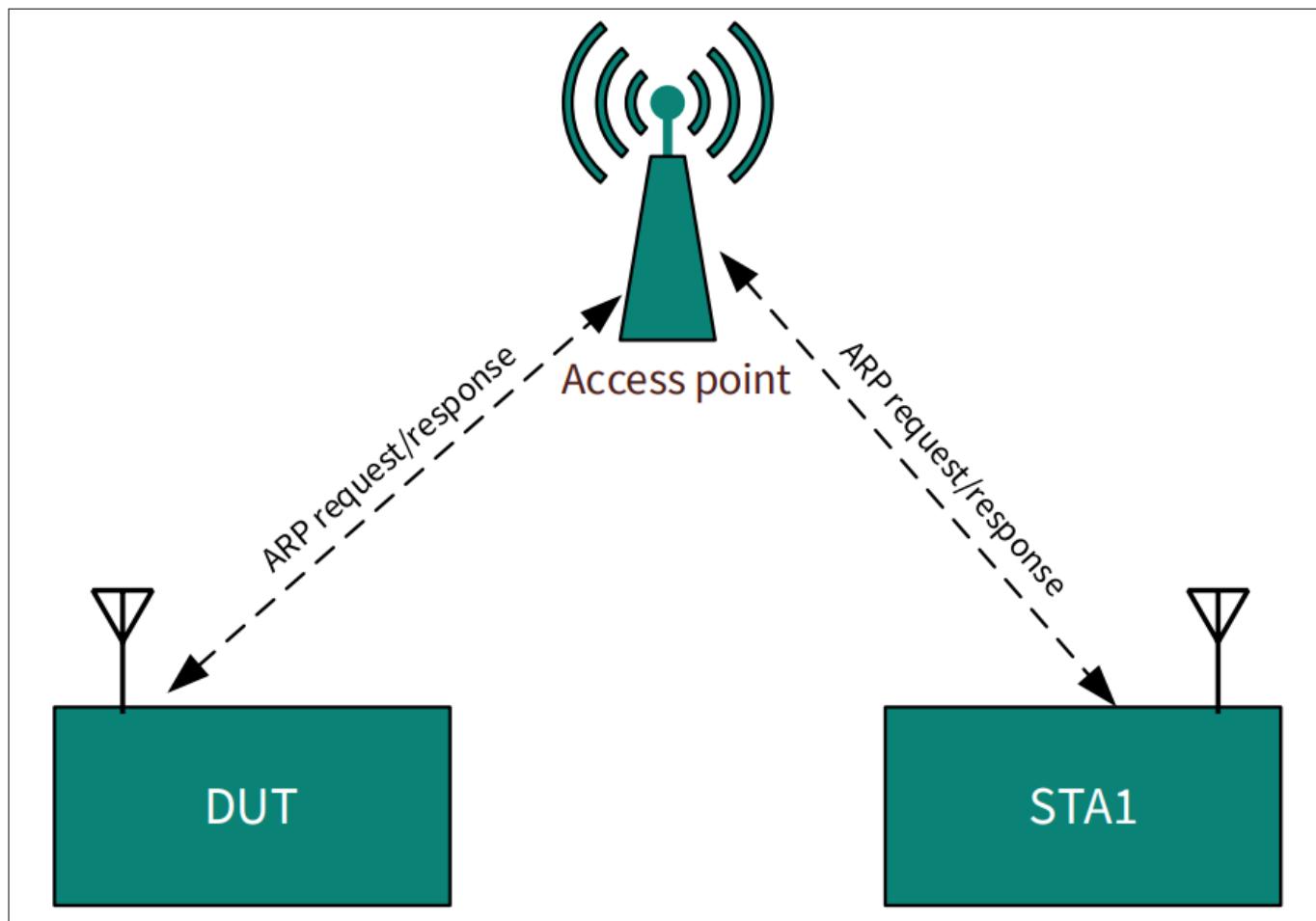

[11391] whd_tko_toggle: Successfully enabled
Network Stack Suspended, MCU will enter DeepSleep power mode
```

Figure 26 WLAN offloads terminal output

Case 1: ARP offload

ARP offload is enabled in the firmware by default.

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 27 Verify ARP offload

Verify the functioning of ARP offload by sending an ARP request packet from the command prompt of your PC. Observe that the responses are received from the WLAN device without interrupting the host MCU from Deep Sleep.

```
$ arp-ping 192.168.1.7
Reply that E8:E8:B7:A0:29:1C is 192.168.1.7 in 0.434ms
Reply that E8:E8:B7:A0:29:1C is 192.168.1.7 in 0.103ms
Reply that E8:E8:B7:A0:29:1C is 192.168.1.7 in 0.109ms
Reply that E8:E8:B7:A0:29:1C is 192.168.1.7 in 0.124ms
```

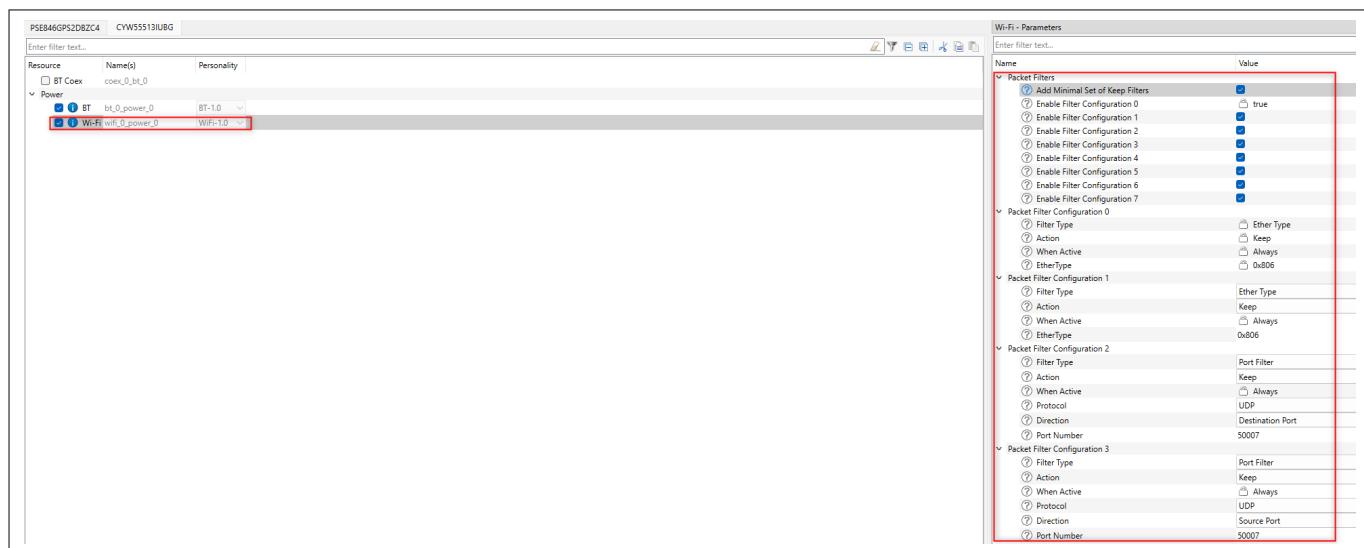

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 28 Monitoring ping activity

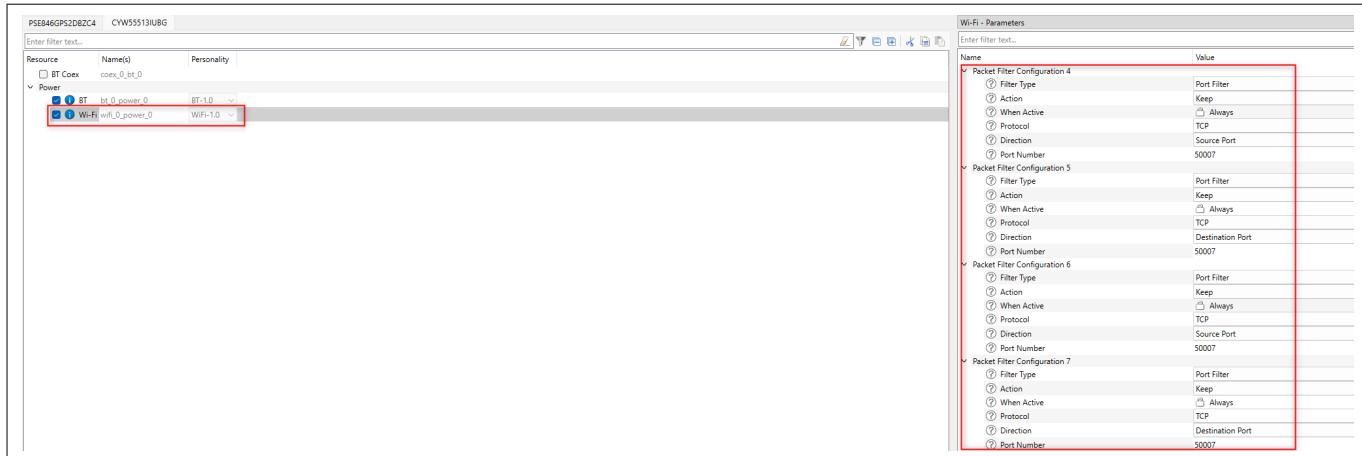

Case 2: Packet Filter offload

Figure 29 shows the configurations to enable Packet filter offload from the Device Configurator.

