AN241320 (infineon

PSOC™ Edge MCU: Tamper protection and detection
mechanisms

About this document
Scope and purpose

This application note provides a comprehensive overview of the security features to prevent and detect
tampering using PSOC™ MCUs.

It provides fundamental concepts related to tampering and their significance in the design of modern secure
embedded systems. The document then delves into the internal mechanisms that help provide tamper
protection for PSOC™ MCUs, including the lock-step Secure Enclave (SE) available on PSOC™ Edge MCUs.

Furthermore, the document provides detailed descriptions of both software and hardware solutions for
implementing passive and active external tamper detection using PSOC™ MCUs, enabling developers to
effectively integrate robust security measures into their designs, ensuring the integrity and reliability of their
embedded systems.

Note: Note that code examples referenced in this document may not be available in ModusToolbox™ at the
time of reading. The examples will be released in an upcoming BSP release.

Intended audience

This application note is intended for hardware and software developers, engineers, and system architects who
are involved in the design and development of embedded systems using PSOC™ MCUs. It is also suitable for
anyone seeking a better understanding of tamper protection and detection mechanisms, and their impact on
embedded applications.

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-41320 Rev. **
www.infineon.com 2025-10-03

https://www.infineon.com

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Table of contents

Table of contents

About thisdocument e 1

Tableof contents e e 2
1 IntrodUction e 4
1.1 TamMPEr PrOtECHION . o e e e e e 4
1.2 Device-level vs. system-level tamper protection....... ... i 4
2 Tamper protection mechanisms i i 6
2.1 INtrusion detection SYSteMIS\ttt e e e e e 6
2.11 Temperature MONITOIINGottt e e e et et 6
212 VOlEage MONITOIING . . . oottt ettt et et e ettt et 6
2.13 Secure Enclave using loCKStep . ..ot i i e e 6
2.14 Externaltamper detection i e e 7
2.2 ENncryption Mechanisms e e e e 7
2.2.1 Cryptographic acCeleratorsttt e e 7
222 Secure Enclave supporting cryptographic and key management servicesusing SE_RT 7
2.2.3 ENCrypted MEmMO Y .ttt et e e e e 8
2.3 Secure boot and authentication mechanisms. i e 8
231 Secure bootand chain of trustt 8
232 Edge Protect Bootloader.ottt e e 9
233 Authenticated debugo e e 10
3 External tamper detectionmechanisms 11
3.1 Passive and active detectionottt e 11
311 Application flow diagram e e 12
3.1.2 Low-power modes for tamper detection applications............cooiiiiiiiiii .. 13
3.2 Passive tamper deteCtiont e 14
3.2.1 Passive tamper implementation using GPIOSt e 14
3211 Hardware and device implementation.......... ..ot 14
3.2.1.2 Code BXaMIPlE . oo e 15
3.2.1.3 P oW CONSUMI DI ON L o oot ettt ettt et 15
3.2.14 RESPONSE iMoottt e e e e 15
3.2.2 Passive tamper implementation using LPCOMP e 16
3221 Hardware and device implementation - Singleline........... i .. 16
3.2.2.2 Hardware and device implementation - Multiplelines.............coi i, 17
3.2.2.3 Code BXaMIPlE . .o e e e 18
3.2.2.4 POWEr CONSUMPTION . oot i e ettt e ettt ettt naaaaainas 19
3.2.25 RESPONSE iMoo e e 19
3.3 Active tamper deteCtiont e e 20
3.3.1 Simple PWM active tamper implementation usingSmart /0. ..., 21
3311 Hardware and device implementation.......... ..ot 21
Application note 2 002-41320 Rev. **

2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Table of contents
3.3.1.2 Code EBXaMIPlE . oo e e e e e 22
3.3.13 POWEr CONSUMIPEION . . oo e ettt e 22
3.3.14 RESPONSE iMoo e 23
34 Alternative tamper detection implementations........ ..ottt i 23
34.1 Tamper detection using communications peripherals i i i 23
3.4.2 Tamper detection using autonomous analog.........c.ovviiiii it 24
343 Tamper detection USINg tIMersttt e et 26
3.44 USINg random GeNnerators u ettt ettt et e e e e 26
4 Tamperresponse mechanisms ittt 27
4.1 Erasing keys USiNg SE RT SEIVICES . .ottt ettt ettt ettt et e eaieee e 27
4.1.1 Handlingvolatile Keysot e e 28
4.2 RMA LITECYCLE .« oottt e et e e e e 29
GlOSSaANY . ..ot e e e 30
ReVISION MiStOryt e e e 34
Trademarks e e 35
DiSClaimer e 36
Application note 3 002-41320 Rev. **

2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

1 Introduction

1 Introduction

Tamper of a secured device refers to the intentional modification of a system to expose items, such as
cryptographic information, proprietary software, or application secrets. Modifications of a system can also
allow the device to be accessed or operated by unauthorized users. When developing a secured system,
consider implementing tamper protection, detection, and response mechanisms early in the design phase to
ensure a robust, yet power efficient solution.

1.1 Tamper protection

Tamper protection is a set of security mechanisms designed to prevent or detect any unauthorized attempts to
access, modify, or manipulate a device, system, or data. These measures can include physical, software-based,
or firmware-based solutions that ensure the integrity and authenticity of the device or system. Tamper
protection can be applied to various types of devices, including microcontrollers, secure elements, and other
embedded systems.

Tamper mechanisms can be broadly classified into four categories, each serving a unique purpose in
preventing and responding to unauthorized access or manipulation.

« Tamper resistance: The system's ability to withstand attempts at unauthorized access. This is typically
achieved through the use of robust physical barriers, such as reinforced enclosures, secure locking
mechanisms, encapsulation, or protective coatings

« Tamper detection: Involves identifying potential security breaches or anomalies that may indicate a
tampering event. This is often accomplished through the use of sensors or switches that monitor the
system's integrity

+ Tamper response: Once a tampering event is detected, the system's tamper response mechanism is
triggered. This can involve a range of actions, including the deletion of sensitive information, activation of a
safe mode, display of a warning message, or in extreme cases, the complete destruction of the application,
system, or device

« Tamper evidence: The system's ability to record and preserve evidence of the tampering event. This can
take the form of physical evidence, such as a broken seal, or digital records, including logs and reports of
the incident

1.2 Device-level vs. system-level tamper protection

Tamper protection levels can vary significantly across different embedded systems, and as such, tamper
mechanisms must be designed to accommodate these varying requirements. For instance, some systems may
only necessitate evidence of tampering, which can be achieved through the use of a seal, often for warranty
purposes. In contrast, other systems may demand more stringent measures, such as completely erasing the
device, even if it means rendering the application inoperable.

Some tamper mechanisms, particularly those related to tamper resistance and evidence, are typically
implemented at the system level. These mechanisms can incorporate mechanical components that operate
independently of the MCU.

On the other hand, tamper detection and response mechanisms often rely on the MCU's intervention. This is
because MCUs are typically the central component of an embedded system and because they often contain
sensitive information, including code, data, and cryptographic keys. For this reason, the MCU's involvement is
necessary forimplementing sensing mechanisms and responding to potential tampering events, as well as
erasing sensitive data or reporting events.

This application note focuses on tamper detection and response mechanisms relevant to PSOC™ MCUs, and
while many of the solutions and concepts are MCU-agnostic, this document focuses on the implementation
using PSOC™ Edge MCU. The Tamper protection mechanisms section discusses different mechanisms, which
are either inherent to the device or can be optionally implemented to improve the security of the application;

Application note 4 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

1 Introduction

while the External tamper detection mechanisms section discusses mechanisms for detection of external
tampering.

002-41320 Rev. **

Application note 5
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

2 Tamper protection mechanisms

2 Tamper protection mechanisms

Tamper protection works by implementing various security measures to prevent or detect unauthorized access
or modifications to a device or system. These measures can include:

+ Intrusion detection systems: Detecting and alerting on potential security threats
+ Encryption mechanisms: Encrypting data to prevent unauthorized access

+ Secure boot and authentication mechanisms: Ensuring that only authorized firmware is loaded onto a
device

2.1 Intrusion detection systems

2.1.1 Temperature monitoring

Temperature tampering involves manipulating a system's operating temperature to compromise its security or
functionality. This can be done by exposing the system to extreme temperatures, such as high heat or cold, or
by using a thermal interface material to alter the system's thermal characteristics. Temperature tampering can
cause a range of problems, including data corruption, system crashes, and even physical damage to the
system's components.

PSOC™ MCUs can leverage internal or external temperature sensors to monitor temperature periodically using
the integrated ADC or comparators, and trigger warnings or events if an intrusion is detected. The Autonomous
Analog module included in some PSOC™ MCUs can perform ADC conversions autonomously in Deep Sleep
mode and without CPU intervention, allowing to reduce power consumption significantly.

PSOC™ Edge MCUs include an autonomous analog module and an internal temperature sensor, which can be
used by the application to read temperature at any time; as well as a secure non-modifiable boot code, which
inherently reads the temperature sensor to validate that the system is working at an expected temperature
range when performing security-critical operations, such as true random generator (TRNG).

2.1.2 Voltage monitoring

Voltage tampering refers to the intentional manipulation of a system's power supply voltage to compromise its
security or functionality. This can be done by applying an abnormal voltage level, such as a voltage spike or a
voltage drop, to the system's power input. Voltage tampering can cause a range of problems, including data
corruption, system crashes, and even physical damage to the system's components.