Figure 29 Packet Filter Configuration 1

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 30 **Packet Filter Configuration 2**

Normally, without packet filters, the WLAN subsystem passes all packets destined for the host up to the host network stack for processing. If the host is in System Deep Sleep, the WLAN subsystem will first wake the host, and then pass the packet up to the stack. From there, the network stack will pass the packet on to the application that is listening for that type of packet. If no applications are listening for that type of packet, the network stack drops the packet.

```
$ ping 192.168.1.7
```

Pinging 192.168.1.7 with 32 bytes of data:

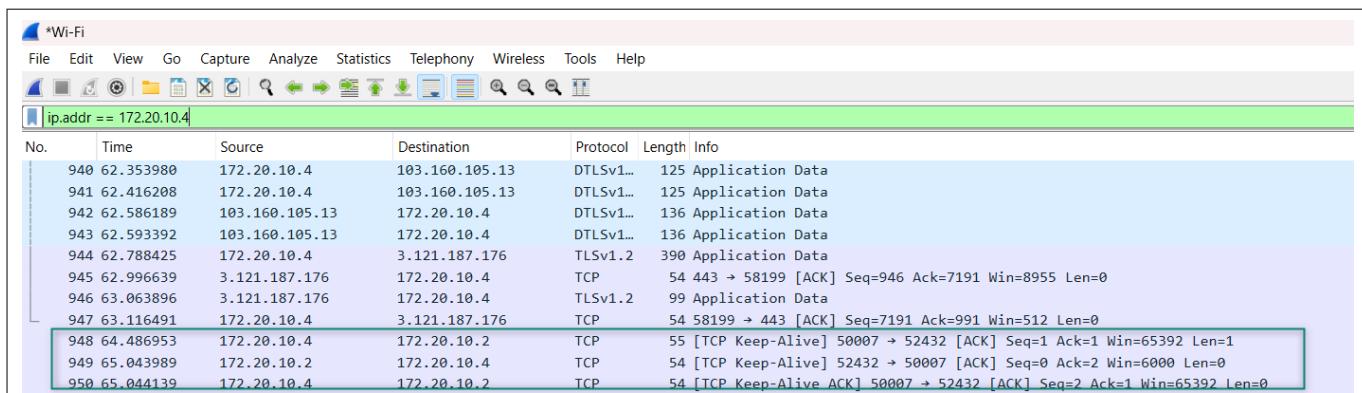
Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.1.7:

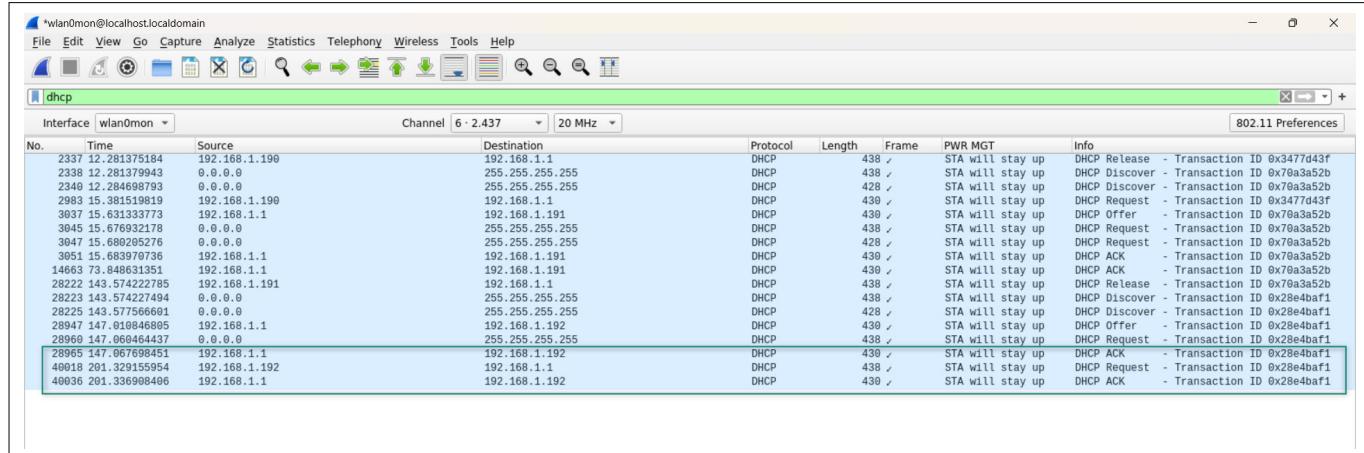

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Case 3: TCP keepalive offload

TCP keepalive offload is enabled in the firmware by default. Verify the logs of the TCP connection in [Figure 31](#).

Verify if the TCP connection is established as shown in [Figure 31](#).

Use the Wireshark Sniffer tool for capturing TCP keepalive packets on Windows, Ubuntu, and macOS. The DUT receives the TCP keepalive packets as configured as shown in [Figure 31](#).


Figure 31 **TCP keepalive packet logs**

Case 4: DHCP Lease Time Renew offload

This offload is enabled by default in the firmware. You can edit the DHCP lease time in the router settings. In this case, the DHCP lease time is set to 60 seconds in the router settings. Check the Wireshark if the packets are

6 Power measurement using KIT_PSE84_EVAL_EPC2

being transmitted in the respective time. [Figure 32](#) shows the DHCP renewal packets sent every 60 seconds as configured.

Figure 32 DHCP Lease Time Renewal logs

Case 5: ICMP offload

ICMP offload is enabled in the firmware by default. It allows the AIROC™ CYW55513 device to serve ICMP ping requests directly from the chip, instead of waking the host.

```
$ ping 192.168.1.7
```

Pinging 192.168.1.7 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.1.7:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Case 6: Neighbor Discovery offload

Neighbor Discovery offload is enabled by default in the WLAN firmware. Therefore, it is not required to do any configuration settings in ModusToolbox™ Device Configurator. Use the ifconfig command to verify whether the IPv6 address is up. Alternatively, you can manually assign a static IP address using the following command:

```
ip -6 addr add fe80::0290:4cff:fe5:1239/64 dev wlan0
```

Connect the STA1 device to the same AP.

On STA1, initiate IPv6 neighbor discovery using the following command from a neighbor device:

```
ndisc6 <dut_ipv6> wlan0
```

6 Power measurement using KIT_PSE84_EVAL_EPC2

wlan.sa == 00:A0:50:F1:92:D0									
Interface wlan0mon		Channel 6 · 2.437		20 MHz		802.11 Preferences			
No.	Time	Source	Destination	Protocol	Length	Frame	PWR MGT	Info	
6795	30.799994471	::	ff02::1:ffff:1:92d0	ICMPv6	174	✓	STA will stay up	Multicast Listener Report	
6797	30.799182531	::	ff02::1:ffff:1:92d0	ICMPv6	164	✓	STA will stay up	Multicast Listener Report	
6847	31.004281989	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will go to sleep	Null Function (No data), SN=93, FN=0, Flags=...P...TC	
7019	31.802677292	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will stay up	Null Function (No data), SN=94, FN=0, Flags=.....TC	
7023	31.803166713	fe80::2a0:50ff:fe1:92d0	ff02::1:ffff:1:92d0	ICMPv6	174	✓	STA will stay up	Multicast Listener Report	
7025	31.808661363	fe80::2a0:50ff:fe1:92d0	ff02::1:ffff:1:92d0	ICMPv6	164	✓	STA will stay up	Multicast Listener Report	
7072	32.007568902	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will go to sleep	Null Function (No data), SN=95, FN=0, Flags=...P...TC	
7114	32.210720616	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will stay up	Null Function (No data), SN=96, FN=0, Flags=.....TC	
7119	32.212457637	0.0.0.0	255.255.255.255	DHCP	438	✓	STA will stay up	DHCP Discover - Transaction ID 0x4bb5f646	
7121	32.215771999	0.0.0.0	255.255.255.255	DHCP	428	✓	STA will stay up	DHCP Discover - Transaction ID 0x4bb5f646	
7125	32.232786143	fe80::2a0:50ff:fe1:92d0	ff02::1:ffff:1:92d0	ICMPv6	156	✓	STA will stay up	Router Solicitation From 00:a0:50:f1:92:d0	
7126	32.232789508	fe80::2a0:50ff:fe1:92d0	ff02::1:ffff:2:9164	ICMPv6	174	✓	STA will stay up	Neighbor Solicitation For fe80::ce40:0ff:fe72:9164 from 00:a0:50:f1:92:d0	
7128	32.233809792	fe80::2a0:50ff:fe1:92d0	ff02::2	ICMPv6	148	✓	STA will stay up	Router Solicitation From 00:a0:50:f1:92:d0	
7129	32.234994261	fe80::2a0:50ff:fe1:92d0	ff02::1:ffff:2:9164	ICMPv6	164	✓	STA will stay up	Neighbor Solicitation For fe80::ce40:0ff:fe72:9164 from 00:a0:50:f1:92:d0	
7133	32.240623856	CypressS_f1:92:d0	Netgear_72:91:66	802.11	93	✓	STA will stay up	Action, SN=97, FN=0, Flags=.....C	
7177	32.446989150	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will go to sleep	Null Function (No data), SN=98, FN=0, Flags=...P...TC	
7491	34.192834057	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will stay up	Null Function (No data), SN=99, FN=0, Flags=.....TC	
7495	34.193292558	0.0.0.0	255.255.255.255	DHCP	438	✓	STA will stay up	DHCP Discover - Transaction ID 0x4bb5f646	
7497	34.196548481	0.0.0.0	255.255.255.255	DHCP	428	✓	STA will stay up	DHCP Discover - Transaction ID 0x4bb5f646	
7535	34.398321730	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will go to sleep	Null Function (No data), SN=100, FN=0, Flags=...P...TC	
7789	35.620157308	CypressS_f1:92:d0	Netgear_72:91:66	802.11	84	✓	STA will stay up	Null Function (No data), SN=101, FN=0, Flags=.....TC	
7797	35.622252358	CypressS_f1:92:d0	Netgear_72:91:66	802.11	93	✓	STA will stay up	Action, SN=102, FN=0, Flags=.....C	
7803	35.624612343	0.0.0.0	255.255.255.255	DHCP	438	✓	STA will stay up	DHCP Request - Transaction ID 0x4bb5f646	
7805	35.627988898	0.0.0.0	255.255.255.255	DHCP	428	✓	STA will stay up	DHCP Request - Transaction ID 0x4bb5f646	

Figure 33 Neighbor Discovery offload logs

Case 7: NULL keepalive offload

Enable this offload in the Device Configurator. Figure 34 shows the configurations to enable NULL keepalive offload.

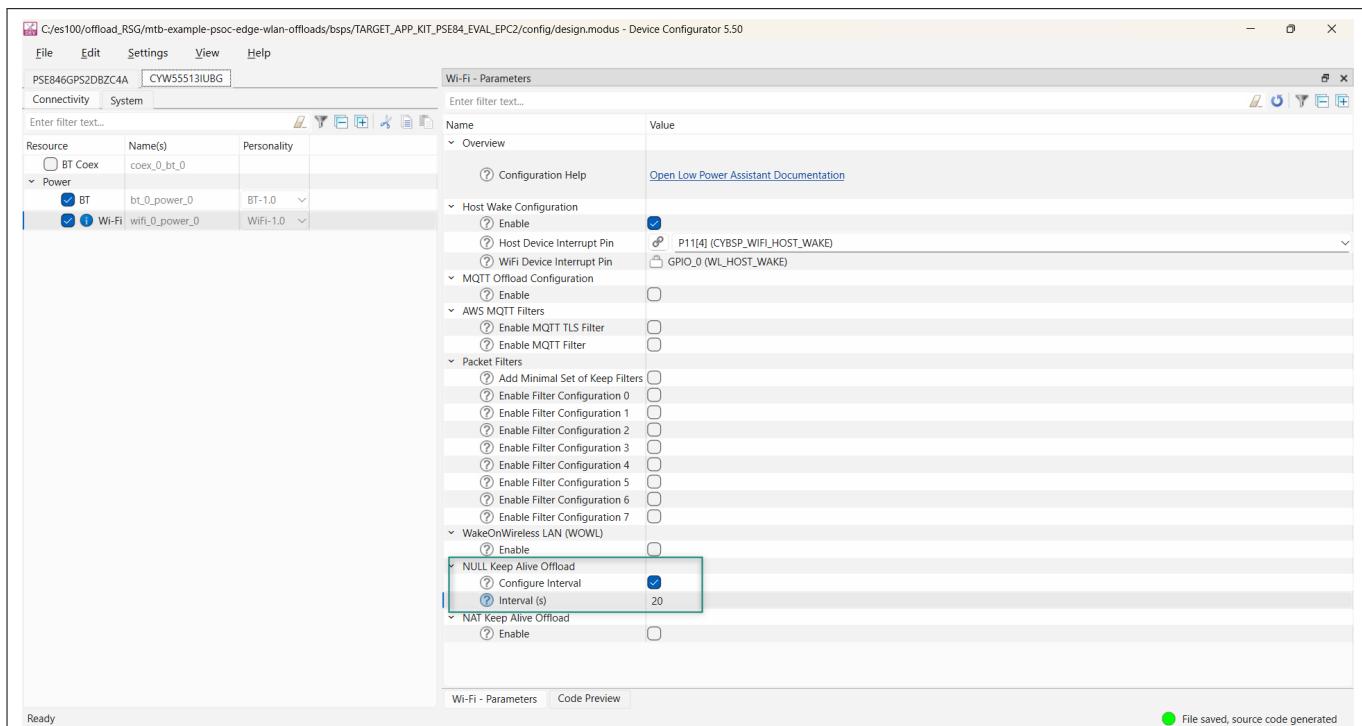


Figure 34 Null keepalive offload configurations

Figure 34 highlights NULL keepalive packets sent every 20 seconds that is configured in the Device Configurator. These packets are sent as null data frames containing no payload. The AIROC™ CYW55513 combo chip sends null keepalive packets at a periodic interval to the AP without exiting Deep Sleep.

6 Power measurement using KIT_PSE84_EVAL_EPC2

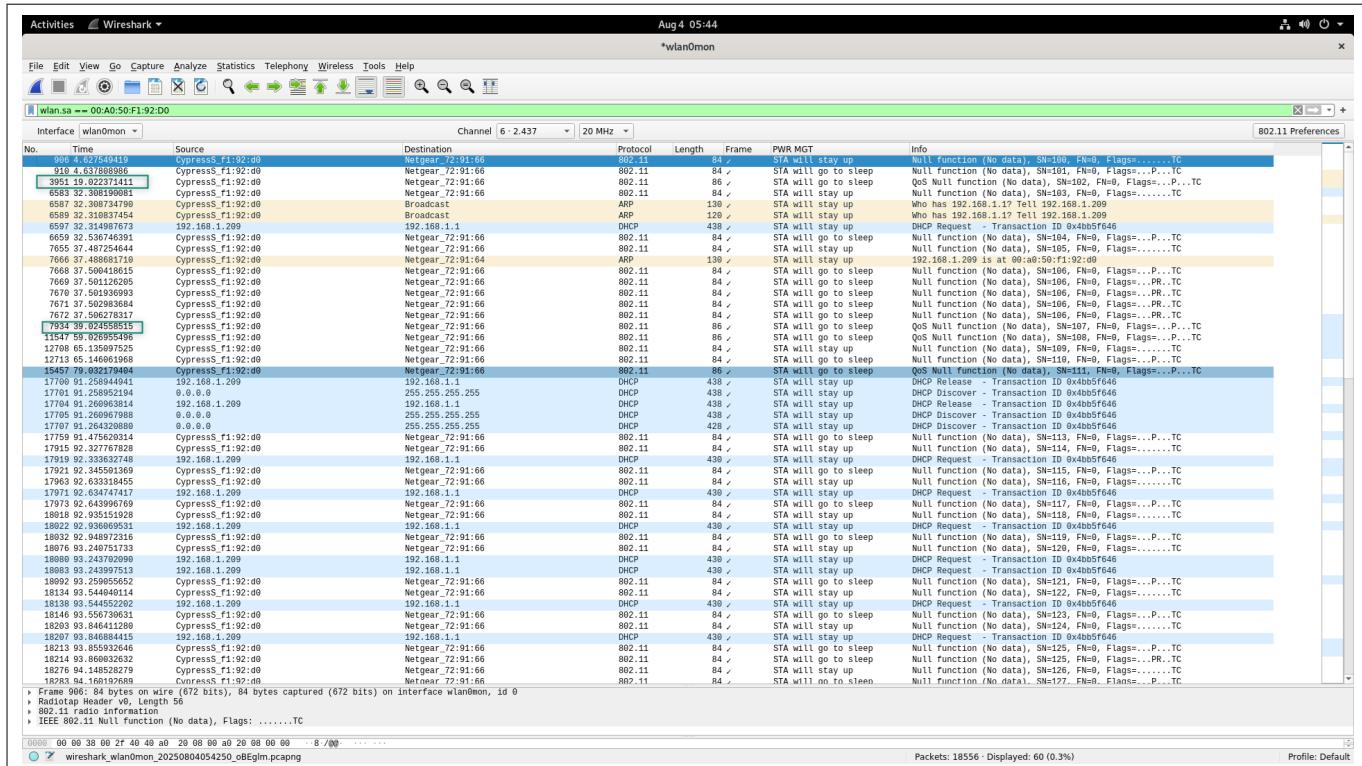


Figure 35 Null keepalive offload logs

Case 8: NAT keepalive Offload

Enable offload is to be enabled in the Device Configurator. Figure 36 shows the configurations to enable NAT Keepalive offload.