PSOC™ MCUs can leverage integrated voltage detection peripherals, such as the low-voltage detect (LVD) or
overvoltage detect (OVD) circuits, which monitor supply rails and can generate an interrupt or a fault when
supplies exceed the expected voltage range; or, they can leverage internal ADCs, comparators, and bandgap
voltage references to perform customized voltage monitors in the application. The autonomous analog module
can also be used to perform autonomous conversions without CPU intervention in low power mode.

In addition to having LVD, OVD, and an autonomous analog module, PSOC™ Edge MCUs feature an anti-tamper
voltage glitch sensor, which is enabled by the boot firmware when performing critical checks, such as firmware
verification and debug policy configuration.

2.1.3 Secure Enclave using lockstep

In addition to having two CPUs for user application, PSOC™ Edge MCUs feature an isolated internal Secure
Enclave (SE) containing two Arm’ Cortex’-M0+ processors operating in lockstep, and providing runtime services
for Arm’ Platform Security Architecture (PSA) compliant cryptography, key management, and attestation
services; available on EPC4 derivatives only.

Application note 6 002-41320 Rev. **
2025-10-03

https://www.infineon.com/dgdl/Infineon-Whitepaper-Autonomous-Analog-Audio-Whitepaper-v01_00-EN.pdf?fileId=8ac78c8c8b6555fe018b91038523603d&da=t
https://www.infineon.com/dgdl/Infineon-Whitepaper-Autonomous-Analog-Audio-Whitepaper-v01_00-EN.pdf?fileId=8ac78c8c8b6555fe018b91038523603d&da=t

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

2 Tamper protection mechanisms

Lockstep is a mechanism that involves running processes in parallel, with each core executing the same
instructions and accessing the same data. The outputs of each core are then compared to ensure that they
match. If the outputs do not match, it indicates that one of the copies has been compromised or is operating
incorrectly. In this way, the Secure Enclave inherently provides a high level of protection against fault injection
and semi-invasive attacks.

Additionally, the Secure Enclave provides internal secure storage, which is physically separated from the overall
nonvolatile memory (NVM) and uses a dedicated access port with unique tags, and has multiple layers of
protection that only the Secure Enclave can access. These mechanisms protect the Secure Enclave storage from
any forms of observations.

2.1.4 External tamper detection

PSOC™ MCUs can leverage many different hardware and software mechanisms to detect system tampering.
These mechanisms are discussed in more detail in the External tamper detection mechanisms section.

2.2 Encryption mechanisms

2.2.1 Cryptographic accelerators

Cryptographic accelerators are specialized hardware components designed to accelerate operations, such as
encryption, decryption, and digital signatures. These accelerators can significantly improve the security of a
system by providing a secure and efficient way to perform cryptographic operations.

PSOC™ MCUs include different hardware accelerators, which can be used to perform symmetric and asymmetric
encryption and decryption, hash generation, cyclic redundancy checks (CRCs), and, random number
generation.

2.2.2 Secure Enclave supporting cryptographic and key management
services using SE_RT

PSOC™ Edge MCU is beyond regular MCUs and includes a dual cryptographic accelerator, which is only
accessible by software running on the Secure Enclave and provides services protected against side-channel
attacks (SCA) and differential power analysis (DPA). This secure functionality is accessible by the application
through Secure Enclave runtime (SE_RT) services and provide access to PSA compliant cryptographic services,
key management, attestation, and secure storage services.

Figure 1 shows the security architecture of PSOC™ Edge and how the SE_RT services are accessed by the
application:

Application note 7 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

2 Tamper protection mechanisms

| |
| Arm® Cortex>-M33 ! Arm?® Cortex®*-M55
; ®
Secure Enclave | with TrustZone | | Non-Secure NSPE
(2x lock step) | |
| < |
I Application Software - " :
= : PSA API T
% ! Non-Secure NSPE 1 g :
Secure Enclave S ISocure SPE | o
Run-Time Services* a :) 4 | Application software
t > |
! Secure Firmware _ ' NE
< > D 1 i b
Basic Run-Time Services l o | &
| A = |
Sl
Boot S I
g1 !
[| A4 |
: Cryptographic accelerator : [] user application in NSPE
| (CRYPTO) |
| | O userapplication in SPE
I | .)
* Secure enclave runtime services is only | | . User installable pre-tested firmware
available for EPC 4 part numbers, see .
Ordering Information B integrated firmware
Figure 1 Security architecture diagram for PSOC™ Edge MCU

SE_RT services are only available on EPC4 devices. This application note explains how to leverage them to store
and delete keys in the Erasing keys using SE RT services section.

2.2.3 Encrypted memory

Using internal memory can often offer higher protection against attacks compared to external memories;
however, internal memories resources are usually more limited, requiring developers to use external memories
to store large amounts of code or data and creating a potential target for attacks.

External memories can be attacked by eavesdropping or modifying data; however, such attacks can be
protected by encrypting memory contents.

PSOC™ Edge MCUs support on-the-fly encryption and decryption of external memories using the integrated
Serial Memory Interface (SMIF). The device can either read and write encrypted data and code from external

memories using APls in Memory-Mapped /O (MMIO) mode, or it can execute code directly in Execute in Place
(XIP) mode.

Note that external storage is not DPA protected. It is recommended to use the Secure Enclave internal storage
to store application secrets; or use the Secure Enclave cryptography to process externally stored secrets.

2.3 Secure boot and authentication mechanisms

2.3.1 Secure boot and chain of trust

Secure boot mechanisms involve a combination of hardware and software components that work together to
verify the authenticity and integrity of the system's firmware or software.

While secure boot mechanisms can be implemented in software for practically any microcontroller,
PSOC™ Edge MCUs offer a highly secure solution by leveraging the Secure Enclave and ROM code, as shown in
Figure 2.

Application note 8 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

2 Tamper protection mechanisms

Device Boot
Sequence RESET
(Infineon)
\ 4 _
Secured Services | | Secure Enclave
(SE) ~ "| Boot (ROM/RRAM) Secure boot
Enable CM33 always
Extended Boot enabled
(Cm33))
Typical l — Optional
Application CM33 Bootloader Secured boot
Template — (See Policy File)

Enable CM55
; — "
——————— \ 4
CM33 Project CM33 Project CMS55 Project
(Non-Secure) (Secure) (Non-Secure)

OEM’s choice to extend secured boot past CM33 Bootloader

Figure 2 Chain of trust using PSOC™ Edge MCU

The basis of the chain of trust relies on the root-of-trust (RoT), which is memory that cannot be changed. In
PSOC™ Edge, the RoT starts with the Secure Enclave booting from the internal ROM, which then verifies the
second part of the boot code in secured RRAM. The Secure Enclave then verifies the first CM33 code area in
RRAM which contains the extended boot, which subsequently checks the OEM policy file and validates the user
application when enabled.

This mechanism ensures that the boot code is immutable and that the chain of trust is extended all the way to
the application.

When secure boot is enabled, any unexpected code alterations will be detected by this mechanism, preventing
execution of invalid or non-authenticated code.

For more information about these secure boot mechanisms and how to use them, see the AN237849 - Getting
started with PSOC™ Edge Security application note.

2.3.2 Edge Protect Bootloader

While the integrated ROM boot and extended boot included in PSOC™ Edge can be used to validate the first
secure CM33 application; it is also possible to use Edge Protect Bootloader to extend the chain of trust to all the
application projects.

Edge Protect Bootloader consists of a port of the open-source MCUboot and it can be optionally enabled on
PSOC™ Edge devices. ModusToolbox™ includes examples explaining how to add support to any application.

Application note 9 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

2 Tamper protection mechanisms

For more information about Edge Protect Bootloader and how to use it, see the AN237849 - Getting started
with PSOC™ Edge Security application note.

2.3.3 Authenticated debug

The device debug interface (for example, JTAG or SWD) is a commonly attacked communication interface,
which can be used to gain access to the device, including memory, CPU, and security assets.

Most microcontrollers provide means to disable debug interfaces using hardware or software fuses, while more
sophisticated solutions can support debug authentication.

PSOC™ Edge goes a step beyond by implementing multiple device lifecycle stages (LCS). The following stages
are relevant to product developers:

+ Development LCS: This is the default state of the device, allowing the device to be provisioned and
programmed as many times as needed to develop the final application. During development, the OEM may
take ownership of the device, allowing to replace the default policy file with a custom one. A customized
policy file can be used to enable and disable the debug interface, or to allow debug access only under
certain conditions such as presenting a debug certificate. It is not recommended to ship the final product in
this lifecycle stage

« Production LCS: This state locks down the ownership of the device, meaning that the key used to
authenticate the firmware can no longer be changed from what was programmed into the device. The
debug ports, including SYS_AP, can all be disabled or left enabled with or without authentication as per
user requirement

+ Return merchandise authorization (RMA): This lifecycle should be used when customers require Infineon
to perform failure analysis. In the RMA LCS, the device can no longer be provisioned. All device secrets are
wiped out from the device. After the device is moved into the RMA mode, when it boots, it does not attempt
to execute any code in the user flash; instead, it waits for the OpenRMA token through the debug port,
signed by Infineon to enable further internal debug and analysis of the device by Infineon. Note that once
the device is in RMA lifecycle stage, it can no longer be used in an application

Software running on the Secure Enclave is responsible for parsing the debug policies and enforcing them on
every boot, making it part of the root-of-trust.