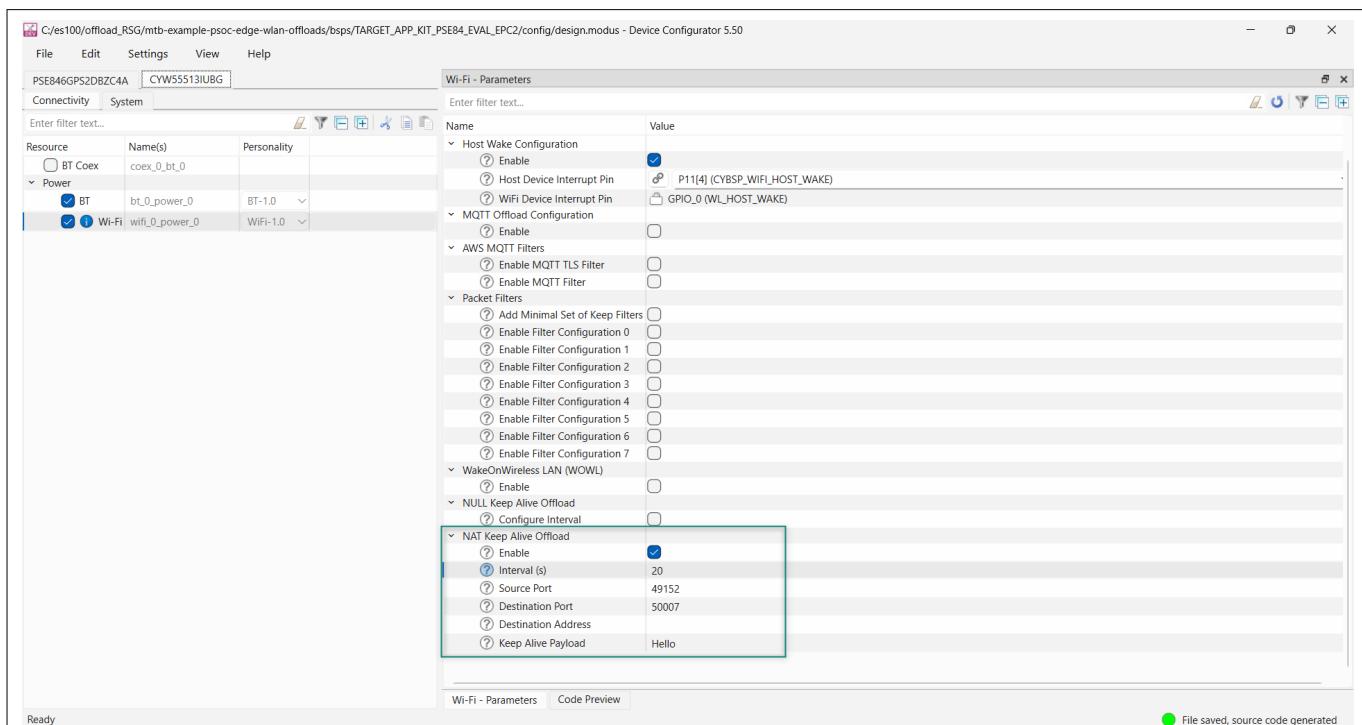
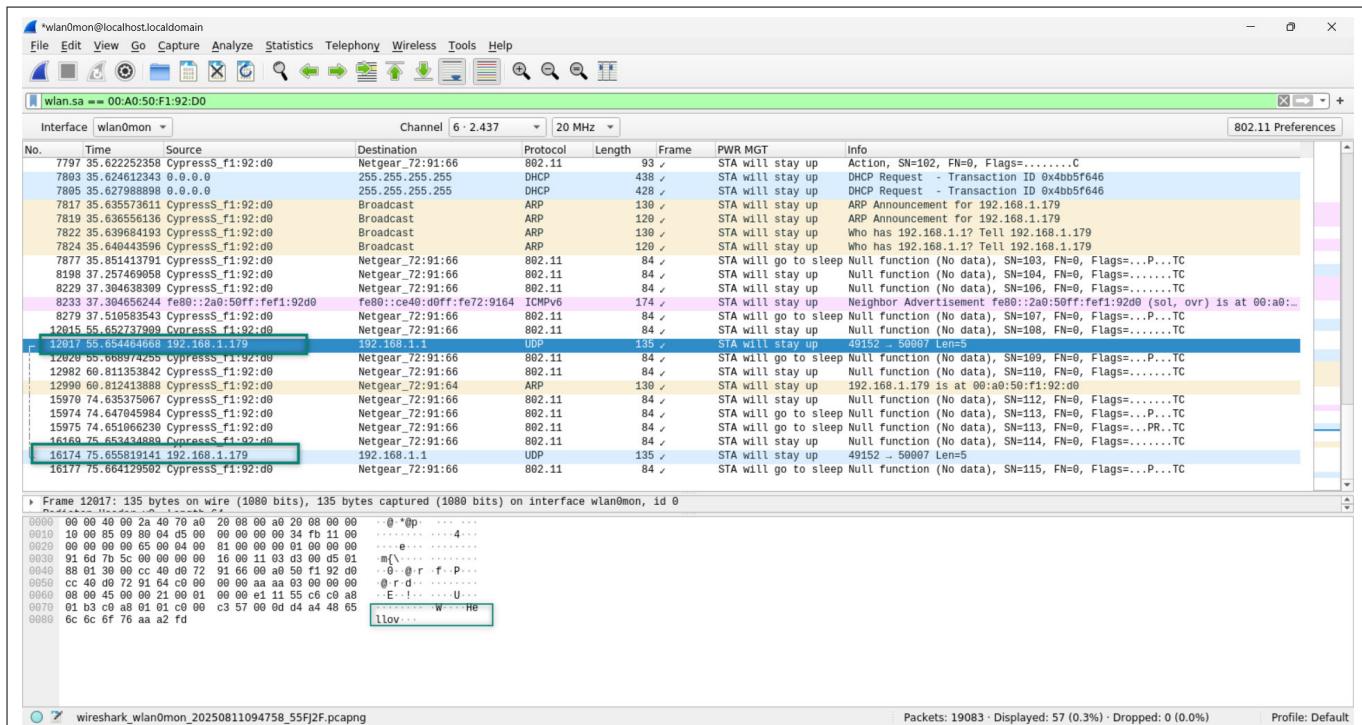



Figure 36 NAT keepalive configurations

6 Power measurement using KIT_PSE84_EVAL_EPC2

[Figure 37](#) highlights NAT keepalive packets sent every 20 seconds with the payload that is configured in the Device Configurator. NAT keepalive packets are used to maintain the NAT mapping between a private IP address and the public IP address of a device. The AIROC™ CYW55513 combo chip sends NAT keepalive packets at a periodic interval to the AP without waking up the host.

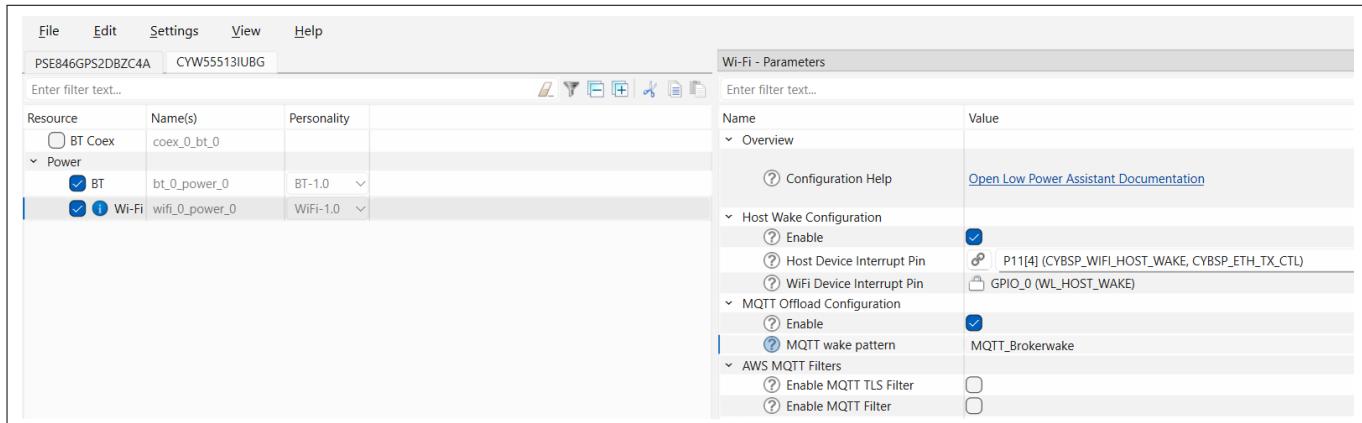
Figure 37 NAT keepalive offload logs

Case 9: Wake On Wireless LAN

Enable this offload in the Device Configurator. Figure 38 shows the configurations to enable WOWL.