For more information about authenticated debug and lifecycle stages, see the AN239757 - Authenticated debug
for PSOC™ Edge application note.

Application note 10 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

3 External tamper detection mechanisms

External tamper detection involves using device pins to detect when the system encounters unauthorized
access or tampering. The microcontroller continuously compares a received signal with a known level and it
triggers a tamper event when a mismatch is detected. Different mechanisms can be used to detect external
tampering, but a common one is using mechanical switches or a tamper mesh, in the form of a network of
conductive paths, which typically open when the system is tampered with.

3.1 Passive and active detection

The distinction between passive and active implementations lies in the nature of the received signal. If the
signal remains static or unchanging, the implementation is considered passive. On the other hand, if the signal
is dynamic, constantly switching or fluctuating, the implementation is classified as active.

Figure 3 shows the basic concepts of typical external tamper implementations:

VCC VCC
gR gR
TAMPER_IN }——————— TAMPER_IN | LU A\ PER N
o
NC L ;/?\II\SPER70UT/ NO b L E/N\SPERQUT/ NC < TAVIPER OUT
A) Passive detection using B) Passive detection using C) Active detection using
NC tamper switch NO tamper switch NC tamper switch
Figure 3 Basic concepts of external tamper detection mechanisms

Figure 3 A) shows the basic concept of a passive tamper implementation using a normally closed (NC) switch.
The TAMPER_OUT signal can be used to drive a LOW signal, which is detected by the TAMPER_IN line when idle.
When the circuit opens due to a tamper event, a pull-up resistor drives the line high, causing a trigger, which is
detected by the microcontroller GPIO. Note that a circuit from VCC to ground forms through the resistor,

causing an idle current VCC. Because of this reason, it is typically recommended to use external resistors with

R
high value to reduce power consumption. Additionally, TAMPER_OUT can be used to drive a LOW signal when
tamper detection is enabled, but it can also be left open to disable the circuitry; or alternatively, the switch can
be connected directly to ground to enable the circuit all the time. Note that the Figure 3 shows an
implementation when the idle signal is LOW, but the same concept applies with the opposite polarity.

Figure 3 B) uses a normally open (NO) switch. The implementation is similar, but there is no path from VCC to
ground, so the idle current is minimal and only due to GPIO leakage when the circuit is idle. Similar to the
previous implementation, TAMPER_OUT can be used to disable the circuitry, or the switch can be connected to
the ground directly if needed; and the same concept applies with the opposite polarity by using a pull-down
resistor on TAMPER_IN, and driving a logic high through TAMPER_OUT.

Figure 3 C) shows a basic concept of an active tamper mechanism. As observed, a signal is actively driven with a
pattern using TAMPER_OUT, and the same signal is received on TAMPER_IN when the circuit is idle; however,
the circuit breaks when the switch is open and a mismatch is detected. Note that this implementation requires
microcontroller resources both to drive the output pattern, and to actively compare it with the incoming signal.
Since the signal is driven actively with push-pull I/Os, a pull resistor can be used, but it is optional.

PSOC™ devices can implement passive and active detection circuits in different ways, but this application note
will show a detailed implementation of one active and two passive mechanisms, and it will discuss other
options in the Alternative tamper detection implementations section.

Application note 11 002-41320 Rev. **
2025-10-03

o .
PSOC™ Edge MCU: Tamper protection and detection mechanisms |nf| neon

3 External tamper detection mechanisms

3.1.1 Application flow diagram

Figure 4 shows the basic flow of an application implementing tamper detection using PSOC™ Edge MCUs:

Reset

) 4

ROM_Boot

Hibernate/DeepSleep-OFF Verify and boot
Wake-up

RRAM_SE_BOOT

Verify and boot

Verify and boot

Launch

|
|
|
|
|
|
|
|
| Hibernate/
|
|
|
|
|
|
|
|

Low power
DeepSleep-OFF < mode Launch
Application | -
Figure 4 Flow diagram for tamper detection application using Hibernate or Deep Sleep-OFF

Execution starts after reset from the Secure Enclave, which validates and executes extended boot. If secure
boot is enabled, extended boot validates and executes the first user application CM33_S, which is executed in a
secure environment using the Cortex’ M33 CPU. If secure boot is disabled, extended boot simply boots the
CM33_S application without validating it.

The CM33_S application takes care of initializing the tamper peripherals, circuitry, and interrupts; handling the
interrupt and wake up events when a tamper event is detected; implementing the tamper response
mechanism. Note that Figure 4 shows the implementation of a tamper mechanism using Hibernate or Deep
Sleep-OFF modes, where the device goes through a cold boot process after waking-up. The tradeoffs between
different low power modes are explained in the Low-power modes for tamper detection applications section.
The implementation of the tamper detection mechanisms are explained in more detail in the Passive tamper
detection and Active tamper detection sections, while tamper response mechanisms are explained in the
Tamper response mechanisms section.

After the tamper functionality is initialized, the CM33_S application continues with the initialization of the rest
of the system, and then launches the non-secure M33 application (CM33_NS), which will subsequently launch
the M55 application (CM55). While it is possible to implement tamper detection on CM33_NS or CM55; it is
usually preferred and recommended doing it in the secure environment of CM33_S.

Note that when secure boot is enabled in extended boot, it only validates the CM33_NS application; however, it
is possible to use other solutions, such as Edge Protect Bootloader to validate all other projects and data.

Application note 12 002-41320 Rev. **
2025-10-03

PSOC™ Edge MCU: Tamper protection and detection mechanisms

infineon

3 External tamper detection mechanisms

3.1.2

Low-power modes for tamper detection applications

For numerous applications, it is crucial to strike a balance between low power consumption and the ability to
continuously and securely detect tamper events. PSOC™ MCUs address this need by offering a range of low-
power modes, providing users with high flexibility in terms of power consumption, device functionality, and

wakeup times.

The following table summarizes the system power modes supported on the PSOC™ Edge MCU:

Table 1

System power modes supported on PSOC™ Edge MCU

Sleep

System Deep Sleep

System Deep Sleep-
OFF

System Hibernate

Wakeup source | Any interrupt Deep Sleep Deep Sleep peripherals | RTC/Hibernate
peripherals peripherals

Wakeup action Resume Resume Reset/cold boot Reset/cold boot

Wakeup time 1 CPU cycle <20 us Deep Sleep + cold boot | POR (~540 us) + cold

(~25 ms to >200 ms)

boot (~25 ms to >200
ms)

SRAM retention

On/select off

Off/select retention

Off

Off

Sleep: This mode provides the most functionality since only the CPU halts execution while the rest of the
system is functional and any interrupt can wake up the device with minimum latency; however, it consumes the

most power.

System Deep Sleep: It is achieved when both CPUs enter Deep Sleep and it results in a significantly reduced
power consumption, at a cost of limited device functionality and longer wake-up times. In this mode, the
system clocks are limited, which restricts the peripherals that can wake up the device; however, a range of
common peripherals used in low-power modes are still supported, including 12S, SPI, the autonomous analog
module, Smart 1/0, RTC, among others. This ensures that the device can still respond to critical events and
maintain high functionality, even in a low-power state. Additionally, SRAM can be selectively retained, allowing
developers to carefully balance power consumption and performance. System Deep Sleep mode offers a high
degree of flexibility, allowing developers to fine-tune power consumption to meet the specific needs of their

application.

System Deep Sleep-OFF: It is a sub-mode of system Deep Sleep, which reduces power consumption even
more, but it completely turns off SRAM and other internal circuitry resulting in longer wake-up time. Deep
Sleep-OFF can use the same peripherals as Deep Sleep and it can retain volatile application data using backup
registers (BREG); however, the device goes through a cold boot process when waking up, as shown in Figure 4.
The cold boot wakeup time depends on the system configuration, but it is around 25 ms when secure boot is
disabled, or around 200 ms plus a time depending on image size when secure boot is enabled. For actual
wakeup times, see the corresponding device datasheet.

System Hibernate: This mode has similar wakeup times as Deep Sleep-OFF, since it goes through the cold boot
process, and it also does not retain SRAM; however, it offers the lowest power consumption with a tradeoff of
more limited wakeup sources. PSOC™ Edge MCU enables wakeup from Hibernate mode using selected GPIO
pins, real time clock (RTC), watchdog timer (WDT), and the low-power comparator (LPCOMP), and it also allows
for retention of some volatile data using backup registers.

This application note shows solutions using system Hibernate and system Deep Sleep-OFF as they offer the
lowest power consumption; however, other modes can be used instead if more functionality is desired in low-
power mode, or when requiring faster wakeup times.

Application note

13

002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

3.2 Passive tamper detection

Passive tamper detection involves monitoring a fixed signal and triggering an event when any changes are
detected. The signal is typically a digital HIGH or LOW, but it can also be an analog voltage level. This method
can be implemented on normally closed (NC) or normally open (NO) tamper switches and requires minimal
hardware resources.

3.2.1 Passive tamper implementation using GPIOs

A basic external passive tamper detection solution can be implemented using GPIOs. In this approach, the
tamper circuit stays at a known fixed level when idle, and toggles with a tampering event.

As previously shown in Figure 3, this approach can be implemented with NC and NO switches; however, the
solution described in this document uses a simple NC switch, which can be easily implemented with traces or
wires which open the circuit when the system is tampered with.