Figure 38 **WOWL configurations**

6 Power measurement using KIT_PSE84_EVAL_EPC2


The magic pattern should be as follows:

```
f"0x{dut_mac_pattern}{peer_mac_pattern}"
```

To verify, send the Ethernet packet from the peer containing the pattern and monitor that MCU wakes-up for only the configured pattern.

Case 10: MQTT keepalive offload

Enable MQTT offload from the Device Configurator. [Figure 39](#) shows the configurations to enable MQTT offload.

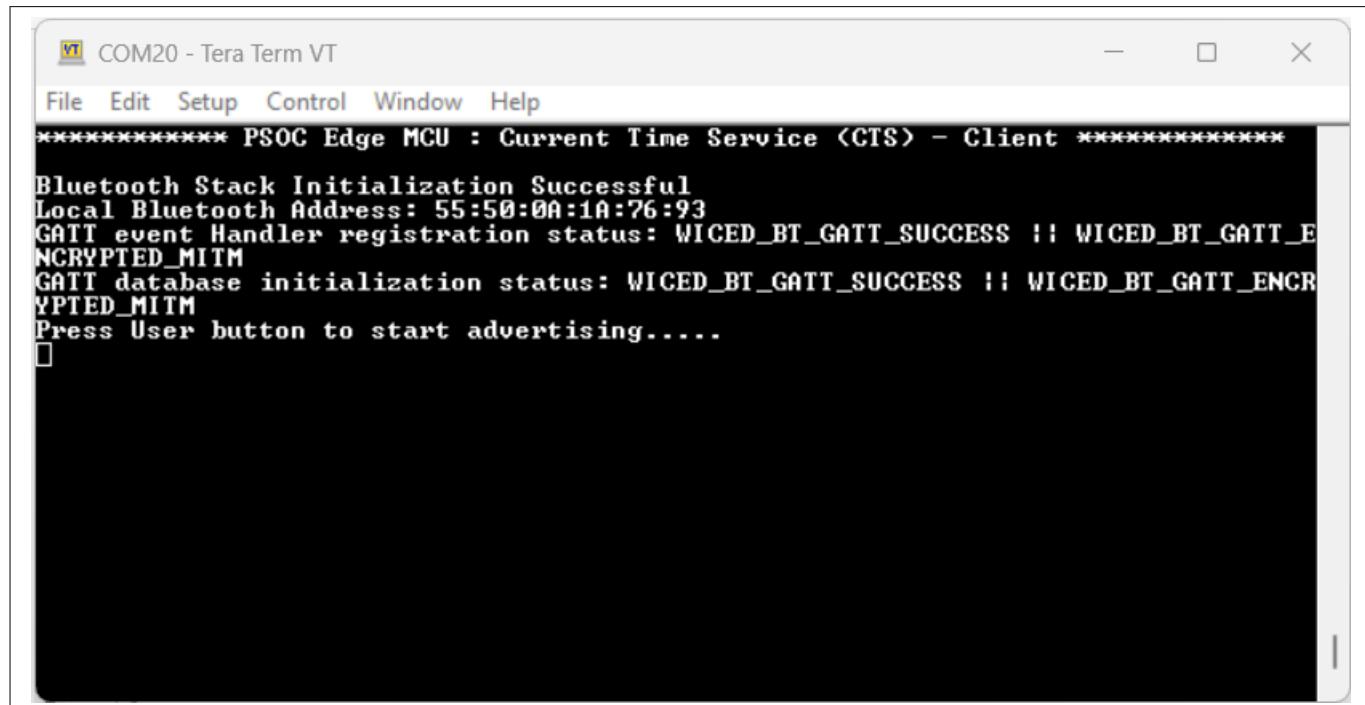
Figure 39 MQTT offload configurations

The MQTT wake pattern should be as follows:

{topic}{wake word}"

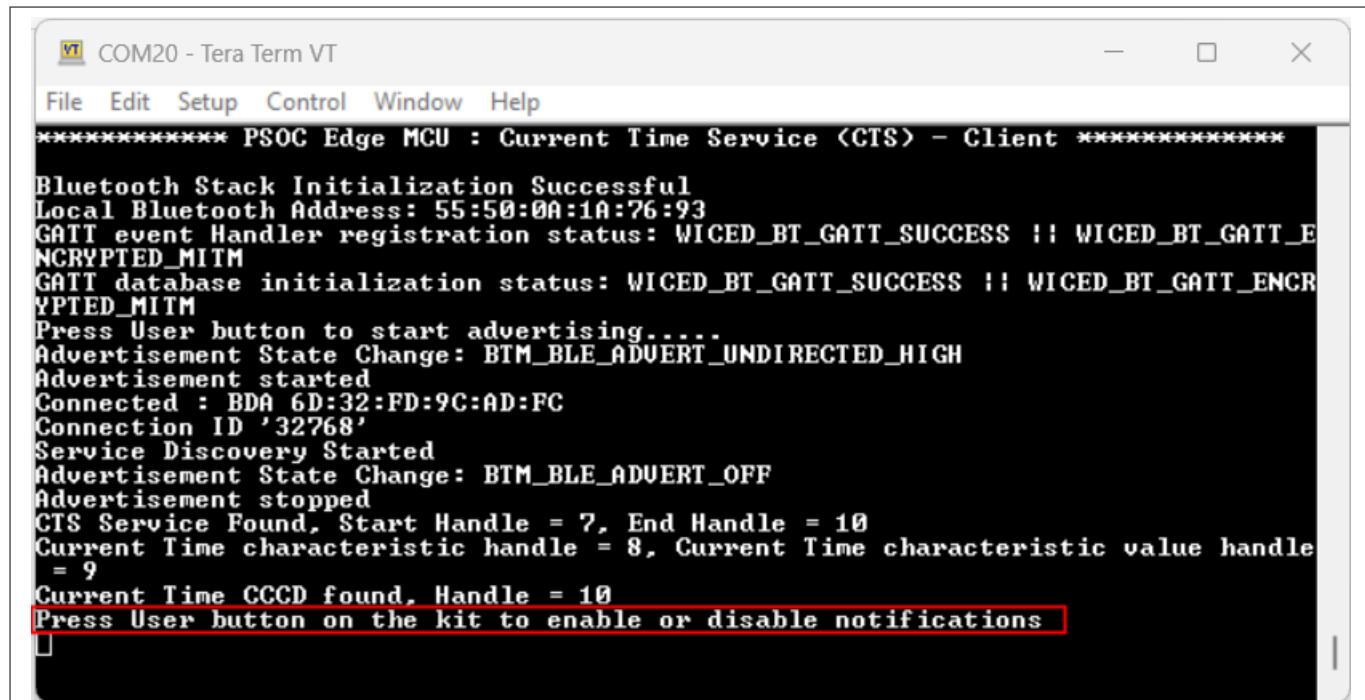
To verify the MQTT wake pattern, send the message "wake" from the subscriber of the MQTT broker(topic); if the device wakes up, the verification is successful. Conversely, if other messages are sent, the device should remain in Sleep mode and not wake up.

Note: Build the application and program if any changes are made in the Device Configurator.


6.4 PSOC™ Edge MCU: Bluetooth® LE CTS Client code example

This section describes power measurement in KIT_PSE84_EVAL_EPC2 with the PSOC™ Edge MCU: Bluetooth® LE CTS client code example [\[10\]](#). This example allows you to measure the current in different states such as no RF activity, high-duty advertisement, low-duty advertisement, and in the connected state.