3.2.1.1 Hardware and device implementation

The schematics of the solution are shown in Figure 5:

uD Passive Tamper - GPIO - Single line
POl‘;;):S_? ;%7_ This tamper detection implementation detects an event on a single tamper line using a wake-up GPIO.
T
;ss% ; _'6 ¥ﬁgggﬁgﬂ This implementation can be used in any low-power mode, including hibemate.
g:gzé “ﬁl_ Whenusing hlib ernate mode, two circuits can be implemented on PSOC™ Edge using P8.3 and P8.7;
P87 fr—— however, availability of P8.7 depends on package.

PSOC Edge E84 Whenusing other modes. including deep-sleep. any GPIO can be used allowing for more lines.

See datasheet for wake-up times depending on low-power mode.

-TAMPER. WAKE detects when switch opens.
+ P8.3/hibernate_wakeup or P8.7/hibernate_wakeup should be used in hibemate mode. Any GPIO can
beusedin other modes.

Vddio +1V8

-TAMPER. OUT drives alow state to activate circuit, or Hi-Z to deactivate.
+Any GPIO canbeused.
+ Alternatively, connect to GND.

- Component values can be adjusted as needed based on power and noise requirements.

TAMPER_OUT

- Internal resistor can be used. allowing to control polarity. but at expense of higher power.

Figure 5 Schematics for single tamper line solution using GPI10Os

The solution implements a single tamper input line TAMPER_WAKE, which is LOW when idle driven by
TAMPER_OUT, or alternatively by a ground signal; and raises HIGH when the switch opens due to an external
pull-up resistor.

Given the simplicity of this approach, it only requires one optional output pin, and one input pin with interrupt
capability; however, the input pin selection depends on the desired power mode. This approach can be
implemented on any PSOC™ active and low power mode, including Hibernate mode; however, the number of
pins which can wakeup the device from Hibernate mode are limited. PSOC™ Edge E84 supports two
hibernate_wakeup inputs (P8.3 and P8.7), which would allow implementing a maximum of two tamper lines
using this approach. On the other hand, PSOC™ Edge supports interrupts and wakeup from practically any I/O
pin (except fixed-function I/0s) when using any other mode, including Sleep and Deep Sleep allowing the
implementation of as many tamper detection lines as the number of available pins.

Application note 14 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

3.2.1.2 Code example

Passive tamper detection of a GPIO requires detecting a basic secure pin interrupt and handling the tamper
response event.

ModusToolbox™ includes the CE241529 - PSOC™ Edge passive tamper detection using LPCOMP code example,
which shows the implementation of tamper line detection using LPCOMP in Hibernate mode in the CM33 secure
environment and CE239674 - PSOC™ Edge MCU: Secure and Non-secure GPIO shows the implementation of
secure GPIO interrupts. These examples provide the building blocks for the detection of a secure GPIO interrupt
and how to handle the tamper response.

3.2.1.3 Power consumption

The power consumption of this implementation depends on three factors:

+ Device idle power mode: This implementation requires no CPU time when idle since the circuitry will
wakeup the CPU only when a tamper event is detected, so the device power consumption when idle is only
imposed by the low-power mode. Using Hibernate mode for PSOC™ Edge, power consumption is around
3.33 uW (0.3 wA at 3.3V + 1.3 A at 1.8 V). See the Low-power modes for tamper detection applications
section for more details about baseline power modes and the impact on power consumption, capabilities,
and wake-up times

« MCU circuitry: This approach only requires one input and one optional output pin, so the power
consumption is only the leakage current, which is practically negligible. See the corresponding datasheet
for actual values

« Tamper circuitry: The proposed circuit uses a pull-up resistor which will draw current when idle. The

. vce . . 1.8V
current is calculated as R which equates to MO

mention that the resistor and capacitor can be adjusted according to the application needs. It is also
possible to use an internal pull resistor; however, it can result in higher power consumption. The typical
resistance for an internal pull-up/down resistor on PSOC™ Edge is 50 kQ, which would result in 36 pA at
1.8 V. Itis also important to mention that using a NO tamper switch, such as the one shown in Figure 3
would not close the circuit when idle, eliminating this power consumption component

=1.8uA = 3.24uW; however, itis important to

Using the circuitry shown in this application note in Hibernate mode for PSOC™ Edge, the power consumption
of the device would be ~3.33 uW. The external circuitry adds ~3.24 uW; however, this component can be
adjusted based on application needs.

3.2.14 Response time

The response time of this implementation depends on the following factors:

« Tamper detection circuitry: The proposed circuit uses an RC circuit which will rise when the
switch is opened. For the example shown in this application note, the RC constant is calculated as
7= RC = 1MQ X 32pF = 32us, and since PSOC™ Edge has a VIH of 0.7*VDD, the rise time is approximately
~1.204RC, which is around ~38.5 ps. This time can be adjusted based on the values of the RC circuit

+ Wakeup time from idle power mode: Once a logic HIGH is detected, the circuitry will trigger a wakeup
event, and the device wakeup time will depend on the power mode being used. In Hibernate mode for
PSOC™ Edge, the wakeup time is around ~25 ms with secure boot disabled. See the Low-power modes for
tamper detection applications section for more details about baseline power modes and the impact on
power consumption, capabilities, and wakeup times

+ CPU execution: After waking-up, the CPU will start executing and the time it takes to execute the tamper
response routine will depend on the application. It is recommended to optimize initialization functions,
such as CINIT and system initialization routines, but since this factor depends on the application, it is not
considered for the calculation

Application note 15 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

As observed, the response time is mostly defined by the wakeup time from idle mode, which is around ~25 ms
when using Hibernate mode with secure boot disabled using PSOC™ Edge E84 MCU.

3.2.2 Passive tamper implementation using LPCOMP

A variation of the passive tamper implementation can be implemented with the low power comparator
(LPCOMP) available in PSOC™ MCUs.

LPCOMP is an internal comparator which can perform fast analog signal comparison of internal and external
analog signals in all system power modes, including Hibernate and Deep Sleep modes. LPCOMP has a
programmable operational mode, which can adjust its power consumption and speed, and its output can be
used as an interrupt or wakeup source from low-power modes. When used in ultra-low power (ULP) mode of
operation, it is a power-efficient way to detect events, even while the device is in Hibernate mode.

MMIO

Low Power Comparator Block | | registers | [€ P AHB IF [—P-ArB
o compo

Part of I/0 Analog Sub-Section sync {» (Totrigger
system multiplexer)
N |

out0

XH-o—to ™ Gote te 3 Comp 0 LA
-

)
I
I
|) INO,
] i~ » Edge
: l| [4 4 = Dete%tor
| 5
: I ° A
I | Combine |, Interrupt to CPU
| | | and mask " Subsystem
|
: X ol ™l o . Comp |
: = 1 l: 1 l 1 >
o 0 L s pe. L out 1 y Edge
] z
: | §I —» to mmio
L
5 2 — Sync ——p dsi_compl
-% 'g Vref (0.4-0.8) (To trigger
E E multiplexer)
Wakeup Signals to System
Resources Sub-System
Figure 6 Low-power comparator block diagram

LPCOMP can be used for tamper detection using NC or NO switches; however, this application note describes
solutions to detect a single tamper line or multiple using NC tamper switches.

3.2.2.1 Hardware and device implementation - Single line

LPCOMP can be used to detect a single tamper line as shown in Figure 7:

Application note 16 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

Passive Tamper - LPCOMP - Single line

(il = This tamper detection implementation detects an event on a single tamper line using LPCOMP.
0T
15 TAMPER OUT
P100 B = o
PII 1 Two circuits can be implemented on PSOC™ Edge using LPCOMP0 and LPCOMP1: however,
P102 ﬁf‘ availability depends on package.
PI03 CDla_ TAMPER WAKE
PI04 ! o - . . . L .
PI05 fo 3%2 TAMPER_REF This implementation can be used in any low-power mode. including hibernate. LPCOMP can be
Eg—? e placed inultra-low power mode to achieve lowest power consumption.
s
PSOC Edge E84 TAMPER WAKE [A o oakeanin 1 i
TAMPER_INT ‘Wake-up time will depend on LPCOMP mode. plus the device wake-up time which depends on
TAMPER REF) system power mode. See datasheet for specs.
LPCOMP (internal)

L VE - TAMPER_WAKE detects when switch opens.
+P10.4/lpcomp0_in+or P10.6/lpcompl_in+ should be used.

(3322:; - TAMPER_OUT drives a low state to activate circuit, or Hi-Z to deactivate.
TAMPER WAKE +Any GPIO canbe used.

+ Alternatively, connect to GND.

SW201 -TAMPER_REF drives areference voltage.
fEprhit +P10.5/lpcomp0_in-orP10.7/lpcomp]_in- should be used.
TAMPER_OUT + Alternatively. the internal reference can be used. but threshold 1s not adjustable.

- Component values can be adjusted as needed based on power and noise requirements.

Figure 7 Schematics for single tamper line passive detection using LPCOMP

The implementation is similar to the one described in Passive tamper implementation using GP10s; however,
the main difference is the use of LPCOMP and an analog reference voltage.

A single tamper input line TAMPER_WAKE is LOW, when idle driven by TAMPER_OUT, or alternatively by a
ground signal; and raises HIGH when the switch opens due to an external pull-up resistor. This signal is
connected to the positive input of LPCOMP, while an external reference TAMPER_REF is connected to the

R202
R202 + R203°
Note that an internal reference can also be used. For PSOC™ Edge E84 MCU, the internal reference can vary from
0.4Vto0.8V.

The LPCOMP output (TAMPER_INT) generates an interrupt or wakeup event internally. The signal can be made
available externally if needed.

negative input. The external reference is derived from a voltage divider calculated as VCC X

This solution can be implemented using any active and low-power mode, including Hibernate mode; however,
itis limited by the number of LPCOMPs available on the device. PSOC™ Edge E84 MCU includes two LPCOMP
modules, but their availability depends on the package.

3.2.2.2 Hardware and device implementation - Multiple lines

A variation of the previous solution can be implemented to support multiple input lines as shown in Figure 8:

Application note 17 002-41320 Rev. **
2025-10-03

PSOC™ Edge MCU: Tamper protection and detection mechanisms

infineon

3 External tamper detection mechanisms

Passive Tamper - LPCOMP - Multiple lines

This tamper detection implementation can detect multiple lines on a single input by using a diode-based gate
implementation

BIS _ TAMPER OUT
P01 (AL TAMPER INI

P10 4GB TAMPER IN2
3 [ALT

P04 kRl TAMPER WAKE
- [B4 TAMPER REF

= 15
TAMPER WAKE
TAMPER_INT
TAMPER REF

- G4
LPCOMP (internal)

Two circuits can be implemented on PSOC™ Edge using LPCOMPO0 and LPCOMP1:; however, availability
depends on package.

This implementation can be used in any low-power mode. including hibernate. LPCOMP can be placed in
ultra-low power mode to achieve lowest power consumption.

PSOCEdgeES4

Wake-up time will depend on LPCOMP mode, plus the device wake-up time which depends on system
power mode. See datasheet for specs.

Vddio +1V8

301 lcsm
TMeg | 32pF
TAMPER_IN1

o Tamper NC

02 icm
TMeg | 32pF
TAMPER_IN?

SW30l TAMPER_OUT |

SW302 TAMPER_OUT
o Tamper NC

- TAMPER_WAKE detects when switch opens.
+P10.4/lpcomp0_in+orP10.6/lpcompl_in+ should be used.
-TAMPER._OUT drives alow state to activate circuit, or Hi-Z to deactivate.
+Any pin can be used.
+ Alternatively. connect to GND.
-TAMPER_REF drives areference voltage.
+P10.5/Ipcomp0_in-orP10.7/Ipcompl _in- should be used.
+ Alternatively. the internal reference can be used. but threshold is not adjustable.
-TAMPER INx is optional but can be used to detect which line caused the event.
+ Any ADC pincan be used.

- Component values can be adjusted as needed based on power and noise
requirements.

D302
S E CMADG001

TAMPER WAKE

C303

Meg | 32pF

- Diodes require low forward voltage and leakage current. It's recommended to
simulate circuit over temperature.

GD

Figure 8 Schematics for passive detection of multiple tamper lines using LPCOMP

The schematic shows the implementation of two tamper NC switches; however, the same approach can be
used to implement more lines if needed.

Similarly to the previous solution, the negative LPCOMP input TAMPER_REF is driven by a voltage divider

R305
calculated as VCC x m,

are closed, and it gets pulled high when any of the switches open due to external diodes implementing a simple
OR gate.

Optional tamper input pins, shown as TAMPER_IN1 and TAMPER_IN2, can be read using an ADC to detect which
tamper switch caused the event, but note that using the ADC is only necessary after a tamper event happens, so
it will not cause additional power consumption in idle mode.

while the positive input TAMPER_WAKE is normally LOW when the switches

Diodes with low forward voltage should be used, since the voltage drop will affect the level seen by
TAMPER_WAKE. Additionally, the diodes should have a low leakage current to prevent reverse-loading the
circuit when one or more switches open.

It is recommended to simulate the circuit to ensure the system will behave correctly over the application's
desired temperature range.

Similar to the single-line approach, this solution can also be implemented in any low power mode, including
Hibernate mode; and it is also limited by the number of LPCOMPs available on the device, but with the
condition that multiple tamper inputs can be implemented on each comparator.

3.2.2.3 Code example

ModusToolbox™ includes the CE241529 - PSOC™ Edge passive tamper detection using LPCOMP code example,
which shows the implementation of multiple tamper line detection using LPCOMP in Hibernate mode in the
CM33 secure environment.

The example also implements an RTC using the CM33 non-secure environment, waking up the device
periodically when the device is idle.

Application note 18 002-41320 Rev. **

2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

See the README in the code example for more details about running the example and configuration options.

3.2.24 Power consumption

The power consumption of this implementation depends on the following factors:

+ Device idle power mode: This implementation requires no CPU time when idle since the circuitry wakes
up the CPU only when a tamper event is detected, so the device power consumption when idle is only
dictated by the low-power mode. Using Hibernate mode for PSOC™ Edge, power consumption is around
3.33uW (0.3 A at 3.3V + 1.3 A at 1.8V). See the Low-power modes for tamper detection applications
section for more details about baseline power modes and the impact on power consumption, capabilities,
and wakeup times

« MCU circuitry: This approach requires one LPCOMP, one optional output pin, and some optional ADC
input pins. The LPCOMP power consumption depends on its operating mode and it is defined in the device
datasheet. For PSOC™ Edge E84 MCU, the LPCOMP power consumption in ULP mode is 0.3 pA typical,
or 0.54 uW. The ADC is not used when the device is in idle mode, so it is not considered as part of the
calculation, and the GPIO leakage current is practically negligible. See the corresponding datasheet for
actual values

« Tamper circuitry - reference: The solution shown in this application note uses an external voltage divider

for the LPCOMP negative reference. The current of this reference can be calculated as %, which
results in £:8Y — g 9uA = 1.62uW for the single tamper circuit or L8V __ 32uA =0.59uW for
2MQ) ’ T 5.5MQ))

the circuit with multiple lines

« Tamper circuitry - input lines: Each input line has a pull-up resistor which will draw current in idle mode
since it is connected to ground through TAMPER_OUT. The power consumption for the single line circuit

can be calculated as L\;g =1.8uA = 3.24uW, while the circuit with two tamper lines is calculated as
1.8V B B

Using the circuitry shown in this application note in Hibernate mode for PSOC™ Edge MCU, the power
consumption of the device would be approximately 3.87 uW (3.33 uW for Hibernate mode + 0.54 uW for
LPCOMP). The external circuitry would add 4.86 uW (1.62 uW for reference + 3.24 uW for input line) for the single
line circuitry; or 2.98 uW (0.59 uW for reference + 2.39 uW for input line) for the example with two tamper lines.
Note that these examples are only given as a reference and the components can be adjusted as needed based
on the application requirements.

3.2.2.5 Response time

The response time of this implementation depends on the following factors:

« Tamper detection circuitry: The proposed circuit uses an RC circuit which will rise when the switch is
opened. For the single line example shown in this application note, the RC constant (t) can be calculated
as 1IMQ x 32pF = 32us, and since the negative reference is set to 0.5 * VDD (0.9 V), therise time is
approximately ~0.69RC, or ~22 us. The RC constant for the circuit with two tamper lines can be calculated
as2.7MQ x 32pF = 86.4us, and the negative reference is set to 0.22 * VDD (~0.4 V) so the rise time is
approximately ~0.35RC, or ~30 us. This time can be adjusted based on the values of the RC circuit and the
voltage divider

« LPCOMP response time: The response time of LPCOMP depends on its operating mode and it is stated in
the device datasheet. For PSOC™ Edge E84 MCU, the LPCOMP response time in ULP mode is 7 us maximum

+ Wakeup time from idle power mode: Once the comparator output toggles HIGH, the circuitry will trigger a
wakeup event, and the device wakeup time will depend on the power mode being used. In Hibernate mode
for PSOC™ Edge MCU, the wakeup time is around ~25 ms with secure boot disabled. See the Low-power

Application note 19 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

modes for tamper detection applications section for more details about baseline power modes and the
impact on power consumption, capabilities, and wakeup times

+ CPU execution: After waking up, the CPU will start executing and the time it takes to execute the tamper
response routine depends on the application. It is recommended to optimize initialization functions, such
as CINIT and system initialization routines, but since this factor depends on the application, it is not
considered for the calculation

As observed, the response time of this implementation depends on multiple factors; however, when using
Hibernate mode, the wakeup time will dominate. For PSOC™ Edge E84 MCU, the response time would be
approximately ~25 ms when using Hibernate mode with secure boot disabled.

3.3 Active tamper detection

Active tamper detection, unlike passive tamper detection, has an actively driven signal along with the input
detection. The actively driven signal is typically a clock output, or a random sequence of pulses. The tamper
detector samples both the active output and an input signal that are connected through a normally closed (NC)
tamper switch. If both signals are matching, then no tamper has occurred, if the tamper switch has been broken
the signals will not match and the tamper should be detected.

Smart /0

The PSOC™ Edge device has two I/0 ports supporting Smart I/O. Smart /0 adds programmable logic to an I/O
port. This programmable logic can be used to generate signals and make logical comparisons. The Smart I/O on
the PSOC™ Edge device will remain operational in Deep Sleep mode.

The Smart 1/0 programmable logic is comprised of a data unit (DU), eight look-up-tables (LUT), signal routing, a
high-speed 1/0 matrix (HSIOM), and 1/0O port input/output signals. The LUTs can be configured for combinatorial
logic, gated input, gated output, or S/R flip-flop. The Smart I/O can be used in asynchronous mode, or a clock
can be provided to the Smart I/O for programmable logic that requires synchronous logic.