1. Set up the KIT_PSE84_EVAL_EPC2 kit as explained in the [Hardware setup](#) section. Note that this section uses the N6705B power analyzer from Keysight as a reference setup to measure power
2. Turn on the channels to power the PSOC™ Edge MCU and AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip from the power analyzer. You can connect the onboard KitProg to view logs in terminal software through the COM port
3. Follow the README instructions provided in the code example [\[10\]](#). Build and program the code example. After programming, the application starts automatically. [Figure 40](#) shows the output
4. On bootup, the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip will not start any RF activity. You can note the PSOC™ Edge MCU and AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip current in this state. Press the **USER_BTN1 (SW2)** to start a high-duty advertisement as shown in [Figure 41](#). In [Figure 42](#), the


6 Power measurement using KIT_PSE84_EVAL_EPC2

green pulse represents the AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip current, when a high-duty advertisement is going on


```
VT COM20 - Tera Term VT
File Edit Setup Control Window Help
***** PSOC Edge MCU : Current Time Service (CTS) - Client *****
Bluetooth Stack Initialization Successful
Local Bluetooth Address: 55:50:0A:1A:76:93
GATT event Handler registration status: WICED_BT_GATT_SUCCESS :: WICED_BT_GATT_ENCRYPTED_MITM
GATT database initialization status: WICED_BT_GATT_SUCCESS :: WICED_BT_GATT_ENCRYPTED_MITM
Press User button to start advertising.....
□
```

Figure 40 Terminal output when the device is programmed


```
VT COM20 - Tera Term VT
File Edit Setup Control Window Help
***** PSOC Edge MCU : Current Time Service (CTS) - Client *****
Bluetooth Stack Initialization Successful
Local Bluetooth Address: 55:50:0A:1A:76:93
GATT event Handler registration status: WICED_BT_GATT_SUCCESS :: WICED_BT_GATT_ENCRYPTED_MITM
GATT database initialization status: WICED_BT_GATT_SUCCESS :: WICED_BT_GATT_ENCRYPTED_MITM
Press User button to start advertising.....
Advertisement State Change: BTM_BLE_ADVERT_UNDIRECTED_HIGH
Advertisement started
Connected : BDA 6D:32:FD:9C:AD:FC
Connection ID '32768'
Service Discovery Started
Advertisement State Change: BTM_BLE_ADVERT_OFF
Advertisement stopped
CTS Service Found. Start Handle = 7, End Handle = 10
Current Time characteristic handle = 8, Current Time characteristic value handle = 9
Current Time CCCD found, Handle = 10
Press User button on the kit to enable or disable notifications
□
```

Figure 41 Terminal output showing connection

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 42 Current consumption during high-duty advertisement

After 60 seconds, the device will switch to the low-duty advertisement with an interval of 1.28 seconds.

Figure 43 Current consumption during low-duty advertisement

From the graph, observe that the current in the low-duty advertisement period has a higher peak. This is because the device is in Sleep mode and required to wake up for every advertisement event. However, the average current is much lower compared to the high-duty advertisement period.

Low-power system design with PSOC™ Edge MCU and AIROC™ Wi-Fi & Bluetooth® combo chip

6 Power measurement using KIT_PSE84_EVAL_EPC2

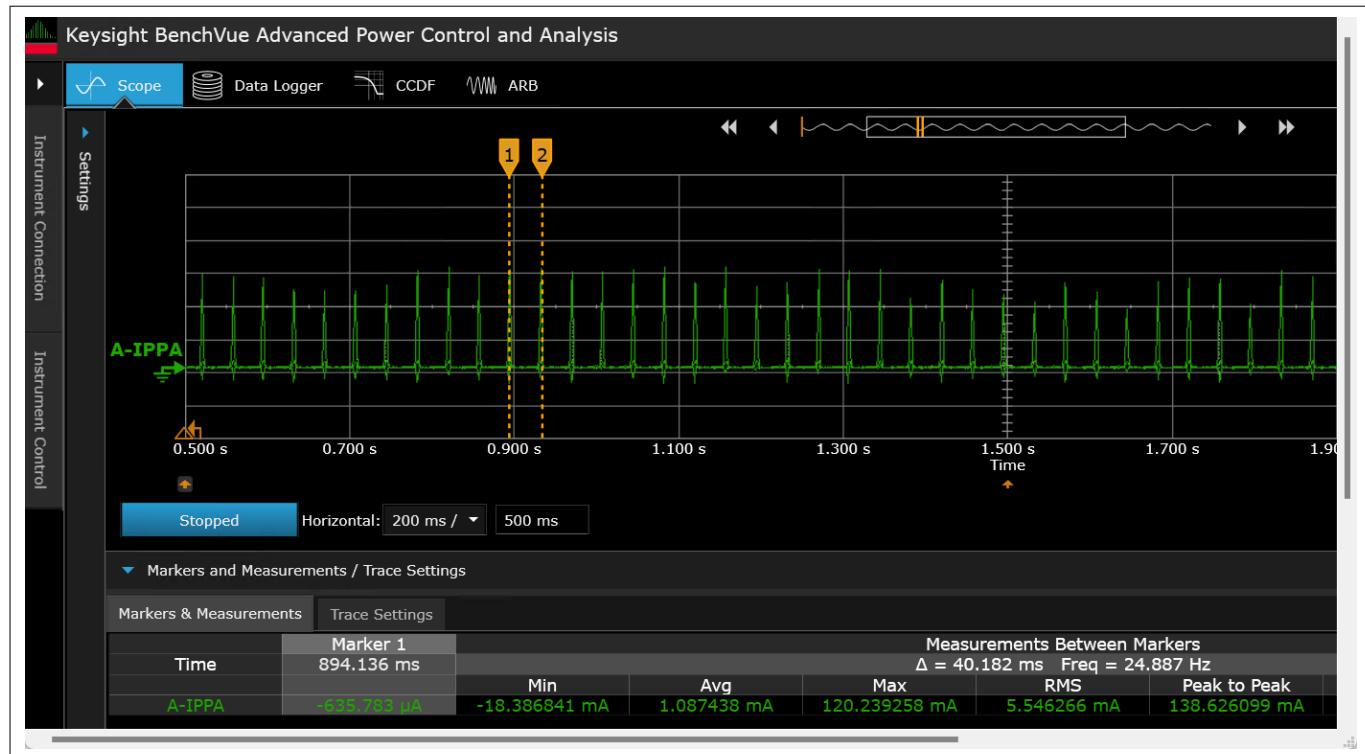


Figure 44 Current consumption with connection interval of 10 ms



Figure 45 Current consumption with connection interval of 50 ms

6 Power measurement using KIT_PSE84_EVAL_EPC2

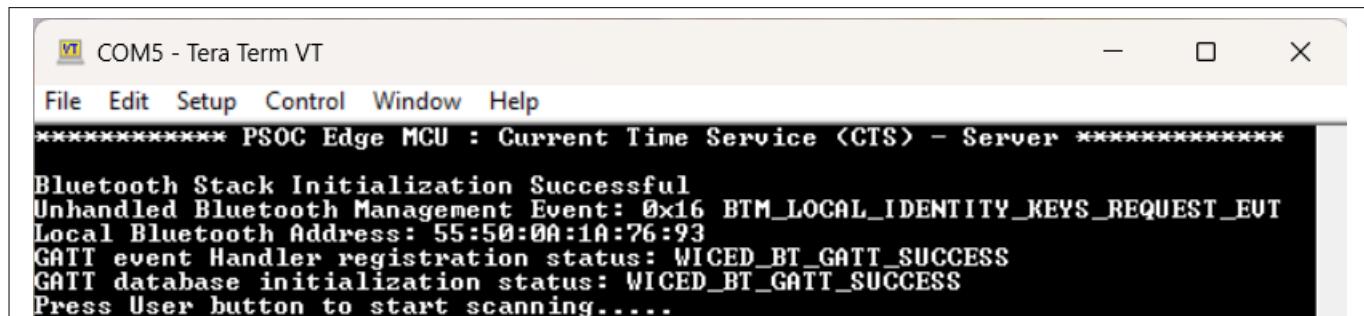
Figure 46 Current consumption with connection interval of 500 ms



Figure 47 Current consumption with connection interval of 1000 ms

6 Power measurement using KIT_PSE84_EVAL_EPC2

Table 8 Typical current values for PSOC™ Edge MCU: Bluetooth® LE CTS client code example

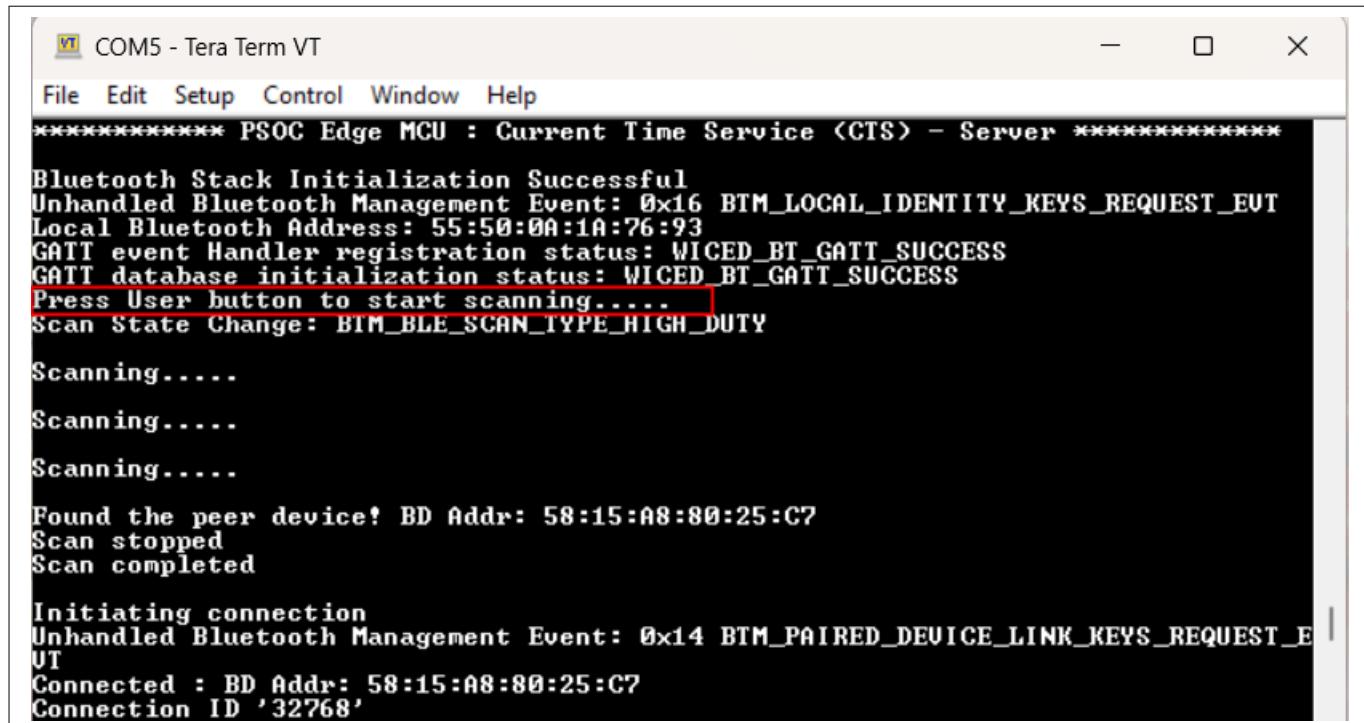

Bluetooth® state	Setting	Device	AIROC™ CYW55513
High-duty advertisement	ADV interval: 30 ms	AIROC™ CYW55513 (VBAT)	1.927 mA
Low-duty advertisement	ADV interval: 1.28 s	AIROC™ CYW55513 (VBAT)	90.55 µA