Smart I/O, Internal Logic
HSIOM oo Losimes Dl oge | = 1/O Port
<« [Sk_block] [Ciock |
<
o
[J_m o
7 o
< Sync,
smartio_data[7] P» [smartio_data[7]
e (5 >
< Sync
smartio_datal[6; :
{55,
< Sync [[io_data_in[5]]
smartio_data[5; » [smartio_data[5]
< Sync
smartio_data[4] P [[smartio_data[4
< Sync
I_sw_ﬁ » [smartio_data[3
—(Syne} »0
; < Sync
smartio_datal2] P [smartio_data[2
B{ETD,
< Sync
smartio_data[1] » [smartio_data[1
(51D
smartio_data[0] P [smartio_data[0]
Chip_data[0 7@» 2-0-0—1-0-0-0— 11—
tant %
% ‘ YYY VYVV VYV VYV |VVY
UT: LuTs LuT3
[12] 4] 5] [[6]]
. .
Figure 9 Block diagram of Smart 1/0
Application note 20 002-41320 Rev. **

2025-10-03

PSOC™ Edge MCU: Tamper protection and detection mechanisms

infineon

3 External tamper detection mechanisms

3.3.1

Simple PWM active tamper implementation using Smart 1/0

One approach for active tamper detection using the Smart I/O fabric is a simple PWM active tamper detection
circuit. The LUTs are used to generate a PWM on a tamper output signal. Then a tamper input signal connected
to the tamper output signal through an NC switch is compared using the LUTs. The output of this comparison is
made available as a tamper status signal, which can be used by the device as an interrupt to wake-up the
device and indicate that a tamper event has occurred.

3.3.1.1

Hardware and device implementation

The schematics for the simple PWM active tamper solution are shown in Figure 10:

P11 o LE TAMPER OUT 1
PIC1 [LEIL TAMPER_IN_1
- LCB TAMPER_STATUS_
CE10

Active Tamper - Smartl/O

This tamper detection implementation uses Smart I'O to detect up to 4 pairs of tamper
lines driving a pre-defined pattem:

-TAMPER_OUT! drives TAMPER IN 1

- TAMPER_QUT2 drives TAMPER_IN_2

TAMPER_STATUS I
TAMPER_STATUS2

TAMPER_STATUS 3

The Tamper Status pins arc used to output
the logic of the SMARTT/O.

AGPIO interrupt will be set on the falling
edge of the Status pin. This interrupt is the
trigger for the tamper detection. This signal

P i - TAMPER_OUTS3 drives TAMPER_IN 3 TAMPER_STATUS 4 e S ‘1’“?1_3 ut ﬁ?“;Tl‘elieg"°§ g
PICS 2 P g - TAMPER_OUTH drives TAMPER_IN_4 e
PIIG (s TAMPER N2 these signals.
P GFO TAMPER_STATUS 2 .
i Availability of Smart I/O pins depends on device package.
SOC EdgeE84
This implementation can be used in any low-power mode, except hibemate.
= Deep-Sleep-OFF would provide lowest power consumption. - RA0L SWao1
. = i3 Tamper RC
D TAMFER_OUT 3 ‘Wake-up time after amismatch of TAMPER_OUT vs TAMPER _INwillbe 1 LFCLK TAMPER IN 1
TR 3 plus the device wake-up time which depends on system power mode. See datasheet for) .
- - specs. TAMPER OUT 2 B Sw42
TAMPER _OUT 4 TAMPER IN 2 1 Tampar NC
TAMPER IN 4 The specific pins for SMART I/O based tamper detection should not move. Moving the - =
TAMPER_STATUS 4 ins will require aredesign of the SMART I/O logic. W
= : 3 = = TAMFER OUT 3 Pl S
SOCEdgESh . [TRapeNG ‘
Ifthe pins in the circuit do need to be used for other purposes. then each eircuit must TAMPER IN 3
remain within the group of 4 pins from the given port. For example. tamper cirenit 1 OUT
and IN pinsmust be on pins 11.0- 11.3. This is due to the way Smart 'O fabric is TAMPER OUT 4 R404 SWH04
implemented. il Tamper NC ‘
TAMPER IN 4

Figure 10 Schematics for active tamper detection of four lines using simple PWM with Smart /0

By using the gated output configuration, a D flip-flop or a T flip-flop can be created. In combinatorial mode, an
N-XOR and an OR logic gate can be configured. These will be the building blocks for a simple PWM active
tamper detection circuit. The low frequency clock (CLK_LF), which runs off of the PILO, WCO, or an ECO, will be
used as it is enabled in system Deep Sleep mode.

The PWM is generated by toggling a signal using a T flip-flop. Since the T flip-flop is clocked by the CLK_LF, the
PWM will run at 32.768 kHz, which is the frequency of the CLK_LF.

The TAMPER_OUT (PWM) is compared to the TAMPER_IN (asynchronous input) using an N-XOR logic gate. The
output of that gate is fed into a D flip-flop to store an "N-1" sample of the comparison. The output of the N-XOR
and the D flip-flop (N-1) are fed into a logical OR gate. The output of the OR gate is the TAMPER_STATUS. When
the TAMPER_OUT and TAMPER_IN signals do not match for two samples, then TAMPER_STATUS is driven low
indicating a tamper event.

002-41320 Rev. **
2025-10-03

Application note 21

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

Tamper Circuit 1

PWM Generation

LuT 0

TAMPER_OUT_1

v
=

TAMPER_OUT_1

> = a—
CLK__LF #
Signal Comparison
LUT 3 LuT 1 LUT 2
] |
"
‘ B T
CLK__LF [
Figure 11 Simple PWM active tamper detection logic

Afalling edge GPIO interrupt can be enabled on the TAMPER_STATUS GPIO signal to wake the CPU up to allow it
to complete the appropriate steps for a tamper event.

Since this simple PWM active tamper circuit only utilizes three 1/0s and four LUTs, it can be duplicated in a given
Smart /O to create two active tamper detection circuits. PSOC™ Edge supports Smart 1/0 on two ports, so a
total of four active tamper pairs can be created.

3.3.1.2 Code example

ModusToolbox™ includes the CE241499 - PSOC™ Edge active tamper detection using Smart /0 code example,
which shows the implementation of a single tamper detection circuit implemented on each Smart I/O port in
Deep Sleep-OFF mode in the CM33 secure environment.

The example also implements an RTC using the CM33 non-secure environment, waking up the device
periodically when the device is idle.

See the README in the code example for more details about running the example and configuration options.

3.3.1.3 Power consumption

The power consumption of this implementation depends on two factors:

+ Device idle power mode: This implementation requires no CPU time when idle since the Smart |/O output
will trigger an interrupt, which will wake the device from low-power mode only when tamper is detected.
Using System Deep Sleep-OFF mode for PSOC™ Edge MCU, the power consumption is around 108.24 uW
(25.0 A at 3.3V + 14.3 uA at 1.8 V). See the Low-power modes for tamper detection applications section for
more details about baseline power modes and the impact on power consumption, capabilities, and
wakeup times

« MCU circuitry - GPIOs: This approach only requires one input, one output pin, and one status pin, so the
power consumption is only the leakage current, which is practically negligible. See the corresponding
datasheet for actual values

Application note 22 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

+ MCU circuitry - CLK_LF: This approach uses the CLK_LF to clock the Smart /0 programmable logic. The
CLK_LF can be driven by the WCO, ECO, or the PILO. The WCO is the most efficient of these options and has
a typical power consumption of 120 nA. See the corresponding datasheet for actual values

+ MCU circuitry - Smart 1/0: This approach uses Smart I/O on ports 11 and 17. The Smart I/0 is integrated
into the GPIO port, so the utilization of the Smart /0 logic consumes very little power. With this example, it
is measured to increase the power consumption on VDD (1.8 V) by 1 uA per Smart 1/0 enabled. See the
corresponding datasheet for actual values for the Smart 1/0 logic

Using the circuitry shown for this active tamper detection solution in Deep Sleep-OFF mode for PSOC™ Edge
MCU, the power consumption of this device would be 112.5 uW (25.2 yAat 3.3V +16.3 uA at 1.8 V).

3.3.14 Response time

The response time of this implementation depends on the following factors:

+ Phase of clock when tamper occurred: The CLK_LF operates at 32.768 kHz. The design requires that the
output and input signals are mismatched for two samples, where one sample is taken every clock pulse,
while the other is taken asynchronously. The worst case scenario for the Smart 1/0 fabric to detect and
output that tamper has been detected onto the status output signal is ~61 ps. This includes the n-1 sample
time (30.5 us), and the time for the output signal to change from LOW to HIGH, or HIGH to LOW (30.5 us)

+ Wake-up time from idle power mode: Once a falling edge of the tamper status signal triggers an interrupt,
the device will wakeup. The wakeup time depends on the idle power mode being used. In system Deep
Sleep-OFF mode for the PSOC™ Edge MCU, the wakeup time is around ~25 ms with secure boot disabled.
See the Low-power modes for tamper detection applications section for more details about baseline power
modes and the impact on power consumption, capabilities, and wakeup times

+ CPU execution: After waking-up, the CPU will start executing and the time it takes to execute the tamper
response routine depends on the application. It is recommended to optimize initialization functions, such
as CINIT and system initialization routines, but since this factor depends on the application, it is not
considered for the calculation

As observed, the response time is mostly defined by the wakeup time from idle mode, which is around ~25 ms
when using Deep Sleep OFF mode with secure boot disabled using PSOC™ Edge E84 MCU.

3.4 Alternative tamper detection implementations

The previous examples showed a few options to implement low-power, efficient and effective, tamper
detection solutions using PSOC™ microcontrollers. Nevertheless, a wide range of alternative approaches can be
used to implement both passive and active tamper detection mechanisms, offering designers flexibility and
versatility in their solutions.

3.4.1 Tamper detection using communications peripherals

Serial interfaces such as UART or SPI can be used to send known or randomized patterns, which are compared
upon reception.

Serial Out j

Serial In

Figure 12 Tamper detection using serial communication peripherals

Application note 23 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

This solution could allow for complex patterns with adjustable frequency and it could allow the
implementation of multiple tamper lines (PSOC™ Edge E84 includes 12 SCBs supporting I12C, UART, or SPI);
however, it is important to remark that this solution requires CPU time to compare the signal upon reception, a
tamper event would only be detected after a whole frame is transmitted and received, and not all low-power
modes are possible.

PSOC™ Edge E84 MCU includes one low-power SCB which can be used in Deep Sleep mode. This SCB could be
used together with Smart 1/0 to implement a SPI slave solution as shown in Figure 13:

Smart /0

wj

SPI_CLK

Deep Sleep i
SCB SPI_MISO %
SPI_MOSI

Figure 13 Tamper detection using SCB-SPI and Smart 1/O

In this solution, Smart 1/0 is used to generate a clock output, which is connected externally to the SPI_CLK
input. CPU or DMA can be used to load patterns into the SPI FIFO, which will be sent using SPI_MISO, while the
same signal is received back if the tamper NC switch is closed. If a tamper event occurs, the line will open and
the received data will mismatch.

Compared to the Smart I/O solution discussed in Simple PWM active tamper implementation using Smart I/0,
this approach requires fewer Smart I/0 LUTs and pins, which could be used for other purposes; however, this
solution is expected to consume more power, especially since it requires continuous DMA and/or CPU
intervention.

3.4.2 Tamper detection using autonomous analog

The autonomous analog module is a block that integrates programmable opamps (CTB), which can perform a
variety of analog front-end functions, DACs, ADCs, comparators, programmable reference blocks (PRB), and
digital-post processors. These blocks are controlled by a CPU-independent state machine called the
"autonomous controller". The autonomous controller is operable in system Deep Sleep mode, which allows the
system to monitor analog components, and gather and pre-process data at a very low power consumption.

Application note 24 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

CTBs (Open-Loop Opamp, Buffer, TIA, PGA, Differential, Comp)

CTBO Port Buffer

n DACO Channels
aanalog.ctb0.0 PIN[0] [x Musxes, ‘ DACO
aanalog.ctb0.1 PIN[1] [X Routing and Hold (12-bit) | DAC Waveform Data (512 Entries) |
aanalog.ctb0.2 PIN[2] [X
aanalog.ctb0.3 PIN[3] [X

CTBO Buff
aanalog.ctb0.4 PIN[4] [x utier = o DACT Channels
log.ctb0.5 PIN5] ample

aanalog.c (5] D 4 and Hold (12t) [*7| [DAC Waveform Data (512 Entries) | .
aanalog.ctb0.6 PIN[6] [x Digital Outputs

to GPIOs

aanalog.ctb0.7 PIN[7] [X

Voltage Sources || pre oUTO V<O AU GREmE T —X aanalog.gpio_out0

—X aanalog.gpio_out1

aanalog.ctb1 OCT::NF;r [Muxes, Rreferenoe Block Finite State Machine (FSM) Controller X aanaloz.:sioiouﬁz
aanalog.ctb1.1 PIN[1] [X Raling PRB_OUT1 (PRB) (4-bit State Transition SAR Sequencer —X aanalog.gpio_out3
aanalog.ctb1.2 PIN[2] [X Table Table ,
aanalog.ctb1.3 PIN[3] [X Static Configs Dynamic Configs CPUDMA
aanalog.ctb1.4 PIN[4] [X CTB1 To Interrupt

VBGR Trigger and Interrupt Logic > Controller,
Trigger Mux

aanalog.ctb1.5 PIN[5] [X

aanalog.ctb1.6 PIN[6] [X - 16-bit Wake Up Timer
aanalog.ctb1.7 PIN[7] [X Voltage Sources
4.096MHz Clock HS/PERI Clocks {—— From System
CTB Pins and Outputs Resources
Programmable Threshold
Voltage Sources
—9e oo Comparator (PTComp) 0
S E— e

Comparator Post-Processing
[Edge Detect | [16-bit Counter |

7 [Logic(um)][LimitDetect |
SAR / PTComp Pins e
Programmable Threshold

Comparator (PTComp) 1

CTB Pins and Outputs

XNWdNOD

SAR / PTComp Port

aanalog.sar0 PIN[0] [X
aanalog.sar1 PIN[1] [X
aanalog.sar2 PIN[2] [X
aanalog.sar3 PIN[3] [X
aanalog.sar4 PIN[4] [X
aanalog.sar5 PIN[5] [X
aanalog.sar6 PIN[6] [X
aanalog.sar7 PIN[7] [X

Low-Power

SAR ADC Core
ADC Post-Processing
| Accumulation / Avg | | 64-tap FIR (2x) |

Only one ADC core operates at a time

Offset and Gain
calibration

TTTTTITT

| Limit Detect | |

FIFO (512 Entries) |

SAR / PTComp Pins High-Speed

SAR ADC Core

" Sampler
High-Speed Channels 10x

SAR External Vrer
/ Vrer Bypass Cap

VREF [x

ayy

Figure 14 Autonomous analog block diagram

A tamper detection solution could be implemented using the autonomous analog DAC and either ADC or
comparators as follows:

pac ==
ADC/ ?

COMP | €

Figure 15 Tamper detection using autonomous analog

The DAC can be configured to output a constant voltage, which is compared without CPU intervention using the
ADC's limit detection feature, or by using a programmable threshold comparator (PTComp). The autonomous
analog has two DACs, which could allow to implement up to two output signals, but it supports up to 16 ADC
pins and two PTComps, which could allow for multiple tamper input lines.

Alternatively, an active tamper approach could be implemented by generating a pattern using the DAC
automatic waveform generator, which could be compared by a pair of PTComps in window comparator mode
and using the comparator post-processing unit. The output pattern could optionally be randomized
periodically with CPU intervention.

As mentioned earlier, the autonomous analog block can be used in system Deep Sleep mode for PSOC™ Edge
MCU, which allows for a low-power implementation with no CPU intervention; however, the power
consumption of the autonomous analog module should be considered.

Application note 25 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

3 External tamper detection mechanisms

3.4.3 Tamper detection using timers

PSOC™ MCUs include a variety of timers which could be used to generate a known or randomized active pattern.

—>

Timer Output j

Edge Counter
g <«

Figure 16 Tamper detection using timers

PSOC™ Edge E84 MCU includes up to 32 timer, counter and pulse width modulator (TCPWM) modules, out of
which eight have 32-bit counters, and 24 have 16-bit counters. The counter can be used to measure the period
and pulse width of an input signal (timer), find the number of times an event occurs (counter), generate PWM
signals, or decode quadrature signals.

An active tamper solution could be implemented by generating a known pattern and using counter mode to
count the number of received edges. The CPU would periodically check the number of received edges and
compare with the expected value. The pattern could also be randomized periodically using CPU intervention;
however, software and more CPU cycles would be required to re-calculate the number of expected edges.

One advantage of this solution is that it could allow to implement many different tamper lines with potentially
very fast and complex patterns; however, it requires CPU intervention to compare the number of received edges
and/or modify the pattern; a tamper event is not detected immediately but after the CPU wakes-up to compare
the number of edges; and, the timers might not be available in all power modes. On PSOC™ Edge MCU, the
TCPWM can be used in Active and Sleep mode, which would make this solution more feasible for non-battery
operated applications.

3.4.4 Using random generators

The solutions mentioned in this document show how to implement a passive tamper approach, or an active
approach using a known pattern; however, it is also possible to leverage PSOC™ hardware to generate random
patterns.

In addition to software mechanisms, PSOC™ Edge MCU includes a true random generator (TRNG) and a pseudo
random number generator (PRNG), each with a programmable size up to 32-bits.

These generators can be used to randomize the output patterns for active tamper solutions presented in this
document.

Application note 26 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

4 Tamper response mechanisms

4 Tamper response mechanisms

Tamper response is a critical component of secure system design. In the context of embedded systems, tamper
response refers to the mechanisms and strategies employed to react to tampering events, such as physical
intrusion, software manipulation, or data breaches. A well-designed tamper response system is essential for
protecting sensitive information, preventing intellectual property theft, and ensuring the integrity of critical
infrastructure.

An effective tamper response involves a combination of hardware and software counter measures that work
together to respond to potential security threats, and it can vary depending on the application needs. While
some applications might require to report a tamper event with an alarm or notification, other applications
might require to reset the device, enter in a fail-safe mode, erase sensitive data, or completely erase the
application.

This application notes discusses two methods which leverage the high security mechanisms of PSOC™ Edge
MCUs: erasing keys using Secure Enclave, and changing the device lifecycle to RMA.