Connected	Conn interval: 8.75 ms	AIROC™ CYW55513 (VBAT)	2.772 mA
Connected	Conn interval: 10 ms	AIROC™ CYW55513 (VBAT)	1.087 mA
Connected	Conn interval: 50 ms	AIROC™ CYW55513 (VBAT)	676.955 µA
Connected	Conn interval: 500 ms	AIROC™ CYW55513 (VBAT)	96.995 µA
Connected	Conn interval: 1 s	AIROC™ CYW55513 (VBAT)	74.116 µA

6.5 PSOC™ Edge MCU: Bluetooth® LE CTS Server code example

This section describes power measurement in KIT_PSE84_EVAL_EPC2 with the PSOC™ Edge MCU: Bluetooth® Server code example [11]. This example allows you to measure the current while the device is scanning in high-duty and in low-duty.

By default, the example implements the CTS service as a GATT server.

1. Set up the KIT_PSE84_EVAL_EPC2 kit as explained in the [Hardware setup](#) section. Note that this section uses the N6705B power analyzer from Keysight as a reference setup to measure power
2. Turn ON the channels to power the PSOC™ Edge MCU and AIROC™CYW55513 Wi-Fi & Bluetooth® combo chip from the power analyzer. You can connect the onboard KitProg to view logs in terminal software through the COM port
3. Follow the README instructions provides in the code example [11]. Build and program the code example. After programming, the application starts automatically. [Figure 48](#) and [Figure 49](#) show the outputs respectively
4. On bootup, the AIROC™CYW55513 Wi-Fi & Bluetooth® combo chip will not have any RF activity




```
***** PSOC Edge MCU : Current Time Service (CTS) - Server *****

Bluetooth Stack Initialization Successful
Unhandled Bluetooth Management Event: 0x16 BTM_LOCAL_IDENTITY_KEYS_REQUEST_EUT
Local Bluetooth Address: 55:50:0A:1A:76:93
GATT event Handler registration status: WICED_BT_GATT_SUCCESS
GATT database initialization status: WICED_BT_GATT_SUCCESS
Press User button to start scanning.....
```

Figure 48 Terminal output for standby mode

6 Power measurement using KIT_PSE84_EVAL_EPC2


```
***** PSOC Edge MCU : Current Time Service (CTS) - Server *****  
Bluetooth Stack Initialization Successful  
Unhandled Bluetooth Management Event: 0x16 BTM_LOCAL_IDENTITY_KEYS_REQUEST_EUT  
Local Bluetooth Address: 55:50:0A:1A:76:93  
GATT event Handler registration status: WICED_BT_GATT_SUCCESS  
GATT database initialization status: WICED_BT_GATT_SUCCESS  
Press User button to start scanning....  
Scan State Change: BTM_BLE_SCAN_TYPE_HIGH_DUTY  
Scanning....  
Scanning....  
Scanning....  
Found the peer device! BD Addr: 58:15:A8:80:25:C7  
Scan stopped  
Scan completed  
Initiating connection  
Unhandled Bluetooth Management Event: 0x14 BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EUT  
Connected : BD Addr: 58:15:A8:80:25:C7  
Connection ID '32768'
```

Figure 49 Terminal output for high duty scan

6.5.1 Power measurement

This example enables you to measure power in three different AIROC™ Bluetooth® LE states; standby, scanning, and connected states. Follow these steps to enter each state and measure power for different kits.

To enter different states:

- **Standby state:** After programming the device, AIROC™ Bluetooth® LE is initialized and stays in the standby state. On the terminal, check for the message 'Bluetooth® stack initialization successful' and now you can measure power for the standby state
- **Scanning state:** Press the **User button (SW2)** on your kit to start scanning. Note that the kit with CTS client CE must be advertising when it starts scanning. When it discovers the peer device, it sends a connection request. A high-duty scan will be performed initially for 30 seconds. Then the device switches to low-duty scanning without a timeout. High-duty scanning of 30 seconds is chosen for faster discovery. This configuration can be changed if required using the Bluetooth® Configurator tool that comes with ModusToolbox™ installation
- **Connected state:** After the scanner finds the advertiser, the connection is established. The terminal displays the message 'Connected : BDA xx:xx:xx:xx:xx:xx'

6 Power measurement using KIT_PSE84_EVAL_EPC2

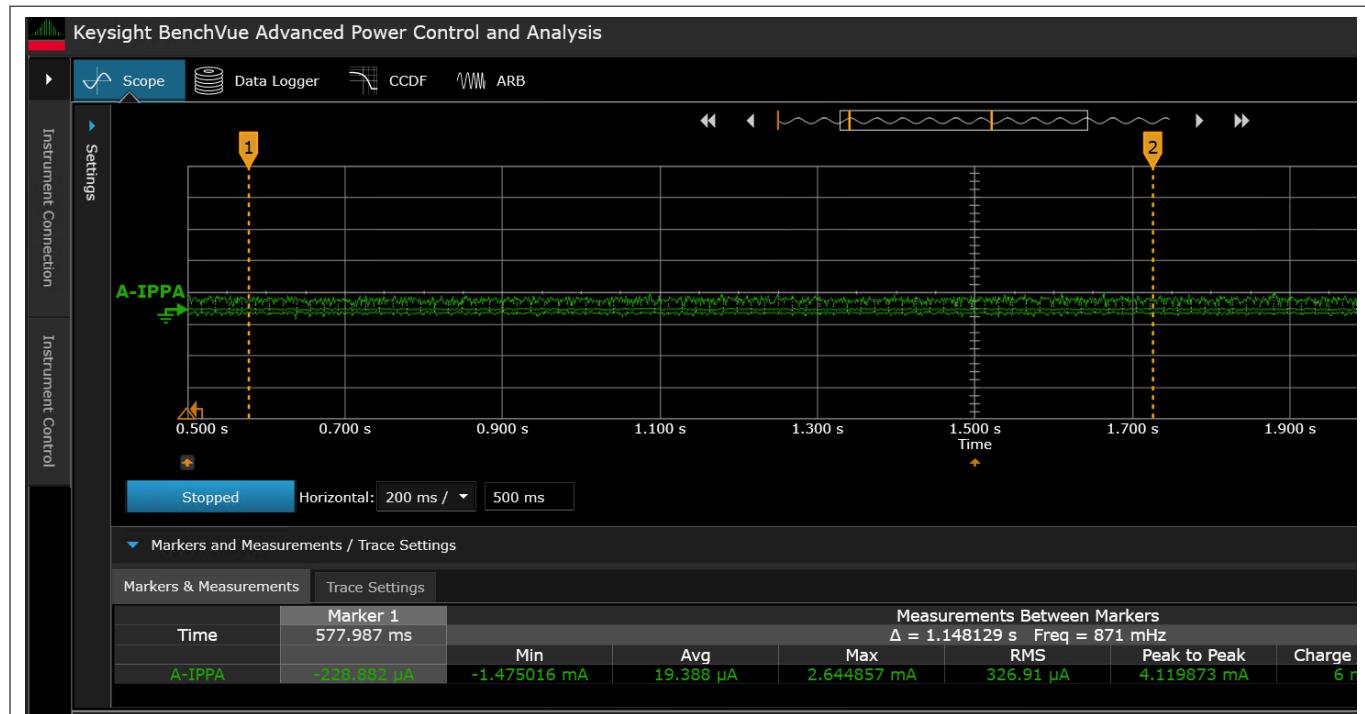