4.1 Erasing keys using SE RT services

PSOC™ Edge devices include a Secure Enclave (SE), which includes two Cortex” MO+ CPUs operating in delayed
lock-step. The Secure Enclave is responsible for the initial secured boot and the root of trust, and it also
provides a range of security functions, maintains storage for secure keys, and performs security key
management. These functions are implemented in the Secure Enclave run-time services (SE RT) library, which
is only available for EPC 4 devices.

Note that it is possible to store and erase keys in internal or external user memory using EPC 2 or EPC 4 devices;
however, this application note focuses on how to leverage the SE RT services available on EPC4 devices to
achieve maximum security by using the Secure Enclave.

To get access to the SE RT services, the application needs to include the SE RT services utilities library using the

ModusToolbox™ Library Manager and including ifx_se_psacrypto.h. Once added, the following functions can be

used to generate and delete keys:

« ifx_se_generate_key: Generates a key or key pair. The key is generated randomly. Its location, usage
policy, type, and size are taken from the "attributes" parameter

« ifx_se_destroy_key: Destroy a key. This function destroys a key from both volatile memory and non-
volatile storage. This function also erases any metadata such as policies and liberates resources associated
with the key

Considering the flow diagram shown in Figure 17, the application flow to erase keys can be complemented as
follows:

Application note 27 002-41320 Rev. **
2025-10-03

o~ _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

4 Tamper response mechanisms

Secure Enclave

SE RT destroys
key

CM33/CM55
non-secure

Figure 17 Flow diagram for tamper response by erasing keys using RT services

Note that this application note implements the tamper response routine in CM33 secure code, making it
independent of the non-secure projects. This approach also only shows how to use SE RT services to erase keys,
assuming they are the most sensitive data in the device; however, the application remains functional and
developers can perform other actions as needed, such as logging or reporting the event, or erasing memory.

4.1.1 Handling volatile keys

An additional layer of protection can be implemented by leveraging the volatile backup registers (BREG) to
chain-encrypt secrets only while the device is powered, and losing the key automatically when the battery is
removed.

PSOC™ Edge contains multiple backup registers, which are retained in all power modes, including System
Hibernate and System Deep Sleep-OFF. These registers can be used to chain-encrypt secrets as follows:
1. Define the size of the protected assets

Generate on-die random AES 256-bit key during provisioning. Store it in BREG and protect access
Receive/generate the protected assets using Secure Enclave

Encrypt assets using the AES key in BREG

Store the encrypted assets in Secure Enclave storage

To use assets:

o uhwbN

a. Decrypt assets using Secure Enclave and the AES key in BREG

b. The AES key will remain in BREG even if the device goes in and out of low power modes
If the power supply to the system is interrupted, the AES key stored in BREG will be lost. As a result, any stored
assets that were encrypted using this key will become inaccessible, as there will be no available key to decrypt
them. However, to provide an additional layer of security, the Secure Enclave storage has been designed to be
resilient against invasive attacks.

Note that in this scenario, the system will stop being fully functional if the AES keys are lost due to a power
interruption, and will need to undergo a re-provisioning process.

Application note 28 002-41320 Rev. **
2025-10-03

o~ _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

4 Tamper response mechanisms

4.2 RMA lifecycle
While the earlier solution focuses on erasing specific sensitive data, a more drastic approach can be
implemented by changing the lifecycle of the device.

As mentioned in the Authenticated debug section, PSOC™ Edge MCU supports three device lifecycle stages (LCS)
relevant to product developers: development, production, and RMA.

An application can decide to change the lifecycle of the device to RMA if tamper is detected, effectively deleting
all data and stopping the application.

Considering the application flow diagram shown in Figure 4, the flow to change LCS to RMA would be as
follows:

Secure Enclave

CM33/CM55

SE wipes out non-secure
device and sets
lifecycle to RMA

SW Reset

Wait for RMA
analysis

Figure 18 Flow diagram for tamper response by changing lifecycle to RMA
This approach requires generating a device reset to initiate the lifecycle change, so it is recommended to
prioritize erasing sensitive data before changing the lifecycle to RMA.

Note that once a device is transitioned to the return merchandise authorization (RMA) stage, it will be rendered
inoperable and cannot be restored to a previous stage in its lifecycle.

Application note 29 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Glossary

Glossary

ADC
analog-to-digital converter

BSP
board support package

CLK_LF
low frequency clock

COMP
comparator

CRC
cyclic redundancy check

CTB
continuous time block

DAC
digital-to-analog converter

DMA
direct memory access

DPA
differential power analysis

DU
data unit

ECO
external crystal oscillator

EPC
edge protect category

EVK
evaluation kit

FIFO
firstin, first out

FSM
finite state machine

GPIO
general purpose input/output

HSIOM
high-speed 1/0 matrix

Application note 30 002-41320 Rev. **
2025-10-03

PSOC™ Edge MCU: Tamper protection and detection mechanisms

Glossary

12C
inter-integrated circuit

JTAG
Joint Test Action Group

LCS
lifecycle stage

LP
low power

LPCOMP
low-power comparator

LUT
look-up table

LvVvD
low-voltage detect

MCU
microcontroller

MMIO
memory-mapped 1/0

NC
normally closed

NO
normally open

NSPE
non-secure processing environment

OEM
original equipment manufacturer

ovD
overvoltage detect

PILO
precision internal low-speed oscillator

POR
power-on reset

PRB
programmable reference block

PRNG
pseudo random number generator

Application note 31

infineon

002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Glossary

PSA
Platform Security Architecture

PTComp
programmable threshold comparator

PWM
pulse-width modulation

RC
resistor-capacitor

RMA
return merchandise authorization

RoT
root of trust

RRAM
Resistive RAM

RT
runtime

RTC
real-time clock

SAR
successive approximation register

SCA
side-channel attacks

SCB
Serial Communication Block

SE
Secure Enclave

SE_RT
Secure Enclave runtime

SMIF
Serial Memory Interface

SPE
secure processing environment

SPI
serial peripheral interface

SWD
Serial Wire Debug

Application note 32 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Glossary

TCPWM
timer/counter pulse-width modulator

TRNG
true random number generator

ULP
ultra-low power

wco
watch crystal oscillator

WDT
watchdog

XIP
Execute in Place

Application note 33 002-41320 Rev. **
2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Revision history

Revision history

Document Date Description of changes

revision

** 2025-10-03 Initial release

Application note 34 002-41320 Rev. **

2025-10-03

o _.
PSOC™ Edge MCU: Tamper protection and detection mechanisms |n f| neon

Trademarks

Trademarks

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

35 002-41320 Rev. **

Application note
2025-10-03

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-10-03
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-vjw1743566849438

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Tamper protection
	1.2 Device-level vs. system-level tamper protection

	2 Tamper protection mechanisms
	2.1 Intrusion detection systems
	2.1.1 Temperature monitoring
	2.1.2 Voltage monitoring
	2.1.3 Secure Enclave using lockstep
	2.1.4 External tamper detection

	2.2 Encryption mechanisms
	2.2.1 Cryptographic accelerators
	2.2.2 Secure Enclave supporting cryptographic and key management services using SE_RT
	2.2.3 Encrypted memory

	2.3 Secure boot and authentication mechanisms
	2.3.1 Secure boot and chain of trust
	2.3.2 Edge Protect Bootloader
	2.3.3 Authenticated debug

	3 External tamper detection mechanisms
	3.1 Passive and active detection
	3.1.1 Application flow diagram
	3.1.2 Low-power modes for tamper detection applications

	3.2 Passive tamper detection
	3.2.1 Passive tamper implementation using GPIOs
	3.2.1.1 Hardware and device implementation
	3.2.1.2 Code example
	3.2.1.3 Power consumption
	3.2.1.4 Response time

	3.2.2 Passive tamper implementation using LPCOMP
	3.2.2.1 Hardware and device implementation - Single line
	3.2.2.2 Hardware and device implementation - Multiple lines
	3.2.2.3 Code example
	3.2.2.4 Power consumption
	3.2.2.5 Response time

	3.3 Active tamper detection
	3.3.1 Simple PWM active tamper implementation using Smart I/O
	3.3.1.1 Hardware and device implementation
	3.3.1.2 Code example
	3.3.1.3 Power consumption
	3.3.1.4 Response time

	3.4 Alternative tamper detection implementations
	3.4.1 Tamper detection using communications peripherals
	3.4.2 Tamper detection using autonomous analog
	3.4.3 Tamper detection using timers
	3.4.4 Using random generators

	4 Tamper response mechanisms
	4.1 Erasing keys using SE RT services
	4.1.1 Handling volatile keys

	4.2 RMA lifecycle

	Glossary
	ADC
	BSP
	CLK_LF
	COMP
	CRC
	CTB
	DAC
	DMA
	DPA
	DU
	ECO
	EPC
	EVK
	FIFO
	FSM
	GPIO
	HSIOM
	I2C
	JTAG
	LCS
	LP
	LPCOMP
	LUT
	LVD
	MCU
	MMIO
	NC
	NO
	NSPE
	OEM
	OVD
	PILO
	POR
	PRB
	PRNG
	PSA
	PTComp
	PWM
	RC
	RMA
	RoT
	RRAM
	RT
	RTC
	SAR
	SCA
	SCB
	SE
	SE_RT
	SMIF
	SPE
	SPI
	SWD
	TCPWM
	TRNG
	ULP
	WCO
	WDT
	XIP

	Revision history
	Trademarks
	Disclaimer