Figure 50 Current consumption during standby mode

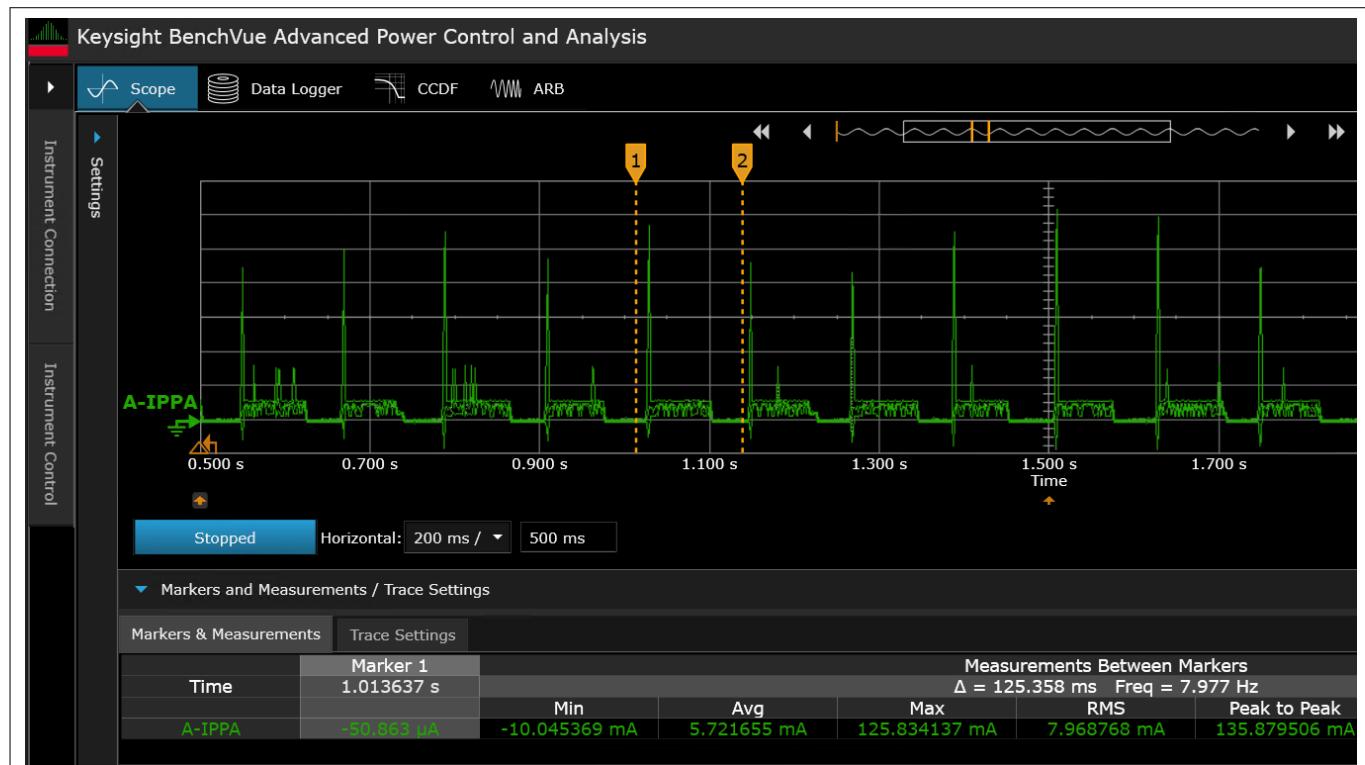


Figure 51 Current consumption during high-duty scanning

6 Power measurement using KIT_PSE84_EVAL_EPC2

Figure 52 Current consumption during low-duty scanning

Table 9 Typical current values for PSOC™ Edge MCU: Bluetooth® LE CTS Server code example

Bluetooth® state	CYW55513IUBG
Standby mode	19.388 μA
High duty scanning	5.721 mA
Low duty scanning	171.608 μA

7 Summary

The PSOC™ Edge MCU and AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip provide an industry-leading low-power IoT platform that provides many power management options. The Infineon low-power assistant middleware enables adding the low-power operation to your IoT design with ease. By following proper methods and design techniques, you can optimize your system for the lowest possible power consumption without degrading performance.

References

References

Webpages

- [1] Infineon Technologies AG: *PSOC™ Edge Arm® Cortex® Multicore*; [Available online](#)
- [2] Infineon Technologies AG: *AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip*; [Available online](#)

Application notes

- [3] Infineon Technologies AG: *AN235935 – Getting started with PSOC™ Edge E84 MCU on ModusToolbox™ software*; [Available online](#)
- [4] Infineon Technologies AG: *AN237976 – PSOC™ Edge E84 MCU low-power modes and power reduction techniques*; [Available online](#)

Datasheets

- [5] Infineon Technologies AG: *PSOC™ Edge E8x2, E8x3, E8x5, E8x6 datasheet*; [Available online](#)
- [6] Infineon Technologies AG: *AIROC™ CYW55513 Wi-Fi & Bluetooth® combo chip datasheet*; [Available online](#)

Reference manual

- [7] Infineon Technologies AG: *PSOC™ Edge E8x2, E8x3, E8x5, E8x6 reference manuals*; [Available online](#)

Code examples on GitHub

- [8] Infineon Technologies AG: *PSOC™ Edge MCU: WLAN low-power*; [Available online](#)
- [9] Infineon Technologies AG: *PSOC™ Edge MCU: WLAN offloads*; [Available online](#)
- [10] Infineon Technologies AG: *PSOC™ Edge MCU: Bluetooth® LE CTS Client*; [Available online](#)
- [11] Infineon Technologies AG: *PSOC™ Edge MCU: Bluetooth® LE CTS Server*; [Available online](#)

Tool

- [12] Infineon Technologies AG: *ModusToolbox™ software*; [Available online](#)

Glossary

Glossary

ARP

Address Resolution Protocol

BSS

Basic Service Set

CE

code example

DAD

Duplicate Address Detection

DHCP

Dynamic Host Configuration Protocol

DLTRO

DHCP Lease Time Renew offload

DNS

Domain Name System

DSP

digital signal processor

DTIM

Delivery Traffic Indication Map

DUT

Device Under Test

EDR

Enhanced Data Rate

FTP

File Transfer Protocol

FW

firmware

GPIO

general-purpose input/output

GSPI

Generic Serial Peripheral Interface

HP

High Performance

ICMP

Internet Control Message Protocol

Glossary

IoT

Internet of Things

JTAG

Joint Test Action Group

LAN

Local Area Network

LNA

low-noise amplifier

LP

Low Power

LPA

low-power assistant

LPO

low-power oscillator

LR

Long Range

NA

Neighbor Advertisement

ND

Neighbor Discovery

NN

neural network

NS

Neighbor Solicitation

PA

power amplifier

PC

personal computer

PDM

pulse-density modulation

PILO

precision internal low-speed oscillator

PLL

phase-locked loop

PMU

power management unit

Glossary

PPU

Power Policy Unit

RST

reset

RTC

real-time clock

SDIO

Secure-Digital Input-Output

SOM

system-on module

STA

station

TBTT

Target Beacon Transmission Time

TCP

Transfer Control Protocol

TCPKA

TCP keepalive offload

TDM

time-division multiplexing

TIM

Traffic Indication Map

U-APSD

unscheduled automatic power save delivery

UDP

User Datagram Protocol

ULP

ultra-low-power

WHD

Wi-Fi Host Driver

WOWL

Wake on Wireless LAN

Revision history

Revision history

Document revision	Date	Description of changes
**	2025-09-17	Initial release

Trademarks

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-17

Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-vlt1749544300904

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.